1
|
Bustillo JPO, Paino J, Barnes M, Cayley J, de Rover V, Cameron M, Engels EEM, Tehei M, Beirne S, Wallace GG, Rosenfeld AB, Lerch MLF. Design, construction, and dosimetry of 3D printed heterogeneous phantoms for synchrotron brain cancer radiation therapy quality assurance. Phys Med Biol 2024; 69:145003. [PMID: 38914107 DOI: 10.1088/1361-6560/ad5b48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
Objective.This study aims to design, manufacture, and test 3D printed quality assurance (QA) dosimetry phantoms for synchrotron brain cancer radiation therapy at the Australian synchrotron.Approach.Fabricated 3D printed phantoms from simple slab phantoms, a preclinical rat phantom, and an anthropomorphic head phantom were fabricated and characterized. Attenuation measurements of various polymers, ceramics and metals were acquired using synchrotron monochromatic micro-computed tomography (CT) imaging. Polylactic acid plus, VeroClear, Durable resin, and tricalcium phosphate were used in constructing the phantoms. Furthermore, 3D printed bone equivalent materials were compared relative to ICRU bone and hemihydrate plaster. Homogeneous and heterogeneous rat phantoms were designed and fabricated using tissue-equivalent materials. Geometric accuracy, CT imaging, and consistency were considered. Moreover, synchrotron broad-beam x-rays were delivered using a 3 Tesla superconducting multipole wiggler field for four sets of synchrotron radiation beam qualities. Dose measurements were acquired using a PinPoint ionization chamber and compared relative to a water phantom and a RMI457 Solid Water phantom. Experimental depth doses were compared relative to calculated doses using a Geant4 Monte Carlo simulation.Main results.Polylactic acid (PLA+) shows to have a good match with the attenuation coefficient of ICRU water, while both tricalcium phosphate and hydroxyapatite have good attenuation similarity with ICRU bone cortical. PLA+ material can be used as substitute to RMI457 slabs for reference dosimetry with a maximum difference of 1.84%. Percent depth dose measurement also shows that PLA+ has the best match with water and RMI457 within ±2.2% and ±1.6%, respectively. Overall, PLA+ phantoms match with RMI457 phantoms within ±3%.Significance and conclusion.The fabricated phantoms are excellent tissue equivalent equipment for synchrotron radiation dosimetry QA measurement. Both the rat and the anthropomorphic head phantoms are useful in synchrotron brain cancer radiotherapy dosimetry, experiments, and future clinical translation of synchrotron radiotherapy and imaging.
Collapse
Affiliation(s)
- John Paul O Bustillo
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila City 1000 Metro Manila, The Philippines
| | - Jason Paino
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Micah Barnes
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - James Cayley
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Vincent de Rover
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Matthew Cameron
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - Elette E M Engels
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - Moeava Tehei
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Stephen Beirne
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| |
Collapse
|
2
|
Carlier B, Heymans SV, Nooijens S, Collado-Lara G, Toumia Y, Delombaerde L, Paradossi G, D’hooge J, Van Den Abeele K, Sterpin E, Himmelreich U. A Preliminary Investigation of Radiation-Sensitive Ultrasound Contrast Agents for Photon Dosimetry. Pharmaceuticals (Basel) 2024; 17:629. [PMID: 38794199 PMCID: PMC11125270 DOI: 10.3390/ph17050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Radiotherapy treatment plans have become highly conformal, posing additional constraints on the accuracy of treatment delivery. Here, we explore the use of radiation-sensitive ultrasound contrast agents (superheated phase-change nanodroplets) as dosimetric radiation sensors. In a series of experiments, we irradiated perfluorobutane nanodroplets dispersed in gel phantoms at various temperatures and assessed the radiation-induced nanodroplet vaporization events using offline or online ultrasound imaging. At 25 °C and 37 °C, the nanodroplet response was only present at higher photon energies (≥10 MV) and limited to <2 vaporization events per cm2 per Gy. A strong response (~2000 vaporizations per cm2 per Gy) was observed at 65 °C, suggesting radiation-induced nucleation of the droplet core at a sufficiently high degree of superheat. These results emphasize the need for alternative nanodroplet formulations, with a more volatile perfluorocarbon core, to enable in vivo photon dosimetry. The current nanodroplet formulation carries potential as an innovative gel dosimeter if an appropriate gel matrix can be found to ensure reproducibility. Eventually, the proposed technology might unlock unprecedented temporal and spatial resolution in image-based dosimetry, thanks to the combination of high-frame-rate ultrasound imaging and the detection of individual vaporization events, thereby addressing some of the burning challenges of new radiotherapy innovations.
Collapse
Affiliation(s)
- Bram Carlier
- Department of Oncology, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (B.C.); (L.D.); (E.S.)
- Department of Imaging and Pathology, KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Sophie V. Heymans
- Department of Physics, KU Leuven Campus Kortrijk—KULAK, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium; (S.V.H.); (K.V.D.A.)
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (S.N.); (J.D.)
| | - Sjoerd Nooijens
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (S.N.); (J.D.)
| | - Gonzalo Collado-Lara
- Department of Cardiology, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Yosra Toumia
- National Institute for Nuclear Physics, INFN Sezione di Roma Tor Vergata, 00133 Rome, Italy;
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Laurence Delombaerde
- Department of Oncology, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (B.C.); (L.D.); (E.S.)
- Department of Radiotherapy, UH Leuven, 3000 Leuven, Belgium
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Jan D’hooge
- Department of Cardiovascular Sciences, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (S.N.); (J.D.)
| | - Koen Van Den Abeele
- Department of Physics, KU Leuven Campus Kortrijk—KULAK, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium; (S.V.H.); (K.V.D.A.)
| | - Edmond Sterpin
- Department of Oncology, KU Leuven-University of Leuven, 3000 Leuven, Belgium; (B.C.); (L.D.); (E.S.)
- Particle Therapy Interuniversity Center Leuven—PARTICLE, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Department of Imaging and Pathology, KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Clausen M, Ruangchan S, Sotoudegan A, Resch AF, Knäusl B, Palmans H, Georg D. Small field proton irradiation for in vivo studies: Potential and limitations when adapting clinical infrastructure. Z Med Phys 2023; 33:542-551. [PMID: 36357294 PMCID: PMC10751703 DOI: 10.1016/j.zemedi.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To evaluate the dosimetric accuracy for small field proton irradiation relevant for pre-clinical in vivo studies using clinical infrastructure and technology. In this context additional beam collimation and range reduction was implemented. METHODS AND MATERIALS The clinical proton beam line employing pencil beam scanning (PBS) was adapted for the irradiation of small fields at shallow depths. Cylindrical collimators with apertures of 15, 12, 7 and 5mm as well as two different range shifter types, placed at different distances relative to the target, were tested: a bolus range shifter (BRS) attached to the collimator and a clinical nozzle mounted range shifter (CRS) placed at a distance of 72cm from the collimator. The Monte Carlo (MC) based dose calculation engine implemented in the clinical treatment planning system (TPS) was commissioned for these two additional hardware components. The study was conducted with a phantom and cylindrical target sizes between 2 and 25mm in diameter following a dosimetric end-to-end test concept. RESULTS The setup with the CRS provided a uniform dose distribution across the target. An agreement of better than5% between the planned dose and the measurements was obtained for a target with 3mm diameter (collimator 5mm). A 2mm difference between the collimator and the target diameter (target being 2 mm smaller than the collimator) sufficed to cover the whole target with the planned dose in the setup with CRS. Using the BRS setup (target 8mm, collimator 12mm) resulted in non-homogeneous dose distributions, with a dose discrepancy of up to 10% between the planned and measured doses. CONCLUSION The clinical proton infrastructure with adequate beam line adaptations and a state-of-the-art TPS based on MC dose calculations enables small animal irradiations with a high dosimetric precision and accuracy for target sizes down to 3mm.
Collapse
Affiliation(s)
- Monika Clausen
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.
| | - Sirinya Ruangchan
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria; Division of Therapeutic Radiation and Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Arame Sotoudegan
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Andreas F Resch
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Barbara Knäusl
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Hugo Palmans
- Division of Medical Physics, MedAustron Ion Therapy Center, Wiener Neustadt, Austria; National Physical Laboratory, Teddington, United Kingdom
| | - Dietmar Georg
- Division of Medical Radiation Physics, Department of Radiation Oncology, Medical University of Vienna, Austria; Division of Medical Physics, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
4
|
Biltekin F, Bäumer C, Esser J, Ghanem O, Ozyigit G, Timmermann B. Preclinical Dosimetry for Small Animal Radiation Research in Proton Therapy: A Feasibility Study. Int J Part Ther 2023; 10:13-22. [PMID: 37823014 PMCID: PMC10563666 DOI: 10.14338/ijpt-22-00035.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/10/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose To evaluate the feasibility of the three-dimensional (3D) printed small animal phantoms in dosimetric verification of proton therapy for small animal radiation research. Materials and Methods Two different phantoms were modeled using the computed-tomography dataset of real rat and tumor-bearing mouse, retrospectively. Rat phantoms were designed to accommodate both EBT3 film and ionization chamber. A subcutaneous tumor-bearing mouse phantom was only modified to accommodate film dosimetry. All phantoms were printed using polylactic-acid (PLA) filament. Optimal printing parameters were set to create tissue-equivalent material. Then, proton therapy plans for different anatomical targets, including whole brain and total lung irradiation in the rat phantom and the subcutaneous tumor model in the mouse phantom, were created using the pencil-beam scanning technique. Point dose and film dosimetry measurements were performed using 3D-printed phantoms. In addition, all phantoms were analyzed in terms of printing accuracy and uniformity. Results Three-dimensionally printed phantoms had excellent uniformity over the external body, and printing accuracy was within 0.5 mm. According to our findings, two-dimensional dosimetry with EBT3 showed acceptable levels of γ passing rate for all measurements except for whole brain irradiation (γ passing rate, 89.8%). In terms of point dose analysis, a good agreement (<0.1%) was found between the measured and calculated point doses for all anatomical targets. Conclusion Three-dimensionally printed small animal phantoms show great potential for dosimetric verifications of clinical proton therapy for small animal radiation research.
Collapse
Affiliation(s)
- Fatih Biltekin
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- TU Dortmund University, Department of Physics, Dortmund, Germany
| | - Johannes Esser
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
| | - Osamah Ghanem
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
| | - Gokhan Ozyigit
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- West German Cancer Centre (WTZ), Essen, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- TU Dortmund University, Department of Physics, Dortmund, Germany
- Department of Particle Therapy, University Hospital Essen, Essen, Germany
| |
Collapse
|
5
|
Grahm Valadie O, Brown SL, Farmer K, Nagaraja TN, Cabral G, Shadaia S, Divine GW, Knight RA, Lee IY, Dolan J, Rusu S, Joiner MC, Ewing JR. Characterization of the Response of 9L and U-251N Orthotopic Brain Tumors to 3D Conformal Radiation Therapy. Radiat Res 2023; 199:217-228. [PMID: 36656561 PMCID: PMC10174721 DOI: 10.1667/rade-22-00048.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023]
Abstract
In a study employing MRI-guided stereotactic radiotherapy (SRS) in two orthotopic rodent brain tumor models, the radiation dose yielding 50% survival (the TCD50) was sought. Syngeneic 9L cells, or human U-251N cells, were implanted stereotactically in 136 Fischer 344 rats or 98 RNU athymic rats, respectively. At approximately 7 days after implantation for 9L, and 18 days for U-251N, rats were imaged with contrast-enhanced MRI (CE-MRI) and then irradiated using a Small Animal Radiation Research Platform (SARRP) operating at 220 kV and 13 mA with an effective energy of ∼70 keV and dose rate of ∼2.5 Gy per min. Radiation doses were delivered as single fractions. Cone-beam CT images were acquired before irradiation, and tumor volumes were defined using co-registered CE-MRI images. Treatment planning using MuriPlan software defined four non-coplanar arcs with an identical isocenter, subsequently accomplished by the SARRP. Thus, the treatment workflow emulated that of current clinical practice. The study endpoint was animal survival to 200 days. The TCD50 inferred from Kaplan-Meier survival estimation was approximately 25 Gy for 9L tumors and below 20 Gy, but within the 95% confidence interval in U-251N tumors. Cox proportional-hazards modeling did not suggest an effect of sex, with the caveat of wide confidence intervals. Having identified the radiation dose at which approximately half of a group of animals was cured, the biological parameters that accompany radiation response can be examined.
Collapse
Affiliation(s)
- O. Grahm Valadie
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan
- Department of Radiology, Michigan State University College of Human Medicine, East Lansing, Michigan
| | - Katelynn Farmer
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | | | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - Sheldon Shadaia
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - George W. Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit Michigan
| | - Robert A. Knight
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
- Department of Physics, Oakland University, Rochester, Michigan
| | - Ian Y. Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit Michigan
| | - Jennifer Dolan
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
| | - Sam Rusu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - Michael C. Joiner
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan
| | - James R. Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiology, Michigan State University College of Human Medicine, East Lansing, Michigan
- Department of Neurosurgery, Henry Ford Hospital, Detroit Michigan
- Department of Physics, Oakland University, Rochester, Michigan
| |
Collapse
|
6
|
Espinosa-Rodriguez A, Villa-Abaunza A, Díaz N, Pérez-Díaz M, Sánchez-Parcerisa D, Udías J, Ibáñez P. Design of an X-ray irradiator based on a standard imaging X-ray tube with FLASH dose-rate capabilities for preclinical research. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Caravaca J, Peter R, Yang J, Gunther C, Antonio Camara Serrano J, Nostrand C, Steri V, Seo Y. Comparison and calibration of dose delivered by 137Cs and x-ray irradiators in mice. Phys Med Biol 2022; 67:10.1088/1361-6560/ac9e88. [PMID: 36317316 PMCID: PMC9933773 DOI: 10.1088/1361-6560/ac9e88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Objective.The Office of Radiological Security, U.S. Department of Energy's National Nuclear Security Administration, is implementing a radiological risk reduction program which seeks to minimize or eliminate the use of high activity radiological sources, including137Cs, by replacing them with non-radioisotopic technologies, such as x-ray irradiators. The main goal of this paper is to evaluate the equivalence of the dose delivered by gamma- and x-ray irradiators in mice using experimental measurements and Monte Carlo simulations. We also propose a novel biophantom as anin situdose calibration method.Approach.We irradiated mouse carcasses and 3D-printed mouse biophantoms in a137Cs irradiator (Mark I-68) and an x-ray irradiator (X-Rad320) at three voltages (160 kVp, 225 kVp and 320 kVp) and measured the delivered radiation dose. A Geant4-based Monte Carlo model was developed and validated to provide a comprehensive picture of gamma- and x-ray irradiation in mice.Main Results.Our Monte Carlo model predicts a uniform dose delivered in soft-tissue for all the explored irradiation programs and in agreement with the absolute dose measurements. Our Monte Carlo model shows an energy-dependent difference between dose in bone and in soft tissue that decreases as photon energy increases. Dose rate depends on irradiator and photon energy. We observed a deviation of the measured dose from the target value of up to -9% for the Mark I-68, and up to 35% for the X-Rad320. The dose measured in the 3D-printed phantoms are equivalent to that in the carcasses within 6% uncertainty.Significance.Our results suggest that 320 kVp irradiation is a good candidate to substitute137Cs irradiation barring a few caveats. There is a significant difference between measured and targeted doses for x-ray irradiation that suggests a strong need forin situcalibration, which can be achieved with 3D-printed mouse biophantoms. A dose correction is necessary for bone doses, which can be provided by a Monte Carlo calculation. Finally, the biological implications of the differences in dose rates and dose per photon for the different irradiation methods should be carefully assessed for each small-animal irradiation experiment.
Collapse
Affiliation(s)
- Javier Caravaca
- Physics Research Laboratory, University of California, San Francisco, United States of America
| | - Robin Peter
- Physics Research Laboratory, University of California, San Francisco, United States of America
- Department of Nuclear Engineering, University of California, Berkeley, United States of America
| | - Jaewon Yang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chad Gunther
- C&C Irradiator Service, LLC, Washington, DC. United States of America
| | - Juan Antonio Camara Serrano
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, United States of America
| | | | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, United States of America
| | - Youngho Seo
- Physics Research Laboratory, University of California, San Francisco, United States of America
- Department of Nuclear Engineering, University of California, Berkeley, United States of America
| |
Collapse
|
8
|
Brown KH, Ghita M, Dubois LJ, de Ruysscher D, Prise KM, Verhaegen F, Butterworth KT. A scoping review of small animal image-guided radiotherapy research: Advances, impact and future opportunities in translational radiobiology. Clin Transl Radiat Oncol 2022; 34:112-119. [PMID: 35496817 PMCID: PMC9046563 DOI: 10.1016/j.ctro.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background and purpose To provide a scoping review of published studies using small animal irradiators and highlight the progress in preclinical radiotherapy (RT) studies enabled by these platforms since their development and commercialization in 2007. Materials and methods PubMed searches and manufacturer records were used to identify 907 studies that were screened with 359 small animal RT studies included in the analyses. These articles were classified as biology or physics contributions and into subgroups based on research aims, experimental models and other parameters to identify trends in the preclinical RT research landscape. Results From 2007 to 2021, most published articles were biology contributions (62%) whilst physics contributions accounted for 38% of the publications. The main research areas of physics articles were in dosimetry and calibration (24%), treatment planning and simulation (22%), and imaging (22%) and the studies predominantly used phantoms (41%) or in vivo models (34%). The majority of biology contributions were tumor studies (69%) with brain being the most commonly investigated site. The most frequently investigated areas of tumor biology were evaluating radiosensitizers (33%), model development (30%) and imaging (21%) with cell-line derived xenografts the most common model (82%). 31% of studies focused on normal tissue radiobiology and the lung was the most investigated site. Conclusions This study captures the trends in preclinical RT research using small animal irradiators from 2007 to 2021. Our data show the increased uptake and outputs from preclinical RT studies in important areas of biology and physics research that could inform translation to clinical trials.
Collapse
Affiliation(s)
- Kathryn H. Brown
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
- Corresponding author at: Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom.
| | - Mihaela Ghita
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW – School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Dirk de Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kevin M. Prise
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Karl T. Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
9
|
Calculation of S-values for Technetium-99m in the DIGIMOUSE voxel phantom using Monte Carlo simulations. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Kampfer S, Duda MA, Dobiasch S, Combs SE, Wilkens JJ. A comprehensive and efficient quality assurance program for an image-guided small animal irradiation system. Z Med Phys 2022; 32:261-272. [PMID: 35370028 PMCID: PMC9948878 DOI: 10.1016/j.zemedi.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
In the field of preclinical radiotherapy, many new developments were driven by technical innovations. To make research of different groups comparable in that context and reliable, high quality has to be maintained. Therefore, standardized protocols and programs should be used. Here we present a guideline for a comprehensive and efficient quality assurance program for an image-guided small animal irradiation system, which is meant to test all the involved subsystems (imaging, treatment planning, and the irradiation system in terms of geometric accuracy and dosimetric aspects) as well as the complete procedure (end-to-end test) in a time efficient way. The suggestions are developed on a Small Animal Radiation Research Platform (SARRP) from Xstrahl (Xstrahl Ltd., Camberley, UK) and are presented together with proposed frequencies (from monthly to yearly) and experiences on the duration of each test. All output and energy related measurements showed stable results within small variation. Also, the motorized parts (couch, gantry) and other geometrical alignments were very stable. For the checks of the imaging system, the results are highly dependent on the chosen protocol and differ according to the settings. We received nevertheless stable and comparably good results for our mainly used protocol. All investigated aspects of treatment planning were exactly fulfilled and also the end-to-end test showed satisfying values. The mean overall time we needed for our checks to have a well monitored machine is less than two hours per month.
Collapse
Affiliation(s)
- Severin Kampfer
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany; Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748, Garching, Germany.
| | - Manuela A. Duda
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany,Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748, Garching, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany; Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - Stephanie E. Combs
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany,Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany,German Cancer Consortium (DKTK), Munich, Germany
| | - Jan J. Wilkens
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Ismaninger Str. 22, Munich, Germany,Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748, Garching, Germany
| |
Collapse
|
11
|
Mahuvava C, Esplen NM, Poirier Y, Kry SF, Bazalova-Carter M. Dose calculations for pre-clinical radiobiology experiments conducted with single-field cabinet irradiators. Med Phys 2022; 49:1911-1923. [PMID: 35066889 DOI: 10.1002/mp.15487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/10/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To provide percentage depth-dose (PDD) data along the central axis for dosimetry calculations in small-animal radiation biology experiments performed in cabinet irradiators. The PDDs are provided as a function of source-to-surface distance (SSD), field size and animal size. METHODS The X-ray tube designs for four biological cabinet irradiators, the RS2000, RT250, MultiRad350 and XRAD320, were simulated using the BEAMnrc Monte Carlo code to generate 160, 200, 250 and 320 kVp photon beams, respectively. The 320 kVp beam was simulated with two filtrations: a soft F1 aluminium filter and a hard F2 thoraeus filter made of aluminium, tin and copper. Beams were collimated into circular fields with diameters of 0.5 - 10 cm at SSDs of 10 - 60 cm. Monte Carlo dose calculations in 1 - 5-cm diameter homogeneous (soft tissue) small-animal phantoms as well as in heterogeneous phantoms with 3-mm diameter cylindrical lung and bone inserts (rib and cortical bone) were performed using DOSXYZnrc. The calculated depth doses in three test-cases were estimated by applying SSD, field size and animal size correction factors to a reference case (40 cm SSD, 1 cm field and 5 cm animal size) and these results were compared with the specifically simulated (i.e., expected) doses to assess the accuracy of this method. Dosimetry for two test-case scenarios of 160 and 250 kVp beams (representative of end-user beam qualities) was also performed, whereby the simulated PDDs at two different depths were compared with the results based on the interpolation from reference data. RESULTS The depth doses for three test-cases calculated at 200, 320 kVp F1 and 320 kVp F2, with half value layers (HVL) ranging from ∼0.6 mm to 3.6 mm Cu, agreed well with the expected doses, yielding dose differences of 1.2, 0.1 and 1.0%, respectively. The two end-user test-cases for 160 and 250 kVp beams with respective HVLs of ∼0.8 and 1.8 mm Cu yielded dose differences of 1.4 and 3.2% between the simulated and the interpolated PDDs. The dose increase at the bone-tissue proximal interface ranged from 1.2 to 2.5 times the dose in soft tissue for rib and 1.3 to 3.7 times for cortical bone. The dose drop-off at 1-cm depth beyond the bone ranged from 1.3 - 6.0% for rib and 3.2 - 11.7% for cortical bone. No drastic dose perturbations occurred in the presence of lung, with lung-tissue interface dose of >99% of soft tissue dose and <3% dose increase at 1-cm depth beyond lung. CONCLUSIONS The developed dose estimation method can be used to translate the measured dose at a point to dose at any depth in small-animal phantoms, making it feasible for pre-clinical calculation of dose distributions in animals irradiated with cabinet-style irradiators. The dosimetric impact of bone must be accurately quantified as dramatic dose perturbations at and beyond the bone interfaces can occur due to the relative importance of the photoelectric effect at kilovoltage energies. These results will help improve dosimetric accuracy in pre-clinical experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Courage Mahuvava
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Nolan Matthew Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Yannick Poirier
- Department of Medical Physics, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Stephen F Kry
- Department of Radiation Physics, University of Texas MD Anderson, Cancer Centre, Houston, TX, 77030, USA
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
12
|
Silvestre Patallo I, Carter R, Maughan D, Nisbet A, Schettino G, Subiel A. Evaluation of a micro ionization chamber for dosimetric measurements in image-guided preclinical irradiation platforms. Phys Med Biol 2021; 66. [PMID: 34794132 DOI: 10.1088/1361-6560/ac3b35] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022]
Abstract
Image-guided small animal irradiation platforms deliver small radiation fields in the medium energy x-ray range. Commissioning of such platforms, followed by dosimetric verification of treatment planning, are mostly performed with radiochromic film. There is a need for independent measurement methods, traceable to primary standards, with the added advantage of immediacy in obtaining results. This investigation characterizes a small volume ionization chamber in medium energy x-rays for reference dosimetry in preclinical irradiation research platforms. The detector was exposed to a set of reference x-ray beams (0.5 to 4 mm Cu HVL). Leakage, reproducibility, linearity, response to detector's orientation, dose rate, and energy dependence were determined for a 3D PinPoint ionization chamber (PTW 31022). Polarity and ion recombination were also studied. Absorbed doses at 2 cm depth were compared, derived either by applying the experimentally determined cross-calibration coefficient at a typical small animal radiation platform "user's" quality (0.84 mm Cu HVL) or by interpolation from air kerma calibration coefficients in a set of reference beam qualities. In the range of reference x-ray beams, correction for ion recombination was less than 0.1%. The largest polarity correction was 1.4% (for 4 mm Cu HVL). Calibration and correction factors were experimentally determined. Measurements of absorbed dose with the PTW 31022, in conditions different from reference were successfully compared to measurements with a secondary standard ionization chamber. The implementation of an End-to-End test for delivery of image-targeted small field plans resulted in differences smaller than 3% between measured and treatment planning calculated doses. The investigation of the properties and response of a PTW 31022 small volume ionization chamber in medium energy x-rays and small fields can contribute to improve measurement uncertainties evaluation for reference and relative dosimetry of small fields delivered by preclinical irradiators while maintaining the traceability chain to primary standards.
Collapse
Affiliation(s)
- Ileana Silvestre Patallo
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Rebecca Carter
- Cancer Institute, University College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - David Maughan
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Andrew Nisbet
- Department of Medical Physics & Biomedical Engineering, University College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Giuseppe Schettino
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, Middlesex, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Anna Subiel
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
13
|
Ankjærgaard C, Johansen A, von Staffeldt M, Andersen C, Madsen D, Behrens C. Irradiation of subcutaneous mouse tumors with a clinical linear accelerator validated by alanine dosimetry. RADIAT MEAS 2021. [DOI: 10.1016/j.radmeas.2021.106636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Kim SB, Song IH, Song YS, Lee BC, Gupta A, Lee JS, Park HS, Kim SE. Biodistribution and internal radiation dosimetry of a companion diagnostic radiopharmaceutical, [ 68Ga]PSMA-11, in subcutaneous prostate cancer xenograft model mice. Sci Rep 2021; 11:15263. [PMID: 34315965 PMCID: PMC8316415 DOI: 10.1038/s41598-021-94684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022] Open
Abstract
[68Ga]PSMA-11 is a prostate-specific membrane antigen (PSMA)-targeting radiopharmaceutical for diagnostic PET imaging. Its application can be extended to targeted radionuclide therapy (TRT). In this study, we characterize the biodistribution and pharmacokinetics of [68Ga]PSMA-11 in PSMA-positive and negative (22Rv1 and PC3, respectively) tumor-bearing mice and subsequently estimated its internal radiation dosimetry via voxel-level dosimetry using a dedicated Monte Carlo simulation to evaluate the absorbed dose in the tumor directly. Consequently, this approach overcomes the drawbacks of the conventional organ-level (or phantom-based) method. The kidneys and urinary bladder both showed substantial accumulation of [68Ga]PSMA-11 without exhibiting a washout phase during the study. For the tumor, a peak concentration of 4.5 ± 0.7 %ID/g occurred 90 min after [68Ga]PSMA-11 injection. The voxel- and organ-level methods both determined that the highest absorbed dose occurred in the kidneys (0.209 ± 0.005 Gy/MBq and 0.492 ± 0.059 Gy/MBq, respectively). Using voxel-level dosimetry, the absorbed dose in the tumor was estimated as 0.024 ± 0.003 Gy/MBq. The biodistribution and pharmacokinetics of [68Ga]PSMA-11 in various organs of subcutaneous prostate cancer xenograft model mice were consistent with reported data for prostate cancer patients. Therefore, our data supports the use of voxel-level dosimetry in TRT to deliver personalized dosimetry considering patient-specific heterogeneous tissue compositions and activity distributions.
Collapse
Affiliation(s)
- Su Bin Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam, 13620, Korea
| | - In Ho Song
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam, 13620, Korea
| | - Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam, 13620, Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam, 13620, Korea
| | - Arun Gupta
- Department of Radiology and Imaging Institution: B.P. Koirala Institute of Health Sciences (BPKIHS), Dharan-18, Province-1, Sunsari, Nepal
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Hyun Soo Park
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam, 13620, Korea.
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam, 13620, Korea. .,Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon, 16229, Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
15
|
Garrow AA, Andrews JPM, Gonzalez ZN, Corral CA, Portal C, Morgan TEF, Walton T, Wilson I, Newby DE, Lucatelli C, Tavares AAS. Preclinical dosimetry models and the prediction of clinical doses of novel positron emission tomography radiotracers. Sci Rep 2020; 10:15985. [PMID: 32994530 PMCID: PMC7525662 DOI: 10.1038/s41598-020-72830-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/07/2020] [Indexed: 11/09/2022] Open
Abstract
Dosimetry models using preclinical positron emission tomography (PET) data are commonly employed to predict the clinical radiological safety of novel radiotracers. However, unbiased clinical safety profiling remains difficult during the translational exercise from preclinical research to first-in-human studies for novel PET radiotracers. In this study, we assessed PET dosimetry data of six 18F-labelled radiotracers using preclinical dosimetry models, different reconstruction methods and quantified the biases of these predictions relative to measured clinical doses to ease translation of new PET radiotracers to first-in-human studies. Whole-body PET images were taken from rats over 240 min after intravenous radiotracer bolus injection. Four existing and two novel PET radiotracers were investigated: [18F]FDG, [18F]AlF-NOTA-RGDfK, [18F]AlF-NOTA-octreotide ([18F]AlF-NOTA-OC), [18F]AlF-NOTA-NOC, [18F]ENC2015 and [18F]ENC2018. Filtered-back projection (FBP) and iterative methods were used for reconstruction of PET data. Predicted and true clinical absorbed doses for [18F]FDG and [18F]AlF-NOTA-OC were then used to quantify bias of preclinical model predictions versus clinical measurements. Our results show that most dosimetry models were biased in their predicted clinical dosimetry compared to empirical values. Therefore, normalization of rat:human organ sizes and correction for reconstruction method biases are required to achieve higher precision of dosimetry estimates.
Collapse
Affiliation(s)
- Adam A Garrow
- Preclinical PET-CT Facility, Edinburgh Imaging, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Jack P M Andrews
- University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Zaniah N Gonzalez
- Preclinical PET-CT Facility, Edinburgh Imaging, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.,University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Carlos A Corral
- Preclinical PET-CT Facility, Edinburgh Imaging, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.,University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Christophe Portal
- Edinburgh Molecular Imaging (EMI), Nine Edinburgh Bioquarter, Edinburgh, EH16 4UX, UK
| | - Timaeus E F Morgan
- Preclinical PET-CT Facility, Edinburgh Imaging, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.,University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Tashfeen Walton
- Preclinical PET-CT Facility, Edinburgh Imaging, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.,University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Ian Wilson
- Edinburgh Molecular Imaging (EMI), Nine Edinburgh Bioquarter, Edinburgh, EH16 4UX, UK
| | - David E Newby
- Preclinical PET-CT Facility, Edinburgh Imaging, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.,University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Christophe Lucatelli
- Preclinical PET-CT Facility, Edinburgh Imaging, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Adriana A S Tavares
- Preclinical PET-CT Facility, Edinburgh Imaging, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK. .,University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
16
|
Silvestre Patallo I, Subiel A, Westhorpe A, Gouldstone C, Tulk A, Sharma RA, Schettino G. Development and Implementation of an End-To-End Test for Absolute Dose Verification of Small Animal Preclinical Irradiation Research Platforms. Int J Radiat Oncol Biol Phys 2020; 107:587-596. [DOI: 10.1016/j.ijrobp.2020.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
|
17
|
Price G, Biglin ER, Collins S, Aitkinhead A, Subiel A, Chadwick AL, Cullen DM, Kirkby KJ, Schettino G, Tipping J, Robinson A. An open source heterogeneous 3D printed mouse phantom utilising a novel bone representative thermoplastic. Phys Med Biol 2020; 65:10NT02. [PMID: 32182592 PMCID: PMC10606941 DOI: 10.1088/1361-6560/ab8078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/17/2020] [Indexed: 11/12/2022]
Abstract
The lack of rigorous quality standards in pre-clinical radiation dosimetry has renewed interest in the development of anthropomorphic phantoms. Using 3D printing customisable phantoms can be created to assess all parts of pre-clinical radiation research: planning, image guidance and treatment delivery. We present the full methodology, including material development and printing designs, for the production of a high spatial resolution, anatomically realistic heterogeneous small animal phantom. A methodology for creating and validating tissue equivalent materials is presented. The technique is demonstrated through the development of a bone-equivalent material. This material is used together with a soft-tissue mimicking ABS plastic filament to reproduce the corresponding structure geometries captured from a CT scan of a nude mouse. Air gaps are used to represent the lungs. Phantom validation was performed through comparison of the geometry and x-ray attenuation of CT images of the phantom and animal images. A 6.6% difference in the attenuation of the bone-equivalent material compared to the reference standard in softer beams (0.5 mm Cu HVL) rapidly decreases as the beam is hardened. CT imaging shows accurate (sub-millimetre) reproduction of the skeleton (Distance-To-Agreement 0.5 mm ± 0.4 mm) and body surface (0.7 mm ± 0.5 mm). Histograms of the voxel intensity profile of the phantom demonstrate suitable similarity to those of both the original mouse image and that of a different animal. We present an approach for the efficient production of an anthropomorphic phantom suitable for the quality assurance of pre-clinical radiotherapy. Our design and full methodology are provided as open source to encourage the pre-clinical radiobiology community to adopt a common QA standard.
Collapse
Affiliation(s)
- Gareth Price
- University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, United Kingdom
- Authors contributed equally
- Author to whom any correspondence should be addressed
| | - Emma R Biglin
- University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, United Kingdom
- Authors contributed equally
| | - Sean Collins
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
- Department of Physics, University of Surrey, Stag Hill, Guildford GU2 7XH, United Kingdom
| | - Adam Aitkinhead
- University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, United Kingdom
| | - Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Amy L Chadwick
- University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, United Kingdom
| | - David, M Cullen
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Karen J Kirkby
- University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, United Kingdom
| | - Giuseppe Schettino
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
- Department of Physics, University of Surrey, Stag Hill, Guildford GU2 7XH, United Kingdom
| | - Jill Tipping
- Christie Medical Physics and Engineering (CMPE), The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, United Kingdom
| | - Andrew Robinson
- University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, United Kingdom
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
18
|
Evaluation of a Novel Liquid Fiducial Marker, BioXmark ®, for Small Animal Image-Guided Radiotherapy Applications. Cancers (Basel) 2020; 12:cancers12051276. [PMID: 32443537 PMCID: PMC7280978 DOI: 10.3390/cancers12051276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
BioXmark® (Nanovi A/S, Denmark) is a novel fiducial marker based on a liquid, iodine-based and non-metallic formulation. BioXmark® has been clinically validated and reverse translated to preclinical models to improve cone-beam CT (CBCT) target delineation in small animal image-guided radiotherapy (SAIGRT). However, in phantom image analysis and in vivo evaluation of radiobiological response after the injection of BioXmark® are yet to be reported. In phantom measurements were performed to compare CBCT imaging artefacts with solid fiducials and determine optimum imaging parameters for BioXmark®. In vivo stability of BioXmark® was assessed over a 5-month period, and the impact of BioXmark® on in vivo tumour response from single-fraction and fractionated X-ray exposures was investigated in a subcutaneous syngeneic tumour model. BioXmark® was stable, well tolerated and detectable on CBCT at volumes ≤10 µL. Our data showed imaging artefacts reduced by up to 84% and 89% compared to polymer and gold fiducial markers, respectively. BioXmark® was shown to have no significant impact on tumour growth in control animals, but changes were observed in irradiated animals injected with BioXmark® due to alterations in dose calculations induced by the sharp contrast enhancement. BioXmark® is superior to solid fiducials with reduced imaging artefacts on CBCT. With minimal impact on the tumour growth delay, BioXmark® can be implemented in SAIGRT to improve target delineation and reduce set-up errors.
Collapse
|
19
|
Gao S, Zhang W, Wang R, Hopkins SP, Spagnoli JC, Racin M, Bai L, Li L, Jiang W, Yang X, Lee C, Nagata K, Howerth EW, Handa H, Xie J, Ma Q, Kumar A. Nanoparticles Encapsulating Nitrosylated Maytansine To Enhance Radiation Therapy. ACS NANO 2020; 14:1468-1481. [PMID: 31939662 DOI: 10.1021/acsnano.9b05976] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Radiotherapy remains a major treatment modality for cancer types such as non-small cell lung carcinoma (or NSCLC). To enhance treatment efficacy at a given radiation dose, radiosensitizers are often used during radiotherapy. Herein, we report a nanoparticle agent that can selectively sensitize cancer cells to radiotherapy. Specifically, we nitrosylated maytansinoid DM1 and then loaded the resulting prodrug, DM1-NO, onto poly(lactide-co-glycolic)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles. The toxicity of DM1 is suppressed by nanoparticle encapsulation and nitrosylation, allowing the drug to be delivered to tumors through the enhanced permeability and retention effect. Under irradiation to tumors, the oxidative stress is elevated, leading to the cleavage of the S-N bond and the release of DM1 and nitric oxide (NO). DM1 inhibits microtubule polymerization and enriches cells at the G2/M phase, which is more radiosensitive. NO under irradiation forms highly toxic radicals such as peroxynitrites, which also contribute to tumor suppression. The two components work synergistically to enhance radiotherapy outcomes, which was confirmed in vitro by clonogenic assays and in vivo with H1299 tumor-bearing mice. Our studies suggest the great promise of DM1-NO PLGA nanoparticles in enhancing radiotherapy against NSCLC and potentially other tumor types.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Capsules/chemistry
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Cycle Checkpoints/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Drug Screening Assays, Antitumor
- Female
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Maytansine/chemistry
- Maytansine/pharmacology
- Mice
- Mice, Nude
- Nanoparticles/chemistry
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Oxidative Stress/drug effects
- Particle Size
- Surface Properties
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Shi Gao
- Department of Nuclear Medicine , China-Japan Union Hospital of Jilin University , Changchun , Jilin 130033 , China
| | - Weizhong Zhang
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Renjie Wang
- Department of Nuclear Medicine , China-Japan Union Hospital of Jilin University , Changchun , Jilin 130033 , China
| | - Sean P Hopkins
- College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Jonathan C Spagnoli
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Mohammed Racin
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Lin Bai
- Department of Nuclear Medicine , China-Japan Union Hospital of Jilin University , Changchun , Jilin 130033 , China
| | - Lu Li
- Department of Nuclear Medicine , China-Japan Union Hospital of Jilin University , Changchun , Jilin 130033 , China
| | - Wen Jiang
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Xueyuan Yang
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Chaebin Lee
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Koichi Nagata
- Veterinary Biosciences & Diagnostic Imaging, College of Veterinary Medicine , University of Georgia , Athens , Georgia 30602 , United States
| | - Elizabeth W Howerth
- Department of Pathology, College of Veterinary Medicine , University of Georgia , Athens , Georgia 30602 , United States
| | - Hitesh Handa
- College of Engineering , University of Georgia , Athens , Georgia 30602 , United States
| | - Jin Xie
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - Qingjie Ma
- Department of Nuclear Medicine , China-Japan Union Hospital of Jilin University , Changchun , Jilin 130033 , China
| | - Anil Kumar
- Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
20
|
Schlaak RA, SenthilKumar G, Boerma M, Bergom C. Advances in Preclinical Research Models of Radiation-Induced Cardiac Toxicity. Cancers (Basel) 2020; 12:E415. [PMID: 32053873 PMCID: PMC7072196 DOI: 10.3390/cancers12020415] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) is an important component of cancer therapy, with >50% of cancer patients receiving RT. As the number of cancer survivors increases, the short- and long-term side effects of cancer therapy are of growing concern. Side effects of RT for thoracic tumors, notably cardiac and pulmonary toxicities, can cause morbidity and mortality in long-term cancer survivors. An understanding of the biological pathways and mechanisms involved in normal tissue toxicity from RT will improve future cancer treatments by reducing the risk of long-term side effects. Many of these mechanistic studies are performed in animal models of radiation exposure. In this area of research, the use of small animal image-guided RT with treatment planning systems that allow more accurate dose determination has the potential to revolutionize knowledge of clinically relevant tumor and normal tissue radiobiology. However, there are still a number of challenges to overcome to optimize such radiation delivery, including dose verification and calibration, determination of doses received by adjacent normal tissues that can affect outcomes, and motion management and identifying variation in doses due to animal heterogeneity. In addition, recent studies have begun to determine how animal strain and sex affect normal tissue radiation injuries. This review article discusses the known and potential benefits and caveats of newer technologies and methods used for small animal radiation delivery, as well as how the choice of animal models, including variables such as species, strain, and age, can alter the severity of cardiac radiation toxicities and impact their clinical relevance.
Collapse
Affiliation(s)
- Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Gopika SenthilKumar
- Medical Scientist Training Program, Medical College of Wisconsin; Milwaukee, WI 53226, USA;
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Carmen Bergom
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
21
|
Stegen B, Nieto A, Albrecht V, Maas J, Orth M, Neumaier K, Reinhardt S, Weick-Kleemann M, Goetz W, Reinhart M, Parodi K, Belka C, Niyazi M, Lauber K. Contrast-enhanced, conebeam CT-based, fractionated radiotherapy and follow-up monitoring of orthotopic mouse glioblastoma: a proof-of-concept study. Radiat Oncol 2020; 15:19. [PMID: 31969174 PMCID: PMC6977274 DOI: 10.1186/s13014-020-1470-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background Despite aggressive treatment regimens comprising surgery and radiochemotherapy, glioblastoma (GBM) remains a cancer entity with very poor prognosis. The development of novel, combined modality approaches necessitates adequate preclinical model systems and therapy regimens that closely reflect the clinical situation. So far, image-guided, fractionated radiotherapy of orthotopic GBM models represents a major limitation in this regard. Methods GL261 mouse GBM cells were inoculated into the right hemispheres of C57BL/6 mice. Tumor growth was monitored by contrast-enhanced conebeam CT (CBCT) scans. When reaching an average volume of approximately 7 mm3, GBM tumors were irradiated with daily fractions of 2 Gy up to a cumulative dose of 20 Gy in different beam collimation settings. For treatment planning and tumor volume follow-up, contrast-enhanced CBCT scans were performed twice per week. Daily repositioning of animals was achieved by alignment of bony structures in native CBCT scans. When showing neurological symptoms, mice were sacrificed by cardiac perfusion. Brains, livers, and kidneys were processed into histologic sections. Potential toxic effects of contrast agent administration were assessed by measurement of liver enzyme and creatinine serum levels and by histologic examination. Results Tumors were successfully visualized by contrast-enhanced CBCT scans with a detection limit of approximately 2 mm3, and treatment planning could be performed. For daily repositioning of the animals, alignment of bony structures in native CT scans was well feasible. Fractionated irradiation caused a significant delay in tumor growth translating into significantly prolonged survival in clear dependence of the beam collimation setting and margin size. Brain sections revealed tumors of similar appearance and volume on the day of euthanasia. Importantly, the repeated contrast agent injections were well tolerated, as liver enzyme and creatinine serum levels were only subclinically elevated, and liver and kidney sections displayed normal histomorphology. Conclusions Contrast-enhanced, CT-based, fractionated radiation of orthotopic mouse GBM represents a versatile preclinical technique for the development and evaluation of multimodal radiotherapeutic approaches in combination with novel therapeutic agents in order to accelerate translation into clinical testing.
Collapse
Affiliation(s)
- Benjamin Stegen
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK) partnersite Munich, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Nieto
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Valerie Albrecht
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Jessica Maas
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK) partnersite Munich, Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klement Neumaier
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sabine Reinhardt
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Moritz Weick-Kleemann
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK) partnersite Munich, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK) partnersite Munich, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany. .,German Cancer Consortium (DKTK) partnersite Munich, Munich, Germany. .,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| |
Collapse
|