1
|
Shadid ILC, Guchelaar HJ, Weiss ST, Mirzakhani H. Vitamin D beyond the blood: Tissue distribution of vitamin D metabolites after supplementation. Life Sci 2024; 355:122942. [PMID: 39134205 PMCID: PMC11371480 DOI: 10.1016/j.lfs.2024.122942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/25/2024]
Abstract
Vitamin D3's role in mineral homeostasis through its endocrine function, associated with the main circulating metabolite 25-hydroxyvitamin D3, is well characterized. However, the increasing recognition of vitamin D3's paracrine and autocrine functions-such as cell growth, immune function, and hormone regulation-necessitates examining vitamin D3 levels across different tissues post-supplementation. Hence, this review explores the biodistribution of vitamin D3 in blood and key tissues following oral supplementation in humans and animal models, highlighting the biologically active metabolite, 1,25-dihydroxyvitamin D3, and the primary clearance metabolite, 24,25-dihydroxyvitamin D3. While our findings indicate significant progress in understanding how circulating metabolite levels respond to supplementation, comprehensive insight into their tissue concentrations remains limited. The gap is particularly significant during pregnancy, a period of drastically increased vitamin D3 needs and metabolic alterations, where data remains sparse. Within the examined dosage ranges, both human and animal studies indicate that vitamin D3 and its metabolites are retained in tissues selectively. Notably, vitamin D3 concentrations in tissues show greater variability in response to administered doses. In contrast, its metabolites maintain a more consistent concentration range, albeit different among tissues, reflecting their tighter regulatory mechanisms following supplementation. These observations suggest that serum 25-hydroxyvitamin D3 levels may not adequately reflect vitamin D3 and its metabolite concentrations in different tissues. Therefore, future research should aim to generate robust human data on the tissue distribution of vitamin D3 and its principal metabolites post-supplementation. Relating this data to clinically appropriate exposure metrics will enhance our understanding of vitamin D3's cellular effects and guide refinement of clinical trial methodologies.
Collapse
Affiliation(s)
- Iskander L C Shadid
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hooman Mirzakhani
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Liu T, Liu CA, Wei YP, Song MM, Zhang Q, Song Y, Chen P, Liu LS, Wang BY, Shi HP. Deciphering the folate puzzle: Unraveling the impact of genetic variations and metabolites on cancer risk. Int J Cancer 2024; 155:1225-1236. [PMID: 38783579 DOI: 10.1002/ijc.35043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
The C677T polymorphism in the MTHFR gene and its role in folate metabolism, impacting serum folate metabolites like THF and 5-MTHF, is a critical but underexplored area in cancer research. This nested case-control study utilized data from CHHRS, involving 87,492 hypertensive adults without prior cancer. During a median of 2.02 years, we identified 1332 cancer cases and matched controls based on age, sex, and residency. Serum levels of folate, THF, and 5-MTHF were measured, and the MTHFR C677T gene polymorphism was considered. Statistical analyses included restricted cubic spline regression and conditional logistic regression models. Serum THF levels were inversely associated with overall cancer risk (ORper SD = 0.90, 95% CI = 0.82-0.99), while 5-MTHF levels showed a negative association in the general cohort (ORQ3 vs. Q1 = 0.76, 95% CI = 0.60-0.96; ORQ4 vs. Q1 = 0.75, 95% CI = 0.58-0.98) and in individuals with MTHFR C677T (CC + CT) polymorphism (ORper SD = 0.87, 95% CI = 0.77-0.99; ORQ4 VS. Q1 = 0.79, 95% CI = 0.61-0.98), but a positive association in the MTHFR C677T (TT) subgroup (ORper SD = 1.89, 95% CI = 1.02-3.72; ORQ4 VS. Q1 = 2.17, 95% CI = 1.06-8.21). The impact of folate, THF, and 5-MTHF on cancer risk varied significantly across different cancer types and MTHFR C677T genotypes. This study provides novel insights into the variable effects of folate and its metabolites on cancer risk, influenced by genetic factors like the MTHFR C677T polymorphism and cancer type.
Collapse
Affiliation(s)
- Tong Liu
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Chen-An Liu
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ya-Ping Wei
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Meng-Meng Song
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Qi Zhang
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yun Song
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Ping Chen
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Li-Shun Liu
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Bin-Yan Wang
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery, Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Jain SK, Justin Margret J, Abrams SA, Levine SN, Bhusal K. The Impact of Vitamin D and L-Cysteine Co-Supplementation on Upregulating Glutathione and Vitamin D-Metabolizing Genes and in the Treatment of Circulating 25-Hydroxy Vitamin D Deficiency. Nutrients 2024; 16:2004. [PMID: 38999752 PMCID: PMC11243476 DOI: 10.3390/nu16132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Vitamin D receptors are expressed in many organs and tissues, which suggests that vitamin D (VD) affects physiological functions beyond its role in maintaining bone health. Deficiency or inadequacy of 25(OH)VD is widespread globally. Population studies demonstrate that a positive association exists between a high incidence of VD deficiency and a high incidence of chronic diseases, including dementia, diabetes, and heart disease. However, many subjects have difficulty achieving the required circulating levels of 25(OH)VD even after high-dose VD supplementation, and randomized controlled clinical trials have reported limited therapeutic success post-VD supplementation. Thus, there is a discordance between the benefits of VD supplementation and the prevention of chronic diseases in those with VD deficiency. Why this dissociation exists is currently under debate and is of significant public interest. This review discusses the downregulation of VD-metabolizing genes needed to convert consumed VD into 25(OH)VD to enable its metabolic action exhibited by subjects with metabolic syndrome, obesity, and other chronic diseases. Research findings indicate a positive correlation between the levels of 25(OH)VD and glutathione (GSH) in both healthy and diabetic individuals. Cell culture and animal experiments reveal a novel mechanism through which the status of GSH can positively impact the expression of VD metabolism genes. This review highlights that for better success, VD deficiency needs to be corrected at multiple levels: (i) VD supplements and/or VD-rich foods need to be consumed to provide adequate VD, and (ii) the body needs to be able to upregulate VD-metabolizing genes to convert VD into 25(OH)VD and then to 1,25(OH)2VD to enhance its metabolic action. This review outlines the association between 25(OH)VD deficiency/inadequacy and decreased GSH levels, highlighting the positive impact of combined VD+LC supplementation on upregulating GSH, VD-metabolizing genes, and VDR. These effects have the potential to enhance 25(OH)VD levels and its therapeutic efficacy.
Collapse
Affiliation(s)
- Sushil K. Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Steven A. Abrams
- Department of Pediatrics and Dell Pediatric Research Institute, Dell Medical School at the University of Texas at Austin, Austin, TX 78723, USA;
| | - Steven N. Levine
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.N.L.); (K.B.)
| | - Kamal Bhusal
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.N.L.); (K.B.)
| |
Collapse
|
4
|
Park CY, Han SN. Vitamin D and obesity. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 109:221-247. [PMID: 38777414 DOI: 10.1016/bs.afnr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
An inverse association between vitamin D status and obesity has been reported across diverse populations and age groups in humans. In animal model of diet-induced obesity, dysregulation of vitamin D metabolism has been observed. However, the causal relationship between vitamin D status and obesity is not conclusive. Several explanations, such as volumetric dilution, sequestration of vitamin D into adipose tissue, and limited sunlight exposure, have been suggested as the underlying mechanisms linking poor vitamin D status and obesity. Vitamin D can modulate adipose tissue biology, spanning from adipocyte differentiation to adipocyte apoptosis and energy metabolism, indicating its potential impact on adiposity. In this chapter, we will review the prevalence of vitamin D deficiency and determinants of vitamin D deficiency among different populations, as well as changes in vitamin D metabolism associated with obesity. Additionally, we will review vitamin D's regulation of adipogenesis and lipogenesis at the cellular level in order to gain a deeper understanding of the underlying mechanisms linking vitamin D levels and obesity.
Collapse
Affiliation(s)
- Chan Yoon Park
- Department of Food & Nutrition, College of Health Science, The University of Suwon, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea; Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Stevenson M, Srivastava A, Nacher M, Hall C, Palaia T, Lee J, Zhao CL, Lau R, Ali MAE, Park CY, Schlamp F, Heffron SP, Fisher EA, Brathwaite C, Ragolia L. The Effect of Diet Composition on the Post-operative Outcomes of Roux-en-Y Gastric Bypass in Mice. Obes Surg 2024; 34:911-927. [PMID: 38191966 DOI: 10.1007/s11695-023-07052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Roux-en-Y gastric bypass (RYGB) leads to the improvement of many obesity-associated conditions. The degree to which post-operative macronutrient composition contributes to metabolic improvement after RYGB is understudied. METHODS A mouse model of RYGB was used to examine the effects of diet on the post-operative outcomes of RYGB. Obese mice underwent either Sham or RYGB surgery and were administered either chow or HFD and then monitored for an additional 8 weeks. RESULTS After RYGB, reductions to body weight, fat mass, and lean mass were similar regardless of diet. RYGB and HFD were independently detrimental to bone mineral density and plasma vitamin D levels. Independent of surgery, HFD accelerated hematopoietic stem and progenitor cell proliferation and differentiation and exhibited greater myeloid lineage commitment. Independent of diet, systemic iron deficiency was present after RYGB. In both Sham and RYGB groups, HFD increased energy expenditure. RYGB increased fecal energy loss, and HFD after RYGB increased fecal lipid content. RYGB lowered fasting glucose and liver glycogen levels but HFD had an opposing effect. Indices of insulin sensitivity improved independent of diet. HFD impaired improvements to dyslipidemia, NAFLD, and fibrosis. CONCLUSION Post-operative diet plays a significant role in determining the degree to which RYGB reverses obesity-induced metabolic abnormalities such as hyperglycemia, dyslipidemia, and NAFLD. Diet composition may be targeted in order to assist in the treatment of post-RYGB bone mineral density loss and vitamin D deficiency as well as to reverse myeloid lineage commitment. HFD after RYGB continues to pose a significant multidimensional health risk.
Collapse
Affiliation(s)
- Matthew Stevenson
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Ankita Srivastava
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Maria Nacher
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology and the Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Christopher Hall
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Thomas Palaia
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Jenny Lee
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Chaohui Lisa Zhao
- Department of Pathology, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Raymond Lau
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
- Department of Endocrinology, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Mohamed A E Ali
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Christopher Y Park
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Florencia Schlamp
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Sean P Heffron
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology and the Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology and the Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Collin Brathwaite
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
- Department of Surgery, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Louis Ragolia
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA.
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
6
|
Shelley SP, James RS, Eustace SJ, Eyre ELJ, Tallis J. High-fat diet effects on contractile performance of isolated mouse soleus and extensor digitorum longus when supplemented with high dose vitamin D. Exp Physiol 2024; 109:283-301. [PMID: 37983200 PMCID: PMC10988740 DOI: 10.1113/ep091493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Evidence suggests vitamin D3 (VD) supplementation can reduce accumulation of adipose tissue and inflammation and promote myogenesis in obese individuals, and thus could mitigate obesity-induced reductions in skeletal muscle (SkM) contractility. However, this is yet to be directly investigated. This study, using the work-loop technique, examined effects of VD (cholecalciferol) supplementation on isolated SkM contractility. Female mice (n = 37) consumed standard low-fat diet (SLD) or high-fat diet (HFD), with or without VD (20,000 IU/kg-1 ) for 12 weeks. Soleus and EDL (n = 8-10 per muscle per group) were isolated and absolute and normalized (to muscle size and body mass) isometric force and power output (PO) were measured, and fatigue resistance determined. Absolute and normalized isometric force and PO of soleus were unaffected by diet (P > 0.087). However, PO normalized to body mass was reduced in HFD groups (P < 0.001). Isometric force of extensor digitorum longus (EDL) was unaffected by diet (P > 0.588). HFD reduced EDL isometric stress (P = 0.048) and absolute and normalized PO (P < 0.031), but there was no effect of VD (P > 0.493). Cumulative work during fatiguing contractions was lower in HFD groups (P < 0.043), but rate of fatigue was unaffected (P > 0.060). This study uniquely demonstrated that high-dose VD had limited effects on SkM contractility and did not offset demonstrated adverse effects of HFD. However, small and moderate effect sizes suggest improvement in EDL muscle performance and animal morphology in HFD VD groups. Given effect sizes observed, coupled with proposed inverted U-shaped dose-effect curve, future investigations are needed to determine dose/duration specific responses to VD, which may culminate in improved function of HFD SkM.
Collapse
Affiliation(s)
- Sharn P. Shelley
- Research Centre for Physical Activity, Sport and Exercise ScienceCoventry UniversityCoventryUK
| | - Rob S. James
- Faculty of Life SciencesUniversity of BradfordBradfordUK
| | | | | | - Jason Tallis
- Research Centre for Physical Activity, Sport and Exercise ScienceCoventry UniversityCoventryUK
| |
Collapse
|
7
|
Krisnamurti DGB, Louisa M, Poerwaningsih EH, Tarigan TJE, Soetikno V, Wibowo H, Nugroho CMH. Vitamin D supplementation alleviates insulin resistance in prediabetic rats by modifying IRS-1 and PPARγ/NF-κB expressions. Front Endocrinol (Lausanne) 2023; 14:1089298. [PMID: 37324274 PMCID: PMC10266204 DOI: 10.3389/fendo.2023.1089298] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Background Prediabetes is a condition of intermediate hyperglycemia that may progress to type 2 diabetes. Vitamin D deficiency has been frequently linked to insulin resistance and diabetes. The study aimed to investigate the role of D supplementation and its possible mechanism of action on insulin resistance in prediabetic rats. Method The study was conducted on 24 male Wistar rats that were randomly divided into 6 rats as healthy controls and 18 prediabetic rats. Prediabetic rats were induced with a high-fat and high-glucose diet (HFD-G) combined with a low dose of streptozotocin. Rats with the prediabetic condition were then randomized into three groups of 12-week treatment: one group that received no treatment, one that received vitamin D3 at 100 IU/kg BW, and one group that received vitamin D3 at 1000 IU/kg BW. The high-fat and high-glucose diets were continuously given throughout the twelve weeks of treatment. At the end of the supplementation period, glucose control parameters, inflammatory markers, and the expressions of IRS1, PPARγ, NF-κB, and IRS1 were measured. Results Vitamin D3 dose-dependently improves glucose control parameters, as shown by the reduction of fasting blood glucose (FBG), oral glucose tolerance test (OGTT), glycated albumin, insulin levels, and markers of insulin resistance (HOMA-IR). Upon histological analysis, vitamin D supplementation resulted in a reduction of the islet of Langerhans degeneration. Vitamin D also enhanced the ratio of IL-6/IL-10, reduced IRS1 phosphorylation at Ser307, increased expression of PPAR gamma, and reduced phosphorylation of NF-KB p65 at Ser536. Conclusion Vitamin D supplementation reduces insulin resistance in prediabetic rats. The reduction might be due to the effects of vitamin D on IRS, PPARγ, and NF-κB expression.
Collapse
Affiliation(s)
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Erni H. Poerwaningsih
- Department of Medical Pharmacy, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Tri Juli Edi Tarigan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dr. Cipto Mangunkusumo National Referral Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Vivian Soetikno
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | |
Collapse
|
8
|
Bahaa S, El Tahlawy S, Shaker O, El Ghanam O, Diaa M. Assessment of serum levels of vitamin D and tissue levels of vitamin D receptors in acanthosis nigricans. JOURNAL OF THE EGYPTIAN WOMEN'S DERMATOLOGIC SOCIETY 2023. [DOI: 10.4103/jewd.jewd_41_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Guevara-Ramírez P, Cadena-Ullauri S, Ruiz-Pozo VA, Tamayo-Trujillo R, Paz-Cruz E, Simancas-Racines D, Zambrano AK. Genetics, genomics, and diet interactions in obesity in the Latin American environment. Front Nutr 2022; 9:1063286. [PMID: 36532520 PMCID: PMC9751379 DOI: 10.3389/fnut.2022.1063286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 08/25/2023] Open
Abstract
Obesity is a chronic disease characterized by abnormal or excessive fat accumulation that could impact an individual's health; moreover, the World Health Organization (WHO) has declared obesity a global epidemic since 1997. In Latin America, in 2016, reports indicated that 24.2% of the adult population was obese. The environmental factor or specific behaviors like dietary intake or physical activity have a vital role in the development of a condition like obesity, but the interaction of genes could contribute to that predisposition. Hence, it is vital to understand the relationship between genes and disease. Indeed, genetics in nutrition studies the genetic variations and their effect on dietary response; while genomics in nutrition studies the role of nutrients in gene expression. The present review represents a compendium of the dietary behaviors in the Latin American environment and the interactions of genes with their single nucleotide polymorphisms (SNPs) associated with obesity, including the risk allele frequencies in the Latin American population. Additionally, a bibliographical selection of several studies has been included; these studies examined the impact that dietary patterns in Latin American environments have on the expression of numerous genes involved in obesity-associated metabolic pathways.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
10
|
Harahap IA, Landrier JF, Suliburska J. Interrelationship between Vitamin D and Calcium in Obesity and Its Comorbid Conditions. Nutrients 2022; 14:3187. [PMID: 35956362 PMCID: PMC9370653 DOI: 10.3390/nu14153187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity has been linked to vitamin D (VD) deficiency and low calcium (CAL) status. In the last decade, dietary supplementation of vitamin D and calcium (VD-CAL) have been extensively studied in animal experiments and human studies. However, the physiological mechanisms remain unknown as to whether the VD-CAL axis improves homeostasis and reduces biomarkers in regulating obesity and other metabolic diseases directly or indirectly. This review sought to investigate their connections. This topic was examined in scientific databases such as Web of Science, Scopus, and PubMed from 2011 to 2021, and 87 articles were generated for interpretation. Mechanistically, VD-CAL regulates from the organs to the blood, influencing insulin, lipids, hormone, cell, and inflammatory functions in obesity and its comorbidities, such as non-alcoholic fatty liver disease, cardiovascular disease, and type-2 diabetes mellitus. Nevertheless, previous research has not consistently shown that simultaneous VD-CAL supplementation affects weight loss or reduces fat content. This discrepancy may be influenced by population age and diversity, ethnicity, and geographical location, and also by degree of obesity and applied doses. Therefore, a larger prospective cohort and randomised trials are needed to determine the exact role of VD-CAL and their interrelationship.
Collapse
Affiliation(s)
- Iskandar Azmy Harahap
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznan, Poland;
| | | | - Joanna Suliburska
- Department of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego St. 31, 60-624 Poznan, Poland;
| |
Collapse
|
11
|
Isgin-Atici K, Alathari BE, Turan-Demirci B, Sendur SN, Lay I, Ellahi B, Alikasifoglu M, Erbas T, Buyuktuncer Z, Vimaleswaran KS. Interaction between Dietary Fat Intake and Metabolic Genetic Risk Score on 25-Hydroxyvitamin D Concentrations in a Turkish Adult Population. Nutrients 2022; 14:382. [PMID: 35057563 PMCID: PMC8778439 DOI: 10.3390/nu14020382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022] Open
Abstract
Previous studies have pointed out a link between vitamin D status and metabolic traits, however, consistent evidence has not been provided yet. This cross-sectional study has used a nutrigenetic approach to investigate the interaction between metabolic-genetic risk score (GRS) and dietary intake on serum 25-hydroxyvitamin D [25(OH)D] concentrations in 396 unrelated Turkish adults, aged 24-50 years. Serum 25(OH)D concentration was significantly lower in those with a metabolic-GRS ≥ 1 risk allele than those with a metabolic-GRS < 1 risk allele (p = 0.020). A significant interaction between metabolic-GRS and dietary fat intake (energy%) on serum 25(OH)D levels was identified (Pinteraction = 0.040). Participants carrying a metabolic-GRS ≥ 1 risk allele and consuming a high fat diet (≥38% of energy = 122.3 ± 52.51 g/day) had significantly lower serum 25(OH)D concentration (p = 0.006) in comparison to those consuming a low-fat diet (<38% of energy = 82.5 ± 37.36 g/d). In conclusion, our study suggests a novel interaction between metabolic-GRS and dietary fat intake on serum 25(OH)D level, which emphasises that following the current dietary fat intake recommendation (<35% total fat) could be important in reducing the prevalence of vitamin D deficiency in this Turkish population. Nevertheless, further larger studies are needed to verify this interaction, before implementing personalized dietary recommendations for the maintenance of optimal vitamin D status.
Collapse
Affiliation(s)
- Kubra Isgin-Atici
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara 06230, Turkey; (K.I.-A.); (B.T.-D.)
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05000, Turkey
| | - Buthaina E. Alathari
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK;
- Department of Food Science and Nutrition, Faculty of Health Sciences, The Public Authority for Applied Education and Training, AlFaiha 72853, Kuwait
| | - Busra Turan-Demirci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara 06230, Turkey; (K.I.-A.); (B.T.-D.)
| | - Suleyman Nahit Sendur
- Department of Endocrinology and Metabolism, School of Medicine, Hacettepe University, Ankara 06230, Turkey; (S.N.S.); (T.E.)
| | - Incilay Lay
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey;
- Clinical Pathology Laboratory, Hacettepe University Hospitals, Ankara 06230, Turkey
| | - Basma Ellahi
- Faculty of Health and Social Care, University of Chester, Chester CH1 4DS, UK;
| | - Mehmet Alikasifoglu
- Department of Medical Genetics, School of Medicine, Hacettepe University, Ankara 06230, Turkey;
- Genetics Diagnostic Centre, DAMAGEN, Ankara 06230, Turkey
| | - Tomris Erbas
- Department of Endocrinology and Metabolism, School of Medicine, Hacettepe University, Ankara 06230, Turkey; (S.N.S.); (T.E.)
| | - Zehra Buyuktuncer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara 06230, Turkey; (K.I.-A.); (B.T.-D.)
| | - Karani Santhanakrishnan Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK;
- Institute for Food, Nutrition, and Health, University of Reading, Reading RG6 6AH, UK
| |
Collapse
|
12
|
Mohd Ghozali N, Giribabu N, Salleh N. Mechanisms Linking Vitamin D Deficiency to Impaired Metabolism: An Overview. Int J Endocrinol 2022; 2022:6453882. [PMID: 35859985 PMCID: PMC9293580 DOI: 10.1155/2022/6453882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D deficiency is a common health problem worldwide. Despite its known skeletal effects, studies have begun to explore its extra-skeletal effects, that is, in preventing metabolic diseases such as obesity, hyperlipidemia, and diabetes mellitus. The mechanisms by which vitamin D deficiency led to these unfavorable metabolic consequences have been explored. Current evidence indicates that the deficiency of vitamin D could impair the pancreatic β-cell functions, thus compromising its insulin secretion. Besides, vitamin D deficiency could also exacerbate inflammation, oxidative stress, and apoptosis in the pancreas and many organs, which leads to insulin resistance. Together, these will contribute to impairment in glucose homeostasis. This review summarizes the reported metabolic effects of vitamin D, in order to identify its potential use to prevent and overcome metabolic diseases.
Collapse
Affiliation(s)
- Nurulmuna Mohd Ghozali
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| |
Collapse
|
13
|
de la Rubia Ortí JE, García MF, Drehmer E, Navarro-Illana E, Casani-Cubel J, Proaño B, Sanchis-Sanchis CE, Escrivá JD. Intake of Vitamin D in Patients with Multiple Sclerosis in the Valencian Region and Its Possible Relationship with the Pathogenesis of the Disease. Life (Basel) 2021; 11:1380. [PMID: 34947912 PMCID: PMC8708283 DOI: 10.3390/life11121380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Multiple sclerosis (MS) is a neurodegenerative disease characterized by pronounced inflammation. Interleukin 6 (IL-6) is an accurate marker for the state of inflammation, due to the high levels of this cytokine linked to the pathogenesis of the disease. These IL-6 levels could be lowered with an adequate dietary intake of vitamin D. The objective of the study was to determine the level of vitamin D ingested in a sample of patients with MS in the Valencian region (Spain), to establish the vitamin sources, and the possible link between the intake of vitamin D and the pathogenesis of the disease through a relationship with the level of IL-6. (2) Materials and Methods: A descriptive pilot study was carried out with 39 patients with MS in the Valencian region. The dietary-nutritional anamnesis was gained through the food frequency questionnaire (FFQ) and a food diary. Diet and eating habits were analyzed through the Easy Diet (version: 2.0.1)-Consultation Management Program® software, and IL-6 levels in blood by ELISA technique. (3) Results: The results show a low intake of vitamin D, which is significantly and negatively related to the intake of proteins of vegetable origin, which are consumed in less quantity than proteins of animal origin, and significantly and negatively related with the high blood levels of IL-6, possibly as a consequence of the high intake of fats, mainly unsaturated. (4) Conclusions: MS patients in the Valencian region ingest little vitamin D related to low intake of vegetable protein, which would explain the high levels of IL-6 linked to the high intake of mainly saturated fats.
Collapse
Affiliation(s)
| | - María Faus García
- Department Nursing, Catholic University San Vicente Mártir, 46001 València, Spain; (M.F.G.); (E.N.-I.); (J.D.E.)
| | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia San Vicente Mártir, 46900 Torrente, Spain;
| | - Esther Navarro-Illana
- Department Nursing, Catholic University San Vicente Mártir, 46001 València, Spain; (M.F.G.); (E.N.-I.); (J.D.E.)
| | - Julia Casani-Cubel
- Doctoral Degree School, Health Sciences, Catholic University of Valencia San Vicente Mártir, 46001 València, Spain; (J.C.-C.); (B.P.)
| | - Belén Proaño
- Doctoral Degree School, Health Sciences, Catholic University of Valencia San Vicente Mártir, 46001 València, Spain; (J.C.-C.); (B.P.)
| | | | - Juan Doménech Escrivá
- Department Nursing, Catholic University San Vicente Mártir, 46001 València, Spain; (M.F.G.); (E.N.-I.); (J.D.E.)
| |
Collapse
|
14
|
Wiciński M, Ozorowski M, Wódkiewicz E, Otto SW, Kubiak K, Malinowski B. Impact of Vitamin D Supplementation on Inflammatory Markers' Levels in Obese Patients. Curr Issues Mol Biol 2021; 43:1606-1622. [PMID: 34698104 PMCID: PMC8929128 DOI: 10.3390/cimb43030114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
In view of research suggesting a possible beneficial impact of vitamin D on systemic inflammatory response, the authors decided to investigate an influence of vitamin D supplementation on serum levels of certain inflammatory markers in obese patients. The current study included such biomarkers as interleukin-6 (IL-6), pituitary adenylate cyclase-activating peptide (PACAP), advanced oxidation protein products (AOPP), C-X3-C Motif Chemokine Ligand 1 (CX3CL1), monocyte chemoattractant protein-1 (MCP-1), and nitric oxide (NO). The measurements were performed with the ELISA method before and after 3-month-long supplementation of 2000 IU of vitamin D orally. The results showed that the therapy did not induce any statistically significant changes in serum levels of MCP-1, IL-6, CX3CL1, and PACAP. The supplementation was related to a significant increase in measurements of NO and AOPP levels, although the correlation analysis between vitamin D concentration after its supplementation and the concentration of the molecular parameters did not show significant relation. In conclusion, our study seems to contradict certain aspects of findings available in the literature regarding the vitamin D's impact.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | - Mateusz Ozorowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | - Eryk Wódkiewicz
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | | | - Karol Kubiak
- Department of Obstetrics and Gynecology, St. Franziskus-Hospital, 48145 Münster, Germany;
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| |
Collapse
|
15
|
The effects of dietary vitamin D supplementation and in vitro 1,25 dihydroxyvitamin D 3 treatment on autophagy in bone marrow-derived dendritic cells from high-fat diet-induced obese mice. J Nutr Biochem 2021; 100:108880. [PMID: 34655755 DOI: 10.1016/j.jnutbio.2021.108880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/18/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022]
Abstract
Obesity is associated with the dysregulation of vitamin D metabolism and altered immune responses in bone marrow-derived dendritic cells (BMDCs). Vitamin D can affect the differentiation, maturation, and activation of dendritic cells (DCs) and regulate autophagy via vitamin D receptor signaling. Autophagy was shown to be involved in the functions of DCs. We investigated the effects of dietary vitamin D supplementation and in vitro 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) treatment on autophagy in BMDCs from control diet (CON)-fed lean and high-fat diet (HFD)-induced obese mice. C57BL/6 male mice were fed CON or HFD with 10% or 45% kcal fat, respectively, supplemented with 1,000 or 10,000 IU vitamin D/kg diet (vDC or vDS) for 12 weeks. BMDCs were generated by culturing bone marrow cells from the mice with 20 ng/mL rmGM-CSF and treated with 1 nM 1,25(OH)2D3. Maturation of BMDCs was induced by lipopolysaccharide (50 ng/mL) stimulation. Treatment with 1,25(OH)2D3 inhibited the expression of phenotypes related to DC function (MHC class Ⅱ, CD86, CD80) and production of IL-12p70 by BMDCs from control and obese mice, regardless of dietary vitamin D supplementation. LC3Ⅱ/Ⅰ and VPS34 protein levels increased, and p62 expression decreased, after 1,25(OH)2D3 treatment of the BMDCs in CON-vDC only. Vdr mRNA levels decreased following 1,25(OH)2D3 treatment of BMDCs in the HFD-vDC. In conclusion, autophagy flux was increased by 1,25(OH)2D3 treatment of the BMDCs in CON-vDC but not in the HFD-vDC group. This suggests that the decreased expression of Vdr following 1,25(OH)2D3 treatment might have affected autophagy flux in BMDCs from obese mice.
Collapse
|
16
|
Rosen CJ. From gut to blood: the travels and travails of vitamin D supplementation. Am J Clin Nutr 2021; 114:831-832. [PMID: 34008840 DOI: 10.1093/ajcn/nqab125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Park CY, Han SN. The Role of Vitamin D in Adipose Tissue Biology: Adipocyte Differentiation, Energy Metabolism, and Inflammation. J Lipid Atheroscler 2021; 10:130-144. [PMID: 34095008 PMCID: PMC8159757 DOI: 10.12997/jla.2021.10.2.130] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/07/2021] [Accepted: 01/29/2021] [Indexed: 12/27/2022] Open
Abstract
Adipose tissue is composed of diverse cell types and plays a major role in energy homeostasis and inflammation at the local and systemic levels. Adipose tissue serves as the main site for vitamin D storage and is among the most important extraskeletal targets of vitamin D which can modulate multiple aspects of adipose tissue biology. Vitamin D may exert inhibitory or stimulatory effects on adipocyte differentiation depending on cell type, stage of differentiation, and the treatment time point. Moreover, vitamin D controls energy metabolism in adipose tissue by affecting fatty acid oxidation, expression of uncoupling proteins, insulin resistance, and adipokine production. Adipose tissue inflammation can have a significant impact on the metabolic disorders often associated with obesity, and vitamin D can modulate the inflammatory response of immune cells and adipocytes within the adipose tissue. This review discusses the role of adipose tissue in vitamin D metabolism, as well as the regulatory role of vitamin D in adipocyte differentiation, adipose tissue energy metabolism, and inflammation, thereby providing insights into the importance of vitamin D in adipose tissue biology.
Collapse
Affiliation(s)
- Chan Yoon Park
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea.,Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Korea
| |
Collapse
|
18
|
Effects of Vitamin D Supplementation on CD4 + T Cell Subsets and mTOR Signaling Pathway in High-Fat-Diet-Induced Obese Mice. Nutrients 2021; 13:nu13030796. [PMID: 33670988 PMCID: PMC7997284 DOI: 10.3390/nu13030796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is associated with an impaired balance of CD4+ T cell subsets. Both vitamin D and obesity have been reported to affect the mTOR pathway. In this study, we investigated the effects of vitamin D on CD4+ T cell subsets and the mTOR pathway. Ten-week-old male C57BL/6 mice were divided into four groups and fed diets with different fat (control or high-fat diets: CON or HFD) and vitamin D contents (vitamin D control or supplemented diets: vDC or vDS) for 12 weeks. T cells purified by negative selection were stimulated with anti-CD3/anti-CD28 mAbs and cultured for 48 h. The percentage of CD4+IL-17+ T cells was higher in the vDS than vDC groups. The CD4+CD25+Foxp3+ T cells percentage was higher in HFD than CON groups. The phospho-p70S6K/total-p70S6K ratio was lower in vDS than vDC, but the phospho-AKT/total-AKT ratio was higher in vDS than vDC groups. Hif1α mRNA levels were lower in vDS than vDC groups. These findings suggest HIF1α plays an important role in vitamin-D-mediated regulation of glucose metabolism in T cells, and dietary vitamin D supplementation may contribute to the maintenance of immune homeostasis by regulating the mTOR pathway in T cells.
Collapse
|