1
|
Ishizaka A, Tamura A, Koga M, Mizutani T, Yamayoshi S, Iwatsuki-Horimoto K, Yasuhara A, Yamamoto S, Nagai H, Adachi E, Suzuki Y, Kawaoka Y, Yotsuyanagi H. Dysbiosis of gut microbiota in COVID-19 is associated with intestinal DNA phage dynamics of lysogenic and lytic infection. Microbiol Spectr 2025; 13:e0099824. [PMID: 39656008 PMCID: PMC11705802 DOI: 10.1128/spectrum.00998-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
This study compared intestinal DNA phage dynamics and gut microbiota changes observed at the onset of coronavirus disease 2019 (COVID-19). The study participants included 19 healthy individuals and 19 patients with severe acute respiratory syndrome coronavirus 2 infection. Significant differences were observed in the diversity of the intestinal DNA virome after the onset of COVID-19 compared with that in healthy individuals. Classification by their tail morphology resulted in the order Caudovirales, a double-stranded DNA phage, accounting for >95% of all participants. In classifying phages based on host bacteria, a decreased number of phages infecting mainly the Clostridia class was observed immediately after the onset of COVID-19 and recovered over time. After the onset of COVID-19, two distinct movement patterns of intestinal phages and their host bacteria were observed: phage- and bacteria-predominant. The abundance of obligate anaerobes, such as Clostridium_sense_strict_1, Fusicatenibacter, and Romboutsia, and the phages hosting these bacteria decreased immediately after the onset of COVID-19, and faster phage recovery was observed compared with bacterial recovery. In contrast, the genus Staphylococcus, a facultative anaerobic bacterium, increased immediately after the onset of COVID-19, whereas the phages infecting Staphylococcus decreased. Furthermore, immediately after the onset of COVID-19, the percentage of lytic phages increased, whereas that of temperate phages decreased. These observations suggest that the gut microbiota dysbiosis observed immediately after the onset of COVID-19 may be linked to phage dynamics that control gut microbiota and may also affect the recovery from dysbiosis.IMPORTANCEBacteriophages infect and replicate with bacteria and archaea and are closely associated with intestinal bacteria. The symbiotic relationship between gut microbiota and bacteriophages is of interest, but it is challenging to study their dynamics in the human body over time. SARS-CoV-2 infection has been reported to alter the gut microbiota, which is involved in gut immune regulation and pathophysiology, although changes in the intestinal phages of patients with SARS-CoV-2 and their dynamic relationship with the gut microbiota remain unclear. SARS-CoV-2 infection, which follows a transient pathological course from disease onset to cure, may provide a reliable model to investigate these interactions in the gut environment. Therefore, this study aimed to elucidate the correlation between gut microbiota and intestinal DNA virome dynamics in COVID-19 pathogenesis. This study found that the dysbiosis observed in SARS-CoV-2 infection involves a growth strategy that depends on the phage or bacterial dominance.
Collapse
Affiliation(s)
- Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Azumi Tamura
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Taketoshi Mizutani
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, the University of Tokyo, Tokyo, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, the University of Tokyo, Tokyo, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Shinya Yamamoto
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nagai
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, the University of Tokyo, Tokyo, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Fricke C, Ulrich L, Kochmann J, Gergen J, Kovacikova K, Roth N, Beer J, Schnepf D, Mettenleiter TC, Rauch S, Petsch B, Hoffmann D, Beer M, Corleis B, Dorhoi A. mRNA vaccine-induced IgG mediates nasal SARS-CoV-2 clearance in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102360. [PMID: 39524696 PMCID: PMC11550364 DOI: 10.1016/j.omtn.2024.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Coronavirus disease 2019 (COVID-19) mRNA vaccines that have contributed to controlling the SARS-CoV-2 pandemic induce specific serum antibodies, which correlate with protection. However, the neutralizing capacity of antibodies for emerging SARS-CoV-2 variants is altered. Suboptimal antibody responses are observed in patients with humoral immunodeficiency diseases, ongoing B cell depletion therapy, and aging. Common experimental mouse models with altered B cell compartments, such as B cell depletion or deficiency, do not fully recapitulate scenarios of declining or suboptimal antibody levels as observed in humans. We report on SARS-CoV-2 immunity in a transgenic mouse model with restricted virus-specific antibodies. Vaccination of C57BL/6-Tg(IghelMD4)4Ccg/J mice with unmodified or N1mΨ-modified mRNA encoding for ancestral spike (S) protein and subsequent challenge with mouse-adapted SARS-CoV-2 provided insights into antibody-independent immunity and the impact of antibody titers on mucosal immunity. Protection against fatal disease was independent of seroconversion following mRNA vaccination, suggesting that virus-specific T cells can compensate for suboptimal antibody levels. In contrast, mRNA-induced IgG in the nasal conchae limited the local viral load and disease progression. Our results indicate that parenteral mRNA immunization can elicit nasal IgG antibodies that effectively suppress local viral replication, highlighting the potential of vaccines in controlling SARS-CoV-2 transmission and epidemiology.
Collapse
Affiliation(s)
- Charlie Fricke
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Jana Kochmann
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | - Julius Beer
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
3
|
Lasrado N, Rowe M, McMahan K, Hachmann NP, Miller J, Jacob-Dolan C, Liu J, Verrette B, Gotthardt KA, Ty DM, Pereira J, Mazurek CR, Hoyt A, Collier ARY, Barouch DH. SARS-CoV-2 XBB.1.5 mRNA booster vaccination elicits limited mucosal immunity. Sci Transl Med 2024; 16:eadp8920. [PMID: 39441905 PMCID: PMC11542980 DOI: 10.1126/scitranslmed.adp8920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/05/2024] [Indexed: 10/25/2024]
Abstract
Current COVID-19 vaccines provide robust protection against severe disease but minimal protection against acquisition of infection. Intramuscularly administered COVID-19 vaccines induce robust serum neutralizing antibodies (NAbs), but their ability to boost mucosal immune responses remains to be determined. In this study, we show that the XBB.1.5 messenger RNA (mRNA) boosters result in increased serum neutralization to multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in humans, including the dominant circulating variant JN.1. In contrast, we found that the XBB.1.5 mRNA booster did not augment mucosal NAbs or mucosal IgA responses, although acute SARS-CoV-2 XBB infection substantially increased mucosal antibody responses. These data demonstrate that current XBB.1.5 mRNA boosters substantially enhance peripheral antibody responses but do not robustly increase mucosal antibody responses. Our data highlight a separation between the peripheral and mucosal immune systems in humans and emphasize the importance of developing next-generation vaccines to augment mucosal immunity to protect against respiratory virus infections.
Collapse
Affiliation(s)
- Ninaad Lasrado
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Marjorie Rowe
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Katherine McMahan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Nicole P. Hachmann
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Jessica Miller
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Catherine Jacob-Dolan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Jinyan Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Brookelynne Verrette
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Kristin A. Gotthardt
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Darren M. Ty
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Juliana Pereira
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Camille R. Mazurek
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Amelia Hoyt
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Ai-ris Y. Collier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Dan H. Barouch
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Li J, Chu LT, Hartanto H, Guo G, Liu L, Wu J, Wu M, Cui C, Wang G, Liu W, Kwong HK, Wu S, Chen TH. Microfluidic particle counter visualizing mucosal antibodies against SARS-CoV-2 in the upper respiratory tract for rapid evaluation of immune protection. LAB ON A CHIP 2024; 24:2658-2668. [PMID: 38660972 DOI: 10.1039/d4lc00118d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Mucosal antibodies in the upper respiratory tract are the earliest and most critical responders to prevent respiratory infections, providing an indication for the rapid evaluation of immune protection. Here, we report a microfluidic particle counter that directly visualizes mucosal antibody levels in nasal mucus. The mucosal anti-SARS-CoV-2 spike receptor binding domain (RBD) antibodies in nasal secretions first react with magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) that are surface-modified to form a "MMPs-anti-spike RBD IgG-PMPs" complex when RBD is present. After magnetic separation and loading into the microfluidic particle counter, the free PMPs, which are reduced with increasing anti-spike RBD IgG antibody levels, are trapped by a microfluidic particle dam and accumulate in the trapping channel. A sensitive mode [limit of detection (LOD): 14.0 ng mL-1; sample-to-answer time: 70 min] and an equipment-free rapid mode (LOD: 37.4 ng mL-1; sample-to-answer time: 20 min) were achieved. Eighty-seven nasal secretion (NS) samples from vaccinees were analyzed using our microfluidic particle counter, and the results closely resemble those of the gold-standard enzyme-linked immunosorbent assay (ELISA). The analysis shows that higher antibody levels were found in convalescent volunteers compared to noninfected volunteers. Together, we demonstrate a rapid kit that directly indicates immune status, which can guide vaccine strategy for individuals and the government.
Collapse
Affiliation(s)
- Jiaheng Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Lok Ting Chu
- Department of Chemistry and Molecular Biology, School of Basic Medical Sciences, Guang Dong Medical University, Zhanjiang, China
| | - Hogi Hartanto
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Guihuan Guo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Lu Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Jianpeng Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Minghui Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Chenyu Cui
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, SAR, China
| | - Gaobo Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Wengang Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Hoi Kwan Kwong
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Siying Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, SAR, China
| |
Collapse
|
5
|
Ishizaka A, Koga M, Mizutani T, Yamayoshi S, Iwatsuki-Horimoto K, Adachi E, Suzuki Y, Kawaoka Y, Yotsuyanagi H. Association of gut microbiota with the pathogenesis of SARS-CoV-2 Infection in people living with HIV. BMC Microbiol 2024; 24:6. [PMID: 38172680 PMCID: PMC10763188 DOI: 10.1186/s12866-023-03157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND People living with HIV (PLWH) with chronic inflammation may have an increasing risk for coronavirus disease 2019 (COVID-19) severity; however, the impact of their gut microbiota on COVID-19 is not fully elucidated. Here, we analyzed the temporal changes in the gut microbiota composition of hospitalized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected PLWH (PLWH-CoV) and their correlation with COVID-19 severity. RESULT The 16S rRNA analysis results using stool samples (along the timeline from disease onset) from 12 hospitalized PLWH-CoV, whose median CD4 + T cell count was 671 cells/µl, were compared to those of 19 healthy people and 25 PLWH. Bacterial diversity in PLWH-CoV is not significantly different from that of healthy people and SARS-CoV-2 non-infected PLWH, but a significant difference in the microbiota diversity was observed in the classification according to the disease severity. Immediately after the disease onset, remarkable changes were observed in the gut microbiota of PLWH-CoV, and the changing with a decrease in some short-chain fatty acid-producing bacteria and an increase in colitis-related pathobiont. In the second week after disease onset, relative amounts of specific bacteria distinguished between disease severity. One month after the disease onset, dysbiosis of the gut microbiota persisted, and the number of Enterobacteriaceae, mainly Escherichia-Shigella, which is potentially pathogenic, increased and were enriched in patients who developed post-acute sequelae of COVID-19 (PASC). CONCLUSION The changes in the gut microbiota associated with SARS-CoV-2 infection observed in PLWH in this study indicated a persistent decrease in SCFA-producing bacteria and an intestinal environment with an increase in opportunistic pathogens associated with enteritis. This report demonstrates that the intestinal environment in PLWH tends to show delayed improvement even after COVID-19 recovery, and highlights the importance of the dysbiosis associated with SARS-CoV-2 infection as a potential factor in the COVID-19 severity and the PASC in PLWH.
Collapse
Affiliation(s)
- Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Taketoshi Mizutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, 6-2-3 Kashiwanoha, 277-0882, Kashiwa-shi, Chiba, Japan.
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Pandemic Preparedness, Infection and Advanced Research Center, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan.
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan.
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan.
| |
Collapse
|
6
|
Tan CW, Lim CK, Prestedge J, Batty M, Mah YY, O'Han M, Wang LF, Kilby D, Anderson DE. Use of a point-of-care test to rapidly assess levels of SARS-CoV-2 nasal neutralising antibodies in vaccines and breakthrough infected individuals. Sci Rep 2023; 13:20263. [PMID: 37985674 PMCID: PMC10662396 DOI: 10.1038/s41598-023-47613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
Despite SARS-CoV-2 vaccines eliciting systemic neutralising antibodies (nAbs), breakthrough infections still regularly occur. Infection helps to generate mucosal immunity, possibly reducing disease transmission. Monitoring mucosal nAbs is predominantly restricted to lab-based assays, which have limited application to the public. In this multi-site study, we used lateral-flow surrogate neutralisation tests to measure mucosal and systemic nAbs in vaccinated and breakthrough infected individuals in Australia and Singapore. Using three lateral flow assays to detect SARS-CoV-2 nAbs, we demonstrated that nasal mucosal nAbs were present in 71.4 (95% CI 56.3-82.9%) to 85.7% (95% CI 71.8-93.7%) of individuals with breakthrough infection (positivity rate was dependent upon the type of test), whereas only 20.7 (95% CI 17.1-49.4%) to 34.5% (95% CI 19.8-52.7%) of vaccinated individuals without breakthrough infection had detectible nasal mucosal nAbs. Of the individuals with breakthrough infection, collective mucosal anti-S antibody detection in confirmatory assays was 92.9% (95% CI 80.3-98.2%) of samples, while 72.4% (95% CI 54.1-85.5%) of the vaccinated individuals who had not experienced a breakthrough infection were positive to anti-S antibody. All breakthrough infected individuals produced systemic anti-N antibodies; however, these antibodies were not detected in the nasal cavity. Mucosal immunity is likely to play a role in limiting the transmission of SARS-CoV-2 and lateral flow neutralisation tests provide a rapid readout of mucosal nAbs at the point-of-care.
Collapse
Affiliation(s)
- Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117547, Singapore
| | - Chuan Kok Lim
- Victorian Infectious Diseases Reference Laboratory, Melbourne Health, The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Australia
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, 3000, Australia
| | - Jacqueline Prestedge
- Victorian Infectious Diseases Reference Laboratory, Melbourne Health, The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Australia
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, 3000, Australia
| | - Mitchell Batty
- Victorian Infectious Diseases Reference Laboratory, Melbourne Health, The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Australia
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, 3000, Australia
| | - Yun Yan Mah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Michelle O'Han
- Impact Biotech Healthcare, Level 30 Australia Square, 264 George St, Sydney, NSW, 2000, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Dean Kilby
- Impact Biotech Healthcare, Level 30 Australia Square, 264 George St, Sydney, NSW, 2000, Australia
| | - Danielle E Anderson
- Victorian Infectious Diseases Reference Laboratory, Melbourne Health, The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Australia.
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, 3000, Australia.
| |
Collapse
|
7
|
Hwang IC, Vasquez R, Song JH, Engstrand L, Valeriano VD, Kang DK. Alterations in the gut microbiome and its metabolites are associated with the immune response to mucosal immunization with Lactiplantibacillus plantarum-displaying recombinant SARS-CoV-2 spike epitopes in mice. Front Cell Infect Microbiol 2023; 13:1242681. [PMID: 37705931 PMCID: PMC10495993 DOI: 10.3389/fcimb.2023.1242681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Lactic acid bacteria (LAB) expressing foreign antigens have great potential as mucosal vaccines. Our previous study reported that recombinant Lactiplantibacillus plantarum SK156 displaying SARS-CoV-2 spike S1 epitopes elicited humoral and cell-mediated immune responses in mice. Here, we further examined the effect of the LAB-based mucosal vaccine on gut microbiome composition and function, and gut microbiota-derived metabolites. Forty-nine (49) female BALB/c mice were orally administered L. plantarum SK156-displaying SARS-CoV-2 spike S1 epitopes thrice (at 14-day intervals). Mucosal immunization considerably altered the gut microbiome of mice by enriching the abundance of beneficial gut bacteria, such as Muribaculaceae, Mucispirillum, Ruminococcaceae, Alistipes, Roseburia, and Clostridia vadinBB60. Moreover, the predicted function of the gut microbiome showed increased metabolic pathways for amino acids, energy, carbohydrates, cofactors, and vitamins. The fecal concentration of short-chain fatty acids, especially butyrate, was also altered by mucosal immunization. Notably, alterations in gut microbiome composition, function, and butyrate levels were positively associated with the immune response to the vaccine. Our results suggest that the gut microbiome and its metabolites may have influenced the immunogenicity of the LAB-based SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- In-Chan Hwang
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Robie Vasquez
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Ji Hoon Song
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Valerie Diane Valeriano
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
8
|
Hempel H, Mantis N, Heaney CD, Pinto LA. The SeroNet Clinical and Translational Serology Task Force (CTTF) SARS-CoV-2 mucosal immunity methodological considerations and best practices workshop. Hum Vaccin Immunother 2023; 19:2253598. [PMID: 37695268 PMCID: PMC10496519 DOI: 10.1080/21645515.2023.2253598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
SARS-CoV-2 persists in certain populations, even with vaccination and boosters. Emerging evidence suggests that reductions in virus transmission and infection will likely require involvement of the mucosal immune system, especially secretory antibodies in the upper respiratory tract. The Clinical and Translational Serology Task Force (CTTF) within The National Cancer Institute (NCI)'s Serological Sciences Network for COVID-19 (SeroNet) hosted a workshop to review the status of development and standardization of mucosal sample collection methods and assays, identify challenges, and develop action plans to bridge gaps. Speakers presented data underscoring a role for secretory IgA in protection, mucosal markers as correlates of protection, methods for tracking and assessing mucosal antibodies, and lessons learned from other infectious agents. Perspectives from regulators and industry were put forward to guide mucosal vaccine development. Methodological considerations for optimizing collection protocols and assays and harmonizing data were highlighted. Rigorous studies, standardized protocols, controls, standards, and assay validation were identified as necessary to gain momentum in expanding SARS-CoV-2 vaccines to the mucosa.
Collapse
Affiliation(s)
- Heidi Hempel
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nicholas Mantis
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Ligia A. Pinto
- Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|