1
|
Mackova V, Raudenska M, Polanska HH, Jakubek M, Masarik M. Navigating the redox landscape: reactive oxygen species in regulation of cell cycle. Redox Rep 2024; 29:2371173. [PMID: 38972297 DOI: 10.1080/13510002.2024.2371173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.
Collapse
Affiliation(s)
- Viktoria Mackova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Institute of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Chen SS, Li L, Yao B, Guo JL, Lu PS, Zhang HL, Zhang KH, Zou YJ, Luo NJ, Sun SC, Hu LL, Ren YP. Mutation of the SUMOylation site of Aurora-B disrupts spindle formation and chromosome alignment in oocytes. Cell Death Discov 2024; 10:447. [PMID: 39438456 PMCID: PMC11496499 DOI: 10.1038/s41420-024-02217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Aurora-B is a kinase that regulates spindle assembly and kinetochore-microtubule (KT-MT) attachment during mitosis and meiosis. SUMOylation is involved in the oocyte meiosis regulation through promoting spindle assembly and chromosome segregation, but its substrates to support this function is still unknown. It is reported that Aurora-B is SUMOylated in somatic cells, and SUMOylated Aurora-B contributes the process of mitosis. However, whether Aurora-B is SUMOylated in oocytes and how SUMOylation of Aurora-B impacts its function in oocyte meiosis remain poorly understood. In this study, we report that Aurora-B is modified by SUMOylation in mouse oocytes. The results show that Aurora-B colocalized and interacted with SUMO-2/3 in mouse oocytes, confirming that Aurora-B is modified by SUMO-2/3 in this system. Compared with that in young mice, the protein expression of SUMO-2/3 decreased in the oocytes of aged mice, indicating that SUMOylation might be related to mouse aging. Overexpression of Aurora-B SUMOylation site mutants, Aurora-BK207R and Aurora-BK292R, inhibited Aurora-B recruitment and first polar body extrusion, disrupting localization of gamma tubulin, spindle formation and chromosome alignment in oocytes. The results show that it was related to decreased recruitment of p-HDAC6 which induces the high stability of whole spindle microtubules including the microtubules of both correct and wrong KT-MT attachments though increased acetylation of microtubules. Therefore, our results corroborate the notion that Aurora-B activity is regulated by SUMO-2/3 in oocytes, and that SUMOylated Aurora B plays an important role in spindle formation and chromosome alignment.
Collapse
Affiliation(s)
- Shan-Shan Chen
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Department of Reproduction, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215000, China
| | - Li Li
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Bo Yao
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Jia-Lun Guo
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Ping-Shuang Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Nan-Jian Luo
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Yan-Ping Ren
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
3
|
Mattsson J, Rogne P, Landström M, Wolf-Watz M. Robust approach for production of the human oncology target Aurora kinase B in complex with its binding partner INCENP. Biochimie 2024:S0300-9084(24)00237-2. [PMID: 39424257 DOI: 10.1016/j.biochi.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Protein kinases are key players in many eukaryotic signal transduction cascades and are as a result often linked to human disease. In humans, the mitotic protein kinase family of Aurora kinases consist of three members: Aurora A, B and C. All three members are involved in cell division with proposed implications in various human cancers. The human Aurora kinase B has in particular proven challenging to study with structural biology approaches, and this is mainly due to difficulties in producing the large quantities of active enzyme required for such studies. Here, we present a novel and E. coli-based production system that allows for production of milligram quantities of well-folded and active human Aurora B in complex with its binding partner INCENP. The complex is produced as a continuous polypeptide chain and the resulting fusion protein is cleaved with TEV protease to generate a stable and native heterodimer of the Aurora B:INCENP complex. The activity, stability and degree of phosphorylation of the protein complex was quantified by using a coupled ATPase assay, 31P NMR spectroscopy and mass spectrometry. The developed production system enables isotope labeling and we here report the first 1H-15N-HSQC of the human Aurora B:INCENP complex. Our developed production strategy paves the way for future structural and functional studies of Aurora B and can as such assist the development of novel anticancer drugs targeting this important mitotic protein kinase.
Collapse
Affiliation(s)
- Jonna Mattsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Maréne Landström
- Department of Medical Biosciences 6M, Pathology, Umeå University, 901 85, Umeå, Sweden
| | | |
Collapse
|
4
|
Vorwerk VA, Wilms G, Babendreyer A, Becker W. Differential regulation of expression of the protein kinases DYRK1A and DYRK1B in cancer cells. Sci Rep 2024; 14:23926. [PMID: 39397076 PMCID: PMC11471791 DOI: 10.1038/s41598-024-74190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
The protein kinases DYRK1A and DYRK1B are pivotal regulators of cell cycle progression by promoting cell cycle exit into quiescence. DYRK1B appears to play a more important role in cancer cell quiescence than DYRK1A, as evidenced by its overexpression or copy number variations in human tumour samples. Nonetheless, the stimuli driving DYRK1B upregulation and the potential divergence in expression patterns between DYRK1A and DYRK1B remain largely elusive. In the present study, we scrutinized the regulatory pathways modulating DYRK1B expression relative to DYRK1A in PANC-1 and A549 cancer cell lines across varying conditions. Serum deprivation, pharmacological mTOR inhibition and increased cell density resulted in the differential upregulation of DYRK1B compared to DYRK1A. We then aimed to assess the role of protein kinases MST1 and MST2, which are key transmitters of cell density dependent effects. Unexpectedly, exposure to the MST1/2 inhibitor XMU-MP-1 resulted in increased DYRK1B levels in A549 cells. Further investigation into the off-target effects of XMU-MP-1 unveiled the inhibition of Aurora kinases (AURKA and AURKB) as a potential causative factor. Consistently, AURK inhibitors VX-680 (tozasertib), MLN8237 (alisertib), AZD1152-HQPA (barasertib) resulted in the upregulation of DYRK1B expression in A549 cells. In summary, our findings indicate that the expression of DYRK1A and DYRK1B is differentially regulated in cancer cells and reveal that the kinase inhibitor XMU-MP-1 increases DYRK1B expression likely through off target inhibition of Aurora kinases.
Collapse
Affiliation(s)
- Vincent Andreas Vorwerk
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, 52074, Aachen, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Reynoso-Noverón N, Santibáñez-Andrade M, Torres J, Bautista-Ocampo Y, Sánchez-Pérez Y, García-Cuellar CM. Benzene exposure and pediatric leukemia: From molecular clues to epidemiological insights. Toxicol Lett 2024; 400:113-120. [PMID: 39181343 DOI: 10.1016/j.toxlet.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
According to the International Agency for Research on Cancer, leukemia ranks 14th in incidence and 11th in mortality and has a 5-year prevalence of approximately 1300,000 cases. Acute lymphoblastic leukemia is the most common hematopoietic syndrome in children during the first 5 years of life and represents approximately 75 % of all neoplasms among the pediatric population. The development of leukemia is strongly governed by DNA alterations that accelerate the growth of bone marrow cells. Currently, the most examined factor in pediatric leukemia is exposure to multiple compounds, such as hydrocarbons. Benzene, an aromatic hydrocarbon, can cause health challenges and is categorized as a carcinogen. Benzene toxicity has been widely associated with occupational exposure. Importantly, studies are underway to generate evidence that can provide clues regarding the risk of environmental benzene exposure and hematological problems in children. In this review, we summarize the existing evidence regarding the effects of benzene on pediatric leukemia, the associations between the effect of benzene on carcinogenesis, and the presence of certain molecular signatures in benzene-associated pediatric leukemia. Although there is sufficient evidence regarding the effects of benzene on carcinogenesis and leukemia, epidemiological research has primarily focused on occupational risk. Moreover, most benzene-induced molecular and cytogenetic alterations have been widely described in adults but not in the pediatric population. Thus, epidemiological efforts are crucial in the pediatric population in terms of epidemiological, clinical, and biomedical research.
Collapse
Affiliation(s)
- Nancy Reynoso-Noverón
- Dirección de Investigación, Instituto Nacional de Cancerología, Ciudad de México, Mexico.
| | - Miguel Santibáñez-Andrade
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Juan Torres
- Dirección de Investigación, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Yanueh Bautista-Ocampo
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico
| | - Claudia M García-Cuellar
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Ciudad de México 14080, Mexico.
| |
Collapse
|
6
|
Liu K, Zhou X, Huang F, Liu L, Xu Z, Gao C, Zhang K, Hong J, Yao N, Cheng G. Aurora B facilitates cholangiocarcinoma progression by stabilizing c-Myc. Animal Model Exp Med 2024; 7:626-640. [PMID: 38247322 DOI: 10.1002/ame2.12370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/09/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA), a malignancy that arises from biliary epithelial cells, has a dismal prognosis, and few targeted therapies are available. Aurora B, a key mitotic regulator, has been reported to be involved in the progression of various tumors, yet its role in CCA is still unclarified. METHODS Human CCA tissues and murine spontaneous CCA models were used to assess Aurora B expression in CCA. A loss-of-function model was constructed in CCA cells to determine the role of Aurora B in CCA progression. Subcutaneous and liver orthotopic xenograft models were used to assess the therapeutic potential of Aurora B inhibitors in CCA. RESULTS In murine spontaneous CCA models, Aurora B was significantly upregulated. Elevated Aurora B expression was also observed in 62.3% of human specimens in our validation cohort (143 CCA specimens), and high Aurora B expression was positively correlated with pathological parameters of tumors and poor survival. Knockdown of Aurora B by siRNA and heteroduplex oligonucleotide (HDO) or an Aurora B kinase inhibitor (AZD1152) significantly suppressed CCA progression via G2/M arrest induction. An interaction between Aurora B and c-Myc was found in CCA cells. Targeting Aurora B significantly reduced this interaction and accelerated the proteasomal degradation of c-Myc, suggesting that Aurora B promoted the malignant properties of CCA by stabilizing c-Myc. Furthermore, sequential application of AZD1152 or Aurora B HDO drastically improved the efficacy of gemcitabine in CCA. CONCLUSIONS Aurora B plays an essential role in CCA progression by modulating c-Myc stability and represents a new target for treatment and chemosensitization in CCA.
Collapse
Affiliation(s)
- Ke Liu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xuxuan Zhou
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Fei Huang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Lihao Liu
- School of Medicine, Jinan University, Guangzhou, China
| | - Zijian Xu
- School of Medicine, Jinan University, Guangzhou, China
| | - Chongqing Gao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Keke Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Nan Yao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Guohua Cheng
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Salmenov R, Mummery C, ter Huurne M. Cell cycle visualization tools to study cardiomyocyte proliferation in real-time. Open Biol 2024; 14:240167. [PMID: 39378987 PMCID: PMC11461051 DOI: 10.1098/rsob.240167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Cardiomyocytes in the adult human heart are quiescent and those lost following heart injury are not replaced by proliferating survivors. Considerable effort has been made to understand the mechanisms underlying cardiomyocyte cell cycle exit and re-entry, with view to discovering therapeutics that could stimulate cardiomyocyte proliferation and heart regeneration. The advent of large compound libraries and robotic liquid handling platforms has enabled the screening of thousands of conditions in a single experiment but success of these screens depends on the appropriateness and quality of the model used. Quantification of (human) cardiomyocyte proliferation in high throughput has remained problematic because conventional antibody-based staining is costly, technically challenging and does not discriminate between cardiomyocyte division and failure in karyokinesis or cytokinesis. Live cell imaging has provided alternatives that facilitate high-throughput screening but these have other limitations. Here, we (i) review the cell cycle features of cardiomyocytes, (ii) discuss various cell cycle fluorescent reporter systems, and (iii) speculate on what could improve their predictive value in the context of cardiomyocyte proliferation. Finally, we consider how these new methods can be used in combination with state-of-the-art three-dimensional human cardiac organoid platforms to identify pro-proliferative signalling pathways that could stimulate regeneration of the human heart.
Collapse
Affiliation(s)
- Rustem Salmenov
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden2300RC, The Netherlands
| | - Menno ter Huurne
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden2300RC, The Netherlands
| |
Collapse
|
8
|
Nikhil K, Shah K. The significant others of aurora kinase a in cancer: combination is the key. Biomark Res 2024; 12:109. [PMID: 39334449 PMCID: PMC11438406 DOI: 10.1186/s40364-024-00651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
AURKA is predominantly famous as an essential mitotic kinase. Recent findings have also established its critical role in a plethora of other biological processes including ciliogenesis, mitochondrial dynamics, neuronal outgrowth, DNA replication and cell cycle progression. AURKA overexpression in numerous cancers is strongly associated with poor prognosis and survival. Still no AURKA-targeted drug has been approved yet, partially because of the associated collateral toxicity and partly due to its limited efficacy as a single agent in a wide range of tumors. Mechanistically, AURKA overexpression allows it to phosphorylate numerous pathological substrates promoting highly aggressive oncogenic phenotypes. Our review examines the most recent advances in AURKA regulation and focuses on 33 such direct cancer-specific targets of AURKA and their associated oncogenic signaling cascades. One of the common themes that emerge is that AURKA is often involved in a feedback loop with its substrates, which could be the decisive factor causing its sustained upregulation and hyperactivation in cancer cells, an Achilles heel not exploited before. This dynamic interplay between AURKA and its substrates offers potential opportunities for targeted therapeutic interventions. By targeting these substrates, it may be possible to disrupt this feedback loop to effectively reverse AURKA levels, thereby providing a promising avenue for developing safer AURKA-targeted therapeutics. Additionally, exploring the synergistic effects of AURKA inhibition with its other oncogenic and/or tumor-suppressor targets could provide further opportunities for developing effective combination therapies against AURKA-driven cancers, thereby maximizing its potential as a critical drug target.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| | - Kavita Shah
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
9
|
Wyss M, Thommen BT, Kofler J, Carrington E, Brancucci NMB, Voss TS. The three Plasmodium falciparum Aurora-related kinases display distinct temporal and spatial associations with mitotic structures in asexual blood stage parasites and gametocytes. mSphere 2024; 9:e0046524. [PMID: 39235260 PMCID: PMC11423587 DOI: 10.1128/msphere.00465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Aurora kinases are crucial regulators of mitotic cell cycle progression in eukaryotes. The protozoan malaria parasite Plasmodium falciparum replicates via schizogony, a specialized mode of cell division characterized by consecutive asynchronous rounds of nuclear division by closed mitosis followed by a single cytokinesis event producing dozens of daughter cells. P. falciparum encodes three Aurora-related kinases (PfARKs) that have been reported essential for parasite proliferation, but their roles in regulating schizogony have not yet been explored in great detail. Here, we engineered transgenic parasite lines expressing GFP-tagged PfARK1-3 to provide a systematic analysis of their expression timing and subcellular localization throughout schizogony as well as in the non-dividing gametocyte stages, which are essential for malaria transmission. We demonstrate that all three PfARKs display distinct and highly specific and exclusive spatiotemporal associations with the mitotic machinery. In gametocytes, PfARK3 is undetectable, and PfARK1 and PfARK2 show male-specific expression in late-stage gametocytes, consistent with their requirement for endomitosis during male gametogenesis in the mosquito vector. Our combined data suggest that PfARK1 and PfARK2 have non-overlapping roles in centriolar plaque maturation, assembly of the mitotic spindle, kinetochore-spindle attachment and chromosome segregation, while PfARK3 seems to be exquisitely involved in daughter cell cytoskeleton assembly and cytokinesis. These important new insights provide a reliable foundation for future research aiming at the functional investigation of these divergent and possibly drug-targetable Aurora-related kinases in mitotic cell division of P. falciparum and related apicomplexan parasites.IMPORTANCEMalaria parasites replicate via non-conventional modes of mitotic cell division, such as schizogony, employed by the disease-causing stages in the human blood or endomitosis during male gametogenesis in the mosquito vector. Understanding the molecular mechanisms regulating cell division in these divergent unicellular eukaryotes is not only of scientific interest but also relevant to identify potential new antimalarial drug targets. Here, we carefully examined the subcellular localization of all three Plasmodium falciparum Aurora-related kinases (ARKs), distantly related homologs of Aurora kinases that coordinate mitosis in model eukaryotes. Detailed fluorescence microscopy-based analyses revealed distinct, specific, and exclusive spatial associations for each parasite ARK with different components of the mitotic machinery and at different phases of the cell cycle during schizogony and gametocytogenesis. This comprehensive set of results closes important gaps in our fragmentary knowledge on this important group of kinases and offers a valuable source of information for future functional studies.
Collapse
Affiliation(s)
- Matthias Wyss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Basil T. Thommen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Jacob Kofler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Eilidh Carrington
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Nicolas M. B. Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Blengini CS, Schindler K. Genetic interaction mapping of Aurora protein kinases in mouse oocytes. Front Cell Dev Biol 2024; 12:1455280. [PMID: 39386021 PMCID: PMC11461192 DOI: 10.3389/fcell.2024.1455280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
The Aurora Kinases (AURKs) are a family of serine-threonine protein kinases critical for cell division. Somatic cells express only AURKA and AURKB. However, mammalian germ cells and some cancer cells express all three isoforms. A major question in the field has been determining the molecular and cellular changes when cells express three instead of two aurora kinases. Using a systematic genetic approach involving different Aurora kinase oocyte-specific knockout combinations, we completed an oocyte-AURK genetic interaction map and show that one genomic copy of Aurka is necessary and sufficient to support female fertility and oocyte meiosis. We further confirm that AURKB and AURKC alone cannot compensate for AURKA. These results highlight the importance of AURKA in mouse oocytes, demonstrating that it is required for spindle formation and proper chromosome segregation. Surprisingly, a percentage of oocytes that lack AURKB can complete meiosis I, but the quality of those eggs is compromised, suggesting a role in AURKB to regulate spindle assembly checkpoint or control the cell cycle. Together with our previous studies, we wholly define the genetic interplay among the Aurora kinases and reinforce the importance of AURKA expression in oocyte meiosis.
Collapse
Affiliation(s)
- Cecilia S. Blengini
- Department of Genetics, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Human Genetics Institute of New Jersey, New Brunswick, NJ, United States
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Human Genetics Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
11
|
Conway PJ, De La Peña Avalos B, Dao J, Montagnino S, Kovalskyy D, Dray E, Mahadevan D. Aurkin-A, a TPX2-Aurora A small molecule inhibitor disrupts Alisertib-induced polyploidy in aggressive diffuse large B cell lymphoma. Neoplasia 2024; 55:101014. [PMID: 38875929 PMCID: PMC11225860 DOI: 10.1016/j.neo.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Chemotherapy induced polyploidy is a mechanism of inherited drug resistance resulting in an aggressive disease course in cancer patients. Alisertib, an Aurora Kinase A (AK-A) ATP site inhibitor, induces cell cycle disruption resulting in polyaneuploidy in Diffuse Large B Cell Lymphoma (DLBCL). Propidium iodide flow cytometry was utilized to quantify alisertib induced polyploidy in U2932 and VAL cell lines. In U2932 cells, 1µM alisertib generated 8n+ polyploidy in 48% of the total cell population after 5 days of treatment. Combination of Aurkin A an AK-A/TPX2 site inhibitor, plus alisertib disrupted alisertib induced polyploidy in a dose-dependent manner with associated increased apoptosis. We generated a stable FUCCI U2932 cell line expressing Geminin-clover (S/G2/M) and cdt1-mKO (G1), to monitor cell cycle progression. Using this system, we identified alisertib induces polyploidy through endomitosis, which was eliminated with Aurkin A treatment. In a VAL mouse xenograft model, we show polyploidy generation in alisertib treated mice versus vehicle control or Aurkin A. Aurkin A plus alisertib significantly reduced polyploidy to vehicle control levels. Our in vitro and in vivo studies show that Aurkin A synergizes with alisertib and significantly decreases the alisertib dose needed to disrupt polyploidy while increasing apoptosis in DLBCL cells.
Collapse
Affiliation(s)
- Patrick J Conway
- Department of Molecular Immunology & Microbiology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, USA; Department of Biomedical Sciences, Keiser University, 2600 N Military Trl, West Palm Beach, Florida, USA
| | - Bárbara De La Peña Avalos
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, 8403 Floyd Curl Dr, San Antonio, Texas, USA
| | - Jonathan Dao
- Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, USA
| | - Sebastian Montagnino
- Department of Molecular Immunology & Microbiology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, USA
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, 8403 Floyd Curl Dr, San Antonio, Texas, USA
| | - Eloise Dray
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, 8403 Floyd Curl Dr, San Antonio, Texas, USA; Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, USA.
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health Science Center San Antonio, 7979 Wurzbach Rd, San Antonio, Texas, USA.
| |
Collapse
|
12
|
Borah NA, Mittal R, Sucharita S, Rath S, Kaliki S, Patnaik S, Tripathy D, Reddy MM. Aurora Kinase A Is Overexpressed in Human Retinoblastoma and Correlates with Histopathologic High-Risk Factors: Implications for Targeted Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1780-1798. [PMID: 38879085 DOI: 10.1016/j.ajpath.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
Retinoblastoma (RB) is an intraocular malignancy initiated by loss of RB1 function and/or dysregulation of MYCN oncogene. RB is primarily treated with chemotherapy; however, systemic toxicity and long-term adverse effects remain a significant challenge necessitating the identification of specific molecular targets. Aurora kinase A (AURKA), a critical cell cycle regulator, contributes to cancer pathogenesis, especially in RB1-deficient and MYCN-dysregulated tumors. The current immunohistochemistry study in patient specimens (n = 67) indicated that AURKA is overexpressed in RB, and this elevated expression correlates with one or more histopathologic high-risk factors, such as tumor involvement of the optic nerve, choroid, sclera, and/or anterior segment. More specifically, AURKA is ubiquitously expressed in most advanced-stage RB tumors that show a suboptimal response to chemotherapy. shRNA-mediated depletion/pharmacologic inhibition studies in cell lines, patient-derived cells, in vivo xenografts, and enucleated patient specimens confirmed that RB cells are highly sensitive to a lack of functional AURKA. In addition, AURKA and N-myc proto-oncogene protein (MYCN) associate with each other to regulate their levels in RB cells. Overall, these results demonstrate a previously unknown up-regulation of AURKA in RB, facilitated by its crosstalk with MYCN. The elevated levels of this kinase may indicate unfavorable prognosis in tumors refractory to chemotherapy. This study provides a rationale and confirms that therapeutic targeting of elevated AURKA in RB could be a potential treatment approach.
Collapse
Affiliation(s)
- Naheed Arfin Borah
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India; School of Biotechnology, Kalinga Institute of Industrial Technology Deemed to be University, Bhubaneswar, India
| | - Ruchi Mittal
- Kanupriya Dalmia Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Soumya Sucharita
- Kanupriya Dalmia Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Suryasnata Rath
- Ophthalmic Plastics, Orbit and Ocular Oncology Service, L V Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology Deemed to be University, Bhubaneswar, India
| | - Devjyoti Tripathy
- Ophthalmic Plastics, Orbit and Ocular Oncology Service, L V Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Mamatha M Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India; School of Biotechnology, Kalinga Institute of Industrial Technology Deemed to be University, Bhubaneswar, India.
| |
Collapse
|
13
|
Cabral G, Moss WJ, Brown KM. Proteomic approaches for protein kinase substrate identification in Apicomplexa. Mol Biochem Parasitol 2024; 259:111633. [PMID: 38821187 PMCID: PMC11194964 DOI: 10.1016/j.molbiopara.2024.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Apicomplexa is a phylum of protist parasites, notable for causing life-threatening diseases including malaria, toxoplasmosis, cryptosporidiosis, and babesiosis. Apicomplexan pathogenesis is generally a function of lytic replication, dissemination, persistence, host cell modification, and immune subversion. Decades of research have revealed essential roles for apicomplexan protein kinases in establishing infections and promoting pathogenesis. Protein kinases modify their substrates by phosphorylating serine, threonine, tyrosine, or other residues, resulting in rapid functional changes in the target protein. Post-translational modification by phosphorylation can activate or inhibit a substrate, alter its localization, or promote interactions with other proteins or ligands. Deciphering direct kinase substrates is crucial to understand mechanisms of kinase signaling, yet can be challenging due to the transient nature of kinase phosphorylation and potential for downstream indirect phosphorylation events. However, with recent advances in proteomic approaches, our understanding of kinase function in Apicomplexa has improved dramatically. Here, we discuss methods that have been used to identify kinase substrates in apicomplexan parasites, classifying them into three main categories: i) kinase interactome, ii) indirect phosphoproteomics and iii) direct labeling. We briefly discuss each approach, including their advantages and limitations, and highlight representative examples from the Apicomplexa literature. Finally, we conclude each main category by introducing prospective approaches from other fields that would benefit kinase substrate identification in Apicomplexa.
Collapse
Affiliation(s)
- Gabriel Cabral
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William J Moss
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin M Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
14
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
15
|
Tang G, Wang X, Huang H, Xu M, Ma X, Miao F, Lu X, Zhang CJ, Gao L, Zhang ZM, Yao SQ. Small Molecule-Induced Post-Translational Acetylation of Catalytic Lysine of Kinases in Mammalian Cells. J Am Chem Soc 2024; 146:23978-23988. [PMID: 39162335 DOI: 10.1021/jacs.4c07181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Reversible lysine acetylation is an important post-translational modification (PTM). This process in cells is typically carried out enzymatically by lysine acetyltransferases and deacetylases. The catalytic lysine in the human kinome is highly conserved and ligandable. Small-molecule strategies that enable post-translational acetylation of the catalytic lysine on kinases in a target-selective manner therefore provide tremendous potential in kinase biology. Herein, we report the first small molecule-induced chemical strategy capable of global acetylation of the catalytic lysine on kinases from mammalian cells. By surveying various lysine-acetylating agents installed on a promiscuous kinase-binding scaffold, Ac4 was identified and shown to effectively acetylate the catalytic lysine of >100 different protein kinases from live Jurkat/K562 cells. In order to demonstrate that this strategy was capable of target-selective and reversible chemical acetylation of protein kinases, we further developed six acetylating compounds on the basis of VX-680 (a noncovalent inhibitor of AURKA). Among them, Ac13/Ac14, while displaying excellent in vitro potency and sustained cellular activity against AURKA, showed robust acetylation of its catalytic lysine (K162) in a target-selective manner, leading to irreversible inhibition of endogenous kinase activity. The reversibility of this chemical acetylation was confirmed on Ac14-treated recombinant AURKA protein, followed by deacetylation with SIRT3 (a lysine deacetylase). Finally, the reversible Ac13-induced acetylation of endogenous AURKA was demonstrated in SIRT3-transfected HCT116 cells. By disclosing the first cell-active acetylating compounds capable of both global and target-selective post-translational acetylation of the catalytic lysine on kinases, our strategy could provide a useful chemical tool in kinase biology and drug discovery.
Collapse
Affiliation(s)
- Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xuan Wang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Huisi Huang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xingyu Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fengfei Miao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaoyun Lu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518000, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
16
|
Huang PJ, Lin YL, Chen CH, Lin HY, Fang SC. A chloroplast sulphate transporter modulates glutathione-mediated redox cycling to regulate cell division. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39189939 DOI: 10.1111/pce.15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Glutathione redox cycling is important for cell cycle regulation, but its mechanisms are not well understood. We previously identified a small-sized mutant, suppressor of mat3 15-1 (smt15-1) that has elevated cellular glutathione. Here, we demonstrated that SMT15 is a chloroplast sulphate transporter. Reducing expression of γ-GLUTAMYLCYSTEINE SYNTHETASE, encoding the rate-limiting enzyme required for glutathione biosynthesis, corrected the size defect of smt15-1 cells. Overexpressing GLUTATHIONE SYNTHETASE (GSH2) recapitulated the small-size phenotype of smt15-1 mutant, confirming the role of glutathione in cell division. Hence, SMT15 may regulate chloroplast sulphate concentration to modulate cellular glutathione levels. In wild-type cells, glutathione and/or thiol-containing molecules (GSH/thiol) accumulated in the cytosol at the G1 phase and decreased as cells entered the S/M phase. While the cytosolic GSH/thiol levels in the small-sized mutants, smt15-1 and GSH2 overexpressors, mirrored those of wild-type cells (accumulating during G1 and declining at early S/M phase), GSH/thiol was specifically accumulated in the basal bodies at early S/M phase in the small-sized mutants. Therefore, we propose that GSH/thiol-mediated redox signalling in the basal bodies may regulate mitotic division number in Chlamydomonas reinhardtii. Our findings suggest a new mechanism by which glutathione regulates the multiple fission cell cycle in C. reinhardtii.
Collapse
Affiliation(s)
- Pin-Jui Huang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ling Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Han Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Schep R, Trauernicht M, Vergara X, Friskes A, Morris B, Gregoricchio S, Manzo SG, Zwart W, Beijersbergen R, Medema RH, van Steensel B. Chromatin context-dependent effects of epigenetic drugs on CRISPR-Cas9 editing. Nucleic Acids Res 2024; 52:8815-8832. [PMID: 38953163 PMCID: PMC11347147 DOI: 10.1093/nar/gkae570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
The efficiency and outcome of CRISPR/Cas9 editing depends on the chromatin state at the cut site. It has been shown that changing the chromatin state can influence both the efficiency and repair outcome, and epigenetic drugs have been used to improve Cas9 editing. However, because the target proteins of these drugs are not homogeneously distributed across the genome, the efficacy of these drugs may be expected to vary from locus to locus. Here, we systematically analyzed this chromatin context-dependency for 160 epigenetic drugs. We used a human cell line with 19 stably integrated reporters to induce a double-stranded break in different chromatin environments. We then measured Cas9 editing efficiency and repair pathway usage by sequencing the mutational signatures. We identified 58 drugs that modulate Cas9 editing efficiency and/or repair outcome dependent on the local chromatin environment. For example, we find a subset of histone deacetylase inhibitors that improve Cas9 editing efficiency throughout all types of heterochromatin (e.g. PCI-24781), while others were only effective in euchromatin and H3K27me3-marked regions (e.g. apicidin). In summary, this study reveals that most epigenetic drugs alter CRISPR editing in a chromatin-dependent manner, and provides a resource to improve Cas9 editing more selectively at the desired location.
Collapse
Affiliation(s)
- Ruben Schep
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Max Trauernicht
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Xabier Vergara
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Anoek Friskes
- Oncode Institute, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Ben Morris
- Division of Molecular Carcinogenesis, 1066 CX Amsterdam, The Netherlands
| | - Sebastian Gregoricchio
- Oncode Institute, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Stefano G Manzo
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Oncode Institute, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - René H Medema
- Oncode Institute, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Bas van Steensel
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
18
|
Polverino F, Mastrangelo A, Guarguaglini G. Contribution of AurkA/TPX2 Overexpression to Chromosomal Imbalances and Cancer. Cells 2024; 13:1397. [PMID: 39195284 PMCID: PMC11353082 DOI: 10.3390/cells13161397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The AurkA serine/threonine kinase is a key regulator of cell division controlling mitotic entry, centrosome maturation, and chromosome segregation. The microtubule-associated protein TPX2 controls spindle assembly and is the main AurkA regulator, contributing to AurkA activation, localisation, and stabilisation. Since their identification, AurkA and TPX2 have been described as being overexpressed in cancer, with a significant correlation with highly proliferative and aneuploid tumours. Despite the frequent occurrence of AurkA/TPX2 co-overexpression in cancer, the investigation of their involvement in tumorigenesis and cancer therapy resistance mostly arises from studies focusing only on one at the time. Here, we review the existing literature and discuss the mitotic phenotypes described under conditions of AurkA, TPX2, or AurkA/TPX2 overexpression, to build a picture that may help clarify their oncogenic potential through the induction of chromosome instability. We highlight the relevance of the AurkA/TPX2 complex as an oncogenic unit, based on which we discuss recent strategies under development that aim at disrupting the complex as a promising therapeutic perspective.
Collapse
Affiliation(s)
| | | | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.P.); (A.M.)
| |
Collapse
|
19
|
Sachdeva A, Roy A, Gupta MK, Mandal S. Pharmacological inhibition of protein kinase D2/Aurora kinase A signalling axis suppresses G2/M cell cycle progression and proliferation of epithelial ovarian cancer cells. Pathol Res Pract 2024; 260:155390. [PMID: 38878668 DOI: 10.1016/j.prp.2024.155390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 08/09/2024]
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological malignancy with poor prognosis and patient survival outcome. Protein kinase D2 (PKD2) belongs to Ca++/calmodulin-dependent serine/threonine kinase family and its aberrant expression is associated with many cellular and physiological functions associated with tumorigenesis including cell proliferation. We show that PKD2 is activated during G2/M cell cycle transition and its catalytic inactivation by small molecule inhibitor CRT0066101 or genetic knockdown caused suppression of EOC cell proliferation followed by a delay into mitotic entry. Our RNASeq analysis of PKD2-inactivated EOC cells revealed significant downregulation of genes associated with cell cycle including Aurora kinase A, a critical mitotic regulator. Mechanistically, PKD2 positively regulated Aurora kinase A stability at both transcriptional and post-translational levels by interfering with the function of Fbxw7, drove G2/M cell cycle transition and EOC cell proliferation. Moreover, pharmacological inhibition of Aurora kinase A by small molecule CD532 or its shRNA-mediated genetic knockdown suppressed EOC cell proliferation, induced G2/M cell cycle arrest and mitotic catastrophe followed by apoptosis. Taken together, our results indicated that PKD2 positively regulates Aurora kinase A during G2/M cell cycle entry and pharmacological targeting of PKD2/Aurora kinase A signalling axis could serve as a novel therapeutic intervention against a lethal pathology like EOC.
Collapse
Affiliation(s)
- Abha Sachdeva
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India.
| | - Manoj Kumar Gupta
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
20
|
Chhajer R, Bhattacharyya A, Ali N. Cell Death in Leishmania donovani promastigotes in response to Mammalian Aurora Kinase B Inhibitor- Hesperadin. Biomed Pharmacother 2024; 177:116960. [PMID: 38936193 DOI: 10.1016/j.biopha.2024.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024] Open
Abstract
Deciphering how hesperadin, a repurposed mammalian aurora kinase B inhibitor, affects the cellular pathways in Leishmania donovani might be beneficial. This investigation sought to assess the physiological effects of hesperadin on promastigotes of L. donovani, by altering the duration of treatment following exposure to hesperadin. Groups pre-treated with inhibitors such as EGTA, NAC, and z-VAD-fmk before hesperadin exposure were also included. Morphological changes by microscopy, ATP and ROS changes by luminometry; DNA degradation using agarose gel electrophoresis and metacaspase levels through RT-PCR were assessed. Flow cytometry was used to study mitochondrial depolarization using JC-1 and MitoTracker Red; mitochondrial-superoxide accumulation using MitoSOX; plasma membrane modifications using Annexin-V and propidium iodide, and lastly, caspase activation using ApoStat. Significant alterations in promastigote morphology were noted. Caspase activity and mitochondrial-superoxide rose early after exposure whereas mitochondrial membrane potential demonstrated uncharacteristic variations, with significant functional disturbances such as leakage of superoxide radicals after prolonged treatments. ATP depletion and ROS accumulation demonstrated inverse patterns, genomic DNA showed fragmentation and plasma membrane showed Annexin-V binding, soon followed by propidium iodide uptake. Multilobed macronuclei and micronuclei accumulated in hesperadin exposed cells before they disintegrated into necrotic debris. The pathologic alterations were unlike the intrinsic or extrinsic pathways of classical apoptosis and suggest a caspase-mediated cell death most akin to mitotic-catastrophe. Most likely, a G2/M transition block caused accumulation of death signals, disorganized spindles and mechanical stresses, causing changes in morphology, organellar functions and ultimately promastigote death. Thus, death was a consequence of mitotic-arrest followed by ablation of kinetoplast functions, often implicated in L. donovani killing.
Collapse
Affiliation(s)
- Rudra Chhajer
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Anirban Bhattacharyya
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
21
|
Grisetti L, Garcia CJC, Saponaro AA, Tiribelli C, Pascut D. The role of Aurora kinase A in hepatocellular carcinoma: Unveiling the intriguing functions of a key but still underexplored factor in liver cancer. Cell Prolif 2024; 57:e13641. [PMID: 38590119 PMCID: PMC11294426 DOI: 10.1111/cpr.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Aurora Kinase A (AURKA) plays a central role as a serine/threonine kinase in regulating cell cycle progression and mitotic functions. Over the years, extensive research has revealed the multifaceted roles of AURKA in cancer development and progression. AURKA's dysregulation is frequently observed in various human cancers, including hepatocellular carcinoma (HCC). Its overexpression in HCC has been associated with aggressive phenotypes and poor clinical outcomes. This review comprehensively explores the molecular mechanisms underlying AURKA expression in HCC and its functional implications in cell migration, invasion, epithelial-to-mesenchymal transition, metastasis, stemness, and drug resistance. This work focuses on the clinical significance of AURKA as a diagnostic and prognostic biomarker for HCC. High levels of AURKA expression have been correlated with shorter overall and disease-free survival in various cohorts, highlighting its potential utility as a sensitive prognostic indicator. Recent insights into AURKA's role in modulating the tumour microenvironment, particularly immune cell recruitment, may provide valuable information for personalized treatment strategies. AURKA's critical involvement in modulating cellular pathways and its overexpression in cancer makes it an attractive target for anticancer therapies. This review discusses the evidence about novel and selective AURKA inhibitors for more effective treatments for HCC.
Collapse
Affiliation(s)
- Luca Grisetti
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
- Department of Life SciencesUniversità degli Studi di TriesteTriesteItaly
| | - Clarissa J. C. Garcia
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
- Department of Life SciencesUniversità degli Studi di TriesteTriesteItaly
| | - Anna A. Saponaro
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
| | | | - Devis Pascut
- Fondazione Italiana Fegato – ONLUS, Liver Cancer UnitTriesteItaly
| |
Collapse
|
22
|
Goes JVC, Viana MDA, Sampaio LR, Cavalcante CBA, Melo MMDL, de Oliveira RTG, Borges DDP, Gonçalves PG, Pinheiro RF, Ribeiro-Junior HL. Gene expression patterns of Sirtuin family members (SIRT1 TO SIRT7): Insights into pathogenesis and prognostic of Myelodysplastic neoplasm. Gene 2024; 915:148428. [PMID: 38575099 DOI: 10.1016/j.gene.2024.148428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/02/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
To assess and validate the gene expression profile of SIRTs (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7) in relation to the pathogenesis and prognostic progression of Myelodysplastic neoplasm (MDS). Eighty bone marrow samples of patients with de novo MDS were diagnosed according to WHO 2022 and IPSS-R criteria. Ten bone marrow samples were obtained from elderly healthy volunteers and used as control samples. Gene expression levels of all SIRTs were assessed using RT-qPCR assays. Downregulation of SIRT2 (p = 0.009), SIRT3 (p = 0.048), SIRT4 (p = 0.049), SIRT5 (p = 0.046), SIRT6 (p = 0.043), and SIRT7 (p = 0.047) was identified in MDS patients compared to control individuals. Also, we identified that while SIRT2-7 genes are typically down-regulated in MDS patients compared to normal controls, there are relative expression variations among MDS patient subgroups. Specifically, SIRT4 (p = 0.029) showed increased expression in patients aged 60 or above, and both SIRT2 (p = 0.016) and SIRT3 (p = 0.036) were upregulated in patients with hemoglobin levels below 8 g/dL. SIRT2 (p = 0.045) and SIRT3 (p = 0.033) were highly expressed in patients with chromosomal abnormalities. Different SIRTs exhibited altered expression patterns concerning specific MDS clinical and prognostic characteristics. The downregulation in SIRTs genes (e.g., SIRT2 to SIRT7) expression in Brazilian MDS patients highlights their role in the disease's development. The upregulation of SIRT2 and SIRT3 in severe anemia patients suggests a potential link to manage iron overload-related complications in transfusion-dependent patients. Moreover, the association of SIRT2/SIRT3 with genomic instability and their role in MDS progression signify promising areas for future research and therapeutic targets. These findings underscore the importance of SIRT family in understanding and addressing MDS, offering novel clinical, prognostic, and therapeutic insights for patients with this condition.
Collapse
Affiliation(s)
- João Vitor Caetano Goes
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Mateus de Aguiar Viana
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| | - Leticia Rodrigues Sampaio
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| | | | - Mayara Magna de Lima Melo
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| | - Roberta Taiane Germano de Oliveira
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| | - Daniela de Paula Borges
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| | - Paola Gyuliane Gonçalves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Department of Pathology, School of Medicine, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Ronald Feitosa Pinheiro
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| | - Howard Lopes Ribeiro-Junior
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| |
Collapse
|
23
|
Dangoudoubiyam S, Norris JK, Namasivayam S, de Paula Baptista R, Cannes do Nascimento N, Camp J, Schardl CL, Kissinger JC, Howe DK. Temporal gene expression during asexual development of the apicomplexan Sarcocystis neurona. mSphere 2024; 9:e0011124. [PMID: 38809064 PMCID: PMC11332336 DOI: 10.1128/msphere.00111-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Asexual replication in the apicomplexan Sarcocystis neurona involves two main developmental stages: the motile extracellular merozoite and the sessile intracellular schizont. Merozoites invade host cells and transform into schizonts that undergo replication via endopolygeny to form multiple (64) daughter merozoites that are invasive to new host cells. Given that the capabilities of the merozoite vary significantly from the schizont, the patterns of transcript levels throughout the asexual lifecycle were determined and compared in this study. RNA-Seq data were generated from extracellular merozoites and four intracellular schizont development time points. Of the 6,938 genes annotated in the S. neurona genome, 6,784 were identified in the transcriptome. Of these, 4,111 genes exhibited significant differential expression between the merozoite and at least one schizont development time point. Transcript levels were significantly higher for 2,338 genes in the merozoite and 1,773 genes in the schizont stages. Included in this list were genes encoding the secretory pathogenesis determinants (SPDs), which encompass the surface antigen and SAG-related sequence (SAG/SRS) and the secretory organelle proteins of the invasive zoite stage (micronemes, rhoptries, and dense granules). As anticipated, many of the S. neurona SPD gene transcripts were abundant in merozoites. However, several SPD transcripts were elevated in intracellular schizonts, suggesting roles unrelated to host cell invasion and the initial establishment of the intracellular niche. The hypothetical genes that are potentially unique to the genus Sarcocystis are of particular interest. Their conserved expression patterns are instructive for future investigations into the possible functions of these putative Sarcocystis-unique genes. IMPORTANCE The genus Sarcocystis is an expansive clade within the Apicomplexa, with the species S. neurona being an important cause of neurological disease in horses. Research to decipher the biology of S. neurona and its host-pathogen interactions can be enhanced by gene expression data. This study has identified conserved apicomplexan orthologs in S. neurona, putative Sarcocystis-unique genes, and gene transcripts abundant in the merozoite and schizont stages. Importantly, we have identified distinct clusters of genes with transcript levels peaking during different intracellular schizont development time points, reflecting active gene expression changes across endopolygeny. Each cluster also has subsets of transcripts with unknown functions, and investigation of these seemingly Sarcocystis-unique transcripts will provide insights into the interesting biology of this parasite genus.
Collapse
Affiliation(s)
- Sriveny Dangoudoubiyam
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Jamie K. Norris
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Sivaranjani Namasivayam
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Rodrigo de Paula Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Naila Cannes do Nascimento
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Joseph Camp
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | | | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Genetics, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Daniel K. Howe
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
24
|
Bravo-Moraga F, Bedoya M, Vergara-Jaque A, Alzate-Morales J. Understanding the Differences of Danusertib's Residence Time in Aurora Kinases A/B: Dissociation Paths and Key Residues Identified using Conventional and Enhanced Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:4759-4772. [PMID: 38857305 DOI: 10.1021/acs.jcim.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The accurate experimental estimation of protein-ligand systems' residence time (τ) has become very relevant in drug design projects due to its importance in the last stages of refinement of the drug's pharmacodynamics and pharmacokinetics. It is now well-known that it is not sufficient to estimate the affinity of a protein-drug complex in the thermodynamic equilibrium process in in vitro experiments (closed systems), where the concentrations of the drug and protein remain constant. On the contrary, it is mandatory to consider the conformational dynamics of the system in terms of the binding and unbinding processes between protein and drugs in in vivo experiments (open systems), where their concentrations are in constant flux. This last model has been proven to dictate much of several drugs' pharmacological activities in vivo. At the atomistic level, molecular dynamics simulations can explain why some drugs are more effective than others or unveil the molecular aspects that make some drugs work better in one molecular target. Here, the protein kinases Aurora A/B, complexed with its inhibitor Danusertib, were studied using conventional and enhanced molecular dynamics (MD) simulations to estimate the dissociation paths and, therefore, the computational τ values and their comparison with experimental ones. Using classical molecular dynamics (cMD), three differential residues within the Aurora A/B active site, which seems to play an essential role in the observed experimental Danusertib's residence time against these kinases, were characterized. Then, using WT-MetaD, the relative Danusertib's residence times against Aurora A/B kinases were measured in a nanosecond time scale and were compared to those τ values observed experimentally. In addition, the potential dissociation paths of Danusertib in Aurora A and B were characterized, and differences that might be explained by the differential residues in the enzyme's active sites were found. In perspective, it is expected that this computational protocol can be applied to other protein-ligand complexes to understand, at the molecular level, the differences in residence times and amino acids that may contribute to it.
Collapse
Affiliation(s)
- Felipe Bravo-Moraga
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, 3466706 Talca, Chile
| | - Mauricio Bedoya
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3466706, Chile
- Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3466706, Chile
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, 3466706 Talca, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), 8380453 Santiago, Chile
| | - Jans Alzate-Morales
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 1 Poniente 1141, 3466706 Talca, Chile
| |
Collapse
|
25
|
Buschi E, Dell’Anno A, Tangherlini M, Candela M, Rampelli S, Turroni S, Palladino G, Esposito E, Martire ML, Musco L, Stefanni S, Munari C, Fiori J, Danovaro R, Corinaldesi C. Resistance to freezing conditions of endemic Antarctic polychaetes is enhanced by cryoprotective proteins produced by their microbiome. SCIENCE ADVANCES 2024; 10:eadk9117. [PMID: 38905343 PMCID: PMC11192080 DOI: 10.1126/sciadv.adk9117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
The microbiome plays a key role in the health of all metazoans. Whether and how the microbiome favors the adaptation processes of organisms to extreme conditions, such as those of Antarctica, which are incompatible with most metazoans, is still unknown. We investigated the microbiome of three endemic and widespread species of Antarctic polychaetes: Leitoscoloplos geminus, Aphelochaeta palmeri, and Aglaophamus trissophyllus. We report here that these invertebrates contain a stable bacterial core dominated by Meiothermus and Anoxybacillus, equipped with a versatile genetic makeup and a unique portfolio of proteins useful for coping with extremely cold conditions as revealed by pangenomic and metaproteomic analyses. The close phylosymbiosis between Meiothermus and Anoxybacillus and these Antarctic polychaetes indicates a connection with their hosts that started in the past to support holobiont adaptation to the Antarctic Ocean. The wide suite of bacterial cryoprotective proteins found in Antarctic polychaetes may be useful for the development of nature-based biotechnological applications.
Collapse
Affiliation(s)
- Emanuela Buschi
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Erika Esposito
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Marco Lo Martire
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luigi Musco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Sergio Stefanni
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica “Anton Dohrn,” Villa Comunale, Napoli, Italy
| | - Cristina Munari
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Jessica Fiori
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
26
|
Becker IC, Wilkie AR, Nikols E, Carminita E, Roweth HG, Tilburg J, Sciaudone AR, Noetzli LJ, Fatima F, Couldwell G, Ray A, Mogilner A, Machlus KR, Italiano JE. Cell cycle-dependent centrosome clustering precedes proplatelet formation. SCIENCE ADVANCES 2024; 10:eadl6153. [PMID: 38896608 PMCID: PMC11186502 DOI: 10.1126/sciadv.adl6153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Platelet-producing megakaryocytes (MKs) primarily reside in the bone marrow, where they duplicate their DNA content with each cell cycle resulting in polyploid cells with an intricate demarcation membrane system. While key elements of the cytoskeletal reorganizations during proplatelet formation have been identified, what initiates the release of platelets into vessel sinusoids remains largely elusive. Using a cell cycle indicator, we observed a unique phenomenon, during which amplified centrosomes in MKs underwent clustering following mitosis, closely followed by proplatelet formation, which exclusively occurred in G1 of interphase. Forced cell cycle arrest in G1 increased proplatelet formation not only in vitro but also in vivo following short-term starvation of mice. We identified that inhibition of the centrosomal protein kinesin family member C1 (KIFC1) impaired clustering and subsequent proplatelet formation, while KIFC1-deficient mice exhibited reduced platelet counts. In summary, we identified KIFC1- and cell cycle-mediated centrosome clustering as an important initiator of proplatelet formation from MKs.
Collapse
Affiliation(s)
- Isabelle C. Becker
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Adrian R. Wilkie
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Emma Nikols
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | - Estelle Carminita
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Harvey G. Roweth
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Julia Tilburg
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | | | - Leila J. Noetzli
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Farheen Fatima
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
| | | | - Anjana Ray
- Brigham and Women’s Hospital, 4 Blackfan Circle, Boston, MA 02115, USA
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Joseph E. Italiano
- Vascular Biology Program, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
27
|
Zhou Q, Tao C, Yuan J, Pan F, Wang R. Knowledge mapping of AURKA in Oncology:An advanced Bibliometric analysis (1998-2023). Heliyon 2024; 10:e31945. [PMID: 38912486 PMCID: PMC11190563 DOI: 10.1016/j.heliyon.2024.e31945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
AURKA, also known as Aurora kinase A, is a key molecule involved in the occurrence and progression of cancer. It plays crucial roles in various cellular processes, including cell cycle regulation, mitosis, and chromosome segregation. Dysregulation of AURKA has been implicated in tumorigenesis, promoting cell proliferation, genomic instability, and resistance to apoptosis. In this study, we conducted an extensive bibliometric analysis of research focusing on Aurora-A in the context of cancer by utilizing the Web of Science literature database. Various sophisticated computational tools, such as VOSviewer, Citespace, Biblioshiny R, and Cytoscape, were employed for comprehensive literature analysis and big data mining from January 1998 to September 2023.The primary objectives of our study were multi-fold. Firstly, we aimed to explore the chronological development of AURKA research, uncovering the evolution of scientific understanding over time. Secondly, we investigated shifting trends in research topics, elucidating areas of increasing interest and emerging frontiers. Thirdly, we delved into intricate signaling pathways and protein interaction networks associated with AURKA, providing insights into its complex molecular mechanisms. To further enhance the value of our bibliometric analysis, we conducted a meta-analysis on the prognostic value of AURKA in terms of patient survival. The results were visually presented, offering a comprehensive overview and future perspectives on Aurora-A research in the field of oncology. This study not only contributes to the existing body of knowledge but also provides valuable guidance for researchers, clinicians, and pharmaceutical professionals. By harnessing the power of bibliometrics, our findings offer a deeper understanding of the role of AURKA in cancer and pave the way for innovative research directions and clinical applications.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Chunyu Tao
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Jiakai Yuan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Fan Pan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | - Rui Wang
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| |
Collapse
|
28
|
Carceles-Cordon M, Orme JJ, Domingo-Domenech J, Rodriguez-Bravo V. The yin and yang of chromosomal instability in prostate cancer. Nat Rev Urol 2024; 21:357-372. [PMID: 38307951 PMCID: PMC11156566 DOI: 10.1038/s41585-023-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
Metastatic prostate cancer remains an incurable lethal disease. Studies indicate that prostate cancer accumulates genomic changes during disease progression and displays the highest levels of chromosomal instability (CIN) across all types of metastatic tumours. CIN, which refers to ongoing chromosomal DNA gain or loss during mitosis, and derived aneuploidy, are known to be associated with increased tumour heterogeneity, metastasis and therapy resistance in many tumour types. Paradoxically, high CIN levels are also proposed to be detrimental to tumour cell survival, suggesting that cancer cells must develop adaptive mechanisms to ensure their survival. In the context of prostate cancer, studies indicate that CIN has a key role in disease progression and might also offer a therapeutic vulnerability that can be pharmacologically targeted. Thus, a comprehensive evaluation of the causes and consequences of CIN in prostate cancer, its contribution to aggressive advanced disease and a better understanding of the acquired CIN tolerance mechanisms can translate into new tumour classifications, biomarker development and therapeutic strategies.
Collapse
Affiliation(s)
| | - Jacob J Orme
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
29
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
30
|
Kunitomi C, Romero M, Daldello EM, Schindler K, Conti M. Multiple intersecting pathways are involved in CPEB1 phosphorylation and regulation of translation during mouse oocyte meiosis. Development 2024; 151:dev202712. [PMID: 38785133 PMCID: PMC11190569 DOI: 10.1242/dev.202712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in regulating mRNA translation in oocytes. However, the specifics of how and which protein kinase cascades modulate CPEB1 activity are still controversial. Using genetic and pharmacological tools, and detailed time courses, we have re-evaluated the relationship between CPEB1 phosphorylation and translation activation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on CPEB1 phosphorylation during prometaphase of meiosis I. Only inactivation of the CDK1/MAPK pathway disrupts translation, whereas inactivation of either pathway alone leads to CPEB1 stabilization. However, CPEB1 stabilization induced by inactivation of the AURKA/PLK1 pathway does not affect translation, indicating that destabilization and/or degradation is not linked to translational activation. The accumulation of endogenous CCNB1 protein closely recapitulates the translation data that use an exogenous template. These findings support the overarching hypothesis that the activation of translation during prometaphase in mouse oocytes relies on a CDK1/MAPK-dependent CPEB1 phosphorylation, and that translational activation precedes CPEB1 destabilization.
Collapse
Affiliation(s)
- Chisato Kunitomi
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Mayra Romero
- Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Karen Schindler
- Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Wang L, Yilmaz F, Yildirim O, Schölermann B, Bag S, Greiner L, Pahl A, Sievers S, Scheel R, Strohmann C, Squire C, Foley DJ, Ziegler S, Grigalunas M, Waldmann H. Discovery of a Novel Pseudo-Natural Product Aurora Kinase Inhibitor Chemotype through Morphological Profiling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309202. [PMID: 38569218 PMCID: PMC11151026 DOI: 10.1002/advs.202309202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/20/2024] [Indexed: 04/05/2024]
Abstract
The pseudo-natural product (pseudo-NP) concept aims to combine NP fragments in arrangements that are not accessible through known biosynthetic pathways. The resulting compounds retain the biological relevance of NPs but are not yet linked to bioactivities and may therefore be best evaluated by unbiased screening methods resulting in the identification of unexpected or unprecedented bioactivities. Herein, various NP fragments are combined with a tricyclic core connectivity via interrupted Fischer indole and indole dearomatization reactions to provide a collection of highly three-dimensional pseudo-NPs. Target hypothesis generation by morphological profiling via the cell painting assay guides the identification of an unprecedented chemotype for Aurora kinase inhibition with both its relatively highly 3D structure and its physicochemical properties being very different from known inhibitors. Biochemical and cell biological characterization indicate that the phenotype identified by the cell painting assay corresponds to the inhibition of Aurora kinase B.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Furkan Yilmaz
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTU Dortmund University44227DortmundGermany
| | - Okan Yildirim
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Beate Schölermann
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Sukdev Bag
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Luca Greiner
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Axel Pahl
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
- Compound Management and Screening Center (COMAS)44227DortmundGermany
| | - Sonja Sievers
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
- Compound Management and Screening Center (COMAS)44227DortmundGermany
| | - Rebecca Scheel
- Faculty of Chemistry and Inorganic ChemistryTU Dortmund University44227DortmundGermany
| | - Carsten Strohmann
- Faculty of Chemistry and Inorganic ChemistryTU Dortmund University44227DortmundGermany
| | - Christopher Squire
- School of Biological SciencesUniversity of Auckland1142AucklandNew Zealand
| | - Daniel J. Foley
- School of Physical and Chemical SciencesUniversity of Canterbury8041ChristchurchNew Zealand
| | - Slava Ziegler
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Michael Grigalunas
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
| | - Herbert Waldmann
- Department of Chemical BiologyMax Planck Institute of Molecular Physiology44227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTU Dortmund University44227DortmundGermany
| |
Collapse
|
32
|
Zhao X, Wang R, Zhang F, Luo F, Zhong T, Linghu A, Xiong L, Yang H, Fan Y. Synthesis and antitumor activities of novel 3-(6-aminopyridin-3-yl)benzamide derivatives: Inducing cell cycle arrest and apoptosis via AURKB transcription inhibition. Bioorg Chem 2024; 148:107450. [PMID: 38761704 DOI: 10.1016/j.bioorg.2024.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Here, a series of 3-(6-aminopyridin-3-yl) benzamide derivatives were designed and synthesized. Cell viability assay indicated that most compounds exhibited potent antiproliferative activity against all the tested cancer cells. Among them, compound 7l displayed the best antiproliferative activity particularly in A549 cells, with an IC50 value of 0.04 ± 0.01 μM. RNA-seq analysis was employed to explore the potential pathways related to the antiproliferative activity of compound 7l. The data revealed that 7l exerted antiproliferative activity mainly by regulating cell cycle, DNA replication and p53 signaling pathway. Indeed, compound 7l induced G2/M phase arrest by AURKB transcription inhibition and resulted in cell apoptosis via p53 signaling pathway. Most importantly, compound 7l demonstrated potent antitumor activity in A549 xenograft tumor model. Collectively, 7l might be a promising lead compound for the development of new therapeutic agents for AURKB overexpressed or mutated cancers.
Collapse
Affiliation(s)
- Xinran Zhao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Rongtao Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Feng Zhang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Fang Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ting Zhong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ailing Linghu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Liang Xiong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Huiyin Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China.
| |
Collapse
|
33
|
Okabe S, Moriyama M, Gotoh A. Combination of an aurora kinase inhibitor and the ABL tyrosine kinase inhibitor asciminib against ABL inhibitor-resistant CML cells. Med Oncol 2024; 41:142. [PMID: 38714583 PMCID: PMC11076330 DOI: 10.1007/s12032-024-02394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/24/2024] [Indexed: 05/10/2024]
Abstract
The development of BCR::ABL1-targeting tyrosine kinase inhibitors (TKIs) has improved the prognosis of patients with chronic myeloid leukemia (CML). However, resistance to ABL TKIs can develop in CML patients due to BCR::ABL1 point mutations and CML leukemia stem cell (LSC). Aurora kinases are essential kinases for cell division and regulate mitosis, especially the process of chromosomal segregation. Aurora kinase members also promote cancer cell survival and proliferation. This study analyzed whether aurora kinases were regulated in the progression of CML. It also evaluated the efficacy of the ABL TKI asciminib and the aurora kinase inhibitor LY3295668. The expressions of AURKA and AURKB were higher in the CML cells compared with normal cells using a public database (GSE100026). Asciminib or LY3295668 alone inhibited CML cells after 72 h, and cellular cytotoxicity was increased. The combined use of Asciminib and LY3295668 increased superior efficacy compared with either drug alone. Colony formation was reduced by cotreatment with asciminib and LY3295668. In the cell-cycle analyses, LY3295668 induced G2/M arrest. Cell populations in the sub-G1 phase were observed when cotreating with asciminib and LY3295668. The combination treatment also changed the mitochondrial membrane potential. In addition, AURKA shRNA transfectant cells had increased asciminib sensitivity. Combining asciminib and aurora kinase inhibition enhanced the efficacy and is proposed as a new therapeutic option for patients with CML. These findings have clinical implications for a potential novel therapeutic strategy for CML patients.
Collapse
MESH Headings
- Humans
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Aurora Kinase A/antagonists & inhibitors
- Aurora Kinase B/antagonists & inhibitors
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm/drug effects
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Niacinamide/analogs & derivatives
- Pyrazoles
- Tyrosine Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Seiichi Okabe
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.
| | - Mitsuru Moriyama
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| |
Collapse
|
34
|
Chung CY, Li SM, Zeng WZ, Uramaru N, Huang GJ, Juang SH, Wong FF. Synthesis, design, and antiproliferative evaluation of 6-(N-Substituted-methyl)pyrazolo[3,4-d]pyrimidines as the potent anti-leukemia agents. Bioorg Chem 2024; 148:107424. [PMID: 38728908 DOI: 10.1016/j.bioorg.2024.107424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Pyrazolopyrimidine derivatives, including pyrazolopyrimidines, 6-aminopyrazolopyrimidines, 6-[(formyloxy)methyl]pyrazolopyrimidines, 6-(hydroxymethyl)pyrazolopyrimidine, and 6-(aminomethyl)pyrazolopyrimidines have been successfully prepared and tested against NCI-H226, NPC-TW01, and Jurkat cancer cell lines. Among the tested pyrazolopyrimidine compounds, we found 6-aminopyrazolopyrimidines and 6-(aminomethyl)pyrazolopyrimidines with essential o-ClPh or p-ClPh substituted moieties on N-1 pyrazole ring exhibited the best IC50 inhibition activity for Jurkat cells. Furthermore, optimization of the SAR study on the C-6 position of pyrazolopyrimidine ring demonstrated that 6-(N-substituted-methyl)pyrazolopyrimidines 17b, 17d, and 19d possessed the significant IC50 inhibitory activity for the different leukemia cell lines, especially for Jurkat, K-562, and HL-60. On the other hand, further SAR inhibition and docking model studies revealed that compound 19d, which has a 3-(1H-imidazol-1-yl)propan-1-amino side-chain on the C-6 position, was able to form four hydrogen bonds with residues Ala226, Leu152, and Glu194 and specifically extended into the P1 pocket subsite with Aurora A, resulting in improved inhibitory activity almost similar to SNS-314. To explore the anti-cancer mechanism, compound 19d was measured by Western blot analysis in Jurkat T-cells, however, it showed non-responsibility to Aurora B. For the further structural modifications on the lateral chain of compound 19d, compounds 24 with longer lateral chain were designed and synthesized for testing leukemia cell lines. However, compounds 24 was significantly decrease inhibition potency against leukemia cell lines. Based on the in-vitro results, compounds 17b and 19d could be considered to be the best potential lead drug in our study for the development of new and effective therapies for leukemia treatment. On the other hand, the DHFR inhibition results indicated compound 19d possessed good inhibitory activity and better than the reported naphthalene derivative. Through further comparisons of the model superposition of three-dimensional (3D) conformations in DHFR, compound 19d presented a similar structural alignment to Methotrexate and the reported naphthalene derivative and led to similar drug-like functional relationships. As a results, compound 19d would be a potential DHFR inhibitor for anti-leukemia drug candidate.
Collapse
Affiliation(s)
- Cheng-Yen Chung
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, No. 91 Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - Sin-Min Li
- Institute of Translation Medicine and New Drug Development, China Medical University, No. 91 Hsueh-Shih Rd., Taichung 40402, Taiwan
| | - Wei-Zheng Zeng
- Institute of Nutrition, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung 406040, Taiwan
| | - Naoto Uramaru
- Department of Environmental Science, Nihon Pharmaceutical University, Komuro Inamachi Kita-adachi-gun, Saitama-ken 10281, Japan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, No. 91 Hsueh-Shih Rd., Taichung 40402, Taiwan; Department of Food Nutrition and Healthy Biotechnology, Asia University, No. 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Shin-Hun Juang
- School of Pharmacy, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung 406040, Taiwan
| | - Fung Fuh Wong
- School of Pharmacy, China Medical University, No. 100, Jingmao 1st Rd., Beitun Dist., Taichung 406040, Taiwan.
| |
Collapse
|
35
|
Andrade AAR, Pauli F, Pressete CG, Zavan B, Hanemann JAC, Miyazawa M, Fonseca R, Caixeta ES, Nacif JLM, Aissa AF, Barreiro EJ, Ionta M. Antiproliferative Activity of N-Acylhydrazone Derivative on Hepatocellular Carcinoma Cells Involves Transcriptional Regulation of Genes Required for G2/M Transition. Biomedicines 2024; 12:892. [PMID: 38672246 PMCID: PMC11048582 DOI: 10.3390/biomedicines12040892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Liver cancer is the second leading cause of cancer-related death in males. It is estimated that approximately one million deaths will occur by 2030 due to hepatic cancer. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer subtype and is commonly diagnosed at an advanced stage. The drug arsenal used in systemic therapy for HCC is very limited. Multikinase inhibitors sorafenib (Nexavar®) and lenvatinib (Lenvima®) have been used as first-line drugs with modest therapeutic effects. In this scenario, it is imperative to search for new therapeutic strategies for HCC. Herein, the antiproliferative activity of N-acylhydrazone derivatives was evaluated on HCC cells (HepG2 and Hep3B), which were chemically planned on the ALL-993 scaffold, a potent inhibitor of vascular endothelial growth factor 2 (VEGFR2). The substances efficiently reduced the viability of HCC cells, and the LASSBio-2052 derivative was the most effective. Further, we demonstrated that LASSBio-2052 treatment induced FOXM1 downregulation, which compromises the transcriptional activation of genes required for G2/M transition, such as AURKA and AURKB, PLK1, and CDK1. In addition, LASSBio-2052 significantly reduced CCNB1 and CCND1 expression in HCC cells. Our findings indicate that LASSBio-2052 is a promising prototype for further in vivo studies.
Collapse
Affiliation(s)
| | - Fernanda Pauli
- Institute of Chemistry, Fluminense Federal University, Niterói 24020-140, RJ, Brazil
| | - Carolina Girotto Pressete
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | | | - Marta Miyazawa
- School of Dentistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | | | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| | - Eliezer J. Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil (A.F.A.)
| |
Collapse
|
36
|
Mosca L, Pagano C, Tranchese RV, Grillo R, Cadoni F, Navarra G, Coppola L, Pagano M, Mele L, Cacciapuoti G, Laezza C, Porcelli M. Antitumoral Activity of the Universal Methyl Donor S-Adenosylmethionine in Glioblastoma Cells. Molecules 2024; 29:1708. [PMID: 38675528 PMCID: PMC11052366 DOI: 10.3390/molecules29081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways. We report here for the first time that AdoMet selectively inhibited the viability and proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1. Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis, and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be considered a potential adjuvant in GBM therapy.
Collapse
Affiliation(s)
- Laura Mosca
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (C.P.); (G.N.); (L.C.)
| | - Roberta Veglia Tranchese
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Roberta Grillo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Francesca Cadoni
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (C.P.); (G.N.); (L.C.)
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (C.P.); (G.N.); (L.C.)
| | - Martina Pagano
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Luciano Armanni 5, 80138 Naples, Italy;
| | - Giovanna Cacciapuoti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Via Pansini 5, 80131 Naples, Italy;
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio 7, 80138 Naples, Italy; (L.M.); (R.V.T.); (R.G.); (F.C.); (M.P.); (M.P.)
| |
Collapse
|
37
|
Singh IA, Lokhande KB, Swamy KV. Exploring the anticancer potential of fluoro flavone analogues: insights from molecular docking and dynamics studies with Aurora Kinase B. In Silico Pharmacol 2024; 12:26. [PMID: 38596365 PMCID: PMC10999403 DOI: 10.1007/s40203-024-00200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
Aurora Kinase B belongs to the serine kinase family. It plays an essential role in cell division and participates in mitosis and chromatid segregation. Overexpression, polymorphism, and splicing variants in the protein lead to tumorigenesis, leading to cancer. Flavones belong to the class of flavonoids and are derived from plants and show anti-cancer activities. Fluoro flavones and their analogs are taken from the PubChem database, resulting in 3882 compounds which is 90% similar to the fluoro flavones. Lipinski's rule of five, REOS and PAINS drug-like filters were applied which resulted 2448 compounds. These compounds are docked with Aurora Kinase B using SP and XP modules of Glide software. The best binding scores for SP docking were - 9.153 kcal/mol for the compound with CID: 44298667, and XP docking was - 10.287 kcal/mol with CID: 101664315. Enrichment calculations were done using Aurora Kinase B's decoys to validate the docking result. The resulting R2 = 0.96 from enrichment calculations suggests that the docking protocol is valid. The SP and XP docking lead compounds and the Fluoro flavone were subjected to 100 ns MD simulation to probe the protein-ligand complex stability. Also, the binding free energies between the Aurora kinase B and lead compounds were computed by Prime MM/GBSA module. The result suggests that the lead compounds bind more strongly with Aurora Kinase B than the Fluoro flavone. These lead compounds can be further evaluated in vitro and in vivo and can be used as future novel drugs for the curation of cancer. Graphical abstract
Collapse
Affiliation(s)
- Ipsa A. Singh
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
- Present Address: Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, UP India
| | - K. Venkateswara Swamy
- Drug Discovery Group, MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, 412201 India
| |
Collapse
|
38
|
Athwal H, Kochiyanil A, Bhat V, Allan AL, Parsyan A. Centrosomes and associated proteins in pathogenesis and treatment of breast cancer. Front Oncol 2024; 14:1370565. [PMID: 38606093 PMCID: PMC11007099 DOI: 10.3389/fonc.2024.1370565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Breast cancer is the most prevalent malignancy among women worldwide. Despite significant advances in treatment, it remains one of the leading causes of female mortality. The inability to effectively treat advanced and/or treatment-resistant breast cancer demonstrates the need to develop novel treatment strategies and targeted therapies. Centrosomes and their associated proteins have been shown to play key roles in the pathogenesis of breast cancer and thus represent promising targets for drug and biomarker development. Centrosomes are fundamental cellular structures in the mammalian cell that are responsible for error-free execution of cell division. Centrosome amplification and aberrant expression of its associated proteins such as Polo-like kinases (PLKs), Aurora kinases (AURKs) and Cyclin-dependent kinases (CDKs) have been observed in various cancers, including breast cancer. These aberrations in breast cancer are thought to cause improper chromosomal segregation during mitosis, leading to chromosomal instability and uncontrolled cell division, allowing cancer cells to acquire new genetic changes that result in evasion of cell death and the promotion of tumor formation. Various chemical compounds developed against PLKs and AURKs have shown meaningful antitumorigenic effects in breast cancer cells in vitro and in vivo. The mechanism of action of these inhibitors is likely related to exacerbation of numerical genomic instability, such as aneuploidy or polyploidy. Furthermore, growing evidence demonstrates enhanced antitumorigenic effects when inhibitors specific to centrosome-associated proteins are used in combination with either radiation or chemotherapy drugs in breast cancer. This review focuses on the current knowledge regarding the roles of centrosome and centrosome-associated proteins in breast cancer pathogenesis and their utility as novel targets for breast cancer treatment.
Collapse
Affiliation(s)
- Harjot Athwal
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Arpitha Kochiyanil
- Faculty of Science, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Vasudeva Bhat
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
| | - Alison L. Allan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Armen Parsyan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Division of General Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Surgery, St. Joseph’s Health Care London and London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
39
|
Lee H, Kim E, Hwang N, Yoo J, Nam Y, Hwang I, Park JG, Park SE, Chung KS, Won Chung H, Song C, Ji MJ, Park HM, Lee IK, Lee KT, Joo Roh E, Hur W. Discovery of N-benzylbenzamide-based allosteric inhibitors of Aurora kinase A. Bioorg Med Chem 2024; 102:117658. [PMID: 38460487 DOI: 10.1016/j.bmc.2024.117658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Aurora kinases (AurkA/B/C) regulate the assembly of bipolar mitotic spindles and the fidelity of chromosome segregation during mitosis, and are attractive therapeutic targets for cancers. Numerous ATP-competitive AurkA inhibitors have been developed as potential anti-cancer agents. Recently, a few allosteric inhibitors have been reported that bind to the allosteric Y-pocket within AurkA kinase domain and disrupt the interaction between AurkA and its activator TPX2. Herein we report a novel allosteric AurkA inhibitor (6h) of N-benzylbenzamide backbone. Compound 6h suppressed the both catalytic activity and non-catalytic functions of AurkA. The inhibitory activity of 6h against AurkA (IC50 = 6.50 μM) was comparable to that of the most potent allosteric AurkA inhibitor AurkinA. Docking analysis against the Y-pocket revealed important pharmacophores and interactions that were coherent with structure-activity relationship. In addition, 6h suppressed DNA replication in G1-S phase, which is a feature of allosteric inhibition of AurA. Our current study may provide a useful insight in designing potent allosteric AurkA inhibitors.
Collapse
Affiliation(s)
- Hyomin Lee
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Biomedical Science and Technology, UST KIST School, Seoul 02792, Republic of Korea
| | - Euijung Kim
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Narae Hwang
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jesik Yoo
- Division of Biomedical Science and Technology, UST KIST School, Seoul 02792, Republic of Korea; Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yunju Nam
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Injeoung Hwang
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; HY-KIST Bioconvergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Gyeong Park
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Eun Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hwan Won Chung
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Chiman Song
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Mi-Jung Ji
- Advanced Analysis Data Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyun-Mee Park
- Advanced Analysis Data Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - In-Kyun Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun Joo Roh
- Division of Biomedical Science and Technology, UST KIST School, Seoul 02792, Republic of Korea; Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Wooyoung Hur
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; HY-KIST Bioconvergence, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
40
|
Lakkaniga NR, Wang Z, Xiao Y, Kharbanda A, Lan L, Li HY. Revisiting Aurora Kinase B: A promising therapeutic target for cancer therapy. Med Res Rev 2024; 44:686-706. [PMID: 37983866 DOI: 10.1002/med.21994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/28/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Cancer continues to be a major health concern globally, although the advent of targeted therapy has revolutionized treatment options. Aurora Kinase B is a serine-threonine kinase that has been explored as an oncology therapeutic target for more than two decades. Aurora Kinase B inhibitors show promising biological results in in-vitro and in-vivo experiments. However, there are no inhibitors approved yet for clinical use, primarily because of the side effects associated with Aurora B inhibitors. Several studies demonstrate that Aurora B inhibitors show excellent synergy with various chemotherapeutic agents, radiation therapy, and targeted therapies. This makes it an excellent choice as an adjuvant therapy to first-line therapies, which greatly improves the therapeutic window and side effect profile. Recent studies indicate the role of Aurora B in some deadly cancers with limited therapeutic options, like triple-negative breast cancer and glioblastoma. Herein, we review the latest developments in Aurora Kinase B targeted research, with emphasis on its potential as an adjuvant therapy and its role in some of the most difficult-to-treat cancers.
Collapse
Affiliation(s)
- Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Zhengyu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Yao Xiao
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Anupreet Kharbanda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
41
|
Espinosa-Martínez M, Alcázar-Fabra M, Landeira D. The molecular basis of cell memory in mammals: The epigenetic cycle. SCIENCE ADVANCES 2024; 10:eadl3188. [PMID: 38416817 PMCID: PMC10901381 DOI: 10.1126/sciadv.adl3188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Cell memory refers to the capacity of cells to maintain their gene expression program once the initiating environmental signal has ceased. This exceptional feature is key during the formation of mammalian organisms, and it is believed to be in part mediated by epigenetic factors that can endorse cells with the landmarks required to maintain transcriptional programs upon cell duplication. Here, we review current literature analyzing the molecular basis of epigenetic memory in mammals, with a focus on the mechanisms by which transcriptionally repressive chromatin modifications such as methylation of DNA and histone H3 are propagated through mitotic cell divisions. The emerging picture suggests that cellular memory is supported by an epigenetic cycle in which reversible activities carried out by epigenetic regulators in coordination with cell cycle transition create a multiphasic system that can accommodate both maintenance of cell identity and cell differentiation in proliferating stem cell populations.
Collapse
Affiliation(s)
- Mencía Espinosa-Martínez
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - María Alcázar-Fabra
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Landeira
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
42
|
Jin J, Hou S, Yao Y, Liu M, Mao L, Yang M, Tong H, Zeng T, Huang J, Zhu Y, Wang H. Phosphoproteomic Characterization and Kinase Signature Predict Response to Venetoclax Plus 3+7 Chemotherapy in Acute Myeloid Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305885. [PMID: 38161214 PMCID: PMC10953567 DOI: 10.1002/advs.202305885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Resistance to chemotherapy remains a formidable obstacle in acute myeloid leukemia (AML) therapeutic management, necessitating the exploration of optimal strategies to maximize therapeutic benefits. Venetoclax with 3+7 daunorubicin and cytarabine (DAV regimen) in young adult de novo AML patients is evaluated. 90% of treated patients achieved complete remission, underscoring the potential of this regimen as a compelling therapeutic intervention. To elucidate underlying mechanisms governing response to DAV in AML, quantitative phosphoproteomics to discern distinct molecular signatures characterizing a subset of DAV-sensitive patients is used. Cluster analysis reveals an enrichment of phosphoproteins implicated in chromatin organization and RNA processing within DAV-susceptible and DA-resistant AML patients. Furthermore, kinase activity profiling identifies AURKB as a candidate indicator of DAV regimen efficacy in DA-resistant AML due to AURKB activation. Intriguingly, AML cells overexpressing AURKB exhibit attenuated MCL-1 expression, rendering them receptive to DAV treatment and maintaining them resistant to DA treatment. Moreover, the dataset delineates a shared kinase, AKT1, associated with DAV response. Notably, AKT1 inhibition augments the antileukemic efficacy of DAV treatment in AML. Overall, this phosphoproteomic study identifies the role of AURKB as a predictive biomarker for DA, but not DAV, resistance and proposes a promising strategy to counteract therapy resistance in AML.
Collapse
Affiliation(s)
- Jie Jin
- Department of Hematologythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Lab of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangP. R. China
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouChina
- Zhejiang University Cancer CenterHangzhouZhejiangP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanP. R. China
| | - Shangyu Hou
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092P.R. China
| | - Yiyi Yao
- Department of Hematologythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Lab of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangP. R. China
| | - Miaomiao Liu
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092P.R. China
| | - Liping Mao
- Department of Hematologythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Lab of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangP. R. China
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouChina
| | - Min Yang
- Department of Hematologythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Lab of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangP. R. China
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouChina
| | - Hongyan Tong
- Department of Hematologythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Lab of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangP. R. China
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouChina
- Zhejiang University Cancer CenterHangzhouZhejiangP. R. China
| | - Tao Zeng
- Biomedical big data centerthe First Affiliated HospitalZhejiang University School of MedicineHangzhou, Zhejiang310003P.R. China
| | - Jinyan Huang
- Biomedical big data centerthe First Affiliated HospitalZhejiang University School of MedicineHangzhou, Zhejiang310003P.R. China
| | - Yinghui Zhu
- Research Center for Translational MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200092P.R. China
- Frontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchTongji UniversityShanghai200092P.R. China
| | - Huafeng Wang
- Department of Hematologythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Lab of Hematopoietic MalignancyZhejiang UniversityHangzhouZhejiangP. R. China
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouChina
- Zhejiang University Cancer CenterHangzhouZhejiangP. R. China
| |
Collapse
|
43
|
Duan L, Maki CG. Determinants of Aurora kinase B inhibitor sensitivity in small cell lung cancer. Transl Lung Cancer Res 2024; 13:223-228. [PMID: 38496702 PMCID: PMC10938090 DOI: 10.21037/tlcr-23-732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Affiliation(s)
- Lei Duan
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Carl G Maki
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
44
|
Lv S, Yang J, Lin J, Huang X, Zhao H, Zhao C, Yang L. CDK4/6 inhibitors in lung cancer: current practice and future directions. Eur Respir Rev 2024; 33:230145. [PMID: 38355149 PMCID: PMC10865100 DOI: 10.1183/16000617.0145-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/11/2023] [Indexed: 02/16/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and ∼85% of lung cancers are classified as nonsmall cell lung cancer (NSCLC). These malignancies can proliferate indefinitely, in part due to dysregulation of the cell cycle and the resulting abnormal cell growth. The specific activation of cyclin-dependent kinases 4 and 6 (CDK4/6) is closely linked to tumour proliferation. Approximately 80% of human tumours exhibit abnormalities in the cyclin D-CDK4/6-INK4-RB pathway. Specifically, CDK4/6 inhibitors either as monotherapy or combination therapy have been investigated in pre-clinical and clinical studies for the treatment of NSCLC, and promising results have been achieved. This review article focuses on research regarding the use of CDK4/6 inhibitors in NSCLC, including the characteristics and mechanisms of action of approved drugs and progress of pre-clinical and clinical research.
Collapse
Affiliation(s)
- Shuoshuo Lv
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jie Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengguang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
Yang SJ, Chang ST, Chang KC, Lin BW, Chang KY, Liu YW, Lai MD, Hung LY. Neutralizing IL-16 enhances the efficacy of targeting Aurora-A therapy in colorectal cancer with high lymphocyte infiltration through restoring anti-tumor immunity. Cell Death Dis 2024; 15:103. [PMID: 38291041 PMCID: PMC10828506 DOI: 10.1038/s41419-023-06381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 02/01/2024]
Abstract
Cancer cells can evade immune elimination by activating immunosuppressive signaling pathways in the tumor microenvironment (TME). Targeting immunosuppressive signaling pathways to promote antitumor immunity has become an attractive strategy for cancer therapy. Aurora-A is a well-known oncoprotein that plays a critical role in tumor progression, and its inhibition is considered a promising strategy for treating cancers. However, targeting Aurora-A has not yet got a breakthrough in clinical trials. Recent reports have indicated that inhibition of oncoproteins may reduce antitumor immunity, but the role of tumor-intrinsic Aurora-A in regulating antitumor immunity remains unclear. In this study, we demonstrated that in tumors with high lymphocyte infiltration (hot tumors), higher tumor-intrinsic Aurora-A expression is associated with a better prognosis in CRC patients. Mechanically, tumor-intrinsic Aurora-A promotes the cytotoxic activity of CD8+ T cells in immune hot CRC via negatively regulating interleukin-16 (IL-16), and the upregulation of IL-16 may impair the therapeutic effect of Aurora-A inhibition. Consequently, combination treatment with IL-16 neutralization improves the therapeutic response to Aurora-A inhibitors in immune hot CRC tumors. Our study provides evidence that tumor-intrinsic Aurora-A contributes to anti-tumor immunity depending on the status of lymphocyte infiltration, highlighting the importance of considering this aspect in cancer therapy targeting Aurora-A. Importantly, our results suggest that combining Aurora-A inhibitors with IL-16-neutralizing antibodies may represent a novel and effective approach for cancer therapy, particularly in tumors with high levels of lymphocyte infiltration.
Collapse
Affiliation(s)
- Shiang-Jie Yang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Sheng-Tsung Chang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
- Department of Pathology, Chi-Mei Medical Center, Tainan, 71004, Taiwan, ROC
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Bo-Wen Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Kwang-Yu Chang
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 70456, Taiwan, ROC
| | - Yao-Wen Liu
- Department of Pathology, Kuo General Hospital, Tainan, 70054, Taiwan, ROC
| | - Ming-Derg Lai
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Liang-Yi Hung
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, ROC.
| |
Collapse
|
46
|
Kunitomi C, Romero M, Daldello EM, Schindler K, Conti M. Multiple intersecting pathways are involved in the phosphorylation of CPEB1 to activate translation during mouse oocyte meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.575938. [PMID: 38293116 PMCID: PMC10827138 DOI: 10.1101/2024.01.17.575938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in the regulation of mRNA translation in oocytes. However, the nature of protein kinase cascades modulating the activity of CPEB1 is still a matter of controversy. Using genetic and pharmacological tools and detailed time courses, here we have reevaluated the relationship between CPEB1 phosphorylation and the activation of translation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on the phosphorylation of CPEB1 during prometaphase. Only inactivation of the CDK1/MAPK pathway disrupts translation, while inactivation of either pathway leads to CPEB1 stabilization. However, stabilization of CPEB1 induced by inactivation of the AURKA/PLK1 does not affect translation, indicating that destabilization/degradation can be dissociated from translational activation. The accumulation of the endogenous CCNB1 protein closely recapitulates the translation data. These findings support the overarching hypothesis that the activation of translation in prometaphase in mouse oocytes relies on a CDK1-dependent CPEB1 phosphorylation, and this translational activation precedes CPEB1 destabilization.
Collapse
Affiliation(s)
- Chisato Kunitomi
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Mayra Romero
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Human Genetics Institute of New Jersey
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Karen Schindler
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Human Genetics Institute of New Jersey
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
47
|
Zhang B, Ayra-Pardo C, Liu X, Song M, Li D, Kan Y. siRNA-Mediated BmAurora B Depletion Impedes the Formation of Holocentric Square Spindles in Silkworm Metaphase BmN4 Cells. INSECTS 2024; 15:72. [PMID: 38276821 PMCID: PMC10817069 DOI: 10.3390/insects15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Silkworm ovary-derived BmN4 cells rely on chromatin-induced spindle assembly to form microtubule-based square mitotic spindles that ensure accurate segregation of holocentric chromosomes during cell division. The chromosome passenger protein Aurora B regulates chromosomal condensation and segregation, spindle assembly checkpoint activation, and cytokinesis; however, its role in holocentric organisms needs further clarification. This study examined the architecture and dynamics of spindle microtubules during prophase and metaphase in BmN4 cells and those with siRNA-mediated BmAurora B knockdown using immunofluorescence labeling. Anti-α-tubulin and anti-γ-tubulin antibodies revealed faint γ-tubulin signals colocalized with α-tubulin in early prophase during nuclear membrane rupture, which intensified as prophase progressed. At this stage, bright regions of α-tubulin around and on the nuclear membrane surrounding the chromatin suggested the start of microtubules assembling in the microtubule-organizing centers (MTOCs). In metaphase, fewer but larger γ-tubulin foci were detected on both sides of the chromosomes. This resulted in a distinctive multipolar square spindle with holocentric chromosomes aligned at the metaphase plate. siRNA-mediated BmAurora B knockdown significantly reduced the γ-tubulin foci during prophase, impacting microtubule nucleation and spindle structure in metaphase. Spatiotemporal BmAurora B expression analysis provided new insights into the regulation of this mitotic kinase in silkworm larval gonads during gametogenesis. Our results suggest that BmAurora B is crucial for the formation of multipolar square spindles in holocentric insects, possibly through the activation of γ-tubulin ring complexes in multiple centrosome-like MTOCs.
Collapse
Affiliation(s)
- Bing Zhang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
| | - Camilo Ayra-Pardo
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, Avda. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal;
| | - Xiaoning Liu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
| | - Meiting Song
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
| | - Dandan Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China; (X.L.); (M.S.); (D.L.)
- School of Life Science and Technology, Henan Institute of Science and Technology, 90 East of Hualan Avenue, Xinxiang 453003, China
| |
Collapse
|
48
|
Tai Y, Shang J. Wnt/β-catenin signaling pathway in the tumor progression of adrenocortical carcinoma. Front Endocrinol (Lausanne) 2024; 14:1260701. [PMID: 38269250 PMCID: PMC10806569 DOI: 10.3389/fendo.2023.1260701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Adrenocortical carcinoma (ACC) is an uncommon, aggressive endocrine malignancy with a high rate of recurrence, a poor prognosis, and a propensity for metastasis. Currently, only mitotane has received certification from both the US Food and Drug Administration (FDA) and the European Medicines Agency for the therapy of advanced ACC. However, treatment in the advanced periods of the disorders is ineffective and has serious adverse consequences. Completely surgical excision is the only cure but has failed to effectively improve the survival of advanced patients. The aberrantly activated Wnt/β-catenin pathway is one of the catalysts for adrenocortical carcinogenesis. Research has concentrated on identifying methods that can prevent the stimulation of the Wnt/β-catenin pathway and are safe and advantageous for patients in view of the absence of effective treatments and the frequent alteration of the Wnt/β-catenin pathway in ACC. Comprehending the complex connection between the development of ACC and Wnt/β-catenin signaling is essential for accurate pharmacological targets. In this review, we summarize the potential targets between adrenocortical carcinoma and the Wnt/β-catenin signaling pathway. We analyze the relevant targets of drugs or inhibitors that act on the Wnt pathway. Finally, we provide new insights into how drugs or inhibitors may improve the treatment of ACC.
Collapse
Affiliation(s)
- Yanghao Tai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiwen Shang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Ambulatory Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
49
|
Kim MS, Lee YH, Lee Y, Byeon E, Kim DH, Wang M, Hagiwara A, Aranda M, Wu RSS, Park HG, Lee JS. Transgenerational adaptation to ocean acidification determines the susceptibility of filter-feeding rotifers to nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132593. [PMID: 37776776 DOI: 10.1016/j.jhazmat.2023.132593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
The adaptation of marine organisms to the impending challenges presented by ocean acidification (OA) is essential for their future survival, and mechanisms underlying OA adaptation have been reported in several marine organisms. In the natural environment, however, marine organisms are often exposed to a combination of environmental stressors, and the interactions between adaptive responses have yet to be elucidated. Here, we investigated the susceptibility of filter-feeding rotifers to short-term (ST) and long-term (LT) (≥180 generations) high CO2 conditions coupled with nanoplastic (NPs) exposure (ST+ and LT+). Adaptation of rotifers to elevated CO2 caused differences in ingestion and accumulation of NPs, resulting in a significantly different mode of action on in vivo endpoints between the ST+ and LT+ groups. Moreover, microRNA-mediated epigenetic regulation was strongly correlated with the varied adaptive responses between the ST+ and LT+ groups, revealing novel regulatory targets and pathways. Our results indicate that pre-exposure history to increased CO2 levels is an important factor in the susceptibility of rotifers to NPs.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Manuel Aranda
- Marine Science Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rudolf Shiu Sun Wu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative region of China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of China
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
50
|
Duncan CL, Gunosewoyo H, Mocerino M, Payne AD. Small Molecule Inhibitors of Human Papillomavirus: A Review of Research from 1997 to 2021. Curr Med Chem 2024; 31:5308-5350. [PMID: 37448363 DOI: 10.2174/0929867331666230713165407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Human papillomavirus (HPV) infections are the cause of warts, lesions and cancer, with different types of HPV causing different symptoms. HPV infections are the primary cause of cervical cancer. There are over 220 different types of HPV, and only nine of these can currently be vaccinated. There is a need to treat these viral infections without just treating the symptoms of the infection, as is currently the main method. There is a wide range of small molecules that have been used to inhibit various stages of the HPV infectious cycle. This review examined 132 small molecules from 121 studies that specifically target aspects of HPV infections. HPV DNA encodes for six early genes (E1 to E7, skipping E3) and two late genes (L1 and L2). According to the results, these targets for small molecule inhibitors fall into three categories: those targeting E1 and E2, targeting E6 and E7 and, finally, targeting L1 and L2. Inhibitors of E6 and E7 are the most widely studied targets, with the majority of HPV inhibition in this area. While compounds targeting both E1/E2 and E6/E7 have made it to clinical trials, there has been no significant advancement on the topic.
Collapse
Affiliation(s)
- Caitlin L Duncan
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Mauro Mocerino
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| |
Collapse
|