1
|
Nascimento GC, Vivanco-Estela AN, Ferrié L, Figadere B, Raisman-Vozari R, Michel PP, Del Bel E. Anti-nociceptive effects of non-antibiotic derivatives of demeclocycline and doxycycline against formalin-induced pain stimulation. Eur J Pharmacol 2024; 984:177054. [PMID: 39393668 DOI: 10.1016/j.ejphar.2024.177054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
In previous studies, some tetracycline (TC) antibiotics showed potential as analgesic. We investigated here the analgesic activity of new non-antibiotic TC derivatives using the formalin-induced nociceptive pain model in adult C57BL/6 mice. Specifically, we tested the effects of i.p. injections of DDMC (5, 10, 20 mg kg-1) and DDOX (10, 20, 40 mg kg-1), which are non-antibiotic derivatives of demeclocycline and doxycycline, respectively. Repeated treatments with DDMC remarkably reduced nociceptive pain in both phases of the test, at 10 mg kg-1 its efficacy was comparable to that of 10 mg kg-1 of morphine. DDOX was also effective in this paradigm but intrinsically less potent than DDMC, exerting analgesic effects between 20 and 40 mg kg-1. Interestingly, a single injection of DDMC (10 mg kg-1) was sufficient to produce a robust anti-nociceptive effect similar to that of morphine. A single injection of DDOX (40 mg kg-1) also produced anti-nociceptive effects but only in the second phase of the test. Noticeably, male mice exhibited a better analgesic response to DDMC (10 mg kg-1) than females. A single injection of DDMC (10 mg kg-1) and morphine but not of DDOX (40 mg kg-1), powerfully inhibited formalin-induced spinal cord c-Fos expression whereas both TC derivatives restrained the activation of Iba-1-immunoreactive cells, indicating a potential indirect effect on inflamed microglial cells. In summary, the non-antibiotic TCs, DDMC and DDOX, demonstrated notable analgesic efficacy against formalin-induced pain, suggesting their potential as alternatives for analgesic treatment.
Collapse
Affiliation(s)
| | | | - Laurent Ferrié
- BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France.
| | - Bruno Figadere
- BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France.
| | - Rita Raisman-Vozari
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, 75013, Paris, France.
| | - Patrick Pierre Michel
- Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de La Pitié Salpêtrière, 75013, Paris, France.
| | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Gei L, Yan Y, Xing W, Li Q, Chen X, Yan F, Wang Y, Cao Y, Jiang W, E R, Luo D, Zhang Y, Zeng W, Chen D. Amiloride alleviates morphine tolerance by suppressing ASIC3-dependent neuroinflammation in the spinal cord. Eur J Pharmacol 2024; 963:176173. [PMID: 37918499 DOI: 10.1016/j.ejphar.2023.176173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The use of morphine in clinical medicine is severely constrained by tolerance. Therefore, it is essential to examine pharmacological therapies that suppress the development of morphine tolerance. Amiloride suppressed the expression of inflammatory cytokines by inhibiting microglial activation. Microglia play a crucial role in the establishment of morphine tolerance. Thus, we anticipated that amiloride might suppress the development of morphine tolerance. During this investigation, we assessed the impact of amiloride on mouse morphine tolerance. METHODS Mice received morphine (10 mg/kg, s.c.) twice daily with intrathecally injected amiloride (0.3 μg/5 μl, 1 μg/5 μl, and 3 μg/5 μl) for nine continuous days. To assess morphine tolerance, mice underwent the tail-flick and hot plate tests. BV-2 cells were used to investigate the mechanism of amiloride. By using Western blotting, real-time PCR, and immunofluorescence labeling methods, the levels of acid-sensing ion channels (ASICs), nuclear factor kappa B (NF-kB) p65, p38 mitogen-activated protein kinase (MAPK) proteins, and neuroinflammation-related cytokines were determined. RESULTS The levels of ASIC3 in the spinal cord were considerably increased after long-term morphine administration. Amiloride was found to delay the development of tolerance to chronic morphine assessed via tail-flick and hot plate tests. Amiloride reduced microglial activation and downregulated the cytokines IL-1β and TNF-a by inhibiting ASIC3 in response to morphine. Furthermore, amiloride reduced p38 MAPK phosphorylation and inhibited NF-κB expression. CONCLUSIONS Amiloride effectively reduces chronic morphine tolerance by suppressing microglial activation caused by morphine by inhibiting ASIC3.
Collapse
Affiliation(s)
- Liba Gei
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China; Department of Anaesthesiology, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University/Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, 010010, China
| | - Yan Yan
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China; Department of Anaesthesiology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Wei Xing
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Qiang Li
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiangnan Chen
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China; Department of Anaesthesiology, Guangdong Women and Children Hospital, Guangzhou, 510060, China
| | - Fang Yan
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Wang
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Cao
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wenqi Jiang
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - RiQi E
- Department of Anaesthesiology, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University/Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, 010010, China
| | - DeXing Luo
- Department of Anaesthesiology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - YanHong Zhang
- Department of Anaesthesiology, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University/Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, 010010, China
| | - Weian Zeng
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Dongtai Chen
- Department of Anaesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Piscura MK, Henderson-Redmond AN, Barnes RC, Mitra S, Guindon J, Morgan DJ. Mechanisms of cannabinoid tolerance. Biochem Pharmacol 2023; 214:115665. [PMID: 37348821 PMCID: PMC10528043 DOI: 10.1016/j.bcp.2023.115665] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Cannabis has been used recreationally and medically for centuries, yet research into understanding the mechanisms of its therapeutic effects has only recently garnered more attention. There is evidence to support the use of cannabinoids for the treatment of chronic pain, muscle spasticity, nausea and vomiting due to chemotherapy, improving weight gain in HIV-related cachexia, emesis, sleep disorders, managing symptoms in Tourette syndrome, and patient-reported muscle spasticity from multiple sclerosis. However, tolerance and the risk for cannabis use disorder are two significant disadvantages for cannabinoid-based therapies in humans. Recent work has revealed prominent sex differences in the acute response and tolerance to cannabinoids in both humans and animal models. This review will discuss evidence demonstrating cannabinoid tolerance in rodents, non-human primates, and humans and our current understanding of the neuroadaptations occurring at the cannabinoid type 1 receptor (CB1R) that are responsible tolerance. CB1R expression is downregulated in tolerant animals and humans while there is strong evidence of CB1R desensitization in cannabinoid tolerant rodent models. Throughout the review, critical knowledge gaps are indicated and discussed, such as the lack of a neuroimaging probe to assess CB1R desensitization in humans. The review discusses the intracellular signaling pathways that are responsible for mediating CB1R desensitization and downregulation including the action of G protein-coupled receptor kinases, β-arrestin2 recruitment, c-Jun N-terminal kinases, protein kinase A, and the intracellular trafficking of CB1R. Finally, the review discusses approaches to reduce cannabinoid tolerance in humans based on our current understanding of the neuroadaptations and mechanisms responsible for this process.
Collapse
Affiliation(s)
- Mary K Piscura
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA; Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| | | | - Robert C Barnes
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Swarup Mitra
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Morgan
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
4
|
Ahmadi S, Mohammadi Talvar S, Masoudi K, Zobeiri M. Repeated Use of Morphine Induces Anxiety by Affecting a Proinflammatory Cytokine Signaling Pathway in the Prefrontal Cortex in Rats. Mol Neurobiol 2023; 60:1425-1439. [PMID: 36450935 DOI: 10.1007/s12035-022-03144-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
We examined the role of toll-like receptors (TLRs) and proinflammatory cytokine signaling pathways in the prefrontal cortex (PFC) in anxiety-like behaviors after repeated use of morphine. Morphine (10 mg/kg) was used twice daily for 8 days to induce morphine dependence in male Wistar rats. On day 8, opioid dependence was confirmed by measuring naloxone-precipitated withdrawal signs. On days 1 and 8, anxiety-like behaviors were evaluated using a light/dark box test. Expression of TLR1 and 4, proinflammatory cytokines, and some of the downstream signaling molecules was also evaluated in the bilateral PFC at mRNA and protein levels following morphine dependence. The results revealed that morphine caused anxiolytic-like effects on day 1 while induced anxiety following 8 days of repeated injection. On day 8, a significant decrease in TLR1 expression was detected in the PFC in morphine-dependent rats, but TLR4 remained unaffected. Repeated morphine injection significantly increased IL1-β, TNFα, and IL6 expression, but decreased IL1R and TNFR at mRNA and protein levels except for IL6R at the protein level in the PFC. The p38α mitogen-activated protein (MAP) kinase expression significantly increased but the JNK3 expression decreased in the PFC in morphine-dependent rats. Repeated injection of morphine also significantly increased the NF-κB expression in the PFC. Further, significant increases in Let-7c, mir-133b, and mir-365 were detected in the PFC in morphine-dependent rats. We conclude that TLR1 and proinflammatory cytokines signaling pathways in the PFC are associated with the anxiogenic-like effects of morphine following its chronic use in rats via a MAP kinase/NF-κB pathway.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| | - Shiva Mohammadi Talvar
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Kayvan Masoudi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Mohammad Zobeiri
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| |
Collapse
|
5
|
Crawford LC, Kim S, Karelia D, Sepulveda DE, Morgan DJ, Lü J, Henderson-Redmond AN. Decursinol-mediated antinociception and anti-allodynia in acute and neuropathic pain models in male mice: Tolerance and receptor profiling. Front Pharmacol 2022; 13:968976. [PMID: 36249788 PMCID: PMC9558739 DOI: 10.3389/fphar.2022.968976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Korean scientists have shown that oral administration of Angelica gigas Nakai (AGN) root alcoholic extract and the metabolite of its pyranocoumarins, decursinol, have antinociceptive properties across various thermal and acute inflammatory pain models. The objectives of this study were 1) to assess whether tolerance develops to the antinociceptive effects of once-daily intraperitoneally administered decursinol (50 mg/kg) in acute thermal pain models, 2) to establish its anti-allodynic efficacy and potential tolerance development in a model of chemotherapy-evoked neuropathic pain (CENP) and 3) to probe the involvement of select receptors in mediating the pain-relieving effects with antagonists. The results show that decursinol induced antinociception in both the hot plate and tail-flick assays and reversed mechanical allodynia in mice with cisplatin-evoked neuropathic pain. Tolerance was detected to the antinociceptive effects of decursinol in the hot plate and tail-flick assays and to the anti-allodynic effects of decursinol in neuropathic mice. Pretreatment with either the 5-HT2 antagonist methysergide, the 5-HT2A antagonist volinanserin, or the 5-HT2C antagonist SB-242084 failed to attenuate decursinol-induced antinociception in the tail-flick assay. While pretreatment with the cannabinoid inverse agonists rimonabant and SR144528 failed to modify decursinol-induced anti-allodynia, pretreatment with the opioid antagonist naloxone partially attenuated the anti-allodynic effects of decursinol. In conclusion, our data support decursinol as an active phytochemical of AGN having both antinociceptive and anti-allodynic properties. Future work warrants a more critical investigation of potential receptor mechanisms as they are likely more complicated than initially reported.
Collapse
Affiliation(s)
- LaTaijah C. Crawford
- Biomedical Sciences Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Biomedical Sciences, Marshall University, Huntington, WV, United States
| | - Sangyub Kim
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Deepkamal Karelia
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Diana E. Sepulveda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Daniel J. Morgan
- Department of Biomedical Sciences, Marshall University, Huntington, WV, United States
| | - Junxuan Lü
- Biomedical Sciences Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | | |
Collapse
|
6
|
Liu W, Jiang P, Qiu L. Blocking of Caveolin-1 Attenuates Morphine-Induced Inflammation, Hyperalgesia, and Analgesic Tolerance via Inhibiting NLRP3 Inflammasome and ERK/c-JUN Pathway. J Mol Neurosci 2022; 72:1047-1057. [PMID: 35262905 DOI: 10.1007/s12031-022-01989-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/23/2022] [Indexed: 12/21/2022]
Abstract
Morphine is generally used to treat chronic pain in clinic. But long-term use of morphine can inevitably induce analgesic tolerance and hyperalgesia. Caveolin-1 is reported to affect morphine-mediated signaling transduction. However, the action mechanism of morphine-induced analgesic tolerance is still unknown. In this study, morphine-induced analgesic tolerance model was established in Sprague-Dawley rats. The effects of Caveolin-1 blocking on neuroinflammation and ERK/c-JUN pathway were then explored. Morphine can remarkably elevate the expression level of Caveolin-1. Based on paw withdrawal latency behavior test, we found that Caveolin-1 blocking can effectively attenuate morphine-induced analgesic tolerance and neuroinflammation. Activation of ERK/c-JUN significantly reversed the above influences caused by Caveolin-1 blocking. Taken together, blocking of Caveolin-1 can attenuate morphine-induced inflammation and analgesic tolerance through inhibiting NLRP3 inflammasome and ERK/c-JUN pathway.
Collapse
Affiliation(s)
- Wenling Liu
- Department of Anestyesiology, HuiZhou Municipal Central Hospital, No. 41, Eling North Road, Huizhou City, Guangdong Province, 516001, China
| | - Peng Jiang
- Department of Anestyesiology, HuiZhou Municipal Central Hospital, No. 41, Eling North Road, Huizhou City, Guangdong Province, 516001, China
| | - Liuji Qiu
- Department of Anestyesiology, HuiZhou Municipal Central Hospital, No. 41, Eling North Road, Huizhou City, Guangdong Province, 516001, China.
| |
Collapse
|
7
|
Blanton HL, Pietrzak A, McHann MC, Guindon J. Sex and dose-dependent antinociceptive effects of the JNK (c-Jun N-terminal kinase) inhibitor SU 3327 are mediated by CB 2 receptors in female, and CB 1/CB 2 receptors in male mice in an inflammatory pain model. Brain Res Bull 2021; 177:39-52. [PMID: 34530070 DOI: 10.1016/j.brainresbull.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022]
Abstract
Activation of c-Jun N-terminal kinases (JNKs) has been implicated in the development and persistence of inflammatory and neuropathic pain in animal models. Moreover, JNKs have been involved in the maintenance of chronic pain, as well as development of tolerance to antinociceptive agents in the opioid and cannabinoid class of compounds. In this study, we evaluated the antinociceptive effects of the JNK inhibitor SU 3327 (0.3-30 mg/kg) in the formalin pain model with an emphasis on the sex-specific actions of this compound. In wild-type C57BL6J mice, SU 3327 produced strong antinociceptive effects in the formalin pain model which were mediated by CB2 receptors in females, and both CB1 and CB2 receptors in males. SU 3327 at a dose of 10 mg/kg produced antinociception, hypothermia, motor impairment, and hypolocomotion to a similar extent in both males and females. The antinociceptive effects of SU 3327 were more potent in males at lower doses (1 and 3 mg/kg), while females were more sensitive to the hypothermic, and motor-suppression effects at lower (3 mg/kg) doses versus males. Analysis of spinal cords, using qPCR following SU 3327 administration in the formalin test, revealed changes in cannabinoid, tolerance and inflammatory markers in females only, and only in the high (10-30 mg/kg) dose conditions. Indeed, females showed an increase in mRNA levels of cannabinoid (CB2), but a decrease in tolerance (β-arrestin 1) and inflammatory (TNF-α, IL-1β, IL-6)-associated markers. The differences between males and females, in this study, support sex as an important factor in nociception and antinociceptive responses mediated by JNK and the endocannabinoid system.
Collapse
Affiliation(s)
- Henry L Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, Lubbock, TX 79430, USA
| | - Agata Pietrzak
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, Lubbock, TX 79430, USA
| | - Melissa C McHann
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, Lubbock, TX 79430, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, Lubbock, TX 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
8
|
Li Y, Bao Y, Zheng H, Qin Y, Hua B. Can Src protein tyrosine kinase inhibitors be combined with opioid analgesics? Src and opioid-induced tolerance, hyperalgesia and addiction. Biomed Pharmacother 2021; 139:111653. [PMID: 34243625 DOI: 10.1016/j.biopha.2021.111653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022] Open
Abstract
The clinical application of opioids may be accompanied by a series of adverse consequences, such as opioid tolerance, opioid-induced hyperalgesia, opioid dependence or addiction. In view of this issue, clinicians are faced with the dilemma of treating various types of pain with or without opioids. In this review, we discuss that Src protein tyrosine kinase plays an important role in these adverse consequences, and Src inhibitors can solve these problems well. Therefore, Src inhibitors have the potential to be used in combination with opioids to achieve synergy. How to combine them together to maximize the analgesic effect while avoiding unnecessary trouble provides a topic for follow-up research.
Collapse
Affiliation(s)
- Yaoyuan Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinggang Qin
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Okerman T, Jurgenson T, Moore M, Klein AH. Inhibition of the phosphoinositide 3-kinase-AKT-cyclic GMP-c-Jun N-terminal kinase signaling pathway attenuates the development of morphine tolerance in a mouse model of neuropathic pain. Mol Pain 2021; 17:17448069211003375. [PMID: 33745380 PMCID: PMC7983416 DOI: 10.1177/17448069211003375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Research presented here sought to determine if opioid induced tolerance is linked to activity changes within the PI3Kγ-AKT-cGMP-JNK intracellular signaling pathway in spinal cord or peripheral nervous systems. Morphine or saline injections were given subcutaneously twice a day for five days (15 mg/kg) to male C57Bl/6 mice. A separate cohort of mice received spinal nerve ligation (SNL) one week prior to the start of morphine tolerance. Afterwards, spinal cord, dorsal root ganglia, and sciatic nerves were isolated for quantifying total and phosphorylated- JNK levels, cGMP, and gene expression analysis of Pik3cg, Akt1, Pten, and nNos1. This pathway was downregulated in the spinal cord with increased expression in the sciatic nerve of morphine tolerant and morphine tolerant mice after SNL. We also observed a significant increase in phosphorylated- JNK levels in the sciatic nerve of morphine tolerant mice with SNL. Pharmacological inhibition of PI3K or JNK, using thalidomide, quercetin, or SP600125, attenuated the development of morphine tolerance in mice with SNL as measured by thermal paw withdrawal. Overall, the PI3K/AKT intracellular signaling pathway is a potential target for reducing the development of morphine tolerance in the peripheral nervous system. Continued research into this pathway will contribute to the development of new analgesic drug therapies.
Collapse
Affiliation(s)
- Travis Okerman
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, USA
| | - Taylor Jurgenson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, USA
| | - Madelyn Moore
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, USA
| | - Amanda H Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, USA
- Amanda H Klein, 232 Life Sciences, 1110 Kirby Drive, Duluth, MN 55812, USA.
| |
Collapse
|
10
|
Jiang B, Zhong X, Fang J, Zhang A, WangD W, Liang Y, Fang J, Chen F, Du J. Electroacupuncture Attenuates Morphine Tolerance in Rats with Bone Cancer Pain by Inhibiting PI3K/Akt/JNK1/2 Signaling Pathway in the Spinal Dorsal Horn. Integr Cancer Ther 2021; 20:1534735421995237. [PMID: 33660537 PMCID: PMC8164555 DOI: 10.1177/1534735421995237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose: Morphine is often used for the treatment of moderate and severe cancer pain,
but long-term use can lead to morphine tolerance. Methods for effectively
inhibiting morphine tolerance and the related mechanism of action are of
great significance for the treatment of cancer pain. Previous studies have
shown that electroacupuncture (EA) can inhibit the occurrence of morphine
tolerance, but the mechanism is not yet clear. The aim of the present study
was to explore the signaling pathway by which EA attenuates the development
of bone cancer pain (BCP)-morphine tolerance (MT). Materials and methods: Changes in the paw withdrawal threshold (PWT) of rats with bone cancer
pain-morphine tolerance were observed in a study of EA combined with
intrathecal injection of a PI3K inhibitor (LY294002) or agonist
(insulin-like growth factor-1 [IGF-1]). We also tested the protein
expression of phosphorylated phosphatidylinositol 3-kinase (p-PI3K),
phosphorylated protein kinase B (p-Akt), phosphorylated c-Jun
NH2-terminal kinase 1/2 (p-JNK1/2), and β-arrestin2 in the L4-6
spinal dorsal horn of rats. Results: The protein expression of p-PI3K, p-Akt, p-JNK1/2, and β-arrestin2 was
upregulated in the L4-6 spinal dorsal horn of rats with bone cancer pain and
bone cancer pain-morphine tolerance. EA delayed the occurrence of morphine
tolerance in rats with bone cancer pain and downregulated the protein
expression of p-PI3K, p-Akt, p-JNK1/2, and β-arrestin2 in the L4-6 spinal
dorsal horn of rats with bone cancer pain-morphine tolerance. Intrathecal
injection of LY294002 attenuated the development of morphine tolerance and
downregulated the protein expression of p-Akt, p-JNK1/2, and β-arrestin2 in
the spinal dorsal horn of rats with bone cancer pain-morphine tolerance. In
addition, the inhibitory effect of EA on morphine tolerance was reversed by
IGF-1. Conclusion: The mechanism underlying the ability of EA to attenuate morphine tolerance
may be associated with inhibition of the PI3K/Akt/JNK1/2 signaling
pathway.
Collapse
Affiliation(s)
- Bin Jiang
- Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.,Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xuemei Zhong
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China.,The Second Clinical College of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Aijun Zhang
- Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Wen WangD
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Feng Chen
- Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Pantouli F, Grim TW, Schmid CL, Acevedo-Canabal A, Kennedy NM, Cameron MD, Bannister TD, Bohn LM. Comparison of morphine, oxycodone and the biased MOR agonist SR-17018 for tolerance and efficacy in mouse models of pain. Neuropharmacology 2021; 185:108439. [PMID: 33345829 PMCID: PMC7887086 DOI: 10.1016/j.neuropharm.2020.108439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
The mu opioid receptor-selective agonist, SR-17018, preferentially activates GTPγS binding over βarrestin2 recruitment in cellular assays, thereby demonstrating signaling bias. In mice, SR-17018 stimulates GTPγS binding in brainstem and produces antinociception with potencies similar to morphine. However, it produces much less respiratory suppression and mice do not develop antinociceptive tolerance in the hot plate assay upon repeated dosing. Herein we evaluate the effects of acute and repeated dosing of SR-17018, oxycodone and morphine in additional models of pain-related behaviors. In the mouse warm water tail immersion assay, an assessment of spinal reflex to thermal nociception, repeated administration of SR-17018 produces tolerance as does morphine and oxycodone. SR-17018 retains efficacy in a formalin-induced inflammatory pain model upon repeated dosing, while oxycodone does not. In a chemotherapeutic-induced neuropathy pain model SR-17018 is more potent and efficacious than morphine or oxycodone, moreover, this efficacy is retained upon repeated dosing of SR-17018. These findings demonstrate that, with the exception of the tail flick test, SR-17018 retains efficacy upon chronic treatment across several pain models.
Collapse
Affiliation(s)
- Fani Pantouli
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Travis W Grim
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Cullen L Schmid
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Agnes Acevedo-Canabal
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Nicole M Kennedy
- Departments of Molecular Medicine and Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Michael D Cameron
- Departments of Molecular Medicine and Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Thomas D Bannister
- Departments of Molecular Medicine and Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Laura M Bohn
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
12
|
Akhtar S, Abbas M, Naeem K, Faheem M, Nadeem H, Mehmood A. Benzimidazole Derivative Ameliorates Opioid-Mediated Tolerance during Anticancer- Induced Neuropathic Pain in Mice. Anticancer Agents Med Chem 2021; 21:365-371. [PMID: 32819235 DOI: 10.2174/1871520620999200818155031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is known to be the second significant cause of death worldwide. Chemotherapeutic agents such as platinum-based compounds are frequently used single-handedly or accompanied by additional chemotherapies to treat cancer patients. Chemotherapy-induced peripheral painful neuropathy is seen in around 40% of patients who are treated with platinum-based compounds, including cisplatin. This not only decreases the quality of life of patients but also patients' compliance with cisplatin. OBJECTIVES Nalbuphine, an opioid, is frequently used to treat acute and chronic pain, coupled with cisplatin in cancer patients. However, long term use of nalbuphine induces tolerance to its analgesic effects. We employed the same strategy to induce tolerance in mice. METHODS Here, we investigated analgesic effects of 2-[(pyrrolidin-1-yl) methyl]-1H-benzimidazole (BNZ), a benzimidazole derivative, on nalbuphine-induced tolerance during cisplatin-induced neuropathic pain using hot plate test, tail-flick tests and von Frey filament in mouse models. Furthermore, we investigated the effects of BNZ on the expression of Tumor Necrosis Factor-alpha (TNF-α) in the spinal cord. RESULTS The results showed that BNZ reduced tolerance to analgesic effects of nalbuphine and TNF-α expression in mice. CONCLUSION BNZ could be a potential drug candidate for the management of nalbuphine-induced tolerance in cisplatin-induced neuropathic pain.
Collapse
Affiliation(s)
- Sana Akhtar
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Komal Naeem
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Faheem
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Amber Mehmood
- Department of Basic Medical Sciences, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
13
|
Ferdous A, Janta RA, Arpa RN, Afroze M, Khan M, Moniruzzaman M. The leaves of Bougainvillea spectabilis suppressed inflammation and nociception in vivo through the modulation of glutamatergic, cGMP, and ATP-sensitive K + channel pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113148. [PMID: 32687959 DOI: 10.1016/j.jep.2020.113148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bougainvillea spectabilis is an ornamental shrub from Nyctaginaceae family, widely used in the traditional medicine in the treatment of pain, inflammation, and ulcer. Some research investigated the analgesic potential of this plant, however, the in-depth analysis of its antinociceptive properties and molecular mechanism(s) are yet to be revealed. PURPOSE OF THE STUDY This study, therefore, investigated the antinociceptive potential of methanol extract of the leaves of B. spectabilis (MEBS) with possible molecular mechanism(s) of action using several pre-clinical models of acute and chronic pain in mice. MATERIALS AND METHODS The dry leaf powder of B. spectabilis was macerated with 100% methanol, and then dried crude extract was used for in vivo experiments. Following the acute toxicity test with 500, 1000, and 2000 mg/kg b.w. doses of MEBS, the central antinociceptive activities of the extract (50, 100, and 200 mg/kg b.w.) were evaluated using hot plate and tail immersion tests, whereas the peripheral activities were investigated using acetic acid-induced writhing, formalin-induced licking and oedema, and glutamate-induced licking tests. Moreover, the possible involvements of cGMP and ATP-sensitive K+ channel pathways in the observed antinociceptive activities were also investigated using methylene blue (20 mg/kg b.w.) and glibenclamide (10 mg/kg b.w.), respectively. We also performed GC/MS-MS analysis of MEBS to identify the phyto-constituents and in silico modelling of the major compounds for potential molecular targets. RESULTS Our results demonstrated that MEBS at 50, 100, and 200 mg/kg b.w. doses were not effective enough to suppress centrally mediated pain in the hot plate and tail immersion models. However, the extract was potent (at 100 and 200 mg/kg b.w. doses) in reducing peripheral nociception in the acetic acid-induced writhing and inflammatory phase of the formalin tests. Further analyses revealed that MEBS could interfere with glutamatergic system, cGMP and ATP-sensitive K+ channel pathways to show its antinociceptive properties. GC/MS-MS analysis revealed 35 different phytochemicals with potent anti-inflammatory and antinociceptive properties including phytol, neophytadiene, 2,4-Di-tert-butylphenol, fucoxanthin, and Vit-E. Prediction analysis showed high intestinal absorptivity and low toxicity profiles of these compounds with capability to interact with glutamatergic system, inhibit JAK/STAT pathway, scavenge nitric oxide and oxygen radicals, and inhibit expression of COX3, tumor necrosis factor, and histamine. CONCLUSION Taken together, these results suggested the antinociceptive potentials of MEBS which were mediated through the modulation of glutamatergic, cGMP, and ATP-sensitive K+ channel pathways. These also suggested that MEBS could be beneficial in the treatment of complications associated with nociceptive pain.
Collapse
Affiliation(s)
- Afia Ferdous
- Department of Pharmacy, Stamford University Bangladesh, 51 Shiddheswari Road, Dhaka, 1217, Bangladesh
| | - Rabir Ahmed Janta
- Department of Pharmacy, Stamford University Bangladesh, 51 Shiddheswari Road, Dhaka, 1217, Bangladesh
| | - Rubaiya Nushin Arpa
- Department of Pharmacy, Stamford University Bangladesh, 51 Shiddheswari Road, Dhaka, 1217, Bangladesh
| | - Mirola Afroze
- Designated Reference Institute for Chemical Measurements (DRiCM), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Mala Khan
- Designated Reference Institute for Chemical Measurements (DRiCM), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-i-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Moniruzzaman
- Mater Research Institute - UQ at Translational Research Institute, Faculty of Medicine, The University of Queensland, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia; School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
14
|
Farooq S, Khan AU, Iqbal MS. Computational and Pharmacological Investigation of (E)-2-(4-Methoxybenzylidene)Cyclopentanone for Therapeutic Potential in Neurological Disorders. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3601-3614. [PMID: 32982169 PMCID: PMC7490097 DOI: 10.2147/dddt.s234345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/24/2020] [Indexed: 11/29/2022]
Abstract
Purpose This study involved the computational and pharmacological evaluation of (E)-2-(4-methoxybenzylidene)cyclopentan-1-one (A2K10). Methods In silico studies were conducted through virtual screening. Morris water and Y-maze tests were conducted to evaluate Alzheimer’s disease. Acute epilepsy haloperidol,and hyperalgesia were used to calculate the epilepsy model, with Parkinson’s disease and mechanical allodynia at a dose of 1–10 mg/kg in the mouse model. Results A2K10 exhibited the highest binding affinity against α7 nicotinic acetylcholine receptors (−256.02 kcal/mol). A2K10 decreased escape latency in the Morris water test during different trials. In the Y-maze test, A2K10 dose-dependently increased spontaneous alteration behavior, with maximum effect of 75.5%±0.86%. Furthermore, A2K10 delayed onset of pentylenetetrazole-induced myoclonic jerks and tonic–clonic seizures and decreased duration of tonic–clonic convulsions in mice, with maximum effect of 93.8±5.30, 77.8±2.91, and 12.9±1.99 seconds, respectively. In the haloperidol-induced Parkinson’s disease model, A2K10 significantly prolonged hanging time and reduced tardive dyskinesia. Moreover, A2K10 extended latency in hot-plate hyperalgesia and increased the paw-withdrawal threshold in mechanical allodynia. In toxicity studies, no mortality was observed. Conclusion Overall, the results indicated that A2K10 has potential as an anti-Alzheimer’s, antiepileptic, antiparkinsonian, and analgesic therapeutic compound.
Collapse
Affiliation(s)
- Sabah Farooq
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Arif-Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
15
|
In Vitro Effects of Ligand Bias on Primate Mu Opioid Receptor Downstream Signaling. Int J Mol Sci 2020; 21:ijms21113999. [PMID: 32503269 PMCID: PMC7312292 DOI: 10.3390/ijms21113999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Interest has emerged in biased agonists at the mu opioid receptor (MOR) as a possible means for maintaining potent analgesis with reduced side effect profiles. While approaches measuring in vitro biased agonism are used in the development of these compounds, their therapeutic utility will ultimately be determined by in vivo functional effects. Nonhuman primates (NHPs) are the most translational model for evaluating the behavioral effects of candidate medications, but biased signaling of these drugs at NHP MOR receptors has been unstudied. The goal of the current work was to characterize MOR ligand bias in rhesus macaques, focusing on agonists that have previously been reported to show different patterns of biased agonism in rodents and humans. Downstream signaling pathways that responded to MOR activation were identified using a luciferase reporter array. Concentration-response curves for specific pathways (cAMP, NF-ĸB, MAPK/JNK) were generated using six agonists previously reported to differ in terms of signaling bias at rodent and human MORs. Using DAMGO as a reference ligand, relative cAMP, NF-ĸB and MAPK/JNK signaling by morphine, endomorphin-1, and TRV130 were found to be comparable between species. Further, the bias patterns of across ligands for NF-ĸB and MAPK/JNK were largely similar between species. There was a high degree of concordance between rhesus macaque and human MOR receptor signaling bias for all agonists tested, further demonstrating their utility for future translational behavioral studies.
Collapse
|
16
|
Fernandez TJ, De Maria M, Lobingier BT. A cellular perspective of bias at G protein-coupled receptors. Protein Sci 2020; 29:1345-1354. [PMID: 32297394 DOI: 10.1002/pro.3872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) modulate cell function over short- and long-term timescales. GPCR signaling depends on biochemical parameters that define the what, when, and where of receptor function: what proteins mediate and regulate receptor signaling, where within the cell these interactions occur, and how long these interactions persist. These parameters can vary significantly depending on the activating ligand. Collectivity, differential agonist activity at a GPCR is called bias or functional selectivity. Here we review agonist bias at GPCRs with a focus on ligands that show dramatically different cellular responses from their unbiased counterparts.
Collapse
Affiliation(s)
- Thomas J Fernandez
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| |
Collapse
|
17
|
Bai X, Wang C, Zhang X, Feng Y, Zhang X. The role of testosterone in mu-opioid receptor expression in the trigeminal ganglia of opioid-tolerant rats. Neurosci Lett 2020; 723:134868. [PMID: 32109552 DOI: 10.1016/j.neulet.2020.134868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Although tolerance serves as a major limitation in the long-term clinical use of opioids in patients with chronic severe pain, mechanisms of opioid tolerance are poorly understood. In this study, a morphine tolerance model was established by subcutaneously injecting male rats with morphine (10 mg/kg) twice a day for 10 consecutive days. In addition, a subset of morphine-tolerant rats underwent testosterone replacement therapy. The levels of mu-opioid receptor (MOR) mRNA and protein in the trigeminal ganglia (TGs) of morphine-tolerant versus control rats and of morphine-tolerant rats with vs. without testosterone replacement therapy were measured. We found that testosterone levels were significantly lower in morphine-tolerant rats than in the controls (1.248 ± 0.231 ng/ml vs. 2.223 ± 0.153 ng/ ml, respectively; p = 0.008). Furthermore, chronic morphine exposure led to a downregulation in the levels of MOR mRNA to 79.3%, and of MOR protein to 68.9%. Testosterone replacement therapy restored MOR mRNA and protein levels specifically in rats who had developed a tolerance to morphine, thereby suggesting a potential role of testosterone in the opioid-receptor response to chronic morphine exposure. In summary, our study provides evidence for the involvement of testosterone in the proper regulation of the peripheral MOR system in rats following prolonged morphine exposure. We also suggest that analgesic therapeutic measures should take into account the testosterone levels of patients who have built up a tolerance to morphine.
Collapse
Affiliation(s)
- Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China
| | - Chun Wang
- Department of Anesthesiology, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China
| | - Xuedi Zhang
- Department of Anesthesiology, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China
| | - Yingbo Feng
- Department of Anesthesiology, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China
| | - Xia Zhang
- Department of Anesthesiology, Hospital of Stomatology, China Medical University, 117 North Nanjing Street, Shenyang, 110002, PR China.
| |
Collapse
|
18
|
Wang L, Yin C, Xu X, Liu T, Wang B, Abdul M, Zhou Y, Cao J, Lu C. Pellino1 Contributes to Morphine Tolerance by Microglia Activation via MAPK Signaling in the Spinal Cord of Mice. Cell Mol Neurobiol 2020; 40:1117-1131. [PMID: 31989355 DOI: 10.1007/s10571-020-00797-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
Abstract
Chronic morphine-induced antinociceptive tolerance is a major unresolved issue in clinical practices, which is associated with microglia activation in the spinal cord. E3 ubiquitin ligase Pellino1 (Peli1) is known to be an important microglia-specific regulator. However, it is unclear whether Peli1 is involved in morphine tolerance. Here, we found that Peli1 levels in the spinal cord were significantly elevated in morphine tolerance mouse model. Notably, Peli1 was expressed in a great majority of microglia in the spinal dorsal horn, while downregulation of spinal Peli1 attenuated the development of morphine tolerance and associated hyperalgesia. Our biochemical data revealed that morphine tolerance-induced increase in Peli1 was accompanied by spinal microglia activation, activation of mitogen-activated protein kinase (MAPK) signaling, and production of proinflammatory cytokines. Peli1 additionally was found to promote K63-linked ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6) in the spinal cord after repeated morphine treatment. Furthermore, knocking down Peli1 in cultured BV2 microglial cells significantly attenuated inflammatory reactions in response to morphine challenge. Therefore, we conclude that the upregulation of Peli1 in the spinal cord plays a curial role in the development of morphine tolerance via Peli1-dependent mobilization of spinal microglia, activation of MAPK signaling, and production of proinflammatory cytokines. Modulation of Peli1 may be a potential strategy for the prevention of morphine tolerance.
Collapse
Affiliation(s)
- Lijuan Wang
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Cui Yin
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Xiangying Xu
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Tianya Liu
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.,Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Bin Wang
- Department of Anesthesiology, The First People's Hospital of Lianyungang City, Lianyungang, 222000, China
| | - Mannan Abdul
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yan Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221002, China
| | - Junli Cao
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| | - Chen Lu
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| |
Collapse
|
19
|
Emery MA, Eitan S. Drug-specific differences in the ability of opioids to manage burn pain. Burns 2019; 46:503-513. [PMID: 31859093 DOI: 10.1016/j.burns.2019.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/04/2019] [Accepted: 03/30/2019] [Indexed: 12/17/2022]
Abstract
Burn injury pain is a significant public health problem. Burn injury treatment has improved tremendously in recent decades. However, an unintended consequence is that a larger number of patients now survive more severe injuries, and face intense pain that is very hard to treat. Although many efforts have been made to find alternative treatments, opioids remain the most effective medication available. Burn patients are frequently prescribed opioids in doses and durations that are significantly higher and longer than standard analgesic dosing guidelines. Despite this, many continue to experience unrelieved pain. They are also placed at a higher risk for developing dependence and opioid use disorder. Burn injury profoundly alters the functional state of the immune system. It also alters the expression levels of receptor, effector, and signaling molecules within the spinal cord's dorsal horn. These alterations could explain the reduced potency of opioids. However, recent studies demonstrate that different opioids signal preferentially via differential signaling pathways. This ligand-specific signaling by different opioids implies that burn injury may reduce the antinociceptive potency of opioids to different degrees, in a drug-specific manner. Indeed, recent findings hint at drug-specific differences in the ability of opioids to manage burn pain early after injury, as well as differences in their ability to prevent or treat the development of chronic and neuropathic pain. Here we review the current state of opioid treatment, as well as new findings that could potentially lead to opioid-based pain management strategies that may be significantly more effective than the current solutions.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA.
| |
Collapse
|
20
|
Kudla L, Bugno R, Skupio U, Wiktorowska L, Solecki W, Wojtas A, Golembiowska K, Zádor F, Benyhe S, Buda S, Makuch W, Przewlocka B, Bojarski AJ, Przewlocki R. Functional characterization of a novel opioid, PZM21, and its effects on the behavioural responses to morphine. Br J Pharmacol 2019; 176:4434-4445. [PMID: 31347704 DOI: 10.1111/bph.14805] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The concept of opioid ligands biased towards the G protein pathway with minimal recruitment of β-arrestin-2 is a promising approach for the development of novel, efficient, and potentially nonaddictive opioid therapeutics. A recently discovered biased μ-opioid receptor agonist, PZM21, showed analgesic effects with reduced side effects. Here, we aimed to further investigate the behavioural and biochemical properties of PZM21. EXPERIMENT APPROACH We evaluated antinociceptive effects of systemic and intrathecal PZM21 administration. Its addiction-like properties were determined using several behavioural approaches: conditioned place preference, locomotor sensitization, precipitated withdrawal, and self-administration. Also, effects of PZM21 on morphine-induced antinociception, tolerance, and reward were assessed. Effects of PZM21 on striatal release of monoamines were evaluated using brain microdialysis. KEY RESULTS PZM21 caused long-lasting dose-dependent antinociception. It did not induce reward- and reinforcement-related behaviour; however, its repeated administration led to antinociceptive tolerance and naloxone-precipitated withdrawal symptoms. Pretreatment with PZM21 enhanced morphine-induced antinociception and attenuated the expression of morphine reward. In comparison to morphine, PZM21 administration induced a moderate release of dopamine and a robust release of 5-HT in the striatum. CONCLUSIONS AND IMPLICATIONS PZM21 exhibited antinociceptive efficacy, without rewarding or reinforcing properties. However, its clinical application may be restricted, as it induces tolerance and withdrawal symptoms. Notably, its ability to diminish morphine reward implies that PZM21 may be useful in treatment of opioid use disorders.
Collapse
Affiliation(s)
- Lucja Kudla
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Urszula Skupio
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Lucja Wiktorowska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Adam Wojtas
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Krystyna Golembiowska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ferenc Zádor
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Szymon Buda
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Barbara Przewlocka
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
21
|
c-Jun N terminal kinase signaling pathways mediate cannabinoid tolerance in an agonist-specific manner. Neuropharmacology 2019; 164:107847. [PMID: 31758947 DOI: 10.1016/j.neuropharm.2019.107847] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
Abstract
Tolerance to the antinociceptive effects of cannabinoids represents a significant limitation to their clinical use in managing chronic pain. Tolerance likely results from desensitization and down-regulation of the cannabinoid type 1 receptor (CB1R), with CB1R desensitization occurring via phosphorylation of CB1Rs by a G protein-coupled receptor kinase and subsequent association with an arrestin protein. Previous studies have shown that (1) desensitization-resistant S426A/S430A mice exhibit a modest delay in tolerance for Δ9-THC and (-)-CP55,940 but a more pronounced disruption in tolerance for WIN 55,212-2 and (2) that c-Jun N-terminal kinase (JNK) signaling may selectively mediate antinociceptive tolerance to morphine compared to other opioid analgesics. In the current study, we found that pretreatment with the JNK inhibitor SP600125 (3 mg/kg) attenuates tolerance to the antinociceptive in the formalin test and to the anti-allodynic effects of Δ9-THC (6 mg/kg) in cisplatin-evoked neuropathic pain using wild-type mice. We also find that SP600125 causes an especially robust reduction in tolerance to the antinociceptive effects of Δ9-THC (30 mg/kg), but not WIN 55,212-2 (10 mg/kg) in the tail-flick assay using S426A/S430A mice. Interestingly, SP600125 pretreatment accelerated tolerance to the antinociceptive and anti-allodynic effects of (-)-CP55,940 (0.3 mg/kg) in mice with acute and neuropathic pain. These results demonstrate that inhibition of JNK signaling pathways delay tolerance to Δ9-THC, but not to CP55,940 or WIN55,212-2, demonstrating that the mechanisms of cannabinoid tolerance are agonist-specific.
Collapse
|
22
|
Sanna MD, Borgonetti V, Galeotti N. μ Opioid Receptor-Triggered Notch-1 Activation Contributes to Morphine Tolerance: Role of Neuron–Glia Communication. Mol Neurobiol 2019; 57:331-345. [DOI: 10.1007/s12035-019-01706-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/10/2019] [Indexed: 01/07/2023]
|
23
|
Adnan M, Nazim Uddin Chy M, Mostafa Kamal ATM, Barlow JW, Faruque MO, Yang X, Uddin SB. Evaluation of anti-nociceptive and anti-inflammatory activities of the methanol extract of Holigarna caustica (Dennst.) Oken leaves. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:401-411. [PMID: 30703495 DOI: 10.1016/j.jep.2019.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/07/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Holigarna caustica (Dennst.) is commonly used in traditional medicine to treat a variety of painful conditions such as eye irritation, inflammation, arthritis, skin diseases, cuts and wounds. AIM OF THE STUDY The present study was undertaken to investigate the anti-nociceptive and anti-inflammatory activities of the methanol extract of H. caustica leaves and to elucidate its possible mechanism(s) of action. MATERIALS AND METHODS Fresh leaves of H. caustica were collected, dried, and extracted with methanol (MEHC). MEHC was subjected to activity testing, using chemical-induced (acetic acid and formalin test) and heat-induced (hot plate and tail immersion test) pain models. To determine the possible mechanism behind the anti-nociceptive activity of MEHC, the opioid antagonist naltrexone was used to evaluate the involvement of opioid receptors in the case of formalin, hot plate and tail immersion tests, while the involvement of the cGMP and ATP-sensitive K+ channel pathways were assessed using methylene blue and glibenclamide respectively, in the acetic acid-induced writhing test. In parallel, the carrageenan-induced paw oedema model was used to determine the anti-inflammatory potential of the extract. Exploratory and motor behaviours were evaluated by the open-field test. Various bioactive compounds potentially responsible for the anti-nociceptive and anti-inflammatory activities were ascertained using GC-MS analysis. RESULTS MEHC showed strong, significant and dose-dependent anti-nociceptive activity in all chemical-induced and heat-induced pain models at all experimental doses. The association of opioid receptors with the observed anti-nociceptive effects was confirmed by using naltrexone. The cGMP and ATP-sensitive K+ channel pathway was also shown to be involved in the anti-nociceptive activity of MEHC. In addition, MEHC exhibited a dose-dependent inhibition of inflammatory oedema induced by carrageenan. MEHC was not connected with changes in either the locomotor activity or motor responses of mice. In a GC-MS analysis, 40 compounds were identified, among which twelve are documented bioactive compounds with potent analgesic and anti-inflammatory properties. CONCLUSIONS Our current study revealed that MEHC possesses strong central and peripheral anti-nociceptive as well as anti-inflammatory activity. It may also be concluded that both opioid receptors as well as the cGMP and ATP-sensitive K+ channel pathway are involved in the anti-nociceptive mechanism of MEHC. This study rationalizes the ethnomedicinal use of H. caustica leaves in various painful conditions.
Collapse
Affiliation(s)
- Md Adnan
- Pharmacognosy and Phytochemistry Lab, Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; College of Biomedical Science, Department of Bio-Health Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Md Nazim Uddin Chy
- Pharmacognosy and Phytochemistry Lab, Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - A T M Mostafa Kamal
- Pharmacognosy and Phytochemistry Lab, Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh.
| | - James W Barlow
- Department of Chemistry, Royal College of Surgeons, Dublin, Ireland.
| | - Mohammad Omar Faruque
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chittagong 4331, Bangladesh.
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central Universities for Nationalities, Wuhan, China.
| | - Shaikh Bokhtear Uddin
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chittagong 4331, Bangladesh.
| |
Collapse
|
24
|
Dopamine D1 and D3 receptor modulators restore morphine analgesia and prevent opioid preference in a model of neuropathic pain. Neuroscience 2019; 406:376-388. [DOI: 10.1016/j.neuroscience.2019.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
|
25
|
Nealon CM, Henderson-Redmond AN, Hale DE, Morgan DJ. Tolerance to WIN55,212-2 is delayed in desensitization-resistant S426A/S430A mice. Neuropharmacology 2019; 148:151-159. [PMID: 30629988 PMCID: PMC6535342 DOI: 10.1016/j.neuropharm.2018.12.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023]
Abstract
Tolerance to cannabinoid agonists can develop through desensitization of the cannabinoid receptor 1 (CB1) following prolonged administration. Desensitization results from phosphorylation of CB1 by a G protein-coupled receptor kinase (GRK), and subsequent association of the receptor with arrestin. Mice expressing a mutant form of CB1, in which the serine residues at two putative phosphorylation sites necessary for desensitization have been replaced by non-phosphorylatable alanines (S426A/S430A), display reduced tolerance to Δ9-tetrahydrocannabinol (Δ9-THC). Tolerance to the antinociceptive effects of WIN55,212-2 was delayed in S426A/S430A mutants using the tail-flick and formalin tests. However, tolerance to the antinociceptive effects of once daily CP55,940 injections was not significantly delayed in S426A/S430A mutant mice using either of these tests. Interestingly, the dose response curve shifts for the hypothermic and antinociceptive effects of CP55,940 that were induced by chronic treatment with this agonist in wild-type mice were blocked in S426A/S430A mutant mice. Assessment of mechanical allodynia in mice exhibiting chronic cisplatin-evoked neuropathic pain found that tolerance to the anti-allodynic effects WIN55,212-2 but not CP55,940 was delayed in S426A/S430A mice compared to wild-type littermates. Despite these deficits in tolerance, S426A/S430A mutant mice eventually developed tolerance to both WIN55,212-2 and CP55,940 for all pain assays that were examined, suggesting that other mechanisms likely contribute to tolerance for these cannabinoid agonists. These findings suggest that GRK- and βarrestin2-mediated desensitization of CB1 may strongly contribute to the rate of tolerance to the antinociceptive effects of WIN55,212-2, and raises the possibility of agonist-specific mechanisms of cannabinoid tolerance.
Collapse
Affiliation(s)
- Caitlin M Nealon
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Angela N Henderson-Redmond
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - David E Hale
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Daniel J Morgan
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA; Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
26
|
Yuill MB, Hale DE, Guindon J, Morgan DJ. Anti-nociceptive interactions between opioids and a cannabinoid receptor 2 agonist in inflammatory pain. Mol Pain 2018; 13:1744806917728227. [PMID: 28879802 PMCID: PMC5593227 DOI: 10.1177/1744806917728227] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cannabinoid 1 receptor and cannabinoid 2 receptor can both be targeted in the treatment of pain; yet, they have some important differences. Cannabinoid 1 receptor is expressed at high levels in the central nervous system, whereas cannabinoid 2 receptor is found predominantly, although not exclusively, outside the central nervous system. The objective of this study was to investigate potential interactions between cannabinoid 2 receptor and the mu-opioid receptor in pathological pain. The low level of adverse side effects and lack of tolerance for cannabinoid 2 receptor agonists are attractive pharmacotherapeutic traits. This study assessed the anti-nociceptive effects of a selective cannabinoid 2 receptor agonist (JWH-133) in pathological pain using mice subjected to inflammatory pain using the formalin test. Furthermore, we examined several ways in which JWH-133 may interact with morphine. JWH-133 produces dose-dependent anti-nociception during both the acute and inflammatory phases of the formalin test. This was observed in both male and female mice. However, a maximally efficacious dose of JWH-133 (1 mg/kg) was not associated with somatic withdrawal symptoms, motor impairment, or hypothermia. After eleven once-daily injections of 1 mg/JWH-133, no tolerance was observed in the formalin test. Cross-tolerance for the anti-nociceptive effects of JWH-133 and morphine were assessed to gain insight into physiologically relevant cannabinoid 2 receptor and mu-opioid receptor interaction. Mice made tolerant to the effects of morphine exhibited a lower JWH-133 response in both phases of the formalin test compared to vehicle-treated morphine-naïve animals. However, repeated daily JWH-133 administration did not cause cross-tolerance for morphine, suggesting opioid and cannabinoid 2 receptor cross-tolerance is unidirectional. However, preliminary data suggest co-administration of JWH-133 with morphine modestly attenuates morphine tolerance. Isobolographic analysis revealed that co-administration of JWH-133 and morphine has an additive effect on anti-nociception in the formalin test. Overall these findings show that cannabinoid 2 receptor may functionally interact with mu-opioid receptor to modulate anti-nociception in the formalin test.
Collapse
Affiliation(s)
- Matthew B Yuill
- 1 Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA.,2 Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA.,3 Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - David E Hale
- 1 Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA
| | - Josée Guindon
- 4 Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Daniel J Morgan
- 1 Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA.,2 Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA.,3 Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
27
|
He XT, Zhou KX, Zhao WJ, Zhang C, Deng JP, Chen FM, Gu ZX, Li YQ, Dong YL. Inhibition of Histone Deacetylases Attenuates Morphine Tolerance and Restores MOR Expression in the DRG of BCP Rats. Front Pharmacol 2018; 9:509. [PMID: 29867508 PMCID: PMC5962808 DOI: 10.3389/fphar.2018.00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/27/2018] [Indexed: 01/21/2023] Open
Abstract
The easily developed morphine tolerance in bone cancer pain (BCP) significantly hindered its clinical use. Increasing evidence suggests that histone deacetylases (HDACs) regulate analgesic tolerance subsequent to continuous opioid exposure. However, whether HDACs contribute to morphine tolerance in the pathogenesis of BCP is still unknown. In the current study, we explored the possible engagement of HDACs in morphine tolerance during the pathogenesis of BCP. After intra-tibia tumor cell inoculation (TCI), we found that the increased expression of HDACs was negatively correlated with the decreased expression of MOR in the DRG following TCI. The paw withdrawal threshold (PWT) and percentage maximum possible effects (MPEs) decreased rapidly in TCI rats when morphine was used alone. In contrast, the concomitant use of SAHA and morphine significantly elevated the PWT and MPEs of TCI rats compared to morphine alone. Additionally, we found that SAHA administration significantly elevated MOR expression in the DRG of TCI rats with or without morphine treatment. Moreover, the TCI-induced increase in the co-expression of MOR and HDAC1 in neurons was significantly decreased after SAHA administration. These results suggest that HDACs are correlated with the downregulation of MOR in the DRG during the pathogenesis of BCP. Inhibition of HDACs using SAHA can be used to attenuate morphine tolerance in BCP.
Collapse
Affiliation(s)
- Xiao-Tao He
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kai-Xiang Zhou
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Zhao
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Chen Zhang
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Jian-Ping Deng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ze-Xu Gu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yun-Qing Li
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Joint Laboratory of Neuroscience at Hainan Medical University and The Fourth Military Medical University, Hainan Medical University, Haikou, China
| | - Yu-Lin Dong
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
28
|
Alterations in nociception and morphine antinociception in mice fed a high-fat diet. Brain Res Bull 2018; 138:64-72. [DOI: 10.1016/j.brainresbull.2017.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023]
|
29
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
30
|
Src Kinase Inhibition Attenuates Morphine Tolerance without Affecting Reinforcement or Psychomotor Stimulation. Anesthesiology 2017; 127:878-889. [PMID: 28820778 DOI: 10.1097/aln.0000000000001834] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Prolonged opioid administration leads to tolerance characterized by reduced analgesic potency. Pain management is additionally compromised by the hedonic effects of opioids, the cause of their misuse. The multifunctional protein β-arrestin2 regulates the hedonic effects of morphine and participates in tolerance. These actions might reflect µ opioid receptor up-regulation through reduced endocytosis. β-Arrestin2 also recruits kinases to µ receptors. We explored the role of Src kinase in morphine analgesic tolerance, locomotor stimulation, and reinforcement in C57BL/6 mice. METHODS Analgesic (tail withdrawal latency; percentage of maximum possible effect, n = 8 to 16), locomotor (distance traveled, n = 7 to 8), and reinforcing (conditioned place preference, n = 7 to 8) effects of morphine were compared in wild-type, µ, µ, and β-arrestin2 mice. The influence of c-Src inhibitors dasatinib (n = 8) and PP2 (n = 12) was examined. RESULTS Analgesia in morphine-treated wild-type mice exhibited tolerance, declining by day 10 to a median of 62% maximum possible effect (interquartile range, 29 to 92%). Tolerance was absent from mice receiving dasatinib. Tolerance was enhanced in µ mice (34% maximum possible effect; interquartile range, 5 to 52% on day 5); dasatinib attenuated tolerance (100% maximum possible effect; interquartile range, 68 to 100%), as did PP2 (91% maximum possible effect; interquartile range, 78 to 100%). By contrast, c-Src inhibition affected neither morphine-evoked locomotor stimulation nor reinforcement. Remarkably, dasatinib not only attenuated tolerance but also reversed established tolerance in µ mice. CONCLUSIONS The ability of c-Src inhibitors to inhibit tolerance, thereby restoring analgesia, without altering the hedonic effect of morphine, makes c-Src inhibitors promising candidates as adjuncts to opioid analgesics.
Collapse
|
31
|
Morphine activation of mu opioid receptors causes disinhibition of neurons in the ventral tegmental area mediated by β-arrestin2 and c-Src. Sci Rep 2017; 7:9969. [PMID: 28855588 PMCID: PMC5577270 DOI: 10.1038/s41598-017-10360-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
The tyrosine kinase, c-Src, participates in mu opioid receptor (MOP) mediated inhibition in sensory neurons in which β-arrestin2 (β-arr2) is implicated in its recruitment. Mice lacking β-arr2 exhibit increased sensitivity to morphine reinforcement; however, whether β-arr2 and/or c-Src participate in the actions of opioids in neurons within the reward pathway is unknown. It is also unclear whether morphine acts exclusively through MOPs, or involves delta opioid receptors (DOPs). We examined the involvement of MOPs, DOPs, β-arr2 and c-Src in the inhibition by morphine of GABAergic inhibitory postsynaptic currents (IPSCs) recorded from neurons in the mouse ventral tegmental area. Morphine inhibited spontaneous IPSC frequency, mainly through MOPs, with only a negligible effect remaining in MOP−/− neurons. However, a reduction in the inhibition by morphine for DOP−/− c.f. WT neurons and a DPDPE-induced decrease of IPSC frequency revealed a role for DOPs. The application of the c-Src inhibitor, PP2, to WT neurons also reduced inhibition by morphine, while the inactive PP3, and the MEK inhibitor, SL327, had no effect. Inhibition of IPSC frequency by morphine was also reduced in β-arr2−/− neurons in which PP2 caused no further reduction. These data suggest that inhibition of IPSCs by morphine involves a β-arr2/c-Src mediated mechanism.
Collapse
|
32
|
Santos JA, Piccinelli AC, Formagio MD, Oliveira CS, dos Santos EP, Alves Stefanello MÉ, Lanza Junior U, Oliveira RJ, Sugizaki MM, Kassuya CAL. Antidepressive and antinociceptive effects of ethanolic extract and fruticuline A from Salvia lachnostachys Benth leaves on rodents. PLoS One 2017; 12:e0172151. [PMID: 28222143 PMCID: PMC5319787 DOI: 10.1371/journal.pone.0172151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/31/2017] [Indexed: 12/16/2022] Open
Abstract
Objectives This study investigated the antidepressant and antinociceptive effects of ethanolic extract (SLEE) and pure fruticuline A obtained from Salvia lachnostachys leaves on rats and mice. Methods In this study, SLEE (100 mg/kg, p.o. route) was evaluated for its effects on spared nerve injury (SNI) in rats. The animals were submitted to mechanical sensitivity, forced swim (FST) and cold sensitivity tests 10 and 15 days after surgery. SLEE (100 mg/kg, p.o.) and fruticuline A (3 mg/kg, p.o.) were also evaluated with respect to nociceptive behavior induced by formalin. In addition, clonidine-induced depressive-like behavior was also analyzed. Results The oral administration of SLEE for up to 15 days and the subcutaneous injection of 10 mg/kg of ketamine (positive control) significantly inhibited SNI-induced mechanical hyperalgesia and decreased immobility in the FST. On the 15th day of oral treatment, SLEE prevented the SNI-induced increase in cold sensitivity. In the formalin test, SLEE and fruticuline A significantly reduced the frequency of paw licking during the first and second phases and decreased the formation of edema. In locomotor analysis (open field test without clonidine treatment), SLEE and fruticuline A did not alter the response. SLEE and fruticuline A significantly attenuated clonidine-induced suppression of spontaneous locomotor activity (squares invaded and licking) and emotionality (grooming and freezing) compared with controls, similar to the naive group. Conclusion SLEE exhibits antihyperalgesic, antidepressant, and antinociceptive effects, and fruticuline A appears to be at least partly responsible for the effects of SLEE. Together, these results demonstrate the antidepressive effects of SLEE and fruticuline A and indicate that both derivatives obtained from S. lachnostachys act against spontaneous neuropathic pain.
Collapse
Affiliation(s)
- Joyce Alencar Santos
- Federal University of Grande Dourados, College Exact Sciences and Technology, Dourados, Mato Grosso do Sul, Brazil
- * E-mail:
| | | | - Maira Dante Formagio
- Federal University of Grande Dourados, College of Health Science, Dourados, MS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tolerance to the antinociceptive and hypothermic effects of morphine is mediated by multiple isoforms of c-Jun N-terminal kinase. Neuroreport 2016; 27:392-6. [PMID: 26914092 DOI: 10.1097/wnr.0000000000000551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The abuse and overdose of opioid drugs are growing public health problems worldwide. Although progress has been made toward understanding the mechanisms governing tolerance to opioids, the exact cellular machinery involved remains unclear. However, there is growing evidence to suggest that c-Jun N-terminal kinases (JNKs) play a major role in mu-opioid receptor regulation and morphine tolerance. In this study, we aimed to determine the potential roles of different JNK isoforms in the development of tolerance to the antinociceptive and hypothermic effects of morphine. We used the hot-plate and tail-flick tests for thermal pain to measure tolerance to the antinociceptive effects of once-daily subcutaneous injections with 10 mg/kg morphine. Body temperature was also measured to determine tolerance to the hypothermic effects of morphine. Tolerance to morphine was assessed in wild-type mice and compared with single knockout mice each lacking the JNK isoforms (JNK1, JNK2, or JNK3). We found that loss of each individual JNK isoform causes impairment in tolerance for the antinociceptive and hypothermic effects of daily morphine. However, disruption of JNK2 seems to have the most profound effect on morphine tolerance. These results indicate a clear role for JNK signaling pathways in morphine tolerance. This complements previous studies suggesting that the JNK2 isoform is required for morphine tolerance, but additionally presents novel data suggesting that additional JNK isoforms also contribute toward this process.
Collapse
|
34
|
MAPK Pathways Are Involved in Neuropathic Pain in Rats with Chronic Compression of the Dorsal Root Ganglion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6153215. [PMID: 27504140 PMCID: PMC4967678 DOI: 10.1155/2016/6153215] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/28/2016] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to investigate whether the MAPK pathways were involved in the mechanism of neuropathic pain in rats with chronic compression of the dorsal root ganglion. We determined the paw withdrawal mechanical threshold (PWMT) of rats before and after CCD surgery and then after p38, JNK, or ERK inhibitors administration. Western blotting, RT-PCR, and immunofluorescence of dorsal root ganglia were performed to investigate the protein and mRNA level of MAPKs and also the alternation in distributions of positive neurons in dorsal root ganglia. Intrathecal administration of MAPKs inhibitors, SB203580 (p38 inhibitor), SP600125 (JNK inhibitor), and U0126 (ERK inhibitor), resulted in a partial reduction in CCD-induced mechanical allodynia. The reduction of allodynia was associated with significant depression in the level of both MAPKs mRNA and protein expression in CCD rats and also associated with the decreased ratios of large size MAPKs positive neurons in dorsal root ganglia. In conclusion, the specific inhibitors of MAPKs contributed to the attenuation of mechanical allodynia in CCD rats and the large size MAPKs positive neurons in dorsal root ganglia were crucial.
Collapse
|
35
|
Hopkins HL, Duggett NA, Flatters SJ. Chemotherapy-induced painful neuropathy: pain-like behaviours in rodent models and their response to commonly used analgesics. Curr Opin Support Palliat Care 2016; 10:119-128. [PMID: 27054288 PMCID: PMC4982532 DOI: 10.1097/spc.0000000000000204] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Chemotherapy-induced painful neuropathy (CIPN) is a major dose-limiting side-effect of several widely used chemotherapeutics. Rodent models of CIPN have been developed using a range of dosing regimens to reproduce pain-like behaviours akin to patient-reported symptoms. This review aims to connect recent evidence-based suggestions for clinical treatment to preclinical data. RECENT FINDINGS We will discuss CIPN models evoked by systemic administration of taxanes (paclitaxel and docetaxel), platinum-based agents (oxaliplatin and cisplatin), and the proteasome-inhibitor - bortezomib. We present an overview of dosing regimens to produce CIPN models and their phenotype of pain-like behaviours. In addition, we will discuss how potential, clinically available treatments affect pain-like behaviours in these rodent models, relating those effects to clinical trial data wherever possible. We have focussed on antidepressants, opioids, and gabapentinoids given their broad usage. SUMMARY The review outlines the latest description of the most-relevant rodent models of CIPN enabling comparison between chemotherapeutics, dosing regimen, rodent strain, and sex. Preclinical data support many of the recent suggestions for clinical management of established CIPN and provides evidence for potential treatments warranting clinical investigation. Continued research using rodent CIPN models will provide much needed understanding of the causal mechanisms of CIPN, leading to new treatments for this major clinical problem.
Collapse
Affiliation(s)
- Holly L. Hopkins
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| | - Natalie A. Duggett
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| | - Sarah J.L. Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, UK
| |
Collapse
|
36
|
Cai Y, Kong H, Pan YB, Jiang L, Pan XX, Hu L, Qian YN, Jiang CY, Liu WT. Procyanidins alleviates morphine tolerance by inhibiting activation of NLRP3 inflammasome in microglia. J Neuroinflammation 2016; 13:53. [PMID: 26931361 PMCID: PMC4774188 DOI: 10.1186/s12974-016-0520-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/22/2016] [Indexed: 12/15/2022] Open
Abstract
Background The development of antinociceptive tolerance following repetitive administration of opioid analgesics significantly hinders their clinical use. Evidence has accumulated indicating that microglia within the spinal cord plays a critical role in morphine tolerance. The inhibitor of microglia is effective to attenuate the tolerance; however, the mechanism is not fully understood. Our present study investigated the effects and possible mechanism of a natural product procyanidins in improving morphine tolerance via its specific inhibition on NOD-like receptor protein3 (NLRP3) inflammasome in microglia. Methods CD-1 mice were used for tail-flick test to evaluate the degree of pain. The microglial cell line BV-2 was used to investigate the effects and the mechanism of procyanidins. Reactive oxygen species (ROS) produced from BV-2 cells was evaluated by flow cytometry. Cell signaling was measured by western blot assay and immunofluorescence assay. Results Co-administration of procyanidins with morphine potentiated its antinociception effect and attenuated the development of acute and chronic morphine tolerance. Procyanidins also inhibited morphine-induced increase of interleukin-1β and activation of NOD-like receptor protein3 (NLRP3) inflammasome. Furthermore, procyanidins decreased the phosphorylation of p38 mitogen-activated protein kinase, inhibited the translocation of nuclear factor-κB (NF-κB), and suppressed the level of reactive oxygen species in microglia. Conclusions Procyanidins suppresses morphine-induced activation of NLRP3 inflammasome and inflammatory responses in microglia, and thus resulting in significant attenuation of morphine antinociceptive tolerance. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0520-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Cai
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Hong Kong
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Yin-Bing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lai Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Xiu-Xiu Pan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chun-Yi Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China.
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Han-Zhong Road, Nanjing, 210029, China.
| |
Collapse
|
37
|
Henderson-Redmond AN, Yuill MB, Lowe TE, Kline AM, Zee ML, Guindon J, Morgan DJ. Morphine-induced antinociception and reward in "humanized" mice expressing the mu opioid receptor A118G polymorphism. Brain Res Bull 2015; 123:5-12. [PMID: 26521067 DOI: 10.1016/j.brainresbull.2015.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/25/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022]
Abstract
The rewarding and antinociceptive effects of opioids are mediated through the mu-opioid receptor. The A118G single nucleotide polymorphism in this receptor has been implicated in drug addiction and differences in pain response. Clinical and preclinical studies have found that the G allele is associated with increased heroin reward and self-administration, elevated post-operative pain, and reduced analgesic responsiveness to opioids. Male and female mice homozygous for the "humanized" 118AA or 118GG alleles were evaluated to test the hypothesis that 118GG mice are less sensitive to the rewarding and antinociceptive effects of morphine. We found that 118AA and 118GG mice of both genders developed conditioned place preference for morphine. All mice developed tolerance to the antinociceptive and hypothermic effects of morphine. However, morphine tolerance was not different between AA and GG mice. We also examined sensitivity to the antinociceptive and hypothermic effects of cumulative morphine doses. We found that 118GG mice show reduced hypothermic and antinociceptive responses on the hotplate for 10mg/kg morphine. Finally, we examined basal pain response and morphine-induced antinociception in the formalin test for inflammatory pain. We found no gender or genotype differences in either basal pain response or morphine-induced antinociception in the formalin test. Our data suggests that homozygous expression of the GG allele in mice blunts morphine-induced hypothermia and hotplate antinociception but does not alter morphine CPP, morphine tolerance, or basal inflammatory pain response.
Collapse
Affiliation(s)
- Angela N Henderson-Redmond
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Matthew B Yuill
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, United States; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Tammy E Lowe
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States; Benedict College, Columbia, South Carolina 29204, United States
| | - Aaron M Kline
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Michael L Zee
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Science Center, Lubbock, TX 79430, United States.
| | - Daniel J Morgan
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA 17033, United States; Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, United States; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|