1
|
Bischoff NS, Undas AK, van Bemmel G, Briedé JJ, van Breda SG, Verhoeven J, Verbruggen S, Venema K, Sijm DTHM, de Kok TM. Investigating the ROS Formation and Particle Behavior of Food-Grade Titanium Dioxide (E171) in the TIM-1 Dynamic Gastrointestinal Digestion Model. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:8. [PMID: 39791769 PMCID: PMC11721885 DOI: 10.3390/nano15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Food-grade titanium dioxide (E171) is widely used in food, feed, and pharmaceuticals for its opacifying and coloring properties. This study investigates the formation of reactive oxygen species (ROS) and the aggregation behavior of E171 using the TNO Gastrointestinal (GI) model, which simulates the stomach and small intestine. E171 was characterized using multiple techniques, including electron spin resonance spectroscopy, single-particle inductively coupled plasma-mass spectrometry, transmission electron microscopy, and dynamic light scattering. In an aqueous dispersion (E171-aq), E171 displayed a median particle size of 79 nm, with 73-75% of particles in the nano-size range (<100 nm), and significantly increased ROS production at concentrations of 0.22 and 20 mg/mL. In contrast, when E171 was mixed with yogurt (E171-yog), the particle size increased to 330 nm, with only 20% of nanoparticles, and ROS production was inhibited entirely. After GI digestion, the size of dE171-aq increased to 330 nm, while dE171-yog decreased to 290 nm, with both conditions showing a strongly reduced nanoparticle fraction. ROS formation was inhibited post-digestion in this cell-free environment, likely due to increased particle aggregation and protein corona formation. These findings highlight the innate potential of E171 to induce ROS and the need to consider GI digestion and food matrices in the hazard identification/characterization and risk assessment of E171.
Collapse
Affiliation(s)
- Nicolaj S. Bischoff
- Department of Translational Genomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (J.J.B.); (S.G.v.B.); (T.M.d.K.)
| | - Anna K. Undas
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, 6708 WB Wageningen, The Netherlands; (A.K.U.); (G.v.B.)
| | - Greet van Bemmel
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, 6708 WB Wageningen, The Netherlands; (A.K.U.); (G.v.B.)
| | - Jacco J. Briedé
- Department of Translational Genomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (J.J.B.); (S.G.v.B.); (T.M.d.K.)
| | - Simone G. van Breda
- Department of Translational Genomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (J.J.B.); (S.G.v.B.); (T.M.d.K.)
| | - Jessica Verhoeven
- Centre for Healthy Eating & Food Innovation, Maastricht University—Campus Venlo, Villafloraweg 1, 5928 SZ Venlo, The Netherlands (S.V.); (K.V.)
| | - Sanne Verbruggen
- Centre for Healthy Eating & Food Innovation, Maastricht University—Campus Venlo, Villafloraweg 1, 5928 SZ Venlo, The Netherlands (S.V.); (K.V.)
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University—Campus Venlo, Villafloraweg 1, 5928 SZ Venlo, The Netherlands (S.V.); (K.V.)
| | - Dick T. H. M. Sijm
- Department of Pharmacology and Toxicology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Office of Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, P.O. Box 43006, 3540 AA Utrecht, The Netherlands
| | - Theo M. de Kok
- Department of Translational Genomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands; (J.J.B.); (S.G.v.B.); (T.M.d.K.)
| |
Collapse
|
2
|
Gao Y, He L, Duan S, Bilige H, Lyu L, Li Z, Wang H, Li C, Wang Y. Potential mitigation of titanium dioxide nanoparticles against 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis through inhibiting the canonical NF-κB pathway. NANOIMPACT 2024; 34:100512. [PMID: 38768902 DOI: 10.1016/j.impact.2024.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been widely employed in various industry fields, which makes consumers concerned about their health impact. Our previous work displayed that TiO2 NPs participated in the mitigation of TNBS-induced colitis, but the mechanism is still unknown. This work aimed to explore the role of oxidative stress and NF-κB pathway in the effect of TiO2 NPs on TNBS-induced colitis. The results showed that TiO2 NPs administration reduced the DAI score of colitis mice after TNBS enema. TiO2 NPs did not alter oxidative stress status (GSH/GSSG), but repaired the gut dysbacteriosis and inhibited the canonical NF-κB pathway activation in TNBS-induced colitis mice, manifested as a decrease in pathogenic bacteria and an increase in beneficial bacteria, as well as down-regulation of toll-like receptors (TLRs), IKKα, IKKβ, p65 and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and IFN-γ) in mRNA level, and the increased transcription of anti-inflammatory cytokines (IL-10, TGF-β, and IL-12), along with the declined protein level of TNF-α in TiO2 NPs treated colitis mice. The present study suggested that oral TiO2 NPs administration inhibited the canonical NF-κB pathway activation by repairing gut dysbacteriosis, which made a predominant role in alleviating colitis. These findings provided a new perspective for exploring the safety of TiO2 NPs.
Collapse
Affiliation(s)
- Yanjun Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, P. R. China
| | - Langzhi He
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, P. R. China
| | - Shumin Duan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, P. R. China
| | - Hasen Bilige
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, P. R. China
| | - Lizhi Lyu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, P. R. China
| | - Zihui Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, P. R. China
| | - Hongbo Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, P. R. China
| | - Chen Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, P. R. China
| | - Yun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, P. R. China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, P. R. China.
| |
Collapse
|
3
|
Putra C, Bello D, Kelleher SL, Tucker KL, Mangano KM. Stool titanium dioxide is positively associated with stool alpha-1 antitrypsin and calprotectin in young healthy adults. NANOIMPACT 2024; 33:100498. [PMID: 38367662 DOI: 10.1016/j.impact.2024.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Titanium dioxide (TiO2/E171) is used widely in foods, primarily as a food additive. Animal models have shown that chronic TiO2 exposure may disturb homeostasis of the gastrointestinal tract by increasing gut permeability, inducing gut inflammation, and increasing the likelihood of microbial infection. Adults have a wide range of ingested TiO2,which span two to three orders of magnitude, with a small portion of individuals consuming near gram quantities of TiO2/day. However, research on the health effects of chronic ingestion of TiO2/E171 in humans is limited. We hypothesized that regularly ingested TiO2/E171 is associated with increased gut inflammation and gut permeability in healthy adults. We tested this hypothesis in a cross-sectional design by measuring clinically established stool markers of gut inflammation (calprotectin, lactoferrin) and gut permeability (alpha-1 antitrypsin; A1AT) in 35 healthy adults, and comparing these markers between relatively high and low TiO2 exposure groups. Participants were stratified by TiO2 stool content (high dry stool TiO2 content: 0.95-9.92 μg/mg, n = 20; low content: 0.01-0.04 μg/mg; n = 15). Differences in gut health markers were tested between high and low exposure groups by independent samples t-test or Mann-Whitney U test. Multivariable linear regression was used to assess the association between TiO2 in dry stool and measured stool alpha-1 antitrypsin (A1AT). Participants in the high stool TiO2 group had greater stool A1AT (42.7 ± 21.6 mg/dL; median: 38.3; range: 1.0-49.2 mg/dL), compared to the low TiO2 group (22.8 ± 13.6 mg/dL; median: 20.9; range: 8.7-93.0 mg/dL), P = 0.003. There was also greater stool calprotectin in the high TiO2 group (51.4 ± 48.6 μg/g; median 29.2 μg/g; range: 15.3-199.0 μg/g) than in the low group (47.5 ± 63.3 μg/g; median 18.8 μg/g; range: 1.6-198.1 μg/g), P = 0.04. No clear difference was observed for lactoferrin (high TiO2 group 1.6 ± 2.1 μg/g; median: 0.68 μg/g; range: 0.01-7.7 μg/g, low TiO2 group: 1.3 ± 2.6 μg/g; median: 0.2; range: 0.01-7.6 μg/g) (P = 0.15). A1AT concentration was positively associated with stool TiO2, after adjusting for confounders (β ± SE: 19.6 ± 7.2; P = 0.01) R2 = 0.38). Community dwelling, healthy adults with the highest TiO2 stool content had higher stool A1AT and calprotectin, compared to those with the lowest TiO2 stool content. Ongoing research is needed to validate these observations in larger groups, and to determine the long-term effects of ingested TiO2 on human gut health, using these and additional health endpoints.
Collapse
Affiliation(s)
- Christianto Putra
- Department of Biomedical and Nutritional Sciences, Center for Population Health, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Dhimiter Bello
- Department of Biomedical and Nutritional Sciences, Center for Population Health, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Shannon L Kelleher
- Department of Biomedical and Nutritional Sciences, Center for Population Health, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences, Center for Population Health, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Kelsey M Mangano
- Department of Biomedical and Nutritional Sciences, Center for Population Health, University of Massachusetts Lowell, Lowell, MA, United States of America.
| |
Collapse
|
4
|
Chaudhari V, Vairagade V, Thakkar A, Shende H, Vora A. Nanotechnology-based fungal detection and treatment: current status and future perspective. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:77-97. [PMID: 37597093 DOI: 10.1007/s00210-023-02662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Fungal infections impose a significant impact on global health and encompass major expenditures in medical treatments. Human mycoses, a fungal co-infection associated with SARS-CoV-2, is caused by opportunistic fungal pathogens and is often overlooked or misdiagnosed. Recently, there is increasing threat about spread of antimicrobial resistance in fungus, mostly in hospitals and other healthcare facilities. The diagnosis and treatment of fungal infections are associated with several issues, including tedious and non-selective detection methods, the growth of drug-resistant bacteria, severe side effects, and ineffective drug delivery. Thus, a rapid and sensitive diagnostic method and a high-efficacy and low-toxicity therapeutic approach are needed. Nanomedicine has emerged as a viable option for overcoming these limitations. Due to the unique physicochemical and optical properties of nanomaterials and newer biosensing techniques, nanodiagnostics play an important role in the accurate and prompt differentiation and detection of fungal diseases. Additionally, nano-based drug delivery techniques can increase drug permeability, reduce adverse effects, and extend systemic circulation time and drug half-life. This review paper is aimed at highlighting recent, promising, and unique trends in nanotechnology to design and develop diagnostics and treatment methods for fungal diseases.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Vaishnavi Vairagade
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Himani Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
5
|
Vermeire TG, Hoet P, Ion RM, Krätke R, Proykova A, Scott M, de Jong WH. Opinion of the Scientific Committee on health, environmental and emerging risks on the safety of titanium dioxide in toys. Regul Toxicol Pharmacol 2024; 146:105527. [PMID: 38056706 DOI: 10.1016/j.yrtph.2023.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
The Opinion of the Scientific Committee on Health, Environmental and Emerging Risks advises the European Commission on whether the uses of titanium dioxide in toys and toy materials can be considered to be safe in light of the identified exposure, and the classification of titanium dioxide as carcinogenic category 2 after inhalation. Four toy products including casting kits, chalk, powder paints and white colour pencils containing various amounts of TiO2 as colouring agent were evaluated for inhalation risks. For the oral route, childrens' lip gloss/lipstick, finger paint and white colour pencils were evaluated. When it can be demonstrated with high certainty that no ultrafine fraction is present in pigmentary TiO2 preparations used in toys and toy materials, safe use with no or negligible risk for all products considered is indicated based on the exposure estimations of this Opinion. However, if an ultrafine fraction is assumed to be present, safe use is not indicated, except for white colour pencils.
Collapse
Affiliation(s)
- Theo G Vermeire
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Peter Hoet
- Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rodica-Mariana Ion
- National Institute of R&D for Chemistry and Petrochemistry - ICECHIM, Bucharest, Romania
| | - Renate Krätke
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | - Wim H de Jong
- National Institute for Public Health (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
6
|
Carlé C, Boucher D, Morelli L, Larue C, Ovtchinnikova E, Battut L, Boumessid K, Airaud M, Quaranta-Nicaise M, Ravanat JL, Dietrich G, Menard S, Eberl G, Barnich N, Mas E, Carriere M, Al Nabhani Z, Barreau F. Perinatal foodborne titanium dioxide exposure-mediated dysbiosis predisposes mice to develop colitis through life. Part Fibre Toxicol 2023; 20:45. [PMID: 37996842 PMCID: PMC10666382 DOI: 10.1186/s12989-023-00555-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Perinatal exposure to titanium dioxide (TiO2), as a foodborne particle, may influence the intestinal barrier function and the susceptibility to develop inflammatory bowel disease (IBD) later in life. Here, we investigate the impact of perinatal foodborne TiO2 exposure on the intestinal mucosal function and the susceptibility to develop IBD-associated colitis. Pregnant and lactating mother mice were exposed to TiO2 until pups weaning and the gut microbiota and intestinal barrier function of their offspring was assessed at day 30 post-birth (weaning) and at adult age (50 days). Epigenetic marks was studied by DNA methylation profile measuring the level of 5-methyl-2'-deoxycytosine (5-Me-dC) in DNA from colic epithelial cells. The susceptibility to develop IBD has been monitored using dextran-sulfate sodium (DSS)-induced colitis model. Germ-free mice were used to define whether microbial transfer influence the mucosal homeostasis and subsequent exacerbation of DSS-induced colitis. RESULTS In pregnant and lactating mice, foodborne TiO2 was able to translocate across the host barriers including gut, placenta and mammary gland to reach embryos and pups, respectively. This passage modified the chemical element composition of foetus, and spleen and liver of mothers and their offspring. We showed that perinatal exposure to TiO2 early in life alters the gut microbiota composition, increases the intestinal epithelial permeability and enhances the colonic cytokines and myosin light chain kinase expression. Moreover, perinatal exposure to TiO2 also modifies the abilities of intestinal stem cells to survive, grow and generate a functional epithelium. Maternal TiO2 exposure increases the susceptibility of offspring mice to develop severe DSS-induced colitis later in life. Finally, transfer of TiO2-induced microbiota dysbiosis to pregnant germ-free mice affects the homeostasis of the intestinal mucosal barrier early in life and confers an increased susceptibility to develop colitis in adult offspring. CONCLUSIONS Our findings indicate that foodborne TiO2 consumption during the perinatal period has negative long-lasting consequences on the development of the intestinal mucosal barrier toward higher colitis susceptibility. This demonstrates to which extent environmental factors influence the microbial-host interplay and impact the long-term mucosal homeostasis.
Collapse
Affiliation(s)
- Caroline Carlé
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Delphine Boucher
- M2iSH, Université Clermont Auvergne, UMR1071 INSERM, USC INRAE 1382, Clermont-Ferrand, France
| | - Luisa Morelli
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland
| | - Camille Larue
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Ekaterina Ovtchinnikova
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Louise Battut
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Kawthar Boumessid
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Melvin Airaud
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Muriel Quaranta-Nicaise
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Jean-Luc Ravanat
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, Grenoble, France
| | - Gilles Dietrich
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Sandrine Menard
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Gérard Eberl
- Institut Pasteur, Microenvironment and Immunity Unit, 75724, Paris, France
- INSERM U1224, Paris, France
| | - Nicolas Barnich
- M2iSH, Université Clermont Auvergne, UMR1071 INSERM, USC INRAE 1382, Clermont-Ferrand, France
| | - Emmanuel Mas
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
- Gastroenterology, Hepatology, Nutrition, Diabetology and Hereditary Metabolic Diseases Unit, Hôpital des Enfants, CHU de Toulouse, 31300, Toulouse, France
| | - Marie Carriere
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, Grenoble, France
| | - Ziad Al Nabhani
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland.
| | - Frédérick Barreau
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France.
| |
Collapse
|
7
|
Bruno L, Evariste L, Houdeau E. Dysregulation along the gut microbiota-immune system axis after oral exposure to titanium dioxide nanoparticles: A possible environmental factor promoting obesity-related metabolic disorders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121795. [PMID: 37187281 DOI: 10.1016/j.envpol.2023.121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
Food additives are one major hallmark of ultra-processed food in the Western-diet, a food habit often associated with metabolic disorders. Among these additives, the whitener and opacifying agent titanium dioxide (TiO2) raises public health issues due to the ability of TiO2 nanoparticles (NPs) to cross biological barriers and accumulate in different systemic organs like spleen, liver and pancreas. However before their systemic passage, the biocidal properties of TiO2 NPs may alter the composition and activity of the gut microbiota, which play a crucial role for the development and maintenance of immune functions. Once absorbed, TiO2 NPs may further interact with immune intestinal cells involved in gut microbiota regulation. Since obesity-related metabolic diseases such as diabetes are associated with alterations in the microbiota-immune system axis, this raises questions about the possible involvement of long-term exposure to food-grade TiO2 in the development or worsening of these diseases. The current purpose is to review the dysregulations along the gut microbiota-immune system axis after oral TiO2 exposure compared to those reported in obese or diabetic patients, and to highlight potential mechanisms by which foodborne TiO2 NPs may increase the susceptibility to develop obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Lamas Bruno
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Lauris Evariste
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Eric Houdeau
- Toxalim (Research Centre in Food Toxicology), Team Endocrinology and Toxicology of Intestinal Barrier, Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
8
|
Song Z, Song R, Liu Y, Wu Z, Zhang X. Effects of ultra-processed foods on the microbiota-gut-brain axis: The bread-and-butter issue. Food Res Int 2023; 167:112730. [PMID: 37087282 DOI: 10.1016/j.foodres.2023.112730] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
The topic of gut microbiota and the microbiota-gut-brain (MGB) axis has become the forefront of research and reports in the past few years. The gut microbiota is a dynamic interface between the environment, food, and the host, reflecting the health status as well as maintaining normal physiological metabolism. Modern ultra-processed foods (UPF) contain large quantities of saturated and trans fat, added sugar, salt, and food additives that seriously affect the gut and physical health. In addition, these unhealthy components directly cause changes in gut microbiota functions and microbial metabolism, subsequently having the potential to impact the neural network. This paper reviews an overview of the link between UPF ingredients and the MGB axis. Considerable studies have examined that high intake of trans fat, added sugar and salt have deleterious effects on gut and brain functions, but relatively less focus has been placed on the impact of food additives on the MGB axis. Data from several studies suggest that food additives might be linked to metabolic diseases and inflammation. They may also alter the gut microbiota composition and microbial metabolites, which potentially affect cognition and behavior. Therefore, we emphasize that food additives including emulsifiers, artificial sweeteners, colorants, and preservatives interact with the gut microbiota and their possible effects on altering the brain and behavior based on the latest research. Future studies should further investigate whether gut dysbiosis mediates the effect of UPF on brain diseases and behavior. This thesis here sheds new light on future research pointing to the potentially detrimental effects of processed food consumption on brain health.
Collapse
|
9
|
Coutinho Almeida-da-Silva CL, Cabido LF, Chin WC, Wang G, Ojcius DM, Li C. Interactions between silica and titanium nanoparticles and oral and gastrointestinal epithelia: Consequences for inflammatory diseases and cancer. Heliyon 2023; 9:e14022. [PMID: 36938417 PMCID: PMC10020104 DOI: 10.1016/j.heliyon.2023.e14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/21/2023] Open
Abstract
Engineered nanoparticles (NPs) composed of elements such as silica and titanium, smaller than 100 nm in diameter and their aggregates, are found in consumer products such as cosmetics, food, antimicrobials and drug delivery systems, and oral health products such as toothpaste and dental materials. They may also interact accidently with epithelial tissues in the intestines and oral cavity, where they can aggregate into larger particles and induce inflammation through pathways such as inflammasome activation. Persistent inflammation can lead to precancerous lesions. Both the particles and lesions are difficult to detect in biopsies, especially in clinical settings that screen large numbers of patients. As diagnosis of early stages of disease can be lifesaving, there is growing interest in better understanding interactions between NPs and epithelium and developing rapid imaging techniques that could detect foreign particles and markers of inflammation in epithelial tissues. NPs can be labelled with fluorescence or radioactive isotopes, but it is challenging to detect unlabeled NPs with conventional imaging techniques. Different current imaging techniques such as synchrotron radiation X-ray fluorescence spectroscopy are discussed here. Improvements in imaging techniques, coupled with the use of machine learning tools, are needed before diagnosis of particles in biopsies by automated imaging could move usefully into the clinic.
Collapse
Affiliation(s)
| | - Leticia Ferreira Cabido
- Department of Oral and Maxillofacial Surgery, University of the Pacific, San Francisco, CA, USA
| | - Wei-Chun Chin
- Department of Bioengineering, University of California, Merced, CA, USA
| | - Ge Wang
- Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, San Francisco, CA, USA
| | - Changqing Li
- Department of Bioengineering, University of California, Merced, CA, USA
| |
Collapse
|
10
|
Hang D, Wang L, Fang Z, Du M, Wang K, He X, Khandpur N, Rossato SL, Wu K, Hu Z, Shen H, Ogino S, Chan AT, Giovannucci EL, Zhang FF, Song M. Ultra-processed food consumption and risk of colorectal cancer precursors: results from 3 prospective cohorts. J Natl Cancer Inst 2023; 115:155-164. [PMID: 36477589 PMCID: PMC9905956 DOI: 10.1093/jnci/djac221] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/28/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Growing evidence indicates the adverse effect of ultra-processed food (UPF) consumption. However, it remains unknown whether UPF consumption influences the risk of colorectal cancer (CRC) precursors, namely conventional adenomas and serrated lesions. METHODS We drew data from the Nurses' Health Study, Nurses' Health Study II, and Health Professionals Follow-up Study, comprising 142 052 participants who had undergone at least 1 lower gastrointestinal endoscopy during follow-up. To handle multiple records per participants, we used multivariable logistic regression for clustered data to calculate odds ratios (OR) and 95% confidence intervals (CIs) of colorectal polyps in relation to cumulative average consumption of UPFs. All statistical tests were 2-sided. RESULTS We documented 11 644 patients with conventional adenomas and 10 478 with serrated lesions during 18-20 years of follow-up. Compared with participants in the lowest quintile of UPF consumption, those in the highest quintile had an increased risk of conventional adenomas (OR = 1.18, 95% CI = 1.11 to 1.26) and serrated lesions (OR = 1.20, 95% CI = 1.13 to 1.28). Similar results were found for high-risk polyps (ie, advanced adenomas and ≥10 mm serrated lesions; OR = 1.17, 95% CI = 1.07 to 1.28). These associations were slightly attenuated but remained statistically significant after further adjusting for body mass index, Western dietary pattern score, or individual dietary factors (fiber, folate, calcium, and vitamin D). The results remained essentially unchanged after excluding processed meat from total UPF intake. CONCLUSIONS Higher consumption of UPFs is associated with an increased risk of CRC precursors. UPFs might be a modifiable target for early prevention of CRC.
Collapse
Affiliation(s)
- Dong Hang
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Gusu School, Nanjing Medical University, Nanjing, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Wang
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Zhe Fang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mengxi Du
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiaosheng He
- Department of Colorectal Surgery, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Neha Khandpur
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
- Center for Epidemiological Studies in Health and Nutrition (NUPENS), Faculty of Public Health, University of São Paulo, Brazil
| | - Sinara L Rossato
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
- Institute of Geography, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhibin Hu
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Gusu School, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Gusu School, Nanjing Medical University, Nanjing, China
| | - Shuji Ogino
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Fang Fang Zhang
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Abstract
The diet and gut microbiota have been extensively interrogated as a fuel for gut inflammation in inflammatory bowel diseases (IBDs) in the last few years. Here, we review how specific nutrients, typically enriched in a Western diet, instigate or deteriorate experimental gut inflammation in a genetically susceptible host and we discuss microbiota-dependent and independent mechanisms. We depict the study landscape of nutritional trials in paediatric and adult IBD and delineate common grounds for dietary advice. Conclusively, the diet reflects a critical rheostat of microbial dysbiosis and gut inflammation in IBD. Dietary restriction by exclusive enteral nutrition, with or without a specific exclusion diet, is effectively treating paediatric Crohn's disease, while adult IBD trials are less conclusive. Insights into molecular mechanisms of nutritional therapy will change the perception of IBD and will allow us to enter the era of precision nutrition. To achieve this, we discuss the need for carefully designed nutritional trials with scientific rigour comparable to medical trials, which also requires action from stake holders. Establishing evidence-based dietary therapy for IBD does not only hold promise to avoid long-term immunosuppression, but to provide a widely accessible therapy at low cost. Identification of dietary culprits disturbing gut health also bears the potential to prevent IBD and allows informed decision making in food politics.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Medicine I, Gastroenterology, Hepatology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Jingwan Zhang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
12
|
Adolph TE, Meyer M, Schwärzler J, Mayr L, Grabherr F, Tilg H. The metabolic nature of inflammatory bowel diseases. Nat Rev Gastroenterol Hepatol 2022; 19:753-767. [PMID: 35906289 DOI: 10.1038/s41575-022-00658-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
Abstract
Crohn's disease and ulcerative colitis, phenotypically comprising a spectrum of inflammatory bowel diseases (IBDs), spread globally during the westernization of lifestyle and dietary habits over the past few decades. Here, we review experimental and clinical evidence for the metabolic nature of gut inflammation in IBD and delineate distinct parallels to the inflammatory state in metabolic diseases. Experimental evidence indicates that excessive intake of specific macronutrients in a Western diet fuels an inflammatory response in the gut by exploiting sensors of innate immunity and perturbation of gut microbial metabolism. Genetic IBD risk partly affects metabolism and stress signalling of innate immunity, and immunometabolism controls susceptibility to gut inflammation. Epidemiological and clinical studies indicate that specific nutrients in the Western diet pose a risk for the development of IBD and a poor disease course. Translational studies in IBD indicate perturbation of energy metabolism in immune cells and perturbation of gut microbial metabolism, which can be shaped by diet. In turn, dietary restriction by exclusive enteral nutrition induces remission in patients with IBD. Collectively, these studies support a metabolic underpinning of gut inflammation in IBD as described for metabolic inflammation in obesity and related disorders.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Moritz Meyer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
13
|
Vissers E, Wellens J, Sabino J. Ultra-processed foods as a possible culprit for the rising prevalence of inflammatory bowel diseases. Front Med (Lausanne) 2022; 9:1058373. [PMID: 36419796 PMCID: PMC9676654 DOI: 10.3389/fmed.2022.1058373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract, and the exact pathogenesis is still unclear. It is believed that IBD develops in response to a complex interaction between the microbiota, environmental factors, and the immune system, in genetically predisposed individuals. Identifying these environmental factors will offer more insight in the development of the disease, and reveal new therapeutic targets for IBD patients. One of the environmental factors that has gained more interest over the last years is our diet. The prevalence of IBD has increased significantly and this increase is thought to be associated with a ‘Western diet', characterized by high intake of fats, added sugar, meat, and ultra-processed foods (UPFs). The UPFs now account for almost 50% of the energy intake in Westernized countries and are therefore an important characteristic of this Western diet. UPFs are characterized by higher amounts of salt, fat, sugar and the presence of different food additives. Epidemiological studies have found associations between UPF intake and a range of non-communicable diseases, including inflammatory bowel disease (IBD). Preclinical and clinical evidence suggest that non-nutritive ingredients and additives, present in UPFs, can negatively affect different components of the intestinal barrier, such as the microbiota, the mucus layer, the epithelium, and the immune cells in the lamina propria. Disruption of this barrier can cause the immune system to encounter an increased bacterial exposure, leading to an aberrant immune response. In this article, the available evidence on the possible role of UPFs and their components in the increasing incidence and prevalence of IBD is reviewed. These findings can be translated to the clinic and may be helpful to consider when giving dietary advice to IBD patients. A better understanding of the role of UPFs may lead to less restrictive diets for patients with IBD, hence increasing the dietary compliance and efficacy of exclusion diets.
Collapse
Affiliation(s)
- Eva Vissers
- Department of Chronic Diseases, Metabolism and Aging, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Judith Wellens
- Department of Chronic Diseases, Metabolism and Aging, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - João Sabino
- Department of Chronic Diseases, Metabolism and Aging, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- *Correspondence: João Sabino
| |
Collapse
|
14
|
Shi Q, Yang C, Zhang B, Chen D, Lu F, Zhao H. Bacillus coagulans Alleviates Intestinal Damage Induced by TiO2 Nanoparticles in Mice on a High-Fat Diet. Foods 2022; 11:foods11213368. [PMID: 36359981 PMCID: PMC9655532 DOI: 10.3390/foods11213368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are generally added in considerable amounts to food as a food additive. Oral exposure to TiO2 NPs could induce intestinal damage, especially in obese individuals with a high-fat diet. The probiotic Bacillus coagulans (B. coagulans) exhibits good resistance in the gastrointestinal system and is beneficial to intestinal health. In this study, B. coagulans was used to treat intestinal damage caused by TiO2 NPs in high-fat-diet mice via two intervention methods: administration of TiO2 NPs and B. coagulans simultaneously and administration of TiO2 NPs followed by that of B. coagulans. The intervention with B. coagulans was found to reduce the inflammatory response and oxidative stress. A 16S rDNA sequencing analysis revealed that B. coagulans had increased the diversity of gut microbiota and optimized the composition of gut microbiota. Fecal metabolomics analysis indicated that B. coagulans had restored the homeostasis of sphingolipids and amino acid metabolism. The intervention strategy of administering TiO2 NPs followed by B. coagulans was found to be more effective. In conclusion, B. coagulans could alleviate intestinal damage induced by TiO2 NPs in high-fat-diet mice TiO2B. coagulans. Our results suggest a new avenue for interventions against intestinal damage induced by TiO2 NPs.
Collapse
Affiliation(s)
- Qingying Shi
- College of Biotechnology, Tianjin University of Science and Technology, 9 TEDA 13th Street, Tianjin 300457, China
| | - Chen Yang
- College of Biotechnology, Tianjin University of Science and Technology, 9 TEDA 13th Street, Tianjin 300457, China
| | - Bingjie Zhang
- College of Biotechnology, Tianjin University of Science and Technology, 9 TEDA 13th Street, Tianjin 300457, China
| | - Dongxiao Chen
- College of Biotechnology, Tianjin University of Science and Technology, 9 TEDA 13th Street, Tianjin 300457, China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science and Technology, 9 TEDA 13th Street, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300450, China
| | - Huabing Zhao
- College of Biotechnology, Tianjin University of Science and Technology, 9 TEDA 13th Street, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300450, China
- Correspondence:
| |
Collapse
|
15
|
Rolo D, Assunção R, Ventura C, Alvito P, Gonçalves L, Martins C, Bettencourt A, Jordan P, Vital N, Pereira J, Pinto F, Matos P, Silva MJ, Louro H. Adverse Outcome Pathways Associated with the Ingestion of Titanium Dioxide Nanoparticles-A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193275. [PMID: 36234403 PMCID: PMC9565478 DOI: 10.3390/nano12193275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used, and humans are exposed through food (E171), cosmetics (e.g., toothpaste), and pharmaceuticals. The oral and gastrointestinal (GIT) tract are the first contact sites, but it may be systemically distributed. However, a robust adverse outcome pathway (AOP) has not been developed upon GIT exposure to TiO2-NPs. The aim of this review was to provide an integrative analysis of the published data on cellular and molecular mechanisms triggered after the ingestion of TiO2-NPs, proposing plausible AOPs that may drive policy decisions. A systematic review according to Prisma Methodology was performed in three databases of peer-reviewed literature: Pubmed, Scopus, and Web of Science. A total of 787 records were identified, screened in title/abstract, being 185 used for data extraction. The main endpoints identified were oxidative stress, cytotoxicity/apoptosis/cell death, inflammation, cellular and systemic uptake, genotoxicity, and carcinogenicity. From the results, AOPs were proposed where colorectal cancer, liver injury, reproductive toxicity, cardiac and kidney damage, as well as hematological effects stand out as possible adverse outcomes. The recent transgenerational studies also point to concerns with regard to population effects. Overall, the findings further support a limitation of the use of TiO2-NPs in food, announced by the European Food Safety Authority (EFSA).
Collapse
Affiliation(s)
- Dora Rolo
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence:
| | - Ricardo Assunção
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829-511 Monte de Caparica, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Carla Martins
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Peter Jordan
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Pereira
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Fátima Pinto
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paulo Matos
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
16
|
Rodríguez-Ibarra C, Medina-Reyes EI, Déciga-Alcaraz A, Delgado-Buenrostro NL, Quezada-Maldonado EM, Ispanixtlahuatl-Meráz O, Ganem-Rondero A, Flores-Flores JO, Vázquez-Zapién GJ, Mata-Miranda MM, López-Marure R, Pedraza-Chaverri J, García-Cuéllar CM, Sánchez-Pérez Y, Chirino YI. Food grade titanium dioxide accumulation leads to cellular alterations in colon cells after removal of a 24-hour exposure. Toxicology 2022; 478:153280. [PMID: 35973603 DOI: 10.1016/j.tox.2022.153280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022]
Abstract
Titanium dioxide food grade (E171) is one of the most used food additives containing nanoparticles. Recently, the European Food Safety Authority indicated that E171 could no longer be considered safe as a food additive due to the possibility of it being genotoxic and there is evidence that E171 administration exacerbates colon tumor formation in murine models. However, less is known about the effects of E171 accumulation once the exposure stopped, then we hypothesized that toxic effects could be detected even after E171 removal. Therefore, we investigated the effects of E171 exposure after being removed from colon cell cultures. Human colon cancer cell line (HCT116) was exposed to 0, 1, 10 and 50 μg/cm2 of E171. Our results showed that in the absence of cytotoxicity, E171 was accumulated in the cells after 24 of exposure, increasing granularity and reactive oxygen species, inducing alterations in the molecular pattern of nucleic acids and lipids, and causing nuclei enlargement, DNA damage and tubulin depolymerization. After the removal of E171, colon cells were cultured for 48 h more hours to analyze the ability to restore the previously detected alterations. As we hypothesized, the removal of E171 was unable to revert the alterations found after 24 h of exposure in colon cells. In conclusion, exposure to E171 causes alterations that cannot be reverted after 48 h if E171 is removed from colon cells.
Collapse
Affiliation(s)
- Carolina Rodríguez-Ibarra
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Estefany I Medina-Reyes
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Alejandro Déciga-Alcaraz
- Atmospheric Organic Aerosol Chemical Speciation Group, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, AP 70228, Ciudad de México 04510, Mexico
| | - Norma Laura Delgado-Buenrostro
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, CP 14080 Ciudad de México, Tlalpan, Mexico
| | - Octavio Ispanixtlahuatl-Meráz
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico
| | - Adriana Ganem-Rondero
- División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1° de Mayo s/n, Cuautitlán Izcalli CP 54740, Estado de México, Mexico
| | - José Ocotlán Flores-Flores
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, CP 04510 Ciudad de México, Mexico
| | - Gustavo J Vázquez-Zapién
- Laboratorio de Embriología, Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, CP 11200 Ciudad de México, Mexico
| | - Mónica M Mata-Miranda
- Laboratorio de Biología Celular y Tisular, Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Cerrada de Palomas S/N, Lomas de San Isidro, Alcaldía Miguel Hidalgo, CP 11200 Ciudad de México, Mexico
| | - Rebeca López-Marure
- Departamento de Fisiología, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, CP 04510 Ciudad de México, Mexico
| | - Claudia M García-Cuéllar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, CP 14080 Ciudad de México, Tlalpan, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, CP 14080 Ciudad de México, Tlalpan, Mexico
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla de Baz CP 54090, Estado de México, Mexico.
| |
Collapse
|
17
|
Liu C, Zhan S, Tian Z, Li N, Li T, Wu D, Zeng Z, Zhuang X. Food Additives Associated with Gut Microbiota Alterations in Inflammatory Bowel Disease: Friends or Enemies? Nutrients 2022; 14:nu14153049. [PMID: 35893902 PMCID: PMC9330785 DOI: 10.3390/nu14153049] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
During the 21st century, the incidence and prevalence of inflammatory bowel disease (IBD) is rising globally. Despite the pathogenesis of IBD remaining largely unclear, the interactions between environmental exposure, host genetics and immune response contribute to the occurrence and development of this disease. Growing evidence implicates that food additives might be closely related to IBD, but the involved molecular mechanisms are still poorly understood. Food additives may be categorized as distinct types in accordance with their function and property, including artificial sweeteners, preservatives, food colorant, emulsifiers, stabilizers, thickeners and so on. Various kinds of food additives play a role in modifying the interaction between gut microbiota and intestinal inflammation. Therefore, this review comprehensively synthesizes the current evidence on the interplay between different food additives and gut microbiome alterations, and further elucidates the potential mechanisms of food additives–associated microbiota changes involved in IBD.
Collapse
Affiliation(s)
- Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Shukai Zhan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Zhenyi Tian
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China;
| | - Na Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Tong Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Dongxuan Wu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
- Correspondence: (Z.Z.); (X.Z.)
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (C.L.); (S.Z.); (N.L.); (T.L.); (D.W.)
- Correspondence: (Z.Z.); (X.Z.)
| |
Collapse
|
18
|
Intestinal Microecology of Mice Exposed to TiO 2 Nanoparticles and Bisphenol A. Foods 2022; 11:foods11121696. [PMID: 35741895 PMCID: PMC9222895 DOI: 10.3390/foods11121696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 02/01/2023] Open
Abstract
Exposure to titanium dioxide nanoparticles (TiO2 NPs) and bisphenol A (BPA) is ubiquitous, especially through dietary and other environmental pathways. In the present study, adult C57BL/6J mice were exposed to TiO2 NPs (100 mg/kg), BPA (0, 5, and 50 mg/kg), or their binary mixtures for 13 weeks. The 16S rDNA amplification sequence analysis revealed that co-exposure to TiO2 NPs and BPA altered the intestinal microbiota; however, this alteration was mainly caused by TiO2 NPs. Faecal metabolomics analysis revealed that 28 metabolites and 3 metabolic pathways were altered in the co-exposed group. This study is the first to reveal the combined effects of TiO2 NPs and BPA on the mammalian gut microbial community and metabolism dynamics, which is of great value to human health. The coexistence of TiO2 NPs and BPA in the gut poses a potential health risk due to their interaction with the gut microbiota.
Collapse
|
19
|
Sitia G, Fiordaliso F, Violatto MB, Alarcon JF, Talamini L, Corbelli A, Ferreira LM, Tran NL, Chakraborty I, Salmona M, Parak WJ, Diomede L, Bigini P. Food-Grade Titanium Dioxide Induces Toxicity in the Nematode Caenorhabditis elegans and Acute Hepatic and Pulmonary Responses in Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1669. [PMID: 35630890 PMCID: PMC9147568 DOI: 10.3390/nano12101669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023]
Abstract
Food-grade titanium dioxide (E171) contains variable percentages of titanium dioxide (TiO2) nanoparticles (NPs), posing concerns for its potential effects on human and animal health. Despite many studies, the actual relationship between the physicochemical properties of E171 NPs and their interaction with biological targets is still far from clear. We evaluated the impact of acute E171 administration on invertebrate and vertebrate animals. In the nematode, Caenorhabditis elegans, the administration of up to 1.0 mg/mL of E171 did not affect the worm's viability and lifespan, but significantly impaired its pharyngeal function, reproduction, and development. We also investigated whether the intravenous administration of E171 in mice (at the dose of 6 mg/kg/body weight) could result in an acute over-absorption of filter organs. A significant increase of hepatic titanium concentration and the formation of microgranulomas were observed. Interstitial inflammation and parenchymal modification were found in the lungs, coupled with titanium accumulation. This was probably due to the propensity of TiO2 NPs to agglomerate, as demonstrated by transmission electron microscopy experiments showing that the incubation of E171 with serum promoted the formation of compact clusters. Overall, these data emphasize the actual risk for human and animal exposure to E171.
Collapse
Affiliation(s)
- Giovanni Sitia
- Experimental Hepatology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy; (G.S.); (L.M.F.); (N.L.T.)
| | - Fabio Fiordaliso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| | - Martina B. Violatto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| | - Jennifer Fernandez Alarcon
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| | - Laura Talamini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| | - Alessandro Corbelli
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| | - Lorena Maria Ferreira
- Experimental Hepatology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy; (G.S.); (L.M.F.); (N.L.T.)
| | - Ngoc Lan Tran
- Experimental Hepatology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy; (G.S.); (L.M.F.); (N.L.T.)
| | - Indranath Chakraborty
- Center for Hybrid Nanostructures (CHyN), Hamburg University, Luruper Chaussee 149, 22607 Hamburg, Germany; (I.C.); (W.J.P.)
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| | - Wolfgang J. Parak
- Center for Hybrid Nanostructures (CHyN), Hamburg University, Luruper Chaussee 149, 22607 Hamburg, Germany; (I.C.); (W.J.P.)
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (F.F.); (M.B.V.); (J.F.A.); (L.T.); (A.C.); (M.S.)
| |
Collapse
|
20
|
Interactions between Nanoparticles and Intestine. Int J Mol Sci 2022; 23:ijms23084339. [PMID: 35457155 PMCID: PMC9024817 DOI: 10.3390/ijms23084339] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The use of nanoparticles (NPs) has surely grown in recent years due to their versatility, with a spectrum of applications that range from nanomedicine to the food industry. Recent research focuses on the development of NPs for the oral administration route rather than the intravenous one, placing the interactions between NPs and the intestine at the centre of the attention. This allows the NPs functionalization to exploit the different characteristics of the digestive tract, such as the different pH, the intestinal mucus layer, or the intestinal absorption capacity. On the other hand, these same characteristics can represent a problem for their complexity, also considering the potential interactions with the food matrix or the microbiota. This review intends to give a comprehensive look into three main branches of NPs delivery through the oral route: the functionalization of NPs drug carriers for systemic targets, with the case of insulin carriers as an example; NPs for the delivery of drugs locally active in the intestine, for the treatment of inflammatory bowel diseases and colon cancer; finally, the potential concerns and side effects of the accidental and uncontrolled exposure to NPs employed as food additives, with focus on E171 (titanium dioxide) and E174 (silver NPs).
Collapse
|
21
|
Medina‐Reyes EI, Rodríguez‐Ibarra C, Díaz‐Urbina D, Déciga‐Alcaraz A, Delgado‐Buenrostro NL, Chirino YI, Pedraza‐Chaverri J. Food‐grade titanium dioxide decreases hematocrit and hemoglobin and increases compulsive‐like behavior in male mice. J Appl Toxicol 2022; 42:1411-1419. [DOI: 10.1002/jat.4296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/30/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Estefany I. Medina‐Reyes
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán CP Ciudad de México México
| | - Carolina Rodríguez‐Ibarra
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Tlalnepantla de Baz Estado de México México
- Programa de Doctorado en Ciencias Biomédicas, UNAM
| | - Daniel Díaz‐Urbina
- Laboratorio de Neurobiología de la Alimentación. Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México Tlalnepantla de Baz Estado de México México
| | - Alejandro Déciga‐Alcaraz
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Tlalnepantla de Baz Estado de México México
- Programa de Cátedras del Consejo Mexiquense de Ciencia y Tecnología (COMECyT) Estado de México
| | - Normal L. Delgado‐Buenrostro
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Tlalnepantla de Baz Estado de México México
| | - Yolanda I. Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Tlalnepantla de Baz Estado de México México
| | - José Pedraza‐Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán CP Ciudad de México México
| |
Collapse
|
22
|
Zhang K, Wang W, Zhao K, Ma Y, Wang Y, Li Y. Recent development in foodborne nanocellulose: Preparation, properties, and applications in food industry. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Borsani B, De Santis R, Perico V, Penagini F, Pendezza E, Dilillo D, Bosetti A, Zuccotti GV, D’Auria E. The Role of Carrageenan in Inflammatory Bowel Diseases and Allergic Reactions: Where Do We Stand? Nutrients 2021; 13:3402. [PMID: 34684400 PMCID: PMC8539934 DOI: 10.3390/nu13103402] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Carrageenan (CGN) is a high molecular weight polysaccharide extracted from red seaweeds, composed of D-galactose residues linked in β-1,4 and α-1,3 galactose-galactose bond, widely used as a food additive in processed foods for its properties as a thickener, gelling agent, emulsifier, and stabilizer. In recent years, with the spread of the Western diet (WD), its consumption has increased. Nonetheless, there is a debate on its safety. CGN is extensively used as an inflammatory and adjuvant agent in vitro and in animal experimental models for the investigation of immune processes or to assess the activity of anti-inflammatory drugs. CGN can activate the innate immune pathways of inflammation, alter the gut microbiota composition and the thickness of the mucus barrier. Clinical evidence suggests that CGN is involved in the pathogenesis and clinical management of inflammatory bowel diseases (IBD), indeed food-exclusion diets can be an effective therapy for disease remission. Moreover, specific IgE to the oligosaccharide α-Gal has been associated with allergic reactions commonly referred to as the "α-Gal syndrome". This review aims to discuss the role of carrageenan in inflammatory bowel diseases and allergic reactions following the current evidence. Furthermore, as no definitive data are available on the safety and the effects of CGN, we suggest gaps to be filled and advise to limit the human exposure to CGN by reducing the consumption of ultra-processed foods.
Collapse
Affiliation(s)
- Barbara Borsani
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20122 Milan, Italy; (R.D.S.); (V.P.); (F.P.); (E.P.); (D.D.); (A.B.); (G.V.Z.); (E.D.)
| | | | | | | | | | | | | | | | | |
Collapse
|