1
|
Xu C, Wang Y, Ni H, Yao M, Cheng L, Lin X. The role of orphan G protein-coupled receptors in pain. Heliyon 2024; 10:e28818. [PMID: 38590871 PMCID: PMC11000026 DOI: 10.1016/j.heliyon.2024.e28818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
G protein-coupled receptors (GPCRs), which form the largest family of membrane protein receptors in humans, are highly complex signaling systems with intricate structures and dynamic conformations and locations. Among these receptors, a specific subset is referred to as orphan GPCRs (oGPCRs) and has garnered significant interest in pain research due to their role in both central and peripheral nervous system function. The diversity of GPCR functions is attributed to multiple factors, including allosteric modulators, signaling bias, oligomerization, constitutive signaling, and compartmentalized signaling. This review primarily focuses on the recent advances in oGPCR research on pain mechanisms, discussing the role of specific oGPCRs including GPR34, GPR37, GPR65, GPR83, GPR84, GPR85, GPR132, GPR151, GPR160, GPR171, GPR177, and GPR183. The orphan receptors among these receptors associated with central nervous system diseases are also briefly described. Understanding the functions of these oGPCRs can contribute not only to a deeper understanding of pain mechanisms but also offer a reference for discovering new targets for pain treatment.
Collapse
Affiliation(s)
- Chengfei Xu
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, 233000, PR China
| | - Yahui Wang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, PR China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, PR China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, PR China
| | - Liang Cheng
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, 233000, PR China
| | - Xuewu Lin
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, PR China
| |
Collapse
|
2
|
Mazzone GL, Coronel MF, Mladinic M, Sámano C. An update to pain management after spinal cord injury: from pharmacology to circRNAs. Rev Neurosci 2023; 34:599-611. [PMID: 36351309 DOI: 10.1515/revneuro-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 08/04/2023]
Abstract
Neuropathic pain (NP) following a spinal cord injury (SCI) is often hard to control and therapies should be focused on the physical, psychological, behavioral, social, and environmental factors that may contribute to chronic sensory symptoms. Novel therapeutic treatments for NP management should be based on the combination of pharmacological and nonpharmacological options. Some of them are addressed in this review with a focus on mechanisms and novel treatments. Several reports demonstrated an aberrant expression of non-coding RNAs (ncRNAs) that may represent key regulatory factors with a crucial role in the pathophysiology of NP and as potential diagnostic biomarkers. This review analyses the latest evidence for cellular and molecular mechanisms associated with the role of circular RNAs (circRNAs) in the management of pain after SCI. Advantages in the use of circRNA are their stability (up to 48 h), and specificity as sponges of different miRNAs related to SCI and nerve injury. The present review discusses novel data about deregulated circRNAs (up or downregulated) that sponge miRNAs, and promote cellular and molecular interactions with mRNAs and proteins. This data support the concept that circRNAs could be considered as novel potential therapeutic targets for NP management especially after spinal cord injuries.
Collapse
Affiliation(s)
- Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - María F Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Av. Pte. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Miranda Mladinic
- Laboratory for Molecular Neurobiology, Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Cynthia Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa. Avenida Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa. Alcaldía Cuajimalpa de Morelos, C.P. 05348, Ciudad de México, México
| |
Collapse
|
3
|
LncRNA XR_351665 Contributes to Chronic Pain-Induced Depression by Upregulating DNMT1 via Sponging miR-152-3p. THE JOURNAL OF PAIN 2023; 24:449-462. [PMID: 36257574 DOI: 10.1016/j.jpain.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022]
Abstract
Chronic pain is frequently comorbid with depression. However, the mechanisms underlying chronic pain-induced depression remain unclear. Here, we found that DNA methyltransferase 1 (DNMT1) was upregulated in the central amygdala (CeA) of spared nerve injury (SNI)-induced chronic pain-depression rats, and knockdown of DNMT1 could improve the depression-like behaviors in SNI rats. Additionally, a panel of differentially expressed lncRNAs, including 38 upregulated and 12 downregulated lncRNAs, were identified by microarray analysis. Bioinformatics analysis suggested that the upregulated lncRNA XR_351665 was the upstream molecule to regulate DNMT1 expression. The knockdown of XR_351665 significantly alleviated the depression-like behaviors in SNI rats, whereas overexpression of XR_351665 induced the depression-like behaviors in naïve rats. Further mechanism-related researches uncovered that XR_351665 functioned as a competing endogenous RNA (ceRNA) to upregulate DNMT1 by competitively sponging miR-152-3p, and subsequently promoted the development of chronic pain-induced depression. Our findings suggest that lncRNA XR_351665 is involved in the development of chronic pain-induced depression by upregulating DNMT1 via sponging miR-152-3p. These data provide novel insight into understanding the pathogenesis of chronic pain-induced depression and identify a potential therapeutic target. PERSPECTIVE: LncRNA XR_351665 in CeA functions as a ceRNA to block the inhibitory effect of miR-152-3p on DNMT1 and contributes to the development of chronic pain-induced depression. These data suggest that manipulation of XR_351665/miR-152-3p/DNMT1 axis may be a potential method to attenuate chronic pain-induced depression.
Collapse
|
4
|
Jiao X, Wang R, Ding X, Yan B, Lin Y, Liu Q, Wu Y, Zhou C. LncRNA-84277 is involved in chronic pain-related depressive behaviors through miR-128-3p/SIRT1 axis in central amygdala. Front Mol Neurosci 2022; 15:920216. [PMID: 35959106 PMCID: PMC9362774 DOI: 10.3389/fnmol.2022.920216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Long-term chronic pain can lead to depression. However, the mechanism underlying chronic pain-related depression remains unclear. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase (HDAC). Our previous studies have demonstrated that SIRT1 in the central nucleus of the amygdala (CeA) is involved in the development of chronic pain-related depression. In addition, increasing studies have indicated that long non-coding RNAs (lncRNAs) play a vital role in the pathogenesis of pain or depression. However, whether lncRNAs are involved in SIRT1-mediated chronic pain-related depression remains largely unknown. In this study, we identified that a novel lncRNA-84277 in CeA was the upstream molecule to regulate SIRT1 expression. Functionally, lncRNA-84277 overexpression in CeA significantly alleviated the depression-like behaviors in spared nerve injury (SNI)-induced chronic pain rats, whereas lncRNA-84277 knockdown in CeA induced the depression-like behaviors in naïve rats. Mechanically, lncRNA-84277 acted as a competing endogenous RNA (ceRNA) to upregulate SIRT1 expression by competitively sponging miR-128-3p, and therefore improved chronic pain-related depression-like behaviors. Our findings reveal the critical role of lncRNA-84277 in CeA specifically in guarding against chronic pain-related depression via a ceRNA mechanism and provide a potential therapeutic target for chronic pain-related depression.
Collapse
Affiliation(s)
- Xiaowei Jiao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ruiyao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaobao Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Binbin Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuwen Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Yuqing Wu,
| | - Chenghua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Chenghua Zhou,
| |
Collapse
|
5
|
Wu B, Zhou C, Xiao Z, Tang G, Guo H, Hu Z, Hu Q, Peng H, Pi L, Zhang Z, Wang M, Peng T, Huang J, Liang S, Li G. LncRNA-UC.25 + shRNA Alleviates P2Y 14 Receptor-Mediated Diabetic Neuropathic Pain via STAT1. Mol Neurobiol 2022; 59:5504-5515. [PMID: 35731374 DOI: 10.1007/s12035-022-02925-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/11/2022] [Indexed: 12/30/2022]
Abstract
Diabetic neuropathic pain (DNP) is a common complication of diabetes, and its complicated pathogenesis, as well as clinical manifestations, has brought great trouble to clinical treatment. The spinal cord is an important part of regulating the occurrence and development of DNP. Spinal microglia can regulate the activity of spinal cord neurons and have a regulatory effect on chronic pain. P2Y12 receptor is involved in DNP. P2Y14 and P2Y12 receptors belong to the Gi subtype of P2Y receptors, but there is no report that the P2Y14 receptor is involved in DNP. Closely related to many human diseases, the dysregulation of long noncoding RNA (lncRNA) has the effect of promoting or inhibiting the occurrence and development of diseases. The aim of this research is to investigate the function of the spinal cord P2Y14 receptor in type 2 DNP and to understand the function as well as the possible mechanism of lncRNA-UC.25 + (UC.25 +) in rat spinal cord P2Y14 receptor-mediated DNP. Our results showed that P2Y14 shRNA can reduce the expression of P2Y14 in DNP rats, thereby restraining the activation of microglia, decreasing the expression of inflammatory factors and the level of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation. At the same time, UC.25 + shRNA can downregulate the expression of the P2Y14 receptor, reduce the release of inflammatory factors, and diminish the p38 MAPK phosphorylation, indicating that UC.25 + can alleviate spinal cord P2Y14 receptor-mediated DNP. The RNA immunoprecipitation result showed that UC.25 + enriched signal transducers and activators of transcription1 (STAT1) and positively regulated its expression. The chromatin immunoprecipitation result indicated that STAT1 combined with the promoter region of the P2Y14 receptor and positively regulated the expression of the P2Y14 receptor. Therefore, we infer that UC.25 + may alleviate DNP in rats by regulating the expression of the P2Y14 receptor in spinal microglia via STAT1.
Collapse
Affiliation(s)
- Baoguo Wu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Congfa Zhou
- Department of Anatomy, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zehao Xiao
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Gan Tang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Hongmin Guo
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zihui Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Qixing Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Hao Peng
- School of Basic Medicine, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lingzhi Pi
- School of Basic Medicine, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zhihua Zhang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Miaomiao Wang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Taotao Peng
- School of Basic Medicine, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jiaqi Huang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
6
|
Song G, Zhang WM, Wang YZ, Guo JB, Zheng YL, Yang Z, Su X, Chen YM, Xie Q, Wang XQ. Long Non-coding RNA and mRNA Expression Change in Spinal Dorsal Horn After Exercise in Neuropathic Pain Rats. Front Mol Neurosci 2022; 15:865310. [PMID: 35431794 PMCID: PMC9005956 DOI: 10.3389/fnmol.2022.865310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise can help inhibition of neuropathic pain (NP), but the related mechanism remains being explored. In this research, we performed the effect of swimming exercise on the chronic constriction injury (CCI) rats. Compared with CCI group, the mechanical withdrawal threshold of rats in the CCI-Swim group significantly increased on the 21st and 28th day after CCI surgery. Second-generation RNA-sequencing technology was employed to investigate the transcriptomes of spinal dorsal horns in the Sham, CCI, and CCI-Swim groups. On the 28th day post-operation, 306 intersecting long non-coding RNAs (lncRNAs) and 173 intersecting mRNAs were observed between the CCI vs Sham group and CCI-Swim vs CCI groups. Then, the biological functions of lncRNAs and mRNAs in the spinal dorsal horn of CCI rats were then analyzed. Taking the results together, this study could provide a novel perspective for the treatment for NP.
Collapse
Affiliation(s)
- Ge Song
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Ming Zhang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Zu Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Bao Guo
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Zheng Yang
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Meng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qing Xie,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Xue-Qiang Wang,
| |
Collapse
|
7
|
Goodin BR, Overstreet DS, Penn TM, Bakshi R, Quinn TL, Sims A, Ptacek T, Jackson P, Long DL, Aroke EN. Epigenome-wide DNA methylation profiling of conditioned pain modulation in individuals with non-specific chronic low back pain. Clin Epigenetics 2022; 14:45. [PMID: 35346352 PMCID: PMC8962463 DOI: 10.1186/s13148-022-01265-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pathoanatomic cause of chronic low back pain (cLBP) cannot be identified for up to 90% of individuals. However, dysfunctional processing of endogenous nociceptive input, measured as conditioned pain modulation (CPM), has been associated with cLBP and may involve changes in neuronal gene expression. Epigenetic-induced changes such as DNA methylation (DNAm) have been associated with cLBP. METHODS In the present study, the relationship between CPM and DNAm changes in a sample of community-dwelling adults with nonspecific cLBP (n = 48) and pain-free controls (PFC; n = 50) was examined using reduced representation bisulfite sequencing. Gene ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied to identify key pathways involved in efficient versus deficient CPM. RESULTS Based on CPM efficiency, we identified 6006 and 18,305 differentially methylated CpG sites (DMCs) with q values < 0.01 among individuals with cLBP and PFCs, respectively. Most of the DMCs were hypomethylated and annotated to genes of relevance to pain, including OPRM1, ADRB2, CACNA2D3, GNA12, LPL, NAXD, and ASPHD1. In both cLBP and PFC groups, the DMCs annotated genes enriched many GO terms relevant to pain processing, including transcription regulation by RNA polymerase II, nervous system development, generation of neurons, neuron differentiation, and neurogenesis. Both groups also enriched the pathways involved in Rap1-signaling, cancer, and dopaminergic neurogenesis. However, MAPK-Ras signaling pathways were enriched in the cLBP, not the PFC group. CONCLUSIONS This is the first study to investigate the genome-scale DNA methylation profiles of CPM phenotype in adults with cLBP and PFCs. Based on CPM efficiency, fewer DMC enrichment pathways were unique to the cLBP than the PFCs group. Our results suggest that epigenetically induced modification of neuronal development/differentiation pathways may affect CPM efficiency, suggesting novel potential therapeutic targets for central sensitization. However, CPM efficiency and the experience of nonspecific cLBP may be independent. Further mechanistic studies are required to confirm the relationship between CPM, central sensitization, and nonspecific cLBP.
Collapse
Affiliation(s)
- Burel R Goodin
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Addiction and Pain Prevention and Intervention (CAPPI), University of Alabama at Birmingham, Birmingham, AL, USA
| | - Demario S Overstreet
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Terence M Penn
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rahm Bakshi
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tammie L Quinn
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew Sims
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Travis Ptacek
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pamela Jackson
- Department of Acute, Chronic and Continuing Care, School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, 35294, USA
| | - D Leann Long
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edwin N Aroke
- Department of Acute, Chronic and Continuing Care, School of Nursing, University of Alabama at Birmingham, 1701 University Boulevard, Birmingham, AL, 35294, USA.
| |
Collapse
|
8
|
Felix R, Muñoz-Herrera D, Corzo-López A, Fernández-Gallardo M, Leyva-Leyva M, González-Ramírez R, Sandoval A. Ion channel long non-coding RNAs in neuropathic pain. Pflugers Arch 2022; 474:457-468. [PMID: 35235008 DOI: 10.1007/s00424-022-02675-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023]
Abstract
Neuropathic pain is one of the primary forms of chronic pain and is the consequence of the somatosensory system's direct injury or disease. It is a relevant public health problem that affects about 10% of the world's general population. In neuropathic pain, alteration in neurotransmission occurs at various levels, including the dorsal root ganglia, the spinal cord, and the brain, resulting from the malfunction of diverse molecules such as receptors, ion channels, and elements of specific intracellular signaling pathways. In this context, there have been exciting advances in elucidating neuropathic pain's cellular and molecular mechanisms in the last decade, including the possible role that long non-coding RNAs (lncRNAs) may play, which open up new alternatives for the development of diagnostic and therapeutic strategies for this condition. This review focuses on recent studies associated with the possible relevance of lncRNAs in the development and maintenance of neuropathic pain through their actions on the functional expression of ion channels. Recognizing the changes in the function and spatio-temporal patterns of expression of these membrane proteins is crucial to understanding the control of neuronal excitability in chronic pain syndromes.
Collapse
Affiliation(s)
- Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico.
| | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | | | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| |
Collapse
|
9
|
Xu S, Dong H, Zhao Y, Feng W. Differential Expression of Long Non-Coding RNAs and Their Role in Rodent Neuropathic Pain Models. J Pain Res 2021; 14:3935-3950. [PMID: 35002313 PMCID: PMC8722684 DOI: 10.2147/jpr.s344339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain, which is accompanied by an unpleasant sensation, affects the patient's quality of life severely. Considering the complexity of the neuropathic pain, there are huge unmet medical needs for it while current effective therapeutics remain far from satisfactory. Accordingly, exploration of mechanisms of neuropathic pain could provide new therapeutic insights. While numerous researches have pointed out the contribution of sensory neuron-immune cell interactions, other mechanisms of action, such as long non-coding RNAs (lncRNAs), also could contribute to the neuropathic pain observed in vivo. LncRNAs have more than 200 nucleotides and were originally considered as transcriptional byproducts. However, recent studies have suggested that lncRNAs played a significant role in gene regulation and disease pathogenesis. A substantial number of long non-coding RNAs were expressed differentially in neuropathic pain models. Besides, therapies targeting specific lncRNAs can significantly ameliorate the development of neuropathic pain, which reveals the contribution of lncRNAs in the generation and maintenance of neuropathic pain and provides a new therapeutic strategy. The primary purpose of this review is to introduce recent studies of lncRNAs on different neuropathic pain models.
Collapse
Affiliation(s)
- Songchao Xu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - He Dong
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Yang Zhao
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Wei Feng
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
10
|
Xu C, Zheng H, Liu T, Zhang Y, Feng Y. Bioinformatics analysis identifies CSF1R as an essential gene mediating Neuropathic pain - Experimental research. Int J Surg 2021; 95:106140. [PMID: 34628075 DOI: 10.1016/j.ijsu.2021.106140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Neuropathic pain (NP) severely affects the quality of life; however, there is no effective long-term treatment. The spinal dorsal horn (SDH) is an essential target for studying NP mechanisms and clinical treatments. MATERIALS AND METHODS We searched the Gene Expression Omnibus (GEO) for the datasets of SDH microarray changes in mice NP models. Bioinformatics analysis was conducted to identify differentially expressed genes (DEGs), DEG enrichment pathways, and critical hub genes in the datasets. Finally, we explored the expression, function, and relevant mechanisms of the mouse NP model's most critical hub gene. RESULTS Two SDH microarray datasets for the mice NP model were retrieved from GEO, GSE75072, and GSE111216. We found 43 overlapping DEGs in the datasets, primarily in the inflammatory and immune pathways. The most essential hub gene was the colony-stimulating factor 1 receptor (CSF1R). Seven days after creating the mouse NP model-spared nerve injury (SNI) model or Sham model, the expression of CSF1R and microglia increased significantly in the SDH of SNI group. PLX3397, an inhibitor of CSF1R, reduced the SDH CSF1R and microglia expression after SNI and significantly alleviated the hyperalgesia in the SNI mice. CONCLUSION SDH CSF1R participates in regulation NP, which is related to changes in the activity of microglia in the SDH.
Collapse
Affiliation(s)
- Chao Xu
- Department of Anesthesiology, Peking University People's Hospital, Beijing, China Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University; Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China Key Laboratory of Anesthesia and Analgesia, Xuzhou Medical University, Xuzhou, China Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | | | | | | |
Collapse
|
11
|
Wei J, Dou Q, Ba F, Xu GY, Jiang GQ. Identification of lncRNA and mRNA expression profiles in dorsal root ganglion in rats with cancer-induced bone pain. Biochem Biophys Res Commun 2021; 572:98-104. [PMID: 34364296 DOI: 10.1016/j.bbrc.2021.07.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cancer-induced bone pain (CIBP) is one of the most severe types of chronic pain which the involved mechanisms are largely unknown. LncRNA has been found to play critical roles in chronic pain. However, its function in peripheral nervous system in CIBP remains unknown. Identifying the different lncRNA expression pattern is essential for understanding the genetic mechanisms underlying the pathogenesis of CIBP. METHODS The model was induced by injection of Walker 256 cells into the rat tibia canal. Behavior tests and X-ray microtomography (MicroCT) analysis were performed to verify the model's establishment. L2-L5 DRGs were harvested at 14-day post operation and the differential lncRNA and mRNA expression patterns were investigated by microarray analyses. RT-qPCR analysis and RNA interference were performed for expression and function verifications. Bioinformatics analysis was conducted for further function study. RESULTS CIBP rats showed hyperalgesia and the MicroCT analysis showed tibia destruction. A total of 73 lncRNAs and 187 mRNAs were dysregulated. The expressions of several lncRNAs and mRNAs were validated by RT-qPCR experiment. Biological analyses showed that the changed mRNAs were mainly related to cellular and single-organism process, cell and cell part, binding function and immune system pathway. The top 30 lncRNA-predicted mRNAs are mainly related to peroxisome, DNA-dependent DNA replication, double-stranded RNA binding, tuberculosis and purine metabolism. 56 lncRNAs (30 downregulated and 26 upregulated) and 179 DEGs (35 downregulated and 144 upregulated) have a significant correlation and constructed a co-expression network. Downregulation of lncRNA NONRATT021203.2 by siRNA intrathecal injection increased PWL and WBD in CIBP rats, alleviating cancer induced bone hyperalgesia. CONCLUSION LncRNA played important roles in regulation of CIBP or mRNA expression in peripheral neuropathy in CIBP. These alterd mRNAs and lncRNAs might be potential therapeutic targets for the treatment of CIBP.
Collapse
Affiliation(s)
- Jinrong Wei
- General Surgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Qianshu Dou
- General Surgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Futing Ba
- General Surgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China.
| | - Guo-Qin Jiang
- General Surgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Tang W, Zhang L, Li Z. Long noncoding RNA LOC100911498 is a novel regulator of neuropathic pain in rats. Brain Behav 2021; 11:e01966. [PMID: 33949153 PMCID: PMC8413752 DOI: 10.1002/brb3.1966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Neuropathic pain (NP) is the most debilitating of all clinical pain syndromes and may be a consequence of dysfunction in the somatosensory nervous system. Unfortunately, the pathogenesis of NP is not fully understood yet and it cannot be cured totally. Long noncoding RNA (lncRNA) is a type of RNA molecule greater than 200 nucleotides, and dysregulated expression of lncRNAs play a critical role in the facilitation of NP. Previous study showed the expression level of LOC100911498 in the spinal cords of spared nerve injury (SNI) rats were increased. This research was aimed at exploring what role LOC100911498 plays in the pathophysiological process of NP. METHODS The mechanical withdrawal threshold (MWT) of rats was measured by the von Frey test. The expression levels of P2X4 receptor (P2X4R), ionized calcium-binding adaptor molecule 1 (Iba-1), p-p38 and brain-derived neurotrophic factor (BDNF) in spinal cords were detected, respectively. RESULTS Our results suggested that the level of LOC100911498 in SNI rats was markedly higher than that in the sham group; the MWT values in rats were treated with LOC100911498siRNA were increased, and the expression levels of P2X4R, Iba-1, p-p38 and BDNF in SNI+ LOC100911498siRNA group were reduced compared with those in the SNI group. CONCLUSION Our study indicated the effects lncRNA LOC100911498 siRNA exerted on NP were mediated by P2X4R on microglia in the spinal cords of rats. Further, LOC100911498 may be a novel positive regulator of NP by regulating the expression and function of the P2X4R.
Collapse
Affiliation(s)
- Wenxin Tang
- Department of Anaesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lufeng Zhang
- Department of Anaesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhisong Li
- Department of Anaesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Xia LP, Luo H, Ma Q, Xie YK, Li W, Hu H, Xu ZZ. GPR151 in nociceptors modulates neuropathic pain via regulating P2X3 function and microglial activation. Brain 2021; 144:3405-3420. [PMID: 34244727 DOI: 10.1093/brain/awab245] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 11/14/2022] Open
Abstract
Neuropathic pain is a major health problem that affects up to 7-10% of the population worldwide. Currently, neuropathic pain is difficult to treat due to its elusive mechanisms. Here we report that orphan G protein-coupled receptor 151 (GPR151) in nociceptive sensory neurons controls neuropathic pain induced by nerve injury. GPR151 was mainly expressed in nonpeptidergic C-fiber dorsal root ganglion (DRG) neurons and highly upregulated after nerve injury. Importantly, conditional knockout of Gpr151 in adult nociceptive sensory neurons significantly alleviated chronic constriction injury (CCI)-induced neuropathic pain-like behavior but did not affect basal nociception. Moreover, GPR151 in DRG neurons was required for CCI-induced neuronal hyperexcitability and upregulation of colony-stimulating factor 1 (CSF1), which is necessary for microglial activation in the spinal cord after nerve injury. Mechanistically, GPR151 coupled with P2X3 ion channels and promoted their functional activities in neuropathic pain-like hypersensitivity. Knockout of Gpr151 suppressed P2X3-mediated calcium elevation and spontaneous pain behavior in CCI mice. Conversely, overexpression of Gpr151 significantly enhanced P2X3-mediated calcium elevation and DRG neuronal excitability. Furthermore, knockdown of P2X3 in DRGs reversed CCI-induced CSF1 upregulation, spinal microglial activation, and neuropathic pain-like behavior. Finally, the co-expression of GPR151 and P2X3 was confirmed in small-diameter human DRG neurons, indicating the clinical relevance of our findings. Together, our results suggest that GPR151 in nociceptive DRG neurons plays a key role in the pathogenesis of neuropathic pain and could be a potential target for treating neuropathic pain.
Collapse
Affiliation(s)
- Li-Ping Xia
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Luo
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiang Ma
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ya-Kai Xie
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Li
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hailan Hu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhen-Zhong Xu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
14
|
G protein-coupled receptor GPR151 is involved in trigeminal neuropathic pain through the induction of Gβγ/extracellular signal-regulated kinase-mediated neuroinflammation in the trigeminal ganglion. Pain 2021; 162:1434-1448. [PMID: 33239523 DOI: 10.1097/j.pain.0000000000002156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022]
Abstract
ABSTRACT Trigeminal nerve injury-induced neuropathic pain is a debilitating chronic orofacial pain syndrome but lacks effective treatment. G protein-coupled receptors (GPCRs), especially orphan GPCRs (oGPCRs) are important therapeutic targets in pain medicine. Here, we screened upregulated oGPCRs in the trigeminal ganglion (TG) after partial infraorbital nerve transection (pIONT) and found that Gpr151 was the most significantly upregulated oGPCRs. Gpr151 mRNA was increased from pIONT day 3 and maintained for more than 21 days. Furthermore, GPR151 was expressed in the neurons of the TG after pIONT. Global mutation or knockdown of Gpr151 in the TG attenuated pIONT-induced mechanical allodynia. In addition, the excitability of TG neurons was increased after pIONT in wild-type (WT) mice, but not in Gpr151-/- mice. Notably, GPR151 bound to Gαi protein, but not Gαq, Gα12, or Gα13, and activated the extracellular signal-regulated kinase (ERK) through Gβγ. Extracellular signal-regulated kinase was also activated by pIONT in the TG of WT mice, but not in Gpr151-/- mice. Gene microarray showed that Gpr151 mutation reduced the expression of a large number of neuroinflammation-related genes that were upregulated in WT mice after pIONT, including chemokines CCL5, CCL7, CXCL9, and CXCL10. The mitogen-activated protein kinase inhibitor (PD98059) attenuated mechanical allodynia and reduced the upregulation of these chemokines after pIONT. Collectively, this study not only revealed the involvement of GPR151 in the maintenance of trigeminal neuropathic pain but also identified GPR151 as a Gαi-coupled receptor to induce ERK-dependent neuroinflammation. Thus, GPR151 may be a potential drug target for the treatment of trigeminal neuropathic pain.
Collapse
|
15
|
Su S, Li M, Wu D, Cao J, Ren X, Tao YX, Zang W. Gene Transcript Alterations in the Spinal Cord, Anterior Cingulate Cortex, and Amygdala in Mice Following Peripheral Nerve Injury. Front Cell Dev Biol 2021; 9:634810. [PMID: 33898422 PMCID: PMC8059771 DOI: 10.3389/fcell.2021.634810] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic neuropathic pain caused by nerve damage is a most common clinical symptom, often accompanied by anxiety- and depression-like symptoms. Current treatments are very limited at least in part due to incompletely understanding mechanisms underlying this disorder. Changes in gene expression in the dorsal root ganglion (DRG) have been acknowledged to implicate in neuropathic pain genesis, but how peripheral nerve injury alters the gene expression in other pain-associated regions remains elusive. The present study carried out strand-specific next-generation RNA sequencing with a higher sequencing depth and observed the changes in whole transcriptomes in the spinal cord (SC), anterior cingulate cortex (ACC), and amygdala (AMY) following unilateral fourth lumbar spinal nerve ligation (SNL). In addition to providing novel transcriptome profiles of long non-coding RNAs (lncRNAs) and mRNAs, we identified pain- and emotion-related differentially expressed genes (DEGs) and revealed that numbers of these DEGs displayed a high correlation to neuroinflammation and apoptosis. Consistently, functional analyses showed that the most significant enriched biological processes of the upregulated mRNAs were involved in the immune system process, apoptotic process, defense response, inflammation response, and sensory perception of pain across three regions. Moreover, the comparisons of pain-, anxiety-, and depression-related DEGs among three regions present a particular molecular map among the spinal cord and supraspinal structures and indicate the region-dependent and region-independent alterations of gene expression after nerve injury. Our study provides a resource for gene transcript expression patterns in three distinct pain-related regions after peripheral nerve injury. Our findings suggest that neuroinflammation and apoptosis are important pathogenic mechanisms underlying neuropathic pain and that some DEGs might be promising therapeutic targets.
Collapse
Affiliation(s)
- Songxue Su
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Mengqi Li
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.,Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Wu
- Department of Bioinformatics, College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Xiuhua Ren
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Weidong Zang
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| |
Collapse
|
16
|
Fan Y, Li N, Yao X. Identification of potential biomarkers of long non-coding RNAs in neuropathic pain using bioinformatic analysis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25147. [PMID: 33761683 PMCID: PMC9282065 DOI: 10.1097/md.0000000000025147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) play important roles in the regulation of neuropathic pain (NP) development. LncRNAs dysregulations are related to the development of NP. However, a comprehensive meta-analysis has never been conducted to assess the relationship between LncRNAs and NP. To combine the results of dysregulated LncRNAs in individual NP studies and to identify potential LncRNAs biomarkers. METHODS LncRNAs profiling studies of NP were extracted from Pubmed, Web of science, Embase, Google Scholar, and Chinese National Knowledge Infrastructure, and the Chinese Biomedical Literature Database if they met the inclusion criteria. The meta-analysis was conducted using a random effects model to identify the effect of each multiple-reported LncRNAs. We also performed subgroup analysis according to LncRNAs detecting methods and sample type. Sensitivity analysis was performed on the sample size. Bioinformatic analysis was performed to identify the potential biomatic functions. All results were represented as log10 odds ratios. RESULTS This review will be disseminated in print by peer-review. CONCLUSION The identified LncRNAs may be closely linked with NP and may act as potentially useful biomarkers. ETHICS AND DISSEMINATION The private information from individuals will not publish. This systematic review also will not involve endangering participant rights. Ethical approval is not available. The results may be published in a peer- reviewed journal or disseminated in relevant conferences. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/ZRX7C.
Collapse
Affiliation(s)
- Yongzhi Fan
- Department of Pain Management, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Provine, China
| | - Na Li
- Department of Pain Management, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Provine, China
| | - Xianbao Yao
- Department of Pain Management, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Provine, China
| |
Collapse
|
17
|
Inhibition of lncRNA DILC attenuates neuropathic pain via the SOCS3/JAK2/STAT3 pathway. Biosci Rep 2021; 40:225196. [PMID: 32510145 PMCID: PMC7300282 DOI: 10.1042/bsr20194486] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been involved in the development of multiple pathological processes including neuropathic pain. The aim of the present study is to investigate the role of lncRNA down-regulated in liver cancer stem cells (DILC) in the progression of neuropathic pain and its underlying mechanism. Neuropathic pain rat model was established with the bilateral chronic constriction injury (bCCI) method. The results from quantitative PCR analysis in the spinal cord showed that DILC was significantly up-regulated in rats with bCCI compared with the sham group. DILC down-regulation mediated by intrathecal administration of DILC siRNA significantly increased the mechanical shrinkage threshold (MWT) and paw withdrawal threshold latency (PWTL), decreased the positive frequency for nerve sensitivity to cold and suppressed the expression of inflammatory genes in bCCI rats. Down-regulation of DILC induced suppressor of cytokine signaling (SOCS3) expression and inhibited the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) in spinal cord tissues. Western blotting showed that down-regulation of DILC by DILC siRNA transfection induced SOCS3 expression and inhibited the expression of p-Janus kinase 2 (p-JAK2) and p-STAT3 and their downstream genes in primary microglia. Furthermore, down-regulation of DILC increased the viability of primary microglia, suppressed apoptosis, and inhibited the production of interleukin (IL)-6 and IL-1β in microglia. In contrast, overexpression of DILC showed the opposite functions to those of DILC knockdown. In conclusion, silence of lncRNA DILC attenuates neuropathic pain via SOCS3-induced suppression of the JAK2/STAT3 pathway.
Collapse
|
18
|
Li Y, Yin C, Liu B, Nie H, Wang J, Zeng D, Chen R, He X, Fang J, Du J, Liang Y, Jiang Y, Fang J, Liu B. Transcriptome profiling of long noncoding RNAs and mRNAs in spinal cord of a rat model of paclitaxel-induced peripheral neuropathy identifies potential mechanisms mediating neuroinflammation and pain. J Neuroinflammation 2021; 18:48. [PMID: 33602238 PMCID: PMC7890637 DOI: 10.1186/s12974-021-02098-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Background Paclitaxel is a widely prescribed chemotherapy drug for treating solid tumors. However, paclitaxel-induced peripheral neuropathy (PIPN) is a common adverse effect during paclitaxel treatment, which results in sensory abnormalities and neuropathic pain among patients. Unfortunately, the mechanisms underlying PIPN still remain poorly understood. Long noncoding RNAs (lncRNAs) are novel and promising targets for chronic pain treatment, but their involvement in PIPN still remains unexplored. Methods We established a rat PIPN model by repetitive paclitaxel application. Immunostaining, RNA sequencing (RNA-Seq) and bioinformatics analysis were performed to study glia cell activation and explore lncRNA/mRNA expression profiles in spinal cord dorsal horn (SCDH) of PIPN model rats. qPCR and protein assay were used for further validation. Results PIPN model rats developed long-lasting mechanical and thermal pain hypersensitivities in hind paws, accompanied with astrocyte and microglia activation in SCDH. RNA-Seq identified a total of 814 differentially expressed mRNAs (DEmRNA) (including 467 upregulated and 347 downregulated) and 412 DElncRNAs (including 145 upregulated and 267 downregulated) in SCDH of PIPN model rats vs. control rats. Functional analysis of DEmRNAs and DElncRNAs identified that the most significantly enriched pathways include immune/inflammatory responses and neurotrophin signaling pathways, which are all important mechanisms mediating neuroinflammation, central sensitization, and chronic pain. We further compared our dataset with other published datasets of neuropathic pain and identified a core set of immune response-related genes extensively involved in PIPN and other neuropathic pain conditions. Lastly, a competing RNA network analysis of DElncRNAs and DEmRNAs was performed to identify potential regulatory networks of lncRNAs on mRNA through miRNA sponging. Conclusions Our study provided the transcriptome profiling of DElncRNAs and DEmRNAs and uncovered immune and inflammatory responses were predominant biological events in SCDH of the rat PIPN model. Thus, our study may help to identify promising genes or signaling pathways for PIPN therapeutics. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02098-y.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Huimin Nie
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Jie Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Danyi Zeng
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Ruixiang Chen
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Xiaofen He
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Yongliang Jiang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China.
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China.
| |
Collapse
|
19
|
The Expanding Regulatory Mechanisms and Cellular Functions of Long Non-coding RNAs (lncRNAs) in Neuroinflammation. Mol Neurobiol 2021; 58:2916-2939. [PMID: 33555549 DOI: 10.1007/s12035-020-02268-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
LncRNAs have emerged as important regulatory molecules in biological processes. They serve as regulators of gene expression pathways through interactions with proteins, RNA, and DNA. LncRNA expression is altered in several diseases of the central nervous system (CNS), such as neurodegenerative disorders, stroke, trauma, and infection. More recently, it has become clear that lncRNAs contribute to regulating both pro-inflammatory and anti-inflammatory pathways in the CNS. In this review, we discuss the molecular pathways involved in the expression of lncRNAs, their role and mechanism of action during gene regulation, cellular functions, and use of lncRNAs as therapeutic targets during neuroinflammation in CNS disorders.
Collapse
|
20
|
Wang YH, Tang YR, Gao X, Liu J, Zhang NN, Liang ZJ, Li Y, Pan LX. The anti-inflammatory and analgesic effects of intraperitoneal melatonin after spinal nerve ligation are mediated by inhibition of the NF-κB/NLRP3 inflammasome signaling pathway. Brain Res Bull 2021; 169:156-166. [PMID: 33508403 DOI: 10.1016/j.brainresbull.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To explore the potential analgesic effect of melatonin and its underlying molecular mechanisms in a neuropathic pain model induced by spinal nerve ligation (SNL). METHODS The experimental animals were divided into different groups including sham, vehicle, melatonin (MT) treatment, caspase-1 inhibitor (VX-765) treatment and MT2 antagonist (4P-PDOT) treatment. On the first three successive postoperative days, rats were intraperitoneally administered with MT, VX-765 or combination of MT and 4P-PDOT. Hyperalgesic behavior after SNL was evaluated using the paw withdrawal threshold (PWT). We then assessed expression of tumor necrosis factor-α (TNF-α), IL-18, interleukin-1β (IL-1β), NLRP3 inflammasome components, and nuclear factor-κB (NF-κB) activation using enzyme-linked immunosorbent assay kits (ELISA), real-time PCR, immunohistochemistry, and western blot, respectively, in spinal cord horn tissues extracted on postoperative day 7. RESULTS The results showed that melatonin treatment alleviated SNL-induced allodynia. We observed an SNL-induced upregulation of TNF-α, IL-18, IL-1β, NLRP3, ASC, cleaved caspase-1, and NF-κB in the lumbar spinal cord horn of rats, which was significantly attenuated by intraperitoneal injection of melatonin or VX-765. Additionally, co-treatment of melatonin and 4P-PDOT abrogated the analgesic and anti-inflammatory effect of melatonin. CONCLUSION Melatonin had potent analgesic and anti-inflammatory effects in SNL-induced neuropathic pain via NF-κB/NLRP3 inflammasome signaling pathway. Our results therefore suggested that this pathway could represent a novel therapeutic target for the management of neuropathic pain.
Collapse
Affiliation(s)
- Yi-Hao Wang
- Department of Pain Management, Qingdao Municipal Hospital, Shandong Province, 266011, China
| | - Yu-Ru Tang
- Qingdao Mental Health Center, Qingdao University, Shandong Province, 266034, China
| | - Xiao Gao
- Qingdao Mental Health Center, Qingdao University, Shandong Province, 266034, China
| | - Juan Liu
- Department of Anesthesiology, Maternity and Child Hospital of Shandong Province, Shandong Province, 250014, China
| | - Nan-Nan Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Shandong Province, 266003, China
| | - Zhao-Jun Liang
- Department of Anesthesiology, Qingdao Municipal Hospital, Shandong Province, 266011, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Shandong Province, 266003, China
| | - Li-Xiao Pan
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Shandong Province, 266003, China.
| |
Collapse
|
21
|
Bai Q, Cao J, Dong T, Tao F. <p>Transcriptome Analysis of Dorsal Root Ganglion in Rats with Knee Joint Inflammation</p>. J Pain Res 2020; 13:2709-2720. [PMID: 33149663 PMCID: PMC7604464 DOI: 10.2147/jpr.s278474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Henan, People’s Republic of China
| | - Jing Cao
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Henan, People’s Republic of China
| | - Tieli Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Henan, People’s Republic of China
- Correspondence: Tieli Dong The Second Affiliated Hospital of Zhengzhou University, Henan, People’s Republic of China Email
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
- Feng Tao Texas A&M University College of Dentistry, Dallas, Texas, USA Email
| |
Collapse
|
22
|
Dai Y, Ma W, Zhang T, Yang J, Zang C, Liu K, Wang X, Wang J, Wu Z, Zhang X, Li C, Li J, Wang X, Guo J, Li L. Long Noncoding RNA Expression Profiling During the Neuronal Differentiation of Glial Precursor Cells from Rat Dorsal Root Ganglia. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0317-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Loss of SNHG4 Attenuated Spinal Nerve Ligation-Triggered Neuropathic Pain through Sponging miR-423-5p. Mediators Inflamm 2020; 2020:2094948. [PMID: 32454787 PMCID: PMC7225849 DOI: 10.1155/2020/2094948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/25/2020] [Indexed: 02/08/2023] Open
Abstract
Neuropathic pain is an intractable comorbidity of spinal cord injury. Increasing noncoding RNAs have been implicated in neuropathic pain development. lncRNAs have been recognized as significant regulators of neuropathic pain. lncRNA Small Nucleolar RNA Host Gene 4 (SNHG4) is associated with several tumors. However, the molecular mechanisms of SNHG4 in neuropathic pain remain barely documented. Here, we evaluated the function of SNHG4 in spinal nerve ligation (SNL) rat models. We observed that SNHG4 was significantly upregulated in SNL rat. Knockdown of SNHG4 was able to attenuate neuropathic pain progression via regulating behaviors of neuropathic pain including mechanical and thermal hyperalgesia. Moreover, knockdown of SNHG4 could repress the neuroinflammation via inhibiting IL-6, IL-12, and TNF-α while inducing IL-10 levels. Additionally, miR-423-5p was predicted as the target of SNHG4 by employing bioinformatics analysis. miR-423-5p has been reported to exert significantly poorer in several diseases. However, the role of miR-423-5p in the development of neuropathic pain is needed to be clarified. Here, in our investigation, RIP assay confirmed the correlation between miR-423-5p and SNHG4. Meanwhile, we found that miR-423-5p was significantly decreased in SNL rat models. SNHG4 regulated miR-423-5p expression negatively. As exhibited, the loss of miR-423-5p contributed to neuropathic pain progression, which was rescued by the silence of SNHG4. Therefore, our study indicated SNHG4 as a novel therapeutic target for neuropathic pain via sponging miR-423-5p.
Collapse
|
24
|
Wilkerson JL, Jiang J, Felix JS, Bray JK, da Silva L, Gharaibeh RZ, McMahon LR, Schmittgen TD. Alterations in mouse spinal cord and sciatic nerve microRNAs after the chronic constriction injury (CCI) model of neuropathic pain. Neurosci Lett 2020; 731:135029. [PMID: 32380144 DOI: 10.1016/j.neulet.2020.135029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
Pain is one of the most common reasons to seek medical attention and chronic pain is a worldwide epidemic. There are currently no relevant biomarkers for the diagnosis of chronic pain, and new therapeutic strategies for chronic pain treatment are desperately needed. The chronic constriction injury (CCI) of the sciatic nerve is a widely used preclinical model of pathological neuropathic pain. Over the past decade, investigators have come to appreciate the many contributions of noncoding RNA including microRNA (miRNA), and other long and short noncoding (nc) RNAs. The development and/or maintenance of chronic pain could be controlled epigenetically through ncRNAs. Here we seek to characterize CNS tissues in a mouse model of neuropathic pain as this may serve to elucidate potential biomarkers relevant to pathological pain in humans. Male C57BL6/J mice (6 CCI and 6 sham procedure) underwent surgery for sciatic nerve ligation with chromic gut sutures. Following 7 days, mechanical allodynia was quantified using the von Frey assay. Mice were then euthanized for collection of spinal cord and sciatic nerve. cDNA was synthesized to 627 unique mature miRNAs from the total RNA. In the CCI mice that displayed mechanical allodynia, 11 and 125 miRNAs were differentially expressed (i.e., greater than 1.5-fold increase or decrease; P < 0.05) in the spinal cord and sciatic nerve, respectively, as compared to sham controls. Among those differentially expressed miRNAs in the sciatic nerve of CCI mice, the following passed the more stringent Bonfferoni correction: miR-138-3p, miR-138-5p and miR-676-3p, reduced and miR-142-5p, increased. Our data support miRNAs as promising therapeutic targets for the treatment of pathological pain.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jasmine S Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Julie K Bray
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Lais da Silva
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Raad Z Gharaibeh
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Thomas D Schmittgen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
25
|
Viswanath O, Urits I, Burns J, Charipova K, Gress K, McNally A, Urman RD, Welschmeyer A, Berger AA, Kassem H, Sanchez MG, Kaye AD, Eubanks TN, Cornett EM, Ngo AL. Central Neuropathic Mechanisms in Pain Signaling Pathways: Current Evidence and Recommendations. Adv Ther 2020; 37:1946-1959. [PMID: 32291648 PMCID: PMC7467462 DOI: 10.1007/s12325-020-01334-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Purpose This is a comprehensive review of the current literature on central neuropathic pain mechanisms that is secondary to spinal cord injury. It reviews recent and seminal findings on the pathophysiology, diagnosis, and treatment and compares treatment options and recommendations. Recent Findings Neuropathic pain (NP) is a common complication of spinal cord injury (SCI). Chronicity of NP is attributed to increased abundance of inflammatory mediators and ion channel dysfunction leading to afferent nerve sensitization; nerve damage and nerve–glia cross talk have also been implicated. Conventional treatment is medical and has had limited success. Recent studies have made headway in identifying novel biomarkers, including microRNA and psychosocial attributes that can predict progress from SCI to chronic NP (CNP). Recent advances have provided evidence of efficacy for two promising drugs. Baclofen was able to provide good, long-lasting pain relief. Ziconotide, a voltage-gated calcium channel blocker, was studied in a small trial and was able to provide good analgesia in most participants. However, several participants had to be withdrawn because of worrisome creatine phosphokinase (CPK) elevations, and further studies are required to define its safety profile. Non-medical interventions include brain sensitization and biofeedback techniques. These methods have recently had encouraging results, albeit preliminary. Case reports of non-conventional techniques, such as hypnosis, were also reported. Summary CNP is a common complication of SCI and is a prevalent disorder with significant morbidity and disability. Conventional medical treatment is limited in efficacy. Recent studies identified baclofen and ziconotide as possible new therapies, alongside non-medical interventions. Further research into the pathophysiology is required to identify further therapy candidates. A multidisciplinary approach, including psychosocial support, medical and non-medical interventions, is likely needed to achieve therapeutic effects in this difficult to treat syndrome.
Collapse
Affiliation(s)
- Omar Viswanath
- Valley Anesthesiology and Pain Consultants-Envision Physician Services, Phoenix, AZ, USA
- Department of Anesthesiology, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA
| | - Ivan Urits
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - James Burns
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Kyle Gress
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ali Welschmeyer
- Georgetown University School of Medicine, Washington, DC, USA
| | - Amnon A Berger
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Hisham Kassem
- Department of Anesthesiology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Manuel G Sanchez
- Department of Pain Medicine, Pain Specialty Group, Newington, NH, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Treniece N Eubanks
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Anh L Ngo
- Department of Pain Medicine, Pain Specialty Group, Newington, NH, USA
- Harvard Medical School, Boston, USA
| |
Collapse
|
26
|
Kalpachidou T, Kummer K, Kress M. Non-coding RNAs in neuropathic pain. Neuronal Signal 2020; 4:NS20190099. [PMID: 32587755 PMCID: PMC7306520 DOI: 10.1042/ns20190099] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain in general, and members of the non-coding RNA (ncRNA) family, specifically the short, 22 nucleotide microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) act as master switches orchestrating both immune as well as neuronal processes. Several chronic disorders reveal unique ncRNA expression signatures, which recently generated big hopes for new perspectives for the development of diagnostic applications. lncRNAs may offer perspectives as candidates indicative of neuropathic pain in liquid biopsies. Numerous studies have provided novel mechanistic insight into the role of miRNAs in the molecular sequelae involved in the pathogenesis of neuropathic pain along the entire pain pathway. Specific processes within neurons, immune cells, and glia as the cellular components of the neuropathic pain triad and the communication paths between them are controlled by specific miRNAs. Therefore, nucleotide sequences mimicking or antagonizing miRNA actions can provide novel therapeutic strategies for pain treatment, provided their human homologues serve the same or similar functions. Increasing evidence also sheds light on the function of lncRNAs, which converge so far mainly on purinergic signalling pathways both in neurons and glia, and possibly even other ncRNA species that have not been explored so far.
Collapse
Affiliation(s)
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
De Andrés J, Navarrete-Rueda F, Fabregat G, García-Gutiérrez MS, Monsalve-Dolz V, Harutyunyan A, Mínguez-Martí A, Rodriguez-Lopez R, Manzanares J. Differences in Gene Expression of Endogenous Opioid Peptide Precursor, Cannabinoid 1 and 2 Receptors and Interleukin Beta in Peripheral Blood Mononuclear Cells of Patients With Refractory Failed Back Surgery Syndrome Treated With Spinal Cord Stimulation: Markers of Therapeutic Outcomes? Neuromodulation 2020; 24:49-60. [PMID: 32027775 DOI: 10.1111/ner.13111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The use of spinal cord stimulation for patients with failed back surgery syndrome (FBSS) is very common. In order to better understand the mechanisms of action of spinal cord stimulation (SCS), our aim was to determine potential changes in relative gene and protein expression in the peripheral blood mononuclear cells (PBMCs) of patients as potential biomarkers of disease outcomes and potential new targets for therapy. METHODS Twenty-four patients with diagnosis of FBSS refractory to conservative therapy for at least six months were included in the study. Clinical evaluation in this study included validated questionnaires. Blood samples (10 mL) were collected five times from baseline until two months after implant of the leads. Proenkephalin (PENK), cannabinoid receptors CB1 and CB2, and interleukin 1β (IL 1β) were analyzed. Each patient served as his/her own control by comparing the samples collected at different time points against the baseline sample collected at T0. RESULTS A total of 16 patients met all relevant criteria during the whole study and were assessed. Only PENK showed significant changes over time (Friedman p = 0.000). A positive correlation was observed between changes in visual analog scale (VAS) scores and PENK and a negative correlation between changes in PENK and Short Form-12 (SF-12) mental component score (MCS) scores, as well as between changes in IL 1β and Pain Detect Questionnaire (PD-Q) scores. As PENK changes increased, so did pain (VAS). As changes in PENK increased, SF-12 MCS health worsened. As changes in IL 1β increased, PD-Q values decreased. No severe adverse events occurred. CONCLUSIONS Previously unknown effects of SCS on levels of PBMCs biomarkers are demonstrated. The findings of our research suggest a potential for useful integration of genome analysis and lymphocyte expression in the daily practice of neurostimulation for pain management and represent a novel road map in the light of the important questions that remain unanswered.
Collapse
Affiliation(s)
- Jose De Andrés
- Anesthesia Unit-Surgical specialties department. Valencia University Medical School. Department of Anesthesiology, Critical Care and Pain Management. General University Hospital, Valencia, Spain
| | | | - Gustavo Fabregat
- Multidisciplinary Pain Management Division, Department of Anesthesia, General University Hospital, Valencia, Spain
| | | | - Vincente Monsalve-Dolz
- Multidisciplinary Pain Management Division, Department of Anesthesia, General University Hospital, Valencia, Spain
| | - Anushik Harutyunyan
- Multidisciplinary Pain Management Division, Department of Anesthesia, General University Hospital, Valencia, Spain
| | - Ana Mínguez-Martí
- Multidisciplinary Pain Management Division, Department of Anesthesia, General University Hospital, Valencia, Spain
| | | | - Jorge Manzanares
- Institute of Neurosciences, Miguel Hernández University, CSIC, Alicante, Spain
| |
Collapse
|
28
|
Wang L, Zhu K, Yang B, Cai Y. Knockdown of Linc00052 alleviated spinal nerve ligation-triggered neuropathic pain through regulating miR-448 and JAK1. J Cell Physiol 2020; 235:6528-6535. [PMID: 32012267 DOI: 10.1002/jcp.29465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
The dysfunction of the nervous system contributes to neuropathic pain. Long noncoding RNAs are reported to participate in neuropathic pain. Recently, Linc00052 is implicated to be closely associated with multiple diseases. Nevertheless, the mechanisms of Linc00052 remain barely explored in neuropathic pain development. Currently, spinal nerve ligation (SNL) triggered neuropathic pain was employed in our investigation. Here, we assessed the function of Linc00052 in SNL rat models. Interestingly, we reported Linc00052 was significantly elevated in SNL rats. Loss of Linc00052 could reduce neuropathic pain progression via regulating the behaviors of neuropathic pain. Additionally, knockdown of Linc00052 repressed the processes of neuroinflammation. Interleukin (IL)-6 and tumor necrosis factor α level were inhibited while IL-10 was induced by the silence of Linc00052. Moreover, we predicted miR-448 can serve as a target of Linc00052. miR-448 exerts a crucial power in several diseases. Currently, we exhibited miR-448 was remarkably downregulated in SNL rats. RNA immunoprecipitation experiments validated the association between miR-448 and Linc00052. Inhibition of Linc00052 could reverse the roles of miR-448 on neuropathic pain development. Furthermore, Janus kinase 1 (JAK1) was displayed as the putative target of miR-448 in the present investigation. It was showed that JAK1 was induced in SNL rats. Loss of miR-448 could dramatically induce the expression of JAK1, which was rescued by knockdown of Linc00052. Taken these together, our study implied that Linc00052 functioned as a novel target of neuropathic pain via sponging miR-448 and regulating JAK1.
Collapse
Affiliation(s)
- Li Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kairun Zhu
- Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Bingyi Yang
- The Second People's Hospital of Huai'an and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Yi Cai
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
29
|
Li X, Wu G, Li M, Zhang Z. Oleanolic acid administration alleviates neuropathic pain after a peripheral nerve injury by regulating microglia polarization-mediated neuroinflammation. RSC Adv 2020; 10:12920-12928. [PMID: 35492085 PMCID: PMC9051258 DOI: 10.1039/c9ra10388k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/07/2020] [Indexed: 11/21/2022] Open
Abstract
Neuropathic pain caused by a peripheral nerve injury constitutes a great challenge in clinical treatments due to the unsatisfactory efficacy of the current strategy. Microglial activation-mediated neuroinflammation is a major characteristic of neuropathic pain. Oleanolic acid is a natural triterpenoid in food and medical plants, and fulfills pleiotropic functions in inflammatory diseases. Nevertheless, its role in neuropathic pain remains poorly elucidated. In the current study, oleanolic acid dose-dependently suppressed LPS-evoked IBA-1 expression (a microglial marker) without cytotoxicity to microglia, suggesting the inhibitory efficacy of oleanolic acid in microglial activation. Moreover, oleanolic acid incubation offset LPS-induced increases in the iNOS transcript and NO releases from microglia, concomitant with the decreases in pro-inflammatory cytokine transcripts and production including IL-6, IL-1β, and TNF-α. Simultaneously, oleanolic acid shifted the microglial polarization from the M1 phenotype to the M2 phenotype upon LPS conditions by suppressing LPS-induced M1 marker CD16, CD86 transcripts, and enhancing the M2 marker Arg-1 mRNA and anti-inflammatory IL-10 levels. In addition, the LPS-induced activation of TLR4-NF-κB signaling was suppressed in the microglia after the oleanolic acid treatment. Restoring this signaling by the TLR4 plasmid transfection overturned the suppressive effects of oleanolic acid on microglial polarization-evoked inflammation. In vivo, oleanolic acid injection alleviated allodynia and hyperalgesia in SNL-induced neuropathic pain mice. Concomitantly, oleanolic acid facilitated microglial polarization to M2, accompanied by inhibition in inflammatory cytokine levels and activation of TLR4-NF-κB signaling. Collectively, these findings confirm that oleanolic acid may ameliorate neuropathic pain by promoting microglial polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotype via the TLR4-NF-κB pathway, thereby indicating its usefulness as therapeutic intervention in neuropathic pain. Neuropathic pain caused by a peripheral nerve injury constitutes a great challenge in clinical treatments due to the unsatisfactory efficacy of the current strategy.![]()
Collapse
Affiliation(s)
- Xuyang Li
- Department of Anesthesiology
- China-Japan Union Hospital of Jilin University
- Changchun City
- P. R. China
| | - Guangzhi Wu
- Department of Hand Surgery
- China-Japan Union Hospital of Jilin University
- Changchun City
- P. R. China
| | - Miyang Li
- Department of Clinical Laboratory
- China-Japan Union Hospital of Jilin University
- Changchun City
- P. R. China
| | - Zhan Zhang
- Department of Hand Surgery
- China-Japan Union Hospital of Jilin University
- Changchun City
- P. R. China
| |
Collapse
|
30
|
Cao S, Yuan J, Zhang D, Wen S, Wang J, Li Y, Deng W. Transcriptome Changes In Dorsal Spinal Cord Of Rats With Neuropathic Pain. J Pain Res 2019; 12:3013-3023. [PMID: 31807058 PMCID: PMC6850707 DOI: 10.2147/jpr.s219084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background Mechanisms of neuropathic pain are not fully understood. Molecular changes in spinal dorsal horn take part in the initiation and development of neuropathic pain. Methods To detect the transcriptome changes in the dorsal spinal cord of neuropathic pain rat, sciatic nerve chronic constriction injury (CCI) rats were used. Then, the CCI ipsilateral dorsal spinal cords of lumbar L3-L5 segments were collected at 14th day post-CCI and subjected to microRNA and long non-coding RNA (lncRNA)/mRNA microarray. To evaluate functions of differential mRNAs, bioinformatics methods including gene ontology (GO) and KEGG pathway analysis were conducted for significantly up- and downregulated mRNAs. Results MicroRNA microarrays showed that 13 microRNAs were differently expressed between CCI and sham-operated rats (fold change ≥ 2.0). Six of them were upregulated, and the other seven were downregulated in CCI group. MicroRNA-1b overexpressed 18.7 times after CCI. LncRNA/mRNA microarray detected 876 lncRNAs with significant differential expression (fold change ≥ 2.0). Among them, 339 were significantly upregulated, and 537 were downregulated in CCI group. Sixteen of them differentially expressed more than 10 times and the lncRNA XR_356687 overexpressed as high as 53 times. In addition, 950 mRNAs were differentially expressed (fold change ≥ 2.0), including 405 upregulated and 545 downregulated in CCI group. Ten of these mRNAs with changed expressions of more than 10 times. The Hspa1b (encodes heat shock protein 70) overexpressed 24 times in CCI rats. Gene ontology analysis revealed that hundreds of differentially expressed mRNAs involved in the biological processes, cellular component, and molecular function. In addition, these genes significantly enriched into 32 KEGG pathways, including the TNF, FoxO, cytokine–cytokine receptor interaction, and calcium signaling pathways. Conclusion Neuropathic pain induced comprehensive changes of transcription profile in the dorsal spinal cord. These differentially expressed transcripts in spinal cord could be potential targets in defeating neuropathic pain.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Jie Yuan
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi 563003, People's Republic of China
| | - Dexing Zhang
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Song Wen
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Jie Wang
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Ying Li
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, People's Republic of China
| | - Wenwen Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| |
Collapse
|
31
|
Wu W, Ji X, Zhao Y. Emerging Roles of Long Non-coding RNAs in Chronic Neuropathic Pain. Front Neurosci 2019; 13:1097. [PMID: 31680832 PMCID: PMC6813851 DOI: 10.3389/fnins.2019.01097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic neuropathic pain, a type of chronic and potentially disabling pain caused by a disease or injury of the somatosensory nervous system, spinal cord injury, or various chronic conditions, such as viral infections (e.g., post-herpetic neuralgia), autoimmune diseases, cancers, and metabolic disorders (e.g., diabetes mellitus), is one of the most intense types of chronic pain, which incurs a major socio-economic burden and is a serious public health issue, with an estimated prevalence of 7–10% in adults throughout the world. Presently, the available drug treatments (e.g., anticonvulsants acting at calcium channels, serotonin-noradrenaline reuptake inhibitors, tricyclic antidepressants, opioids, topical lidocaine, etc.) for chronic neuropathic pain patients are still rare and have disappointing efficacy, which makes it difficult to relieve the patients’ painful symptoms, and, at best, they only try to reduce the patients’ ability to tolerate pain. Long non-coding RNAs (lncRNAs), a type of transcript of more than 200 nucleotides with no protein-coding or limited capacity, were identified to be abnormally expressed in the spinal cord, dorsal root ganglion, hippocampus, and prefrontal cortex under chronic neuropathic pain conditions. Moreover, a rapidly growing body of data has clearly pointed out that nearly 40% of lncRNAs exist specifically in the nervous system. Hence, it was speculated that these dysregulated lncRNAs might participate in the occurrence, development, and progression of chronic neuropathic pain. In other words, if we deeply delve into the potential roles of lncRNAs in the pathogenesis of chronic neuropathic pain, this may open up new strategies and directions for the development of novel targeted drugs to cure this refractory disorder. In this article, we primarily review the status of chronic neuropathic pain and provide a general overview of lncRNAs, the detailed roles of lncRNAs in the nervous system and its related diseases, and the abnormal expression of lncRNAs and their potential clinical applications in chronic neuropathic pain. We hope that through the above description, readers can gain a better understanding of the emerging roles of lncRNAs in chronic neuropathic pain.
Collapse
Affiliation(s)
- Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiaojun Ji
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Zhao
- Department of Anesthesiology, Affiliated Hospital to Qingdao University, Qingdao, China
| |
Collapse
|
32
|
Weng Y, Wu J, Li L, Shao J, Li Z, Deng M, Zou W. Circular RNA expression profile in the spinal cord of morphine tolerated rats and screen of putative key circRNAs. Mol Brain 2019; 12:79. [PMID: 31533844 PMCID: PMC6751888 DOI: 10.1186/s13041-019-0498-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022] Open
Abstract
Morphine tolerance developed after repeated or continuous morphine treatment is a global health concern hindering the control of chronic pain. In our previous research, we have reported that the expression of lncRNAs and microRNAs have been greatly modified in the spinal cord of morphine tolerated rats, and the modulating role of miR-873a-5p, miR-219-5p and miR-365 have already been confirmed. However, whether circular RNAs, another essential kind of non-coding RNA, are involved in the pathogenesis of morphine tolerance is still beyond our knowledge. In this study, we conducted microarray analysis for circRNA profile and found a large number of circRNAs changed greatly in the spinal cord by morphine treatment. Among them, we selected nine circRNAs for validation, and seven circRNAs are confirmed. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) analysis were used for functional annotation. Besides, we confirmed the modified expression of seven circRNAs after validation by real-time PCR, selected 3 most prominently modulated ones among them and predicted their downstream miRNA-mRNA network and analyzed their putative function via circRNA-miRNA-mRNA pathway. Finally, we enrolled the differentially expressed mRNAs derived from the identical spinal cord, these validated circRNAs and their putative miRNA targets for ceRNA analysis and screened a promising circRNA-miRNA-mRNA pathway in the development of morphine tolerance. This study, for the first time, provided valuable information on circRNA profile and gave clues for further study on the circRNA mechanism of morphine tolerance.
Collapse
Affiliation(s)
- Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jing Wu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Anesthesiology, The First Hospital of Changsha, Changsha, 410008, Hunan, China
| | - Jiali Shao
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Anesthesiology, Hunan Cancer Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhengyiqi Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
33
|
Dai W, Lee D. Interfering with long chain noncoding RNA ANRIL expression reduces heart failure in rats with diabetes by inhibiting myocardial oxidative stress. J Cell Biochem 2019; 120:18446-18456. [PMID: 31211466 DOI: 10.1002/jcb.29162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022]
Abstract
This study is performed to elucidate whether long-chain noncoding RNA ANRIL has an effect on diabetes, and further explore the mechanism of ANRIL in diabetes. The rat model of diabetes was established via intraperitoneal injection of streptozotocin. The modeled rats were grouped into normal, diabetes, siRNA-NC, and ANRIL siRNA groups. Besides, the expression of ANRIL, cardiac function, inflammatory factor levels, cardiomyocyte apoptosis, and levels of oxidative stress index were all determined. Upregulated ANRIL was found in myocardial tissue of diabetic rats. Downregulated ANRIL improved cardiac function index and the expression of inflammatory factors, improved the pathological state of myocardial tissue and myocardial remodeling, decreased myocardial collagen deposition area and cardiomyocyte apoptosis and reduced the oxidative level of myocardial tissue in diabetic rats. This present study suggests that upregulated ANRIL is found in myocardial tissue of diabetic rats. Additionally, silencing of ANRIL reduces myocardial injury in diabetes by inhibiting myocardial oxidative stress.
Collapse
Affiliation(s)
- Wenxin Dai
- Department of Polymer_Nano Science and Technology, Polymer Fusion Research Center, Chonbuk National University, Jeonju, Korea.,Fourth Ward of Medical Care Center, Hainan Provincial People's Hospital, Haikou, Hainan, China
| | - Dongwon Lee
- Department of Polymer_Nano Science and Technology, Polymer Fusion Research Center, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
34
|
Zhu D, Liu K, Wan CL, Lu J, Zhao HX. Identification of novel therapeutic targets for neuropathic pain based on gene expression patterns. J Cell Physiol 2019; 234:19494-19501. [PMID: 31187496 DOI: 10.1002/jcp.28448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/12/2022]
Abstract
Neuropathic pain (NP) caused by nerve injury or dysfunction is one of the most challenging neurological diseases. In-depth study of disease signatures contributes to the development of novel target treatment for NP. In this study, we analyzed expression profiles of qualified NP datasets (GSE24982 and GSE63442) deposited at Gene Expression Omnibus database by systematic bioinformatics approaches. We analyzed the differentially expressed genes of high and low pain compared with normal control group, and between spinal nerve ligation (SNL) injury model and sham-operation group. A total of 1,243 upregulated and 1,533 downregulated genes were identified in GSE24982, 380 upregulated and 355 downregulated genes were identified in GSE63442. By comparing low-pain samples with the corresponding sham-operation group, we identified 457 upregulated and 409 downregulated genes. Overlapping genes were screened out and signaling pathway and expression regulation model analyses were performed. SCN10A and SST were identified as biomarkers for NP. In conclusion, our study showed the expression pattern of gene about NP. These identified biomarkers could serve as potential therapeutic targets for treating NP.
Collapse
Affiliation(s)
- Di Zhu
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital and the People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Kang Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng-Liang Wan
- Department of General Surgery, Kunming Children's Hospital, Kunming, China
| | - Jangnin Lu
- School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hong-Xia Zhao
- Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
35
|
Tang S, Zhou J, Jing H, Liao M, Lin S, Huang Z, Huang T, Zhong J, HanbingWang. Functional roles of lncRNAs and its potential mechanisms in neuropathic pain. Clin Epigenetics 2019; 11:78. [PMID: 31092294 PMCID: PMC6521530 DOI: 10.1186/s13148-019-0671-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain (NP) is ranked as one of the major forms of chronic pain and emerges as a direct consequence of a lesion or disease affecting the somatosensory nervous system. Despite great advances into the mechanisms of NP, clinical practice is still not satisfactory. Fortunately, progress in elucidating unique features and multiple molecular mechanisms of long non-coding RNAs (lncRNAs) in NP has emerged in the past 10 years, suggesting that novel therapeutic strategies for pain treatment may be proposed. In this review, we will concentrate on recent studies associated with lncRNAs in NP. First, we will describe the alterations of lncRNA expression after spinal cord injury (SCI) and peripheral nerve injury (PNI), and then we illustrate the role of some specific lncRNAs in detail, which may offer new insights into our understanding of the etiology and pathophysiology of NP. Finally, we put special emphasis on the altered expression of lncRNAs in the diverse biological process of NP. Recent advances we summarized above in the development of NP may facilitate translation of these findings from bench to bedside in the future.
Collapse
Affiliation(s)
- Simin Tang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China.,Sun Yet-sen University, Guangzhou, 510000, Guangdong Province, China
| | - Jun Zhou
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China.
| | - Huan Jing
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China.,ZunYi Medical University, ZunYi, 563100, China
| | - Meijuan Liao
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Sen Lin
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Zhenxing Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Teng Huang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - Jiying Zhong
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| | - HanbingWang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong Province, China
| |
Collapse
|
36
|
Yin C, Hu Q, Liu B, Tai Y, Zheng X, Li Y, Xiang X, Wang P, Liu B. Transcriptome profiling of dorsal root ganglia in a rat model of complex regional pain syndrome type-I reveals potential mechanisms involved in pain. J Pain Res 2019; 12:1201-1216. [PMID: 31114302 PMCID: PMC6489655 DOI: 10.2147/jpr.s188758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
Purpose: Complex regional pain syndrome type-I (CRPS-I) is a progressive and devastating pain condition, which remains clinically challenging. The mechanisms of CRPS-I still remain largely unknown. We aim to identify transcriptome profiles of genes relevant to pain mechanisms and major pathways involved in CRPS-I. Methods: A rat model of chronic post-ischemia pain (CPIP) was established to mimic CRPS-I. RNA-sequencing (RNA-Seq) was used to profile transcriptome of L4-6 dorsal root ganglia (DRGs) of a rat model of CRPS-I. Results: CPIP model rats developed persistent mechanical/thermal hyperalgesia in ipsilateral hind paw. RNA-Seq identified a total of 295 differentially expressed genes (DEGs), including 195 up- and 100 downregulated, in ipsilateral DRGs of CPIP rats compared with sham rats. The expression of several representative genes was confirmed by qPCR. Functional analysis of DEGs revealed that the most significant enriched biological processes of upregulated genes include response to lipopolysaccharide, inflammatory response and cytokine activity, which are all important mechanisms mediating pain. We further screened DEGs implicated in pain progress, genes enriched in small- to medium-sized sensory neurons and enriched in TRPV1-lineage nociceptors. By comparing our dataset with other published datasets of neuropathic or inflammatory pain models, we identified a core set of genes and pathways that extensively participate in CPIP and other neuropathic pain states. Conclusion: Our study identified transcriptome gene changes in DRGs of an animal model of CRPS-I and could provide insights into identifying promising genes or pathways that can be potentially targeted to ameliorate CRPS-I.
Collapse
Affiliation(s)
- Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qimiao Hu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yan Tai
- Academy of Chinese Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xiaoli Zheng
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yuanyuan Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Xuaner Xiang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| | - Ping Wang
- Department of Pathology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
37
|
Wang Q, Li ZX, Li YJ, He ZG, Chen YL, Feng MH, Li SY, Wu DZ, Xiang HB. Identification of lncRNA and mRNA expression profiles in rat spinal cords at various time‑points following cardiac ischemia/reperfusion. Int J Mol Med 2019; 43:2361-2375. [PMID: 30942426 PMCID: PMC6488167 DOI: 10.3892/ijmm.2019.4151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
The identification of the expression patterns of long non-coding RNAs (lncRNAs) and mRNAs in the spinal cord under normal and cardiac ischemia/reperfusion (I/R) conditions is essential for understanding the genetic mechanisms underlying the pathogenesis of cardiac I/R injury. The present study used high-throughput RNA sequencing to investigate differential gene and lncRNA expression patterns in the spinal cords of rats during I/R-induced cardiac injury. Male Sprague Dawley rats were assigned to the following groups: i) Control; ii) 2 h (2 h post-reperfusion); and iii) 0.5 h (0.5 h post-reperfusion). Further mRNA/lncRNA microarray analysis revealed that the expression profiles of lncRNA and mRNA in the spinal cords differed markedly between the control and 2 h groups, and in total 7,980 differentially expressed (>2-fold) lncRNAs (234 upregulated, 7,746 downregulated) and 3,428 mRNAs (767 upregulated, 2,661 downregulated) were identified. Reverse transcription-quantitative polymerase chain reaction analysis was performed to determine the expression patterns of several lncRNAs. The results indicated that the expression levels of lncRNA NONRATT025386 were significantly upregulated in the 2 and 0.5 h groups when compared with those in the control group, whereas the expression levels of NONRATT016113, NONRATT018298 and NONRATT018300 were elevated in the 2 h group compared with those in the control group; however, there was no statistically significant difference between the 0.5 h and control groups. Furthermore, the expression of lncRNA NONRATT002188 was significantly downregulated in the 0.5 and 2 h groups when compared with the control group. The present study determined the expression pattern of lncRNAs and mRNAs in rat spinal cords during cardiac I/R. It was suggested that lncRNAs and mRNAs from spinal cords may be novel therapeutic targets for the treatment of I/R-induced cardiac injury.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu-Juan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Gang He
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying-Le Chen
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Mao-Hui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, Hubei 430071, P.R. China
| | - Shun-Yuan Li
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Duo-Zhi Wu
- Department of Anesthesiology, People's Hospital of Hainan Province, Haikou, Hainan 570311, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
38
|
Hu JZ, Rong ZJ, Li M, Li P, Jiang LY, Luo ZX, Duan CY, Cao Y, Lu HB. Silencing of lncRNA PKIA-AS1 Attenuates Spinal Nerve Ligation-Induced Neuropathic Pain Through Epigenetic Downregulation of CDK6 Expression. Front Cell Neurosci 2019; 13:50. [PMID: 30873006 PMCID: PMC6401634 DOI: 10.3389/fncel.2019.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/01/2019] [Indexed: 01/07/2023] Open
Abstract
Neuropathic pain (NP) is among the most intractable comorbidities of spinal cord injury. Dysregulation of non-coding RNAs has also been implicated in the development of neuropathic pain. Here, we identified a novel lncRNA, PKIA-AS1, by using lncRNA array analysis in spinal cord tissue of spinal nerve ligation (SNL) model rats, and investigated the role of PKIA-AS1 in SNL-mediated neuropathic pain. We observed that PKIA-AS1 was significantly upregulated in SNL model rats and that PKIA-AS1 knockdown attenuated neuropathic pain progression. Alternatively, overexpression of PKIA-AS1 was sufficient to induce neuropathic pain-like symptoms in uninjured rats. We also found that PKIA-AS1 mediated SNL-induced neuropathic pain by directly regulating the expression and function of CDK6, which is essential for the initiation and maintenance of neuroinflammation and neuropathic pain. Therefore, our study identifies PKIA-AS1 as a novel therapeutic target for neuroinflammation related neuropathic pain.
Collapse
Affiliation(s)
- Jian-Zhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Zi-Jie Rong
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Li-Yuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Zi-Xiang Luo
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Chun-Yue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Bin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Xiong W, Tan M, Tong Z, Yin C, He L, Liu L, Shen Y, Guan S, Ge H, Li G, Liang S, Gao Y. Effects of long non-coding RNA uc.48+ on pain transmission in trigeminal neuralgia. Brain Res Bull 2019; 147:92-100. [PMID: 30772439 DOI: 10.1016/j.brainresbull.2019.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
Trigeminal neuralgia (TN) is the most common neuropathic pain in the facial area, for which the effective therapy is unavailable. Long non-coding RNA (lncRNA) such as lncRNA uc.48+ is involved in diabetic neuropathic pain and may affect purinergic signaling in ganglia of diabetic rats. In this research, chronic constriction injury of the infraorbital nerve (CCI-ION) was applied to establish a rat model of TN. Five days after local injection of siRNA targeting the lncRNA uc.48+ in trigeminal ganglia (TGs), the upregulated uc.48+ expression and the reduced mechanical withdrawal threshold (MWT) in the TN rats were significantly reversed. The expression of P2X7 receptor in TGs was increased in the TN group compared with the sham group, but uc.48+ siRNA treatment mitigated this effect. The phosphorylation of ERK1/2 in TGs of TN rats was significantly enhanced compared with the sham group, while uc.48+ siRNA treatment reversed this change. In addition, injection of the lncRNA uc.48+ overexpression plasmid in TGs of control rats significantly reduced the MWT but elevated the expression of P2X7 in TGs; the phosphorylation of ERK1/2 in TGs in these uc.48+-overexpressed rats was significantly higher, similar to the observations in rats of TN model. The interaction between uc.48+ and the P2X7 receptor was detected by RNA binding protein immunoprecipitation (RIP), indicating that P2X7 receptor could specifically bind to uc.48 + . In summary, knockdown of lncRNA uc.48+ by siRNA could inhibit transduction of TN signals, whereas uc.48+ overexpression promoted TN signal transduction. LncRNA uc.48+ may interact with P2X7 receptor to upregulate expression of P2X7 receptor and furthermore enhance the phosphorylation of ERK1/2 in TGs, thereby participating in pain transmission in TN.
Collapse
Affiliation(s)
- Wei Xiong
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, 330006, PR China
| | - Mengxia Tan
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Basic Medicine, Jiangxi Health Vocational College, Nanchang, Jiangxi, 330006, PR China
| | - Zhoujie Tong
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Cancan Yin
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Lingkun He
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Lijuan Liu
- Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Yulin Shen
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Shu Guan
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Huixiang Ge
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Guodong Li
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Department of Clinical Translational Research, Singapore General Hospital, Singapore, 169856, Singapore
| | - Shangdong Liang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, PR China
| | - Yun Gao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
40
|
Wei M, Li L, Zhang Y, Zhang ZJ, Liu HL, Bao HG. LncRNA X inactive specific transcript contributes to neuropathic pain development by sponging miR-154-5p via inducing toll-like receptor 5 in CCI rat models. J Cell Biochem 2019; 120:1271-1281. [PMID: 30335888 DOI: 10.1002/jcb.27088] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/26/2018] [Indexed: 01/24/2023]
Abstract
Noncoding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs, are involved in the development of neuropathic pain. Currently, we investigated that lncRNA X inactive-specific transcript (XIST) and toll-like receptor 5 (TLR5) were greatly upregulated in chronic constriction injury rat models, whereas miR-154-5p (microRNA-154-5p) was significantly downregulated. Bioinformatics analysis was used to predict miR-154-5p as a target gene of XIST, and dual-luciferase reporter tests proved the correlation between them. We observed that miR-154-5p was negatively modulated by XIST in vitro. XIST overexpression markedly induced neuropathic pain development in rats with chronic constriction injury, whereas the upregulation of miR-154-5p could reverse this phenomenon. Furthermore, TLR5 was demonstrated to be a target gene of miR-154-5p by using bioinformatics predictions. miR-154-5p negatively regulated TLR5 expression in vitro, and TLR5 was able to promote neuropathic pain development. In addition, overexpressing miR-154-5p can reverse the role of TLR5 neuropathic pain in vivo. Taken these together, we indicated that XIST could increase TLR5 expression by acting as a sponge of miR-154-5p in neuropathic pain development. This study revealed that XIST can contribute to neuropathic pain progression in rats through decreasing miR-154-5p and increasing TLR5. The XIST/miR-154-5p/ TLR5 axis can be provided as a novel therapeutic target in treating neuropathic pain.
Collapse
Affiliation(s)
- Meng Wei
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Lin Li
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Zhi-Jie Zhang
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Hai-Lin Liu
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Hong-Guang Bao
- Department of Anesthesiology, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
41
|
Baskozos G, Dawes JM, Austin JS, Antunes-Martins A, McDermott L, Clark AJ, Trendafilova T, Lees JG, McMahon SB, Mogil JS, Orengo C, Bennett DL. Comprehensive analysis of long noncoding RNA expression in dorsal root ganglion reveals cell-type specificity and dysregulation after nerve injury. Pain 2019; 160:463-485. [PMID: 30335683 PMCID: PMC6343954 DOI: 10.1097/j.pain.0000000000001416] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/26/2016] [Accepted: 10/09/2018] [Indexed: 12/19/2022]
Abstract
Dorsal root ganglion (DRG) neurons provide connectivity between peripheral tissues and the spinal cord. Transcriptional plasticity within DRG sensory neurons after peripheral nerve injury contributes to nerve repair but also leads to maladaptive plasticity, including the development of neuropathic pain. This study presents tissue and neuron-specific expression profiling of both known and novel long noncoding RNAs (LncRNAs) in the rodent DRG after nerve injury. We have identified a large number of novel LncRNAs expressed within the rodent DRG, a minority of which were syntenically conserved between the mouse, rat, and human, and including, both intergenic and antisense LncRNAs. We have also identified neuron type-specific LncRNAs in the mouse DRG and LncRNAs that are expressed in human IPS cell-derived sensory neurons. We show significant plasticity in LncRNA expression after nerve injury, which in mice is strain and gender dependent. This resource is publicly available and will aid future studies of DRG neuron identity and the transcriptional landscape in both the naive and injured DRG. We present our work regarding novel antisense and intergenic LncRNAs as an online searchable database, accessible from PainNetworks (http://www.painnetworks.org/). We have also integrated all annotated gene expression data in PainNetworks, so they can be examined in the context of their protein interactions.
Collapse
Affiliation(s)
- Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - John M. Dawes
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jean S. Austin
- Departments of Psychology and
- Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Ana Antunes-Martins
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Lucy McDermott
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Teodora Trendafilova
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jon G. Lees
- Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Stephen B. McMahon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Jeffrey S. Mogil
- Departments of Psychology and
- Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Christine Orengo
- Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - David L. Bennett
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Wang Q, Ai H, Liu J, Xu M, Zhou Z, Qian C, Xie Y, Yan J. Characterization of novel lnc RNAs in the spinal cord of rats with lumbar disc herniation. J Pain Res 2019; 12:501-512. [PMID: 30787629 PMCID: PMC6365226 DOI: 10.2147/jpr.s164604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Radicular pain, caused by a lesion or autologous nucleus pulposus (NP) implantation, is associated with alteration in gene expression of the pain-signaling pathways. lncRNAs have been shown to play critical roles in neuropathic pain. However, the mechanistic function of lncRNAs in lumbar disc herniation (LDH) remains largely unknown. Identifying different lncRNA expression under sham and NP-implantation conditions in the spinal cord is important for understanding the molecular mechanisms of radicular pain. Methods LDH was induced by implantation of autologous nucleus pulposus (NP), harvested from rat tail, in lumbar 5 and 6 spinal nerve roots. The mRNA and lncRNA microarray analyses demonstrated that the expression profiles of lncRNAs and mRNAs between the LDH and sham groups were markedly altered at 7 days post operation. The expression patterns of several mRNAs and lncRNAs were further proved by qPCR. Results LDH produced persistent mechanical and thermal hyperalgesia. A total of 19 lncRNAs was differentially expressed (>1.5-folds), of which 13 was upregulated and 6 was downregulated. In addition, a total of 103 mRNAs was markedly altered (>1.5-folds), of which 40 was upregulated and 63 downregulated. Biological analyses of these mRNAs further demonstrated that the most significantly upregulated genes in LDH included chemotaxis, immune response, and positive regulation of inflammatory responses, which might be important mechanisms underlying radicular neuropathic pain. These 19 differentially expressed lncRNAs have overlapping mRNAs in the genome, which are related to glutamatergic synapse, cytokine-cytokine receptor interaction, and the oxytocin-signalling pathway. Conclusion Our findings revealed the alteration of expression patterns of mRNAs and lncRNAs in the spinal cord of rats in a radicular pain model of LDH. These mRNAs and lncRNAs might be potential therapeutic targets for the treatment of radicular pain.
Collapse
Affiliation(s)
- Qianliang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Hongzhen Ai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Jinglin Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Min Xu
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Zhuang Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Chen Qian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Ye Xie
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Jun Yan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| |
Collapse
|
43
|
Liu Y, Wang T, Zhang M, Chen P, Yu Y. Down-regulation of myocardial infarction associated transcript 1 improves myocardial ischemia-reperfusion injury in aged diabetic rats by inhibition of activation of NF-κB signaling pathway. Chem Biol Interact 2019; 300:111-122. [PMID: 30611788 DOI: 10.1016/j.cbi.2019.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study is performed to investigate the effect of long chain noncoding RNA myocardial infarction associated transcript 1 (MIRT1) on myocardial ischemia reperfusion (I/R) injury in aged diabetic rats. METHODS The aged diabetic rat model and myocardial I/R injury model were established. Through injecting MIRT1 siRNA into caudal vein of rats, the cardiac function, myocardial pathological injury, myocardial fibrosis, cardiomyocytes apoptosis, oxidative stress and inflammatory injury of myocardial tissue of rats were measured. RESULTS For diabetic I/R rats, the expression of MIRT1 in myocardial tissue was increased, the activation of nuclear factor kappa B (NF-κB) signaling pathway was increased, the degree of damage to cardiac function was aggravated, the area of myocardial pathological injury and myocardial fibrosis was enlarged, the degree of cardiomyocytes apoptosis was increased, the degree of oxidative stress and inflammatory injury was increased. After inhibiting the expression of MIRT1, the activation of NF-κB signaling pathway was inhibited, the damage of cardiac function and cardiomyopathy was alleviated, the area of myocardial fibrosis was decreased, the degree of myocardial apoptosis was decreased, the degree of oxidative stress and inflammatory injury was obviously improved. CONCLUSION Our study highlights that down-regulation of MIRT1 improves myocardial I/R injury in aged diabetic rats by inhibition of activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yaoxia Liu
- Department of Endocrinology, West China School of Medicine/ West China Hospital, Sichuan University, Chengdu, 610041, PR China; Department of Endocrinology in Elderly, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610041, PR China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, PR China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, PR China; Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases of Sichuan Province, Chengdu, 610041, PR China
| | - Min Zhang
- Department of Endocrinology in Elderly, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610041, PR China
| | - Ping Chen
- Department of Endocrinology in Elderly, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610041, PR China
| | - Yerong Yu
- Department of Endocrinology, West China School of Medicine/ West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
44
|
Yang LX, Yang LK, Zhu J, Chen JH, Wang YH, Xiong K. Expression signatures of long non-coding RNA and mRNA in human traumatic brain injury. Neural Regen Res 2019; 14:632-641. [PMID: 30632503 PMCID: PMC6352599 DOI: 10.4103/1673-5374.247467] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a key role in craniocerebral disease, although their expression profiles in human traumatic brain injury are still unclear. In this regard, in this study, we examined brain injury tissue from three patients of the 101st Hospital of the People’s Liberation Army, China (specifically, a 36-year-old male, a 52-year-old female, and a 49-year-old female), who were diagnosed with traumatic brain injury and underwent brain contusion removal surgery. Tissue surrounding the brain contusion in the three patients was used as control tissue to observe expression characteristics of lncRNAs and mRNAs in human traumatic brain injury tissue. Volcano plot filtering identified 99 lncRNAs and 63 mRNAs differentially expressed in frontotemporal tissue of the two groups (P < 0.05, fold change > 1.2). Microarray analysis showed that 43 lncRNAs were up-regulated and 56 lncRNAs were down-regulated. Meanwhile, 59 mRNAs were up-regulated and 4 mRNAs were down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed 27 signaling pathways associated with target genes and, in particular, legionellosis and influenza A signaling pathways. Subsequently, a lncRNA-gene network was generated, which showed an absolute correlation coefficient value > 0.99 for 12 lncRNA-mRNA pairs. Finally, quantitative real-time polymerase chain reaction confirmed different expression of the five most up-regulated mRNAs within the two groups, which was consistent with the microarray results. In summary, our results show that expression profiles of mRNAs and lncRNAs are significantly different between human traumatic brain injury tissue and surrounding tissue, providing novel insight regarding lncRNAs’ involvement in human traumatic brain injury. All participants provided informed consent. This research was registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-TCC-13004002) and the protocol version number is 1.0.
Collapse
Affiliation(s)
- Li-Xiang Yang
- Department of Neurosurgery, 101st Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Li-Kun Yang
- Department of Neurosurgery, 101st Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Jie Zhu
- Department of Neurosurgery, 101st Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Jun-Hui Chen
- Department of Neurosurgery, 101st Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Yu-Hai Wang
- Department of Neurosurgery, 101st Hospital of People's Liberation Army, Wuxi, Jiangsu Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
45
|
Du H, Liu Z, Tan X, Ma Y, Gong Q. Identification of the Genome-wide Expression Patterns of Long Non-coding RNAs and mRNAs in Mice with Streptozotocin-induced Diabetic Neuropathic Pain. Neuroscience 2018; 402:90-103. [PMID: 30599267 DOI: 10.1016/j.neuroscience.2018.12.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Diabetic neuropathic pain (DNP), an early symptom of diabetic neuropathy, involves complex mechanisms. Long non-coding RNA (lncRNA) dysregulation contributes to the pathogenesis of various human diseases. Here, we investigated the genome-wide expression patterns of lncRNAs and genes in the spinal dorsal horn of mice with streptozotocin-induced DNP. Microarray analysis identified 1481 differentially expressed (DE) lncRNAs and 1096 DE mRNAs in DNP mice. Functional analysis showed that transforming growth factor-beta receptor binding was the most significant molecular function and retrograde endocannabinoid signaling was the most significant pathway of DE mRNAs. Calcium ion transport was the second most significant biological process of DE lncRNAs. Finally, we found 289 neighboring and 57 overlapping lncRNA-mRNA pairs, including ENSMUST00000150952-Mbp and AK081017-Usp15, which may be involved in DNP pathogenesis. Microarray data were validated through quantitative PCR of selected lncRNAs and mRNAs. These results suggest that aberrant expression of lncRNAs may contribute to the pathogenesis of DNP.
Collapse
Affiliation(s)
- Huiying Du
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zihao Liu
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xinran Tan
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yinghong Ma
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Qingjuan Gong
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
46
|
Wu S, Bono J, Tao YX. Long noncoding RNA (lncRNA): a target in neuropathic pain. Expert Opin Ther Targets 2018; 23:15-20. [PMID: 30451044 DOI: 10.1080/14728222.2019.1550075] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Current treatments for neuropathic pain are limited in part due to the incomplete understanding of its underlying mechanisms. Recent evidence reveals the dysregulated expression of long non-coding RNAs (lncRNAs) in the damaged nerve, dorsal root ganglion (DRG), and spinal cord dorsal horn following peripheral nerve injury. However, the role of the majority of lncRNAs in neuropathic pain genesis is still elusive. Unveiling the mechanisms of how lncRNAs participate in neuropathic pain may develop new strategies to prevent and/or treat this disorder. Areas covered: This review focuses on the dysregulation of lncRNAs in the DRG, dorsal horn, and the injured nerves from preclinical models of neuropathic pain. We provide evidence of how peripheral nerve injury causes the dysregulation of lncRNAs in these pain-related regions. The potential mechanisms of how dysregulated lncRNAs contribute to the pathogenesis of neuropathic pain are discussed. Expert opinion: The investigation on the role of the dysregulated lncRNAs in neuropathic pain might open up a novel avenue for therapeutic treatment of this disorder. However, current investigation is at the infancy stage, which challenges the translation of preclinical findings. More intensive studies on lncRNAs are required before the preclinical findings are translated into therapeutic management for neuropathic pain.
Collapse
Affiliation(s)
- Shaogen Wu
- a Department of Anesthesiology , New Jersey Medical School, Rutgers, The State University of New Jersey , Newark , NJ , USA
| | - Jamie Bono
- a Department of Anesthesiology , New Jersey Medical School, Rutgers, The State University of New Jersey , Newark , NJ , USA
| | - Yuan-Xiang Tao
- a Department of Anesthesiology , New Jersey Medical School, Rutgers, The State University of New Jersey , Newark , NJ , USA
| |
Collapse
|
47
|
Demethylation of G-Protein-Coupled Receptor 151 Promoter Facilitates the Binding of Krüppel-Like Factor 5 and Enhances Neuropathic Pain after Nerve Injury in Mice. J Neurosci 2018; 38:10535-10551. [PMID: 30373770 DOI: 10.1523/jneurosci.0702-18.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/13/2018] [Accepted: 10/22/2018] [Indexed: 01/27/2023] Open
Abstract
G-protein-coupled receptors are considered to be cell-surface sensors of extracellular signals, thereby having a crucial role in signal transduction and being the most fruitful targets for drug discovery. G-protein-coupled receptor 151 (GPR151) was reported to be expressed specifically in the habenular area. Here we report the expression and the epigenetic regulation of GRP151 in the spinal cord after spinal nerve ligation (SNL) and the contribution of GPR151 to neuropathic pain in male mice. SNL dramatically increased GPR151 expression in spinal neurons. GPR151 mutation or spinal inhibition by shRNA alleviated SNL-induced mechanical allodynia and heat hyperalgesia. Interestingly, the CpG island in the GPR151 gene promoter region was demethylated, the expression of DNA methyltransferase 3b (DNMT3b) was decreased, and the binding of DNMT3b with GPR151 promoter was reduced after SNL. Overexpression of DNMT3b in the spinal cord decreased GPR151 expression and attenuated SNL-induced neuropathic pain. Furthermore, Krüppel-like factor 5 (KLF5), a transcriptional factor of the KLF family, was upregulated in spinal neurons, and the binding affinity of KLF5 with GPR151 promoter was increased after SNL. Inhibition of KLF5 reduced GPR151 expression and attenuated SNL-induced pain hypersensitivity. Further mRNA microarray analysis revealed that mutation of GPR151 reduced the expression of a variety of pain-related genes in response to SNL, especially mitogen-activated protein kinase (MAPK) signaling pathway-associated genes. This study reveals that GPR151, increased by DNA demethylation and the enhanced interaction with KLF5, contributes to the maintenance of neuropathic pain via increasing MAPK pathway-related gene expression.SIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) are targets of various clinically approved drugs. Here we report that SNL increased GPR151 expression in the spinal cord, and mutation or inhibition of GPR151 alleviated SNL-induced neuropathic pain. In addition, SNL downregulated the expression of DNMT3b, which caused demethylation of GPR151 gene promoter, facilitated the binding of transcriptional factor KLF5 with the GPR151 promoter, and further increased GPR151 expression in spinal neurons. The increased GPR151 may contribute to the pathogenesis of neuropathic pain via activating MAPK signaling and increasing pain-related gene expression. Our study reveals an epigenetic mechanism underlying GPR151 expression and suggests that targeting GPR151 may offer a new strategy for the treatment of neuropathic pain.
Collapse
|
48
|
Li Z, Li X, Chen X, Li S, Ho IHT, Liu X, Chan MTV, Wu WKK. Emerging roles of long non-coding RNAs in neuropathic pain. Cell Prolif 2018; 52:e12528. [PMID: 30362191 PMCID: PMC6430490 DOI: 10.1111/cpr.12528] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/01/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain, a type of chronic and potentially disabling pain resulting from primary injury/dysfunction of the somatosensory nervous system and spinal cord injury, is one of the most intense types of chronic pain, which incurs a significant economic and public health burden. However, our understanding of its cellular and molecular pathogenesis is still far from complete. Long non‐coding RNAs (lncRNAs) are important regulators of gene expression and have recently been characterized as key modulators of neuronal functions. Emerging evidence suggested that lncRNAs are deregulated and play pivotal roles in the development of neuropathic pain. This review summarizes the current knowledge about the roles of deregulated lncRNAs (eg, KCNA2‐AS, uc.48+, NONRATT021972, MRAK009713, XIST, CCAT1) in the development of neuropathic pain. These studies suggested that specific regulation of lncRNAs or their downstream targets might provide novel therapeutic avenues for this refractory disease.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - Xin Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugang Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Idy H T Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, Hong Kong
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, Hong Kong.,State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, Hong Kong
| |
Collapse
|
49
|
Mao P, Li CR, Zhang SZ, Zhang Y, Liu BT, Fan BF. Transcriptomic differential lncRNA expression is involved in neuropathic pain in rat dorsal root ganglion after spared sciatic nerve injury. ACTA ACUST UNITED AC 2018; 51:e7113. [PMID: 30066726 PMCID: PMC6065813 DOI: 10.1590/1414-431x20187113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 06/11/2018] [Indexed: 12/22/2022]
Abstract
Dorsal root ganglia (DRG) neurons regenerate spontaneously after traumatic or surgical injury. Long noncoding RNAs (lncRNAs) are involved in various biological regulation processes. Conditions of lncRNAs in DRG neuron injury deserve to be further investigated. Transcriptomic analysis was performed by high-throughput Illumina HiSeq2500 sequencing to profile the differential genes in L4–L6 DRGs following rat sciatic nerve tying. A total of 1,228 genes were up-regulated and 1,415 down-regulated. By comparing to rat lncRNA database, 86 known and 26 novel lncRNA genes were found to be differential. The 86 known lncRNA genes modulated 866 target genes subject to gene ontology (GO) and KEGG enrichment analysis. The genes involved in the neurotransmitter status of neurons were downregulated and those involved in a neuronal regeneration were upregulated. Known lncRNA gene rno-Cntnap2 was downregulated. There were 13 credible GO terms for the rno-Cntnap2 gene, which had a putative function in cell component of voltage-gated potassium channel complex on the cell surface for neurites. In 26 novel lncRNA genes, 4 were related to 21 mRNA genes. A novel lncRNA gene AC111653.1 improved rno-Hypm synthesizing huntingtin during sciatic nerve regeneration. Real time qPCR results attested the down-regulation of rno-Cntnap lncRNA gene and the upregulation of AC111653.1 lncRNA gene. A total of 26 novel lncRNAs were found. Known lncRNA gene rno-Cntnap2 and novel lncRNA AC111653.1 were involved in neuropathic pain of DRGs after spared sciatic nerve injury. They contributed to peripheral nerve regeneration via the putative mechanisms.
Collapse
Affiliation(s)
- P Mao
- Department of Pain Medicine, China-Japan Friendship Hospital, Beijing, China
| | - C R Li
- Department of Pain Medicine, China-Japan Friendship Hospital, Beijing, China
| | - S Z Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Y Zhang
- Department of Pain Medicine, China-Japan Friendship Hospital, Beijing, China
| | - B T Liu
- Department of Pain Medicine, China-Japan Friendship Hospital, Beijing, China
| | - B F Fan
- Department of Pain Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
50
|
Ozawa A, Brunori G, Cippitelli A, Toll N, Schoch J, Kieffer BL, Toll L. Analysis of the distribution of spinal NOP receptors in a chronic pain model using NOP-eGFP knock-in mice. Br J Pharmacol 2018; 175:2662-2675. [PMID: 29582417 PMCID: PMC6003644 DOI: 10.1111/bph.14225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/16/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The nociceptin/orphanin FQ opioid peptide (NOP) receptor system plays a significant role in the regulation of pain. This system functions differently in the spinal cord and brain. The mechanism by which the NOP receptor agonists regulate pain transmission in these regions is not clearly understood. Here, we investigate the peripheral and spinal NOP receptor distribution and antinociceptive effects of intrathecal nociceptin/orphanin FQ (N/OFQ) in chronic neuropathic pain. EXPERIMENTAL APPROACH We used immunohistochemistry to determine changes in NOP receptor distribution triggered by spinal nerve ligation (SNL) using NOP-eGFP knock-in mice. Antinociceptive effects of intrathecal N/OFQ on SNL-mediated allodynia and heat/cold hyperalgesia were assessed in wild-type mice. KEY RESULTS NOP-eGFP immunoreactivity was decreased by SNL in the spinal laminae I and II outer, regions that mediate noxious heat stimuli. In contrast, immunoreactivity of NOP-eGFP was unchanged in the ventral border of lamina II inner, which is an important region for the development of allodynia. NOP-eGFP expression was also decreased in a large number of primary afferents in the L4 dorsal root ganglion (DRG) of SNL mice. However, SNL mice showed increased sensitivity, compared to sham animals to the effects of i.t administered N/OFQ with respect to mechanical as well as thermal stimuli. CONCLUSIONS AND IMPLICATIONS Our findings suggest that the spinal NOP receptor system attenuates injury-induced hyperalgesia by direct inhibition of the projection neurons in the spinal cord that send nociceptive signals to the brain and not by inhibiting presynaptic terminals of DRG neurons in the superficial lamina.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Torrey Pines Institute for Molecular StudiesPort St. LucieFL34987USA
| | - Gloria Brunori
- Torrey Pines Institute for Molecular StudiesPort St. LucieFL34987USA
- Department of Biomedical Science, Charles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Andrea Cippitelli
- Torrey Pines Institute for Molecular StudiesPort St. LucieFL34987USA
| | - Nicholas Toll
- Torrey Pines Institute for Molecular StudiesPort St. LucieFL34987USA
| | - Jennifer Schoch
- Torrey Pines Institute for Molecular StudiesPort St. LucieFL34987USA
| | - Brigitte L Kieffer
- Douglas Research Center, Department of Psychiatry, Faculty of MedicineMcGill UniversityMontrealQCH4H 1R3Canada
| | - Lawrence Toll
- Torrey Pines Institute for Molecular StudiesPort St. LucieFL34987USA
- Department of Biomedical Science, Charles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
| |
Collapse
|