1
|
Huang L, Guan Q, Lu R, Zhang Z, Liu C, Tian Y, Li J. Mechanism underlying the therapeutic effects of effective component compatibility of Bufei Yishen formula III combined with exercise rehabilitation on chronic obstructive pulmonary disease. Ann Med 2024; 56:2403729. [PMID: 39276358 PMCID: PMC11404378 DOI: 10.1080/07853890.2024.2403729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
OBJECTIVE To explore the mechanism underlying the therapeutic effect of Bufei Yishen Formula III combined with exercise rehabilitation (ECC-BYF III + ER) on chronic obstructive pulmonary disease (COPD) and further identify hub genes. MATERIALS AND METHODS Gene Set Enrichment Analysis was used to identify the COPD-associated pathways and reversal pathways after ECC-BYF III + ER treatment. Protein-protein interaction network analysis and cytoHubba were used to identify the hub genes. These genes were verified using independent datasets, molecular docking and quantitative real-time polymerase chain reaction experiment. RESULTS Using the high-throughput sequencing data of COPD rats from our laboratory, 49 significantly disturbed pathways were identified in COPD model compared with control group via gene set enrichment analysis (false discovery rate < 0.05). The 34 pathways were reversed after ECC-BYF III + ER treatment. In the 2306 genes of these 34 pathways, 121 of them were differentially expressed in COPD rats compared with control samples. A protein-protein interaction network comprising 111 nodes and 274 edges was created, and 34 candidate genes were identified. Finally, seven COPD hub genes (Il1b, Ccl2, Cxcl1, Apoe, Ccl7, Ccl12, and Ccl4) were well identified and verified in independent COPD rat data from our laboratory and the public dataset GSE178513. The area under the receiver operating characteristic curve values ranged from 0.86 to 1 and from 0.67 to 1, respectively. The reliability of the mentioned genes, which can bind to the active ingredients of ECC-BYF III through molecular docking, were further verified through qRT-PCR experiments. CONCLUSION Thirty-four COPD-related pathways and seven hub genes that may be regulated by ECC-BYF III + ER were identified and well verified. The findings of this study may provide insights into the treatment and mechanism underlying COPD.
Collapse
Affiliation(s)
- Lidong Huang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qingzhou Guan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruilong Lu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenzhen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Chunlei Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Zhang W, Chen B, Yoda Y, Shima M, Zhao C, Ji X, Wang J, Liao S, Jiang S, Li L, Chen Y, Guo X, Deng F. Ambient ultrafine particles exacerbate oxygen desaturation during sleep in patients with chronic obstructive pulmonary disease: New insights into the effect spectrum of ultrafine particles on susceptible populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174519. [PMID: 38972410 DOI: 10.1016/j.scitotenv.2024.174519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
The health effects of ultrafine particles (UFPs) are of growing global concern, but the epidemiological evidence remains limited. Sleep-disordered breathing (SDB) characterized by hypoxemia is a prevalent condition linked to many debilitating chronic diseases. However, the role of UFPs in the development of SDB is lacking. Therefore, this prospective panel study was performed to specifically investigate the association of short-term exposure to UFPs with SDB parameters in patients with chronic obstructive pulmonary disease (COPD). Ninety-one COPD patients completed 226 clinical visits in Beijing, China. Personal exposure to ambient UFPs of 0-7 days was estimated based on infiltration factor and time-activity pattern. Real-time monitoring of sleep oxygen saturation, spirometry, respiratory questionnaires and airway inflammation detection were performed at each clinical visit. Generalized estimating equation was used to estimate the effects of UFPs. Exposure to UFPs was significantly associated with increased oxygen desaturation index (ODI) and percent of the time with oxygen saturation below 90 % (T90), with estimates of 21.50 % (95%CI: 6.38 %, 38.76 %) and 18.75 % (95%CI: 2.83 %, 37.14 %), respectively, per 3442 particles/cm3 increment of UFPs at lag 0-3 h. Particularly, UFPs' exposure within 0-7 days was positively associated with the concentration of alveolar nitric oxide (CaNO), and alveolar eosinophilic inflammation measured by CaNO exceeding 5 ppb was associated with 29.63 % and 33.48 % increases in ODI and T90, respectively. In addition, amplified effects on oxygen desaturation were observed in current smokers. Notably, individuals with better lung function and activity tolerance were more affected by ambient UFPs due to longer time spent outdoors. To our knowledge, this is the first study to link UFPs to hypoxemia during sleep and uncover the key role of alveolar eosinophilic inflammation. Our findings provide new insights into the effect spectrum of UFPs and potential environmental and behavioral intervention strategies to protect susceptible populations.
Collapse
Affiliation(s)
- Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Baiqi Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yoshiko Yoda
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Masayuki Shima
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Chen Zhao
- Community Health Service Center, Huayuan Road, Haidian District, Beijing 100088, China
| | - Xuezhao Ji
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Junyi Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Sha Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Simin Jiang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Jiang Y, Zhu X, Shen Y, He Y, Fan H, Xu X, Zhou L, Zhu Y, Xue X, Zhang Q, Du X, Zhang L, Zhang Y, Liu C, Niu Y, Cai J, Kan H, Chen R. Mechanistic insights into cardiovascular effects of ultrafine particle exposure: A longitudinal panel study. ENVIRONMENT INTERNATIONAL 2024; 187:108714. [PMID: 38718674 DOI: 10.1016/j.envint.2024.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Ultrafine particle (UFP) has been linked with higher risks of cardiovascular diseases; however, the biological mechanisms remain to be fully elucidated. OBJECTIVES This study aims to investigate the cardiovascular responses to short-term UFP exposure and the biological pathways involved. METHODS A longitudinal panel study was conducted among 32 healthy, non-smoking young adults in Shanghai, China, who were engaged in five rounds of follow-ups between December 2020 and November 2021. Individual exposures were calculated based on the indoor and outdoor real-time measurements. Blood pressure, arterial stiffness, targeted biomarkers, and untargeted proteomics and metabolomics were examined during each follow-up. Linear mixed-effect models were applied to analyze the exposure and health data. The differential proteins and metabolites were used for pathway enrichment analyses. RESULTS Short-term UFP exposure was associated with significant increases in blood pressure and arterial stiffness. For example, systolic blood pressure increased by 2.10 % (95 % confidence interval: 0.63 %, 3.59 %) corresponding to each interquartile increase in UFP concentrations at lag 0-3 h, while pulse wave velocity increased by 2.26 % (95 % confidence interval: 0.52 %, 4.04 %) at lag 7-12 h. In addition, dozens of molecular biomarkers altered significantly. These effects were generally present within 24 h after UFP exposure, and were robust to the adjustment of co-pollutants. Molecular changes detected in proteomics and metabolomics analyses were mainly involved in systemic inflammation, oxidative stress, endothelial dysfunction, coagulation, and disturbance in lipid transport and metabolism. DISCUSSION This study provides novel and compelling evidence on the detrimental subclinical cardiovascular effects in response to short-term UFP exposure. The multi-omics profiling further offers holistic insights into the underlying biological pathways.
Collapse
Affiliation(s)
- Yixuan Jiang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xinlei Zhu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yang Shen
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yu He
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Hao Fan
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xueyi Xu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Lu Zhou
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yixiang Zhu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xiaowei Xue
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Qingli Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Xihao Du
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Lina Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yang Zhang
- Department of Systems Biology for Medicine, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Liu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yue Niu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Jing Cai
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| | - Renjie Chen
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
4
|
Fawzy A, Woo H, Raju S, Belz DC, Putcha N, Williams MS, McCormack MC, Kohler K, Hansel NN. Indoor particulate matter concentrations and air cleaner intervention association with biomarkers in former smokers with COPD. ENVIRONMENTAL RESEARCH 2024; 243:117874. [PMID: 38070852 PMCID: PMC10872275 DOI: 10.1016/j.envres.2023.117874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Indoor pollutants have been associated with worse clinical outcomes in chronic obstructive pulmonary disease (COPD). Elevated biomarkers are associated with ambient pollution exposure, however the association with indoor pollution remains unclear. METHODS Former smokers with spirometry-confirmed COPD were randomized to portable air cleaner or placebo. Indoor particulate matter (PM2.5, PM10, and ultrafine particles [UFP; PM<0.1]) and biomarkers were measured longitudinally at pre-specified intervals and course PM fraction (PM10-2.5) was calculated. Biomarkers were categorized based on associations with biologic mechanisms: inflammation (white blood cell count, interleukin [IL]-6, IL-8, IL-1β, tumor necrosis factor-α, interferon-γ, serum amyloid A), platelet activation (P-selectin, CD40 ligand [CD40L], 11-dehdydro-thromboxane-B2 [11dTxB2]), endothelial dysfunction (Vascular Cell Adhesion Molecule [VCAM]-1, Intercellular Adhesion Molecule [ICAM]-1), and oxidative stress (thiobarbituric acid reactive substances [TBARS], 8-hydroxydeoxyguanosine, 8-isoprostane). Associations between PM concentrations and each biomarker were analyzed using multivariable linear mixed models. An intention-to-treat analysis was performed to evaluate the air cleaner intervention on the biomarker levels longitudinally. RESULTS Fifty-eight participants were randomized to each group. Finer PM was more strongly associated with higher IL-8 (mean difference per doubling: UFP 13.9% [p = 0.02], PM2.5 6.8% [p = 0.002], PM10-2.5 5.0% [p = 0.02]) while interferon-γ was associated with UFP and IL-1β with PM10-2.5. UFP and PM2.5 were associated with elevated levels of the oxidative stress biomarkers TBARS and 8-isoprostane respectively. For platelet activation markers, UFP was associated with higher 11dTxB2 while PM2.5 was associated with higher P-selectin and CD40L. Pollutants were not associated with biomarkers of endothelial dysfunction. In intention-to-treat analysis there was no association of the air cleaner intervention with any of the biomarkers. DISCUSSION Among former smokers with COPD, elevated levels of indoor air pollutants, particularly ultrafine particles (PM<0.1), were associated with elevated biomarkers of inflammation, platelet activation, and oxidative stress. However, an air cleaner intervention that reduced PM did not significantly reduce biomarker levels.
Collapse
Affiliation(s)
- Ashraf Fawzy
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD, USA.
| | - Han Woo
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD, USA
| | - Sarath Raju
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel C Belz
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD, USA
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD, USA
| | | | - Meredith C McCormack
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kirsten Kohler
- Department of Environmental Health Sciences and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, MD, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Pandics T, Major D, Fazekas-Pongor V, Szarvas Z, Peterfi A, Mukli P, Gulej R, Ungvari A, Fekete M, Tompa A, Tarantini S, Yabluchanskiy A, Conley S, Csiszar A, Tabak AG, Benyo Z, Adany R, Ungvari Z. Exposome and unhealthy aging: environmental drivers from air pollution to occupational exposures. GeroScience 2023; 45:3381-3408. [PMID: 37688657 PMCID: PMC10643494 DOI: 10.1007/s11357-023-00913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023] Open
Abstract
The aging population worldwide is facing a significant increase in age-related non-communicable diseases, including cardiovascular and brain pathologies. This comprehensive review paper delves into the impact of the exposome, which encompasses the totality of environmental exposures, on unhealthy aging. It explores how environmental factors contribute to the acceleration of aging processes, increase biological age, and facilitate the development and progression of a wide range of age-associated diseases. The impact of environmental factors on cognitive health and the development of chronic age-related diseases affecting the cardiovascular system and central nervous system is discussed, with a specific focus on Alzheimer's disease, Parkinson's disease, stroke, small vessel disease, and vascular cognitive impairment (VCI). Aging is a major risk factor for these diseases. Their pathogenesis involves cellular and molecular mechanisms of aging such as increased oxidative stress, impaired mitochondrial function, DNA damage, and inflammation and is influenced by environmental factors. Environmental toxicants, including ambient particulate matter, pesticides, heavy metals, and organic solvents, have been identified as significant contributors to cardiovascular and brain aging disorders. These toxicants can inflict both macro- and microvascular damage and many of them can also cross the blood-brain barrier, inducing neurotoxic effects, neuroinflammation, and neuronal dysfunction. In conclusion, environmental factors play a critical role in modulating cardiovascular and brain aging. A deeper understanding of how environmental toxicants exacerbate aging processes and contribute to the pathogenesis of neurodegenerative diseases, VCI, and dementia is crucial for the development of preventive strategies and interventions to promote cardiovascular, cerebrovascular, and brain health. By mitigating exposure to harmful environmental factors and promoting healthy aging, we can strive to reduce the burden of age-related cardiovascular and brain pathologies in the aging population.
Collapse
Affiliation(s)
- Tamas Pandics
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Public Health Laboratory, National Public Health Centre, Budapest, Hungary
- Department of Public Health Siences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Peterfi
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anna Tompa
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam G Tabak
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- UCL Brain Sciences, University College London, London, UK
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, H-1052, Hungary
| | - Roza Adany
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
- Epidemiology and Surveillance Centre, Semmelweis University, 1085, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Wang T, Han Y, Chen X, Chen W, Li H, Wang Y, Qiu X, Gong J, Li W, Zhu T. Particulate Air Pollution and Blood Pressure: Signaling by the Arachidonate Metabolism. Hypertension 2023; 80:2687-2696. [PMID: 37869894 DOI: 10.1161/hypertensionaha.123.21410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Short-term exposure to ambient particulate matter (PM) can raise blood pressure, but the underlying mechanisms are unclear. We explored whether arachidonate metabolites serve as biological intermediates in PM-associated prohypertensive changes. METHODS This panel study recruited 110 adults aged 50 to 65 years living in Beijing, China. The participants' blood pressure, arterial stiffness, and cardiac and endothelial function were measured up to 7 times. The serum concentrations of arachidonate metabolites were quantified by targeted lipidomics. Ambient concentrations of fine PM (PM2.5), black carbon, and accumulation mode particles were continuously monitored at a station and their associations with the health indicators were evaluated. RESULTS Interquartile range increases in 25 to 96-hour-lag exposure to PM2.5, black carbon, and accumulation mode particles were associated with significant increases in systolic blood pressure (brachial: 0.8-3.2 mm Hg; central: 0.7-2.8 mm Hg) and diastolic blood pressure (brachial, 0.5-1.5 mm Hg; central, 0.5-1.6 mm Hg). At least 1 pollutant was associated with increases in augmentation pressure and heart rate and decreases in reactive hyperemia index and ejection time. The serum concentrations of arachidonate were significantly increased by 3.3% to 14.6% in association with PM exposure, which mediated 9% of the PM-associated increases in blood pressure. The levels of eicosanoids from the cytochrome P450, cyclooxygenase, and lipoxygenase pathways changed with PM exposure, and those from the cytochrome pathway significantly mediated the association between PM exposure and blood pressure. CONCLUSIONS Short-term exposure to particulate air pollution was associated with a prohypertensive change in adults, which was in part mediated by alteration of arachidonate metabolism.
Collapse
Affiliation(s)
- Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (T.W.)
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom (Y.H.)
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- GRiC, Shenzhen Institute of Building Research Co., Ltd., China (X.C.)
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles (W.C.)
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China (Y.W.)
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital (W.L.), Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
| |
Collapse
|
7
|
Yang X, Xu D, Wen B, Ji J, Zhang Z, Li L, Zhang S, Zhi H, Kong J, Wang C, Wang J, Ruan H, Zhang M, Wei L, Dong B, Wang Q. The mediating role of exhaled breath condensate metabolites in the effect of particulate matter on pulmonary function in schoolchildren: A crossover intervention study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165517. [PMID: 37459994 DOI: 10.1016/j.scitotenv.2023.165517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
The role played by metabolites in exhaled breath condensate (EBC) in the effect of PM on schoolchildren's pulmonary function has received little attention. Accordingly, we examined whether metabolites in EBC mediated the effect of PM10, PM2.5, and PM1 on the pulmonary function of schoolchildren at a residential primary school who had received an air-cleaner cross-over intervention. Samples of EBC were collected from a total of 60 schoolchildren and subjected to metabolomics analysis. We found that the effect of PM on six pulmonary function indicators was mediated by the following nine lipid peroxidation-related and energy metabolism-related metabolites present in EBC: 4-hydroxynonenal, arachidoyl ethanolamide, dl-pyroglutamic acid, 5-deoxy-d-glucose, myristic acid, lauric acid, linoleic acid, l-proline, and palmitic acid. However, while all nine of these metabolites mediated the effects of PM on boys' pulmonary function, only 4-hydroxynonenal, arachidoyl ethanolamide, and dl-pyroglutamic acid mediated the effects of PM on girls' pulmonary function. Overall, our results show that (1) short-term exposure to PM affected the schoolchildren's pulmonary function by causing an imbalance between lipid peroxidation and glutathione-based antioxidant activity and by perturbing energy metabolism in respiratory system and (2) there was a sex-dependent antioxidant response to PM exposure, with boys being less resistant than girls.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Key Laboratory of Environment and Human Health, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Dongqun Xu
- Key Laboratory of Environment and Human Health, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Department of Air Quality and Health Monitoring, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Bo Wen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Jian Ji
- Hazard Screening and Omic Platform, Analysis and Testing Center, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zeyu Zhang
- Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Li Li
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shaoping Zhang
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hong Zhi
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jian Kong
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chong Wang
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jun Wang
- Key Laboratory of Environment and Human Health, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hongjie Ruan
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ming Zhang
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Lan Wei
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Bin Dong
- Department of Air Quality and Health Monitoring, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qin Wang
- Key Laboratory of Environment and Human Health, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
8
|
Cao L, Zhao S, Han K, Fan L, Zhao C, Yin S, Hu H. Managing ferroptosis-related diseases with indirect dietary modulators of ferroptosis. J Nutr Biochem 2023; 120:109427. [PMID: 37549833 DOI: 10.1016/j.jnutbio.2023.109427] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death driven by excessive oxidation of polyunsaturated phospholipids on cellular membranes. Accumulating evidence suggests that ferroptosis has been implicated in the pathological process of various diseases, such as cardiovascular diseases, neurological diseases, liver diseases, kidney injury, lung injury, diabetes, and cancer. Targeting ferroptosis is therefore considered to be a reasonable strategy to fight against ferroptosis-associated diseases. Many dietary bioactive agents have been identified to be able to either suppress or promote ferroptosis, indicating that ferroptosis-based intervention by dietary approach may be an effective strategy for preventing and treating diseases associated with ferroptosis dysregulation. In this review, we summarize the present understanding of the functional role of ferroptosis in the pathogenesis of aforementioned diseases with an emphasis on the evidence of managing ferroptosis-related diseases with indirect dietary modulators of ferroptosis and propose issues that need to be addressed to promote practical application of dietary approach targeting ferroptosis.
Collapse
Affiliation(s)
- Lixing Cao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Shuang Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Kai Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China.
| |
Collapse
|
9
|
Khoa ND, Li S, Phuong NL, Kuga K, Yabuuchi H, Kan-O K, Matsumoto K, Ito K. Computational fluid-particle dynamics modeling of ultrafine to coarse particles deposition in the human respiratory system, down to the terminal bronchiole. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 237:107589. [PMID: 37167881 DOI: 10.1016/j.cmpb.2023.107589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Suspended respirable airborne particles are associated with human health risks and especially particles within the range of ultrafine (< 0.1 μm) or fine (< 2.5 μm) have a high possibility of penetrating the lung region, which is concerned to be closely related to the bronchial or alveoli tissue dosimetry. Nature complex structure of the respiratory system requires much effort to explore and comprehend the flow and the inhaled particle dynamics for precise health risk assessment. Therefore, this study applied the computational fluid-particle dynamics (CFPD) method to elucidate the deposition characteristics of ultrafine-to-coarse particles in the human respiratory tract from nostrils to the 16th generation of terminal bronchi. METHODS The realistic bronchi up to the 8th generation are precisely and perfectly generated from computed tomography (CT) images, and an artificial model compensates for the 9th-16th bronchioles. Herein, the steady airflow is simulated at constant breathing flow rates of 7.5, 15, and 30 L/min, reproducing human resting-intense activity. Then, trajectories of the particle size ranging from 0.002 - 10 μm are tracked using a discrete phase model. RESULTS Here, we report reliable results of airflow patterns and particle deposition efficiency in the human respiratory system validated against experimental data. The individual-related focal point of ultrafine and fine particles deposition rates was actualized at the 8th generation; whilst the hot-spot of the deposited coarse particles was found in the 6th generation. Lobar deposition characterizes the dominance of coarse particles deposited in the right lower lobe, whereas the left upper-lower and right lower lobes simultaneously occupy high deposition rates for ultrafine particles. Finally, the results indicate a higher deposition in the right lung compared to its counterpart. CONCLUSIONS From the results, the developed realistic human respiratory system down to the terminal bronchiole in this study, in coupling with the CFPD method, delivers the accurate prediction of a wide range of particles in terms of particle dosimetry and visualization of site-specific in the consecutive respiratory system. In addition, the series of CFPD analyses and their results are to offer in-depth information on particle behavior in human bronchioles, which may benefit health risk assessment or drug delivery studies.
Collapse
Affiliation(s)
- Nguyen Dang Khoa
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan.
| | - Sixiao Li
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Nguyen Lu Phuong
- Faculty of Environment, University of Natural Resources and Environment, Ho Chi Minh, Viet Nam
| | - Kazuki Kuga
- Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetake Yabuuchi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Kan-O
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Matsumoto
- Division of Respirology, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Kazuhide Ito
- Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
10
|
Wang Q, Liu S. The Effects and Pathogenesis of PM2.5 and Its Components on Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:493-506. [PMID: 37056681 PMCID: PMC10086390 DOI: 10.2147/copd.s402122] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a heterogeneous disease, is the leading cause of death worldwide. In recent years, air pollution, especially particulate matter (PM), has been widely studied as a contributing factor to COPD. As an essential component of PM, PM2.5 is associated with COPD prevalence, morbidity, and acute exacerbations. However, the specific pathogenic mechanisms were still unclear and deserve further research. The diversity and complexity of PM2.5 components make it challenging to get its accurate effects and mechanisms for COPD. It has been determined that the most toxic PM2.5 components are metals, polycyclic aromatic hydrocarbons (PAHs), carbonaceous particles (CPs), and other organic compounds. PM2.5-induced cytokine release and oxidative stress are the main mechanisms reported leading to COPD. Nonnegligibly, the microorganism in PM 2.5 may directly cause mononuclear inflammation or break the microorganism balance contributing to the development and exacerbation of COPD. This review focuses on the pathophysiology and consequences of PM2.5 and its components on COPD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Sha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
- Correspondence: Sha Liu, Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, 35 Jiefang Avenue, Zhengxiang District, Hengyang, Hunan, 421001, People’s Republic of China, Email
| |
Collapse
|