1
|
Chen Y, Ince YÇ, Kawamura A, Favero DS, Suzuki T, Sugimoto K. ELONGATED HYPOCOTYL5-mediated light signaling promotes shoot regeneration in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 196:2549-2564. [PMID: 39315875 DOI: 10.1093/plphys/kiae474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024]
Abstract
Injured plant somatic tissues regenerate themselves by establishing shoot or root meristems. In Arabidopsis (Arabidopsis thaliana), a two-step culture system ensures regeneration by first promoting the acquisition of pluripotency and subsequently specifying the fate of new meristems. Although previous studies have reported the importance of phytohormones auxin and cytokinin in determining the fate of new meristems, whether and how environmental factors influence this process remains elusive. In this study, we investigated the impact of light signals on shoot regeneration using Arabidopsis hypocotyls as explants. We found that light signals promote shoot regeneration while inhibiting root formation. ELONGATED HYPOCOTYL 5 (HY5), the pivotal transcriptional factor in light signaling, plays a central role in this process by mediating the expression of key genes controlling the fate of new meristems. Specifically, HY5 directly represses root development genes and activates shoot meristem genes, leading to the establishment of shoot progenitor from pluripotent callus. We further demonstrated that the early activation of photosynthesis is critical for shoot initiation, and this is transcriptionally regulated downstream of HY5-dependent pathways. In conclusion, we uncovered the intricate molecular mechanisms by which light signals control the establishment of new meristems through the regulatory network governed by HY5, thus highlighting the influence of light signals on plant developmental plasticity.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yetkin Çaka Ince
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Ayako Kawamura
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - David S Favero
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Keiko Sugimoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
2
|
Bartusch K, Blanco-Touriñán N, Rodriguez-Villalón A, Truernit E. Monitoring Xylem Transport in Arabidopsis thaliana Seedlings Using Fluorescent Dyes. Methods Mol Biol 2024; 2722:3-15. [PMID: 37897596 DOI: 10.1007/978-1-0716-3477-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Fluorescent dyes are often used to observe transport mechanisms in plant vascular tissues. However, it has been technically challenging to apply fluorescent dyes on roots to monitor xylem transport in vivo. Here, we present a fast, noninvasive, and high-throughput protocol to monitor xylem transport in seedlings. Using the fluorescent dyes 5(6)-carboxyfluorescein diacetate (CFDA) and Rhodamine WT, we were able to observe xylem transport on a cellular level in Arabidopsis thaliana roots. We describe how to apply these dyes on primary roots of young seedlings, how to monitor root-to-shoot xylem transport, and how to measure xylem transport velocity in roots. Moreover, we show that our protocol can also be applied to lateral roots and grafted seedlings to assess xylem (re)connection. Altogether, these techniques are useful for investigating xylem functionality in diverse experimental setups.
Collapse
Affiliation(s)
- Kai Bartusch
- Group of Phloem Development and Function, Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Noel Blanco-Touriñán
- Group of Plant Vascular Development, Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Antia Rodriguez-Villalón
- Group of Plant Vascular Development, Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Elisabeth Truernit
- Group of Phloem Development and Function, Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
3
|
Ince YÇ, Sugimoto K. Illuminating the path to shoot meristem regeneration: Molecular insights into reprogramming cells into stem cells. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102452. [PMID: 37709567 DOI: 10.1016/j.pbi.2023.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Plant cells possess the ability to dedifferentiate and reprogram into stem cell-like populations, enabling the regeneration of new organs. However, the maintenance of stem cells relies on specialized microenvironments composed of distinct cell populations with specific functions. Consequently, the regeneration process necessitates the orchestrated regulation of multiple pathways across diverse cellular populations. One crucial pathway involves the transcription factor WUSCHEL HOMEOBOX 5 (WOX5), which plays a pivotal role in reprogramming cells into stem cells and promoting their conversion into shoot meristems through WUSCHEL (WUS). Additionally, cell and tissue mechanics, including cell wall modifications and mechanical stress, critically contribute to de novo shoot organogenesis by regulating polar auxin transport. Furthermore, light signaling emerges as a key regulator of plant regeneration, directly influencing expression of meristem genes and potentially influencing aforementioned pathways as well.
Collapse
Affiliation(s)
- Yetkin Çaka Ince
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan.
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan.
| |
Collapse
|
4
|
Cao Y, Hu J, Hou J, Fu C, Zou X, Han X, Jia P, Sun C, Xu Y, Xue Y, Zou Y, Liu X, Chen X, Li G, Guo J, Xu M, Fu A. Vacuolar Sugar Transporter TMT2 Plays Crucial Roles in Germination and Seedling Development in Arabidopsis. Int J Mol Sci 2023; 24:15852. [PMID: 37958835 PMCID: PMC10647555 DOI: 10.3390/ijms242115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Vacuolar sugar transporters transport sugar across the tonoplast, are major players in maintaining sugar homeostasis, and therefore play vital roles in plant growth, development, and biomass yield. In this study, we analyzed the physiological roles of the tonoplast monosaccharide transporter 2 (TMT2) in Arabidopsis. In contrast to the wild type (WT) that produced uniform seedlings, the tmt2 mutant produced three types of offspring: un-germinated seeds (UnG), seedlings that cannot form true leaves (tmt2-S), and seedlings that develop normally (tmt2-L). Sucrose, glucose, and fructose can substantially, but not completely, rescue the abnormal phenotypes of the tmt2 mutant. Abnormal cotyledon development, arrested true leaf development, and abnormal development of shoot apical meristem (SAM) were observed in tmt2-S seedlings. Cotyledons from the WT and tmt2-L seedlings restored the growth of tmt2-S seedlings through micrografting. Moreover, exogenous sugar sustained normal growth of tmt2-S seedlings with cotyledon removed. Finally, we found that the TMT2 deficiency resulted in growth defects, most likely via changing auxin signaling, target of rapamycin (TOR) pathways, and cellular nutrients. This study unveiled the essential functions of TMT2 for seed germination and initial seedling development, ensuring cotyledon function and mobilizing sugars from cotyledons to seedlings. It also expanded the current knowledge on sugar metabolism and signaling. These findings have fundamental implications for enhancing plant biomass production or seed yield in future agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Min Xu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, Shaanxi Key Laboratory for Carbon Neutral Technology, Shaanxi Academy of Basic Sciences, College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.C.); (J.H.); (J.H.); (C.F.); (X.Z.); (X.H.); (P.J.); (C.S.); (Y.X.); (Y.X.); (Y.Z.); (X.L.); (X.C.); (G.L.); (J.G.)
| | - Aigen Fu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, Shaanxi Key Laboratory for Carbon Neutral Technology, Shaanxi Academy of Basic Sciences, College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.C.); (J.H.); (J.H.); (C.F.); (X.Z.); (X.H.); (P.J.); (C.S.); (Y.X.); (Y.X.); (Y.Z.); (X.L.); (X.C.); (G.L.); (J.G.)
| |
Collapse
|
5
|
Chen Y, Hung FY, Sugimoto K. Epigenomic reprogramming in plant regeneration: Locate before you modify. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102415. [PMID: 37437389 DOI: 10.1016/j.pbi.2023.102415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Plants possess remarkable abilities for regeneration, and this developmental capability is strongly influenced by environmental conditions. Previous research has highlighted the positive effects of wound signaling and warm temperature on plant regeneration, and recent studies suggest that light and nutrient signals also influence the regenerative efficiencies. Several epigenetic factors, such as histone acetyl-transferases (HATs), POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), and H2A variants, play crucial roles in regulating the expression of genes implicated in plant regeneration. However, how these epigenetic factors recognize specific genomic regions to regulate regeneration genes is still unclear. In this article, we describe the latest studies of epigenetic regulation and discuss the functional coordination between transcription factors and epigenetic modifiers in plant regeneration.
Collapse
Affiliation(s)
- Yu Chen
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Fu-Yu Hung
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan.
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan.
| |
Collapse
|
6
|
Serivichyaswat PT, Bartusch K, Leso M, Musseau C, Iwase A, Chen Y, Sugimoto K, Quint M, Melnyk CW. High temperature perception in leaves promotes vascular regeneration and graft formation in distant tissues. Development 2022; 149:274539. [PMID: 35217857 PMCID: PMC8959136 DOI: 10.1242/dev.200079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
ABSTRACT
Cellular regeneration in response to wounding is fundamental to maintain tissue integrity. Various internal factors including hormones and transcription factors mediate healing, but little is known about the role of external factors. To understand how the environment affects regeneration, we investigated the effects of temperature upon the horticulturally relevant process of plant grafting. We found that elevated temperatures accelerated vascular regeneration in Arabidopsis thaliana and tomato grafts. Leaves were crucial for this effect, as blocking auxin transport or mutating PHYTOCHROME INTERACTING FACTOR 4 (PIF4) or YUCCA2/5/8/9 in the cotyledons abolished the temperature enhancement. However, these perturbations did not affect grafting at ambient temperatures, and temperature enhancement of callus formation and tissue adhesion did not require PIF4, suggesting leaf-derived auxin specifically enhanced vascular regeneration in response to elevated temperatures. We also found that elevated temperatures accelerated the formation of inter-plant vascular connections between the parasitic plant Phtheirospermum japonicum and host Arabidopsis, and this effect required shoot-derived auxin from the parasite. Taken together, our results identify a pathway whereby local temperature perception mediates long distance auxin signaling to modify regeneration, grafting and parasitism.
This article has an associated ‘The people behind the papers’ interview.
Collapse
Affiliation(s)
- Phanu T. Serivichyaswat
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Kai Bartusch
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, 8092 Zürich, Switzerland
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
| | - Martina Leso
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Constance Musseau
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Yu Chen
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo 113-8654, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo 113-8654, Japan
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
| | - Charles W. Melnyk
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| |
Collapse
|
7
|
Susila H, Jurić S, Liu L, Gawarecka K, Chung KS, Jin S, Kim SJ, Nasim Z, Youn G, Suh MC, Yu H, Ahn JH. Florigen sequestration in cellular membranes modulates temperature-responsive flowering. Science 2021; 373:1137-1142. [PMID: 34516842 DOI: 10.1126/science.abh4054] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Snježana Jurić
- Department of Life Sciences, Korea University, Seoul 02841, Korea.,Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lu Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore.,Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Kyung Sook Chung
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Soo-Jin Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
8
|
Abstract
Plants encompass unparalleled multi-scale regenerative potential. Despite lacking specialized cells that are recruited to injured sites, and despite their cells being encased in rigid cell walls, plants exhibit a variety of regenerative responses ranging from the regeneration of specific cell types, tissues and organs, to the rebuilding of an entire organism. Over the years, extensive studies on embryo, shoot and root development in the model plant species Arabidopsis thaliana have provided insights into the mechanisms underlying plant regeneration. These studies highlight how Arabidopsis, with its wide array of refined molecular, genetic and cell biological tools, provides a perfect model to interrogate the cellular and molecular mechanisms of reprogramming during regeneration.
Collapse
Affiliation(s)
- Mabel Maria Mathew
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, 695551, India
| | - Kalika Prasad
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, 695551, India
| |
Collapse
|
9
|
Bartusch K, Melnyk CW. Insights Into Plant Surgery: An Overview of the Multiple Grafting Techniques for Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:613442. [PMID: 33362838 PMCID: PMC7758207 DOI: 10.3389/fpls.2020.613442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/20/2020] [Indexed: 05/28/2023]
Abstract
Plant grafting, the ancient practice of cutting and joining different plants, is gaining popularity as an elegant way to generate chimeras that combine desirable traits. Grafting was originally developed in woody species, but the technique has evolved over the past century to now encompass a large number of herbaceous species. The use of plant grafting in science is accelerating in part due to the innovative techniques developed for the model plant Arabidopsis thaliana. Here, we review these developments and discuss the advantages and limitations associated with grafting various Arabidopsis tissues at diverse developmental stages.
Collapse
Affiliation(s)
- Kai Bartusch
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zurich, Switzerland
| | - Charles W. Melnyk
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|