1
|
Gong P, Wang X, Han Y, Long H, Yang W, Chen F, Cui M, Zhai W, Zheng B, Chen X. Hypoglycemic activity of enzymatically extracted Eucommia ulmoides polysaccharide (EUL-w1) on IR-HepG2 cell via the AMPK/PI3K/Akt signaling pathway. Int J Biol Macromol 2024; 283:137596. [PMID: 39542294 DOI: 10.1016/j.ijbiomac.2024.137596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
This study devised optimal conditions to extract Eucommia ulmoides leaf (EUL) polysaccharides using a cellulase and pectinase composite enzyme system based on one-way experiments and response surface methodology. Crude EUL polysaccharides (EULPs) were extracted and purified using a DEAE chromatography column. The polysaccharides EUL-w, EUL1, EUL2, and EUL3 were obtained by elution with water, 0.1 mol/L NaCl, 0.2 mol/L NaCl, and 0.3 mol/L NaCl, respectively. The EUL-w fraction had the highest hypoglycemic activity based on its α-amylase and α-glucosidase activities. The preliminary structure of purified EUL-w1 was elucidated. In vitro hypoglycemic activity studies and metabolomics analyses suggested that EUL-w1 modulated glucose metabolism by mediating the AMPK/PI3K/Akt signaling pathway. Our findings provide novel insights and data support for the utilization of EULPs as an emerging food resource in functional foods.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xufeng Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yewen Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hui Long
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi 'an University of Science and Technology, Xi'an 710054, China
| | - Mengjiao Cui
- Natural Will Biology Company, Xi'an 710000, China
| | - Wenjun Zhai
- College of Life Science and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710061, China
| | | | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
2
|
Tang Y, Tian C, Yao D, Yang S, Shi L, Yi L, Peng Q. Community assembly and potential function analysis of the endophyte in Eucommia ulmoides. BMC Microbiol 2024; 24:460. [PMID: 39511491 PMCID: PMC11542450 DOI: 10.1186/s12866-024-03601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Endophytes play a pivotal role in protecting host plants from both biotic and abiotic stresses, promoting the production of active components (AC) and plant growth. However, the succession of the endophyte community in Eucommia ulmoides (E. ulmoides), particularly the community assembly and function, has not been extensively investigated. In this study, we employed high-throughput sequencing and bioinformatics tools to analyze endophyte diversity across different tree ages, parts, and periods. We examined the population differences, correlations, community assembly mechanisms, and functional roles of these endophytes. Functional predictions via PICRUSt2 revealed that most endophytic fungal functions were linked to biosynthesis, with significant differences in biosynthetic functional abundance across parts and periods. In contrast, the metabolic activity of endophytic bacteria remained stable across different periods and parts. Correlation analysis further confirmed a strong positive relationship between ACs and certain endophytic fungi. Among them, the fungal phyla Ascomycota and Basidiomycota were identified as key contributors to the metabolism of chlorogenic acid (CA), while Aucubin was significantly positively correlated with several endophytic bacteria. These findings provide valuable insights into the functional roles and community assembly mechanism of E. ulmoides endophytes, as well as their symbiotic relationships.
Collapse
Affiliation(s)
- Yunzhe Tang
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Chunlian Tian
- Hunan Provincial Key Laboratory of Forestry and Chemical Engineering, Jishou University, Jishou, Hunan, China
| | - Di Yao
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Shuai Yang
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Linfang Shi
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Langbo Yi
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China.
- Key Laboratory of Ecological Conservation and Sustainable Utilization of Resources in Wuling Mountain Area, Hunan Province, Jishou University, Jishou, Hunan, China.
| | - Qingzhong Peng
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China.
- Key Laboratory of Ecological Conservation and Sustainable Utilization of Resources in Wuling Mountain Area, Hunan Province, Jishou University, Jishou, Hunan, China.
| |
Collapse
|
3
|
Jin Z, Lan Y, Li J, Wang P, Xiong X. The role of Chinese herbal medicine in the regulation of oxidative stress in treating hypertension: from therapeutics to mechanisms. Chin Med 2024; 19:150. [PMID: 39468572 PMCID: PMC11520704 DOI: 10.1186/s13020-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Although the pathogenesis of essential hypertension is not clear, a large number of studies have shown that oxidative stress plays an important role in the occurrence and development of hypertension and target organ damage. PURPOSE This paper systematically summarizes the relationship between oxidative stress and hypertension, and explores the potential mechanisms of Chinese herbal medicine (CHM) in the regulation of oxidative stress in hypertension, aiming to establish a scientific basis for the treatment of hypertension with CHM. METHODS To review the efficacy and mechanism by which CHM treat hypertension through targeting oxidative stress, data were searched from PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database from their inception up to January 2024. NPs were classified and summarized by their mechanisms of action. RESULTS In hypertension, the oxidative stress pathway of the body is abnormally activated, and the antioxidant system is inhibited, leading to the imbalance between the oxidative and antioxidative capacity. Meanwhile, excessive production of reactive oxygen species can lead to endothelial damage and vascular dysfunction, resulting in inflammation and immune response, thereby promoting the development of hypertension and damaging the heart, brain, kidneys, blood vessels, and other target organs. Numerous studies suggested that inhibiting oxidative stress may be the potential therapeutic target for hypertension. In recent years, the clinical advantages of traditional Chinese medicine (TCM) in the treatment of hypertension have gradually attracted attention. TCM, including active ingredients of CHM, single Chinese herb, TCM classic formula and traditional Chinese patent medicine, can not only reduce blood pressure, improve clinical symptoms, but also improve oxidative stress, thus extensively affect vascular endothelium, renin-angiotensin-aldosterone system, sympathetic nervous system, target organ damage, as well as insulin resistance, hyperlipidemia, hyperhomocysteinemia and other pathological mechanisms and hypertension related risk factors. CONCLUSIONS CHM display a beneficial multi-target, multi-component, overall and comprehensive regulation characteristics, and have potential value for clinical application in the treatment of hypertension by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Zixuan Jin
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Yu Lan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Junying Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
4
|
Koo GB, Kwon HO, Kim JH, Lee SH, Shim SL, Jang KH. Protective Effects of Cervus elaphus and Eucommia ulmoides Mixture (KGC01CE) on Muscle Loss and Function in Aged Rats. Curr Issues Mol Biol 2024; 46:11190-11206. [PMID: 39451544 PMCID: PMC11506417 DOI: 10.3390/cimb46100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Sarcopenia is a condition characterized by a progressive loss of muscle mass and function which are influenced by certain factors such as aging, nutritional deficiencies, and chronic diseases. Despite numerous efforts to prevent or treat sarcopenia, effective therapeutic options for this disease remain limited. This study aims to evaluate the effects of KGC01CE treatment, a mixture of Cervus elaphus (Ce) and Eucommia ulmoides (Eu), which are well-known traditional herbal medicines in Asia, on age-related muscle loss and functional decline in aged rats. KGC01CE has been found to be more effective than the individual extracts in inhibiting dexamethasone (DEX)-induced muscle atrophy and improving muscle mass and grip strength in C2C12 cells and aged rats. Moreover, animal studies were conducted to determine the minimum effective dose, and a 12-week oral administration of KGC01CE treatment at doses of 50, 100, and 200 mg/kg to 15-month-old aged rats resulted in a dose-dependent increase in lean mass, muscle mass, grip strength, and muscle cross-sectional area (CSA), which had decreased due to aging. Furthermore, it was shown that KGC01CE activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and inhibited the expression of muscle-degrading proteins MuRF, Atrogin-1, and myostatin. These results suggest that KGC01CE treatment may effectively prevent muscle loss and functional decline, providing a novel therapeutic strategy for sarcopenia.
Collapse
Affiliation(s)
- Gi-Bang Koo
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Gwacheon 13840, Republic of Korea; (G.-B.K.); (H.O.K.); (J.H.K.); (S.H.L.)
| | - Han Ol Kwon
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Gwacheon 13840, Republic of Korea; (G.-B.K.); (H.O.K.); (J.H.K.); (S.H.L.)
| | - Jong Han Kim
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Gwacheon 13840, Republic of Korea; (G.-B.K.); (H.O.K.); (J.H.K.); (S.H.L.)
| | - Seung Ho Lee
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Gwacheon 13840, Republic of Korea; (G.-B.K.); (H.O.K.); (J.H.K.); (S.H.L.)
| | - Sung Lye Shim
- Laboratory of Resource and Analysis, Korea Ginseng Corporation, Gwacheon 13840, Republic of Korea;
| | - Kyoung Hwa Jang
- Laboratory of Efficacy Research, Korea Ginseng Corporation, Gwacheon 13840, Republic of Korea; (G.-B.K.); (H.O.K.); (J.H.K.); (S.H.L.)
| |
Collapse
|
5
|
Shen J, Gao Y, Deng Y, Xia Z, Wang X, He X, He Y, Yang B. Eucommia ulmoides extract regulates oxidative stress to maintain calcium homeostasis and improve diabetic osteoporosis. Food Sci Nutr 2024; 12:8067-8083. [PMID: 39479615 PMCID: PMC11521638 DOI: 10.1002/fsn3.4413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 11/02/2024] Open
Abstract
Diabetic osteoporosis (DOP) is a secondary disease that severely affects the health and quality of life of patients with diabetes mellitus. This study aimed to explore the bone protective effect of aqueous extract of Eucommia ulmoides (EUL) in DOP mice. DOP mice were established using a high-sugar, high-fat diet and streptozotocin (STZ) (35 mg/kg for three consecutive days), and the EUL aqueous extract (2.5 g/kg/day) was orally administered for 6 weeks. The serum levels of oxidative stress-related factors, calcium, and phosphorus were assessed using biochemical assays. The osteoprotective effect of EUL was assessed using micro-computer tomography, three-point bending assay, histological analysis, and immunoblotting. Quantitative real-time polymerase chain reaction and western blotting were performed to detect the expression levels of calcium transport channel factors in the kidney and small intestine tissues. Furthermore, the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in the femur, kidney, and small intestine tissues were detected using western blotting and quantitative real-time polymerase chain reaction. EUL aqueous extract reduced blood glucose levels, increased body weight, and relieved symptoms in DOP mice (p < .05). It also increased bone mineral density, improved the bone microstructure, decreased the number of femoral osteoclasts, and increased the expression of femoral Runx2 and Bmp2 in DOP mice (p < .01). After 6 weeks of EUL aqueous extract administration, serum levels of SOD, CTA, calcium, and phosphorus were upregulated, whereas MDA levels were decreased (p < .01). The aqueous EUL extract also upregulated the expression of TRPV5, PMCA-1b, and CaBP-9 k in the kidney and small intestine of DOP mice (p < .01). Furthermore, the expression of Nrf2 and HO-1 in the kidney, small intestine, and femur tissues was increased (p < .01). EUL aqueous extract reduced blood glucose levels in DOP mice and regulated oxidative stress through the Nrf2/HO-1 pathway, thereby maintaining calcium homeostasis and ultimately improving bone quality. Our study suggested that EUL aqueous extract may be effective in the treatment of DOP.
Collapse
Affiliation(s)
- Jie Shen
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
| | - Yichen Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
| | - Yuyao Deng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
| | - Zhaoxin Xia
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
| | - Xia Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
| | - Xianyi He
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
| | - Yun He
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
| | - Binbin Yang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouSichuanChina
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key LaboratoryLuzhouSichuanChina
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| |
Collapse
|
6
|
Deng X, Wu Q, Liu Y. Eucommia ulmoidesOliv. leaves flavonoids attenuate methylglyoxal-induced endothelial cell apoptosis in vitro and in vivo by upregulating AKT-Nrf2 signaling and downregulating oxidative stress. Food Sci Nutr 2024; 12:7938-7953. [PMID: 39479661 PMCID: PMC11521679 DOI: 10.1002/fsn3.4416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/19/2024] [Accepted: 08/04/2024] [Indexed: 11/02/2024] Open
Abstract
Methylglyoxal (MGO) triggers oxidative stress responses in vascular endothelial cells, leading to apoptosis linked to diabetic vascular complications. Total flavonoids of Eucommia ulmoides leaves (TFEL) display antioxidant activity, yet its prevention of MGO-induced apoptosis and mechanisms are unclear. Our study used western blotting and ELISA to evaluate protein levels and enzyme activities. Cell viability and apoptosis were evaluated using CCK8 assay and PE Annexin V/7-AAD double staining. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured using fluorescence probes. Vascular pathological changes and apoptosis were analyzed through H&E and TUNEL staining. In vitro, MGO-stimulated human umbilical vein endothelial cells (HUVECs) were treated with varying TFEL concentrations. Our results demonstrated that TFEL significantly enhanced cell viability, reduced apoptosis, downregulated caspase-3 activity, and Bax/Bcl-2 ratio. Moreover, TFEL markedly suppressed MGO-induced ROS and malondialdehyde (MDA) production while restoring antioxidant enzyme activity and MMP. TFEL pretreatment promoted the expression of p-Akt, Nrf2, and HO-1 proteins. Pharmacological inhibition of p-Akt significantly suppressed the upregulation of Nrf2 and HO-1 protein levels mediated by TFEL. Consistently, pharmacological inhibition of Nrf2 or p-Akt partially abrogated the protective effects of TFEL against MGO-induced damage in HUVECs. In vivo studies revealed that TFEL (100 and 200 mg/kg) partially restored antioxidant capacity and reduced aortic thickness and apoptosis in MGO-injured mice. In conclusion, the findings indicate that TFEL mitigates MGO-induced apoptosis via activation of p-Akt/Nrf2/HO-1 and scavenging of oxidative stress, highlighting its potential in diabetic vascular complication management.
Collapse
Affiliation(s)
- Xin Deng
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of EducationSouthwest Medical UniversityLuzhouChina
| | - Qianfeng Wu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Youping Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| |
Collapse
|
7
|
Qin X, Liu X, Guo C, Huang L, Xu Q. Medioresinol from Eucommiae cortex improves myocardial infarction-induced heart failure through activation of the PI3K/AKT/mTOR pathway: A network analysis and experimental study. PLoS One 2024; 19:e0311143. [PMID: 39331625 PMCID: PMC11433142 DOI: 10.1371/journal.pone.0311143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
OBJECTIVE This study aims to systematically analyze the potential active components of Eucommiae cortex in the treatment of post- myocardial infarction heart failure through network analysis and molecular docking methods. In vitro experiments were conducted to verify that medioresinol, a component of Eucommiae cortex, improves oxygen-glucose deprivation-induced cell failure through its anti-inflammatory and antioxidant capacities. METHODS Potential active components of Eucommiae cortex were screened using specific data. The targets of these components were predicted using Swiss Institute of Bioinformatics database and TargetNet, and key targets were identified by intersecting with the disease targets of myocardial infarction and heart failure. Protein-Protein Interaction analysis was performed on the key targets to screen for core targets. Genomics Institute of the Novartis Research Foundation and Human Protein Atlas were used to identify myocardial highly expressed targets. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses were conducted using the Database for Annotation, Visualization, and Integrated Discovery. Molecular docking was performed for the final components and target proteins. In vitro experiments were carried out using H9c2 cells subjected to oxygen and glucose deprivation conditions to validate the effects of the screened potential active components. RESULTS Network analysis revealed that Eucommiae cortex might exert its effects through the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), hypoxia-inducible factor 1, and Janus kinase/signal transducer and activator of transcription pathways, which are crucial for myocardial contraction, vascular tone regulation, inflammatory response, and oxidative stress. Molecular docking indicated stable binding of the selected compounds to PI3K, AKT, and mTOR. Medioresinol was selected for further study and shown to significantly improve oxidative stress and inflammatory response in myocardial ischemia-hypoxia model cells by activating the PI3K/AKT/mTOR pathway. CONCLUSION This study confirms the role of the PI3K/AKT/mTOR pathway in the cardiovascular protective effects of Eucommiae cortex and provides evidence at the cellular level. Medioresinol demonstrated potential therapeutic effects on myocardial infarction induced heart failure by reducing oxidative stress and inflammatory responses. These findings offer a theoretical basis for the application of Eucommiae cortex in the treatment of heart failure and support the development of new therapeutic drugs for cardiovascular diseases. Future research should further validate these effects in animal models and explore the overall efficacy of Eucommiae cortex.
Collapse
Affiliation(s)
- Xueting Qin
- Nephrology, The Second People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Xuan Liu
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Can Guo
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Huang
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiyao Xu
- Nephrology, The Second People's Hospital of China Three Gorges University, Yichang, Hubei, China
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Liu T, Li Y, Hu N. Aucubin Alleviates Chronic Obstructive Pulmonary Disease by Activating Nrf2/HO-1 Signaling Pathway. Cell Biochem Biophys 2024; 82:2439-2454. [PMID: 38967902 DOI: 10.1007/s12013-024-01354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease with high death rates. Aucubin is an iridoid glycoside extracted from Eucommia ulmoides with antioxidative and anti-inflammatory properties in human diseases. This study aimed to investigate its specific function in mouse and cell models of COPD. METHODS The COPD mouse model was established by exposing mice to a long-term cigarette smoke (CS). The number of inflammatory cells and the contents of inflammatory factors tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-8 in bronchoalveolar lavage fluid (BALF) of CS-exposed mice were measured. The levels of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and myeloperoxidase (MPO) in the lung tissues were estimated. Masson staining and hematoxylin-eosin (H&E) staining were utilized to evaluate pulmonary fibrosis and emphysema in CS-treated mice. Cell apoptosis in the lung tissues was estimated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Western blot was applied to quantify protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and apoptotic markers. COPD cell model was established by exposing mouse lung epithelial cells (MLE12) with cigarette smoke extract to further verify the properties of aucubin in vitro. RESULTS Aucubin reduced the number of inflammatory cells and decreased the contents of TNF-α, IL-6, and IL-8 in BALF of CS-treated mice. The oxidative stress, lung emphysema, fibrosis, and lung cell apoptosis induced by CS exposure were ameliorated by aucubin administration. Aucubin activated the Nrf2/HO-1 signaling pathway in vitro and in vivo. Pretreatment with ML385, a specific Nrf2 inhibitor, antagonized the protective effects of aucubin on inflammation, oxidative stress, fibrosis, and cell apoptosis in COPD. CONCLUSION Aucubin alleviates inflammation, oxidative stress, apoptosis, and pulmonary fibrosis in COPD mice and CSE-treated MLE12 cells by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Ting Liu
- Department of International Medical Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nan Hu
- Department of Rheumatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
9
|
Sun Y, Zhang Y, Sun M, Gao W, He Y, Wang Y, Yang B, Kuang H. Advances in Eucommia ulmoides polysaccharides: extraction, purification, structure, bioactivities and applications. Front Pharmacol 2024; 15:1421662. [PMID: 39221141 PMCID: PMC11361956 DOI: 10.3389/fphar.2024.1421662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Eucommia ulmoides (EU) is a precious tree species native to China originating during the ice age. This species has important economic value and comprehensive development potential, particularly in medicinal applications. The medicinal parts of EU are its bark (Eucommiae cortex) and leaves (Eucommiae folium) which have been successively used as a traditional Chinese medicine to treat diseases since the first century BC. During the last 2 decades, as natural polysaccharides have become of increasing interest in pharmacology, biomedicine, cosmetic and food applications, more and more scholars have begun to study polysaccharides derived from EU as well. EU polysaccharides have been found to have a variety of biological functions both in vivo and in vitro, including immunomodulatory, antioxidant, anti-inflammatory, anticomplementary, antifatigue, and hepatoprotective activities. This review aims to summarize these recent advances in extraction, purification, structural characteristics, pharmacological activities and applications in different fields of EU bark and leaf polysaccharides. It was found that both Eucommiae folium polysaccharides and Eucommiae cortex polysaccharides were suitable for medicinal use. Eucommiae folium may potentially be used to substitute for Eucommiae cortex in terms of immunomodulation and antioxidant activities. This study serves as a valuable reference for improving the comprehensive utilization of EU polysaccharides and further promoting the application of EU polysaccharides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
10
|
Li Y, Wang L, Wang H, Leng X, Gao J, Huang D. Polysaccharides from Eucommia ulmoides Oliv. leaves alleviates alcohol-induced mouse brain injury and BV-2 microglial dysfunction. Int J Biol Macromol 2024; 273:132887. [PMID: 38851621 DOI: 10.1016/j.ijbiomac.2024.132887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Acute alcohol intoxication is a harmful clinical condition characterized by behavioral and neurological symptoms, for which few effective therapies are available at present. Dysfunction of microglial BV-2 cells has been reported to be associated with acute alcohol-induced brain injuries. In the present study, the protective effects of Eucommia ulmoides Oliv. leaves polysaccharides (EULP) on acute alcoholic brain injury and microglial dysfunction were investigated. 14-day pretreatment of EULP significantly attenuated neurobehavioral deficit and neurotransmitter damage in the brain tissue of mice caused by acute alcohol exposure. Additionally, EULP regulated the metabolic disorder of brain tissue. Consistently, it was shown that EULP pretreatment significantly improved alcohol-induced phagocytosis decrease, oxidative stress and inflammation in BV-2 cells. Therefore, EULP may be proposed and employed as a potential therapeutic agent for alcohol-induced brain damage.
Collapse
Affiliation(s)
- Yingzhi Li
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Luchen Wang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Huimei Wang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xueping Leng
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiaming Gao
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation Co., Ltd., China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
11
|
Huang X, Xing G, Zhang C, Sun X. Eucommia granules activate Wnt/β-catenin pathway, and improve oxidative stress, inflammation, and endothelial injury in preeclampsia rats. Acta Cir Bras 2024; 39:e391524. [PMID: 38629649 PMCID: PMC11020635 DOI: 10.1590/acb391524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/18/2024] [Indexed: 04/19/2024] Open
Abstract
PURPOSE Pre-eclampsia (PE) is a pregnancy-related complication. Eucommia is effective in the treatment of hypertensive disorders in pregnancy, but the specific effects and possible mechanisms of Eucommia granules (EG) in PE remain unknown. The aim of this study was to investigate the effects and possible mechanisms of EG in PE rats. METHODS Pregnant Sprague Dawley rats were divided into five groups (n = 6): the control group, the model group, the low-dose group, the medium-dose group, and the high-dose group of EG. The PE model was established by subcutaneous injection of levonitroarginine methyl ester. Saline was given to the blank and model groups, and the Eucommia granules were given by gavage to the remaining groups. Blood pressure and urinary protein were detected. The body length and weight of the pups and the weight of the placenta were recorded. Superoxide dismutase (SOD) activity and levels of malondialdehyde (MDA), placental growth factor (PIGF), and soluble vascular endothelial growth factor receptor-1 (sFIt-1) were measured in the placenta. Pathological changes were observed by hematoxylin-eosin staining. Wnt/β-catenin pathway-related protein expression was detected using Western blot. RESULTS Compared with the model group, the PE rats treated with EG had lower blood pressure and urinary protein. The length and weight of the pups and placental weight were increased. Inflammation and necrosis in the placental tissue was improved. SOD level increased, MDA content and sFIt-1/PIGF ratio decreased, and Wnt/β-catenin pathway-related protein expression level increased. Moreover, the results of EG on PE rats increased with higher doses of EG. CONCLUSIONS EG may activate the Wnt/β-catenin pathway and inhibit oxidative stress, inflammation, and vascular endothelial injury in PE rats, thereby improving the perinatal prognosis of preeclamptic rats. EG may inhibit oxidative stress, inflammation, and vascular endothelial injury through activation of the Wnt/β-catenin pathway in preeclampsia rats, thereby improving perinatal outcomes in PE rats.
Collapse
Affiliation(s)
- Xia Huang
- Gansu Provincial Hospital – Department of Gynecology and Obstetrics – Lanzhou, China
| | - Guangyang Xing
- Gansu Provincial Hospital – Department of Gynecology and Obstetrics – Lanzhou, China
| | - Cui Zhang
- Gansu University of Chinese Medicine – Affiliated Hospital – Department of Pathology – Lanzhou, China
| | - Xiaotong Sun
- Gansu Provincial Hospital – Department of Gynecology and Obstetrics – Lanzhou, China
| |
Collapse
|
12
|
Mai YX, Li ZP, Pang FX, Zhou ST, Li N, Wang YY, Zhang JF. Aucubin Promotes Osteogenic Differentiation and Facilitates Bone Formation through the lncRNA-H19 Driven Wnt/ β-Catenin Signaling Regulatory Axis. Stem Cells Int 2024; 2024:5388064. [PMID: 38633381 PMCID: PMC11022505 DOI: 10.1155/2024/5388064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Objectives Traditional Chinese medicine Cortex Eucommiae has been used to treat bone fracture for hundreds of years, which exerts a significant improvement in fracture healing. Aucubin, a derivative isolated from Cortex Eucommiae, has been demonstrated to possess anti-inflammatory, immunoregulatory, and antioxidative potential. In the present study, our aim was to explore its function in bone regeneration and elucidate the underlying mechanism. Materials and Methods The effects of Aucubin on osteoblast and osteoclast were examined in mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) and RAW 264.7 cells, respectively. Moreover, the lncRNA H19 and Wnt/β-catenin signaling were detected by qPCR examination, western blotting, and luciferase activity assays. Using the femur fracture mice model, the in vivo effect of Aucubin on bone formation was monitored by X-ray, micro-CT, histomorphometry, and immunohistochemistry staining. Results In the present study, Aucubin was found to significantly promote osteogenic differentiation in vitro and stimulated bone formation in vivo. Regarding to the underlying mechanism, H19 was found to be obviously upregulated by Aucubin in MSCs and thus induced the activation of Wnt/β-catenin signaling. Moreover, H19 knockdown partially reversed the Aucubin-induced osteogenic differentiation and successfully suppressed the activation of Wnt/β-catenin signaling. We therefore suggested that Aucubin induced the activation of Wnt/β-catenin signaling through promoting H19 expression. Conclusion Our results demonstrated that Aucubin promoted osteogenesis in vitro and facilitated fracture healing in vivo through the H19-Wnt/β-catenin regulatory axis.
Collapse
Affiliation(s)
- Yong-xin Mai
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhi-peng Li
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Rehabilitation, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Feng-xiang Pang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Shu-ting Zhou
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Nan Li
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu-yan Wang
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
| | - Jin-fang Zhang
- Cancer Center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
13
|
Lee HS, Kim JM, Lee HL, Go MJ, Lee DY, Kim CW, Kim HJ, Heo HJ. Eucommia ulmoides Leaves Alleviate Cognitive Dysfunction in Dextran Sulfate Sodium (DSS)-Induced Colitis Mice through Regulating JNK/TLR4 Signaling Pathway. Int J Mol Sci 2024; 25:4063. [PMID: 38612870 PMCID: PMC11012925 DOI: 10.3390/ijms25074063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Ulcerative colitis (UC) is one of the inflammatory bowel diseases (IBD) that is characterized by systemic immune system activation. This study was performed to assess the alleviative effect of administering an aqueous extract of Eucommia ulmoides leaves (AEEL) on cognitive dysfunction in mice with dextran sulfate sodium (DSS)-induced colitis. The major bioactive compounds of AEEL were identified as a quinic acid derivative, caffeic acid-O-hexoside, and 3-O-caffeoylquinic acid using UPLC Q-TOF/MSE. AEEL administration alleviated colitis symptoms, which are bodyweight change and colon shortening. Moreover, AEEL administration protected intestinal barrier integrity by increasing the tight junction protein expression levels in colon tissues. Likewise, AEEL improved behavioral dysfunction in the Y-maze, passive avoidance, and Morris water maze tests. Additionally, AEEL improved short-chain fatty acid (SCFA) content in the feces of DSS-induced mice. In addition, AEEL improved damaged cholinergic systems in brain tissue and damaged mitochondrial and antioxidant functions in colon and brain tissues caused by DSS. Also, AEEL protected against DSS-induced cytotoxicity and inflammation in colon and brain tissues by c-Jun N-terminal kinase (JNK) and the toll-like receptor 4 (TLR4) signaling pathway. Therefore, these results suggest that AEEL is a natural material that alleviates DSS-induced cognitive dysfunction with the modulation of gut-brain interaction.
Collapse
Affiliation(s)
- Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Dong Yeol Lee
- Research & Development Team, Gyeongnam Anti-Aging Research Institute, Sancheong 52215, Republic of Korea;
| | - Chul-Woo Kim
- Division of special Forest Resources, Department of Forest Bio-Resources, National Institute of Forest Science, Seoul 02455, Republic of Korea;
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| |
Collapse
|
14
|
Liu L, Zhu F, Xin Y, Zhang L, Hu C, Xu Y, Zhang J, Liu L, Chen G. Real-world effects of Yishen Tongbi decoction for rheumatoid arthritis: protocol for a prospective, observational, multicenter cohort study with validation against double-blind, randomized, controlled trial. Front Pharmacol 2024; 15:1320578. [PMID: 38410132 PMCID: PMC10895057 DOI: 10.3389/fphar.2024.1320578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction: Rheumatoid arthritis (RA) is a globally challenging and refractory autoimmune disease, constituting a serious menace to human health. RA is characterized by recurrent pain and is difficult to resolve, necessitating prolonged medication for control. Yishen Tongbi decoction is a traditional Chinese herbal compound prescribed for treating RA. We have completed a 3-year RCT study that confirmed the clinical efficacy of Yishen Tongbi decoction for RA. Notably, we observed a faster clinical remission rate compared to MTX by week 4 of treatment. In our forthcoming study, we intend to conduct a comprehensive assessment of the efficacy and safety of Yishen Tongbi decoction in the real-world treatment of RA through a prospective study. Methods and analysis: This prospective, multicenter, real-world observational study will be conducted at two designated centers in China from October 2023 to August 2025. The study will include 324 patients with active rheumatoid arthritis. One group will receive Yishen Tongbi decoction combined with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs). The other group will receive standard treatment. Standard treatment can be further divided into subgroups: csDMARDs, targeted synthetic disease-modifying antirheumatic drugs (tsDMARDs), and biologic disease-modifying antirheumatic drugs (bDMARDs). In each group, the number of tender joints, number of swollen joints, pain score, patient global assessment, physician global assessment, disease activity index (DAS28-ESR or DAS28-CRP), clinical disease activity index (cDAI), simplified disease activity index (sDAI) and relevant laboratory data will be compared. Clinical indicators and disease activity of the patients will be assessed at baseline, week 4 and week 12 after the initiation of treatment. The primary outcome will be the American College of Rheumatology 20% improvement criteria (ACR20) attainment rate among patients at week 12 after treatment. Every adverse event will be reported. Ethics and dissemination: This study has been approved by the Ethics Committee of the first affiliated Hospital of Guangzhou University of traditional Chinese Medicine (NO.K-2023-009). The results of the study will be published in national and international peer-reviewed journals and at scientific conferences. The researchers will inform participants and other RA patients of the results through health education. Clinical Trial Registration: https://www.chictr.org.cn/index.html, identifier ChiCTR2300076073.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangfang Zhu
- Department of Gynecology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yijun Xin
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Zhang
- Shantou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Shantou, China
| | - Congqi Hu
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanping Xu
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinming Zhang
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingjie Liu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangxing Chen
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Bao L, Sun Y, Wang J, Li W, Liu J, Li T, Liu Z. A review of "plant gold" Eucommia ulmoides Oliv.: A medicinal and food homologous plant with economic value and prospect. Heliyon 2024; 10:e24851. [PMID: 38312592 PMCID: PMC10834829 DOI: 10.1016/j.heliyon.2024.e24851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/10/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Eucommia ulmoides Oliv. is an ancient and precious plant that has been used as medicine in China for more than 2000 years. Because its bark, leaves, seeds, and male flowers can be used in medicine, it plays an important role in medicine, food, chemical industry, and other fields, so it is also called "plant gold". 246 compounds have been isolated from E. ulmoides, which endow E. ulmoides with many unique pharmacological effects and make it wide to study in the fields of osteoporosis, hypertension, liver protection, and so on. Besides, E. ulmoides also has significant medicinal effects on anti-inflammatory, antioxidant, immunomodulation, and neuroprotection, and is often used in clinical compound medicines of traditional Chinese medicine. In addition to updating its ethnobotany, phytochemistry, pharmacology, and toxicology information, the economic botany of leaves, seeds, and male flowers was also introduced. It hopes hoping to fully understand this economically important Chinese medicine and provide a scientific basis for further development and utilization of E. ulmoides.
Collapse
Affiliation(s)
- Lei Bao
- Heilongjiang University of Chinese Medicine, China
| | - Yinling Sun
- Heilongjiang Academy of Traditional Chinese Medicine, China
| | - Jinming Wang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | | | - Jie Liu
- The Fourth Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | - Tianying Li
- Heilongjiang University of Chinese Medicine, China
| | | |
Collapse
|
16
|
Lu X, Hong D, Wu W, Zhang L, Qiu C. A case report of integrating Chinese and Western medicine: A new era in the treatment of stiff person syndrome. Medicine (Baltimore) 2024; 103:e36883. [PMID: 38215122 PMCID: PMC10783390 DOI: 10.1097/md.0000000000036883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024] Open
Abstract
RATIONALE At present, there are limitations to the treatment of stiff person syndrome (SPS). Current treatments are still ineffective or financially burdensome for some patients, so it is imperative to explore more appropriate treatments for patients. This is a case report of a SPS with a more significant effect of combined Chinese and Western medicine, which may provide new treatment ideas for other patients. PATIENT CONCERNS This patient presented with episodes of stiffness and pain in the lower back and lower extremities. His electromyography shows continued activation of normal motor units in the paraspinal and abdominal muscles. However, relevant laboratory tests including glutamic acid decarboxylase antibody and Amphiphysin antibody were negative. After a period of treatment including clonazepam, baclofen, prednisone and intravenous immunoglobulin, this patient experiences a shortened maintenance period of medication, accompanied by symptoms such as emotional anxiety and cognitive decline, which severely affects his life. DIAGNOSES This patient was diagnosed with SPS. INTERVENTIONS In May 2022 the patient decided to combine Chinese medicine for simultaneous treatment. OUTCOMES During the period of simultaneous treatment with Chinese and Western medicine, the patient experienced remission of clinical symptoms, reduction of concomitant symptoms and improved quality of life. CONCLUSION A combination of Western and Chinese medicine was effective in relieving this patient pain and stiffness and reducing the patient anxiety. Combined Chinese and Western medicine treatment may be able to bring better results to more patients with stiff person syndrome.
Collapse
Affiliation(s)
- Xiaohui Lu
- Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Du Hong
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Wenshuo Wu
- Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Liping Zhang
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Changlin Qiu
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
17
|
Liu M, Zhang L, Li J, Xu G, Zong W, Wang L. Effects of lactic acid bacteria on antioxidant activity in vitro and aroma component of Eucommia ulmoides tea. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:169-177. [PMID: 38192710 PMCID: PMC10771573 DOI: 10.1007/s13197-023-05833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 01/10/2024]
Abstract
Eucommia ulmoides tea is a popular functional health drink in Asian countries, but its unique herbal aroma is difficult for consumers to accept. The effects of four lactic acid bacteria strains (Lactobacillus plantarium, Lactobacillus bulgaricus, Lactobacillus acidophilus and Streptococcus thermophilus) fermentation on the physicochemical property, antioxidant activity in vitro and aroma component of E. ulmoides leaves were studied. Within the four strains, the sample by L. bulgaricus fermentation showed the higher concentrations of chlorogenic acid, geniposidic acid and stronger antioxidant activity in vitro. Moreover, the sample by L. bulgaricus fermentation produced a stronger fruity and floral flavor. These results suggested that L. bulgaricus was the best strain for fermentation E. ulmoides tea. The differences between different strains should be considered when selecting lactic acid bacteria for raw material fermentation of fruits and vegetables.
Collapse
Affiliation(s)
- Mengpei Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhenzhou, 450002 People’s Republic of China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450002 People’s Republic of China
| | - Libing Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhenzhou, 450002 People’s Republic of China
| | - Jia Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhenzhou, 450002 People’s Republic of China
| | - Gaigai Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhenzhou, 450002 People’s Republic of China
| | - Wei Zong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhenzhou, 450002 People’s Republic of China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450002 People’s Republic of China
| | - Lu Wang
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003 People’s Republic of China
| |
Collapse
|
18
|
Zhou Y, Sheng YJ, Li CY, Zou L, Tong CY, Zhang Y, Cao G, Shou D. Beneficial effect and mechanism of natural resourced polysaccharides on regulating bone metabolism through intestinal flora: A review. Int J Biol Macromol 2023; 253:127428. [PMID: 37838110 DOI: 10.1016/j.ijbiomac.2023.127428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Bone metabolism is an important biological process for maintaining bone health. Polysaccharides of natural origin exert beneficial effects on bone metabolism. Polysaccharide molecules often have difficulty passing through the intestinal cell membrane and are directly absorbed in the gastrointestinal tract. Therefore, polysaccharides may affect intestinal flora and play a role in disease treatment. We performed a comprehensive review of the relevant literature published from 2003 to 2023. We found that several polysaccharides from traditional Chinese medicines, including Astragalus, Achyranthes bidentata and Eucommia ulmoides, and the polysaccharides from several dietary fibers mainly composed of inulin, resistant starch, and dextran could enrich the intestinal microbiota group to regulate bone metabolism. The promotion of polysaccharide decomposition by regulating the Bacteroides phylum is particularly critical. Studies on the structure-activity relationship showed that molecular weight, glycosidic bonds, and monosaccharide composition may affect the ability of polysaccharides. The mechanism by which polysaccharides regulate intestinal flora to enhance bone metabolism may be related to the regulation of short-chain fatty acids, immunity, and hormones, involving some signaling pathways, such as TGF-β, Wnt/β-catenin, BMP/Smads, and RANKL. This paper provides a useful reference for the study of polysaccharides and suggests their potential application in the treatment of bone metabolic disorders.
Collapse
Affiliation(s)
- Yun Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Yun Jie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Cheng Yan Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Li Zou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Chao Ying Tong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China; College of Chemistry and Chemical Engineering,Central South University, Changsha, Hunan 410083, PR China
| | - Yang Zhang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| | - Dan Shou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China.
| |
Collapse
|
19
|
Ma X, Pan B, Wang L, Feng Z, Peng C. Network pharmacology and molecular docking elucidate potential mechanisms of Eucommia ulmoides in hepatic ischemia-reperfusion injury. Sci Rep 2023; 13:20716. [PMID: 38001230 PMCID: PMC10673959 DOI: 10.1038/s41598-023-47918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Eucommia ulmoides (EU) and its diverse extracts have demonstrated antioxidative, anti-inflammatory, and cytoprotective properties against hepatic ischemia-reperfusion injury (HIRI). However, the primary constituents of EU and their putative mechanisms remain elusive. This study aims to explore the potential mechanisms of EU in the prevention and treatment of HIRI by employing network pharmacology and molecular docking methodologies. The main components and corresponding protein targets of EU were searched in the literature and TCMSP, and the compound target network was constructed by Cytoscape 3.9.1. Liver ischemia-reperfusion injury targets were searched in OMIM and GeneCards databases. The intersection points of compound targets and disease targets were obtained, and the overlapping targets were imported into the STRING database to construct the PPI network. We further analyzed the targets for GO and KEGG enrichment. Finally, molecular docking studies were performed on the core targets and active compounds. The component-target network unveiled a total of 26 efficacious bioactive compounds corresponding to 207 target proteins. Notably, the top-ranking compounds based on degree centrality were quercetin, β-sitosterol, and gallic acid. Within the PPI network, the highest degree centrality encompassed RELA, AKT1, TP53. GO and KEGG enrichment analysis elucidated that EU in HIRI primarily engaged in positive regulation of gene expression, positive transcriptional regulation via RNA polymerase II promoter, negative modulation of apoptotic processes, positive regulation of transcription from DNA templates, and drug responsiveness, among other biological processes. Key pathways included cancer pathways, RAGE signaling pathway, lipid metabolism, atherosclerosis, TNF signaling pathway, PI3K-Akt signaling pathway, and apoptotic pathways. Molecular docking analysis revealed robust affinities between quercetin, β-sitosterol, gallic acid, and RELA, AKT1, TP53, respectively. This study reveals EU exhibits substantial potential in mitigating and treating HIRI through multifaceted targeting and involvement in intricate signaling pathways.
Collapse
Affiliation(s)
- Xuan Ma
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Bochen Pan
- Department of Biochemistry and Molecular Biology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Liusong Wang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zanjie Feng
- Clinical Medical Research Center, The affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Cijun Peng
- Department of Hepatobiliary Surgery, The affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
20
|
Gong H, Yang M, Wang C, Tian C. Leaf phenotypic variation and its response to environmental factors in natural populations of Eucommia ulmoides. BMC PLANT BIOLOGY 2023; 23:562. [PMID: 37964219 PMCID: PMC10647038 DOI: 10.1186/s12870-023-04583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Eucommia ulmoides leaves have high medicinal and economic value as a dual-purpose substance for medicine and food. Employing leaves from 13 natural populations of Eucommia ulmoides as research objects, this study reveals the variation patterns of intra-specific and inter-specific trait variation and explores the response of leaf characteristics to geographical and climatic changes, aiming to provide a scientific basis for the efficient utilization of leaf resources and the breeding of superior varieties. RESULTS Descriptive statistical analysis and nested analysis of variance showed significant differences in 11 leaf traits of Eucommia ulmoides inter-populations and intra-populations, with an average coefficient of variation of 17.45%. The coefficient of variation for average leaf phenotypic traits is 20.77%, and the leaf phenotypic variation is mainly from the variation intra-populations. Principal component analysis reveals that the cumulative contribution rate of the top three principal components which mainly contributed to the phenotypic variation of Eucommia ulmoides leaves reached 74.98%, which could be sorted into size traits (34.57%), color traits (25.82%) and shape traits (14.58%). In addition, correlation analysis expresses there is a specific co-variation pattern among leaf traits, with a strong connection between shape, size, and color traits. Geographic and climatic distances are significantly correlated, and mantel test and correlation analysis indicate that leaf traits of Eucommia ulmoides are mainly influenced by altitude. With the increase of altitude, the leaves become smaller. Partial correlation analysis shows that after controlling climate factors, the correlation between some characters and geographical factors disappears significantly. Temperature and precipitation have a great influence on the variation of leaf phenotypic traits, and the larger the leaves are in areas with high temperature and heavy rainfall. CONCLUSIONS These findings contribute to a further understanding of the leaf morphological characteristics of Eucommia ulmoides and the extent to which the environment influences leaf trait variation. They can provide a scientific basis for the protection and application of Eucommia ulmoides leaf resources in the future.
Collapse
Affiliation(s)
- Huimin Gong
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Jishou University, Zhangjiajie, 427000, China
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Min Yang
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Jishou University, Zhangjiajie, 427000, China
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Chaochun Wang
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Jishou University, Zhangjiajie, 427000, China
| | - Chunlian Tian
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization Technology of Eucommia ulmoides, Jishou University, Zhangjiajie, 427000, China.
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China.
| |
Collapse
|
21
|
Meng Y, Sui X, Pan X, Yang Y, Sui H, Xu T, Zhang H, Liu T, Liu J, Ge P. An integrated process by ultrasonic enhancement in the deep eutectic solvents system for extraction and separation of chlorogenic acid from Eucommia ulmoides leaves. ULTRASONICS SONOCHEMISTRY 2023; 99:106588. [PMID: 37690261 PMCID: PMC10498307 DOI: 10.1016/j.ultsonch.2023.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
This study established an integrated process for the extraction and enrichment of chlorogenic acid(CGA)from Eucommia ulmoides leaves in a deep eutectic solvent system via ultrasonic wave-enhanced adsorption and desorption practices utilizing macroporous resins. Although deep eutectic solvents (DESs) have the advantages of chemical stability, good dissolving capacity, and nonvolatilization, routine solvent recovery operations are not suitable for subsequent separation in this solvent system. Based on the above characteristics, this study integrated the extraction and enrichment processes, in which DESs extracts directly loaded onto the macroporous adsorption resin, avoiding the loss of target components in solvent recovery and redissolution processes. The screening results of solvents and resin types further showed that choline chloride-malic acid (1:1) was the optimal DES, and the NKA-II resin had high adsorption and elution performance for CGA. The viscosities of the DESs were much higher than those of water and conventional organic solvents; thus, the mass transfer resistance was large, which could also affect the adsorption behaviour of the macroporous resin. The thermal and mechanical effects of ultrasound could effectively enhance the efficiency of the mass transfer, adsorption, and desorption in the DES systems. When compared to no sonication treatment, the CGA adsorption at various ultrasonic powers (120-600 W) was examined. At optimal ethanol concentration (60%), the effect of the ultrasonic treatment on the recovery of the DESs (water eluting process) and the desorption capability of CGA were confirmed. The use of three volumes of water elution could recover the DESs without loss of CGA. The adsorption process significantly differed depending on the ultrasonic settings, and the absorption balance time and experimental adsorption capacity at equilibrium were enhanced. Additionally, the adsorption procedure of the NKA-II macroporous resin for CGA under ultrasonic treatment could be clarified by the pseudo second order kinetic equation and the Freundlich isotherm model. Thermodynamic and dynamic parameters indicated that physical adsorption was the main process of the entire procedure, and it was a spontaneous, exothermic, and entropy-reducing physical adsorption process. This study potentially indicates that the use of ultrasonication, as a high-efficiency, environmentally friendly method, can enhance the features of the macroporous resin to better purify target chemicals from a DES extract.
Collapse
Affiliation(s)
- Yue Meng
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Xu Pan
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Ying Yang
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Huimin Sui
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Tao Xu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Honglian Zhang
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Tingting Liu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China; Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, 150040 Harbin, China.
| | - Jicheng Liu
- College of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, China
| | - Pengling Ge
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, 150040 Harbin, China
| |
Collapse
|
22
|
Liu P, Song S, Yang P, Rao X, Wang Y, Bai X. Aucubin improves chronic unpredictable mild stress-induced depressive behavior in mice via the GR/NF-κB/NLRP3 axis. Int Immunopharmacol 2023; 123:110677. [PMID: 37523973 DOI: 10.1016/j.intimp.2023.110677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Eucommia ulmoides Oliv (EUO) is a traditional therapeutic drug that tonifies the liver and kidney and may improve depression. However, the mechanism of action of the main component, aucubin (AU), is unknown. To study the therapeutic effect of AU, we constructed a chronic unpredictable mild stress (CUMS) depression model in mice. Depression-like behaviors, pathological damage, hormonal changes, inflammation, intranuclear expression of glucocorticoidreceptor (GR), and hippocampal protein expression were assessed. Immunofluorescence staining of the hippocampus showed that CUMS decreased neuronal regeneration, and axons were observed to be reduced and broken. Intracellular GR expression decreased in the hippocampus and hypothalamus, and serum levels of stress hormones increased. Furthermore, molecular changes indicative of pyroptosis were observed. AU administration reversed these changes and significantly improved the depression-like behavior induced by CUMS. Our results suggested that AU improves depression by promoting the intranuclear expression of GR and inhibiting nuclear factor-kappa B-mediated inflammatory activation-driven cell pyroptosis.
Collapse
Affiliation(s)
- Ping Liu
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| | - Shiyuan Song
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China.
| | - Ping Yang
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China.
| | - Xiuming Rao
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China.
| | - Yuqi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| | - Xinyu Bai
- Department of Clinical Pharmacy, Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
23
|
Liu H, Li F, Tang H, Chen B, Geng Y, Chen D, Ouyang P, Li L, Huang X. Eucommia ulmoides Oliver repairs the disorder of intestinal microflora caused by high starch in Micropterus salmoides and improves resistance to pathogens. Front Microbiol 2023; 14:1223723. [PMID: 37808277 PMCID: PMC10552156 DOI: 10.3389/fmicb.2023.1223723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Eucommia ulmoides Oliver (EuO) is a natural medicine that can improve the composition of intestinal flora in fish, but more experiments and data are needed to support whether it can effectively improve the changes of intestinal flora and intestinal damage caused by high starch. This study examined the changes in intestinal structure as well as intestinal flora before and after the addition of EuO to high-starch diets and analyzed the effects of such changes on immune and digestive functions. The results showed that EuO reduces mortality during Nocardia seriolae attack and can reduce starch-induced intestinal inflammation. Eucommia ulmoides Oliver supplementation was able to alter the changes of intestinal flora in fatty acid degradation, bacterial chemotaxis, porphyrin metabolism and flagella assembly caused by high starch. By analyzing the abundance and correlation of bacterial communities, three bacterial communities that were significantly related to the intervention effect of EuO were screened. Further analysis revealed that EuO supplementation reduced the increase in abundance of Limnochordaceae, Nitrolancea, Lysinibacillus, and Hydrogenispora induced by high starch, which were negatively correlated with levels of the immunoreactive substance LZM in fish. This study reveals the regulatory effects of EuO on the intestinal flora of Micropterus salmoides fed on high starch diets, and provides a theoretical basis for reducing starch damage to fish in production.
Collapse
Affiliation(s)
- Hongli Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fulong Li
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hong Tang
- Fisheries Research Institute, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Baipeng Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liangyu Li
- Fisheries Research Institute, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Zhang Y, Du D, Wei H, Xie S, Tian X, Yang J, Xiao S, Tang Z, Li D, Liu Y. Transcriptomic and Hormone Analyses Provide Insight into the Regulation of Axillary Bud Outgrowth of Eucommia ulmoides Oliver. Curr Issues Mol Biol 2023; 45:7304-7318. [PMID: 37754246 PMCID: PMC10528246 DOI: 10.3390/cimb45090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
An essential indicator of Eucommia ulmoides Oliver (E. ulmoides) is the axillary bud; the growth and developmental capacity of axillary buds could be used to efficiently determine the structural integrity of branches and plant regeneration. We obtained axillary buds in different positions on the stem, including upper buds (CK), tip buds (T1), and bottom buds (T2), which provided optimal materials for the study of complicated regulatory networks that control bud germination. This study used transcriptomes to analyze the levels of gene expression in three different types of buds, and the results showed that 12,131 differentially expressed genes (DEGs) were discovered via the pairwise comparison of transcriptome data gathered from CK to T2, while the majority of DEGs (44.38%) were mainly found between CK and T1. These DEGs were closely related to plant hormone signal transduction and the amino acid biosynthesis pathway. We also determined changes in endogenous hormone contents during the process of bud germination. Interestingly, except for indole-3-acetic acid (IAA) content, which showed a significant upward trend (p < 0.05) in tip buds on day 4 compared with day 0, the other hormones showed no significant change during the process of germination. Then, the expression patterns of genes involved in IAA biosynthesis and signaling were examined through transcriptome analysis. Furthermore, the expression levels of genes related to IAA biosynthesis and signal transduction were upregulated in tip buds. Particularly, the expression of the IAA degradation gene Gretchen Hagen 3 (GH3.1) was downregulated on day 4, which may support the concept that endogenous IAA promotes bud germination. Based on these data, we propose that IAA synthesis and signal transduction lead to morphological changes in tip buds during the germination process. On this basis, suggestions to improve the efficiency of the production and application of E. ulmoides are put forward to provide guidance for future research.
Collapse
Affiliation(s)
- Ying Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Dandan Du
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Hongling Wei
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Shengnan Xie
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Xuchen Tian
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Jing Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Siqiu Xiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Dewen Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| | - Ying Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.Z.); (D.D.); (H.W.); (S.X.); (X.T.); (J.Y.); (S.X.); (Z.T.)
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China
| |
Collapse
|
25
|
He Y, Kam H, Wu X, Chen Q, Lee SMY. Dual effect of aucubin on promoting VEGFR2 mediated angiogenesis and reducing RANKL-induced bone resorption. Chin Med 2023; 18:108. [PMID: 37641047 PMCID: PMC10464038 DOI: 10.1186/s13020-023-00786-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Angiogenesis is regarded as a critical role in bone repair and regeneration, involving in pathological bone disorders such as osteoporosis. Aucubin, an iridoid glycoside primarily derived from Eucommia ulmoides, is reported to inhibit osteoclast activity, enhance bone formation and promote angiogenesis in osteoporosis models. Our study is to further investigate the anti-osteoporosis effect of aucubin in transgenic medaka, and the pro-angiogenic effect of aucubin and its mechanism of action both in vivo and in vitro. METHODS The anti-osteoporosis effect of aucubin was confirmed by using RANKL-stimulated bone resorption transgenic medaka. The pro-angiogenic effect of aucubin in vivo was investigated using vascular endothelial growth factor (VEGF) tyrosine kinase inhibitor II (VRI)-induced vascular insufficient transgenic zebrafish model. Furthermore, endothelial cell proliferation, migration, tube formation and the mechanisms were evaluated to identify the pro-angiogenic effect of aucubin in normal and su5416-injured human umbilical vein endothelial cells (HUVECs). RESULTS Aucubin decreased the resorption of the mineralized bone matrix and centra degradation in heat-shocked transgenic col10α1:nlGFP/rankl:HSE:CFP medaka. Moreover, aucubin reversed VRI-induced vascular insufficiency in zebrafish through regulating flt1, kdr, kdrl, vegfaa, ang-1, ang-2, tie1 and tie2 mRNA expressions in Tg(fli1a:EGFP)y1 or AB wild type zebrafish. Aucubin promoted cell proliferation by upregulating p-mTOR, p-Src, p-MEK, p-Erk1/2, p-Akt and p-FAK in HUVECs. Furthermore, aucubin exhibited a pro-angiogenic effect on su5416-injured HUVECs by promoting their proliferation, migration, and tube formation through regulating the phosphorylation of VEGFR2, MEK, ERK and the ratio of Bcl2-Bax. CONCLUSION Aucubin could reduce bone resorption in RANKL-induced osteoporosis medaka by live imaging. Meanwhile, aucubin exhibited a protective effect in VRI-induced vascular insufficient zebrafish by regulating VEGF-VEGFR and Ang-Tie signaling pathways. Additionally, aucubin promoted the proliferation, migration and tube formation of HUVECs probably by mediating VEGFR2/MEK/ERK, Akt/mTOR and Src/FAK signalling pathways. This study further indicated the dual effect of aucubin on angiogenesis and osteogenesis which may be beneficial to its treatment of osteoporosis.
Collapse
Affiliation(s)
- Yulin He
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macao, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macao, China
| | - Xue Wu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macao, China
| | - Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macao, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macao, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macao, China.
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong, China.
| |
Collapse
|
26
|
Wang Y, Zhang Y, Cong H, Li C, Wu J, Li L, Jiang J, Cao X. Cultivable Endophyte Resources in Medicinal Plants and Effects on Hosts. Life (Basel) 2023; 13:1695. [PMID: 37629552 PMCID: PMC10455732 DOI: 10.3390/life13081695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
With the increasing demand for medicinal plants and the increasing shortage of resources, improving the quality and yield of medicinal plants and making more effective use of medicinal plants has become an urgent problem to be solved. During the growth of medicinal plants, various adversities can lead to nutrient loss and yield decline. Using traditional chemical pesticides to control the stress resistance of plants will cause serious pollution to the environment and even endanger human health. Therefore, it is necessary to find suitable pesticide substitutes from natural ingredients. As an important part of the microecology of medicinal plants, endophytes can promote the growth of medicinal plants, improve the stress tolerance of hosts, and promote the accumulation of active components of hosts. Endophytes have a more positive and direct impact on the host and can metabolize rich medicinal ingredients, so researchers pay attention to them. This paper reviews the research in the past five years, aiming to provide ideas for improving the quality of medicinal plants, developing more microbial resources, exploring more medicinal natural products, and providing help for the development of research on medicinal plants and endophytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (Y.W.); (Y.Z.); (H.C.); (C.L.); (J.W.); (L.L.); (J.J.)
| |
Collapse
|
27
|
Ma Z, Zhang K, Guo W, Yu W, Wang J, Li J. Green synthesis of silver nanoparticles using Eucommia ulmoides leaf extract for inhibiting stem end bacteria in cut tree peony flowers. FRONTIERS IN PLANT SCIENCE 2023; 14:1176359. [PMID: 37324696 PMCID: PMC10266105 DOI: 10.3389/fpls.2023.1176359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023]
Abstract
Tree peony ( Paeonia suffruticosa Andr.) is a popular cut flower among ornamental plants. However, its short vase life severely hinders the production and application of cut tree peony flowers. To extend the postharvest longevity and improve the horticultural value, silver nanoparticles (Ag-NPs) was applied for reducing bacterial proliferation and xylem blockage in cut tree peony flowers in vitro and in vivo. Ag-NPs was synthesized with the leaf extract of Eucommia ulmoides and characterized. The Ag-NPs aqueous solution showed inhibitory activity against bacterial populations isolated from stem ends of cut tree peony 'Luoyang Hong' in vitro. The minimum inhibitory concentration (MIC) was 10 mg L-1. Compared with the control, pretreatments with Ag-NPs aqueous solution at 5 and 10 mg L-1 for 24 h increased flower diameter, relative fresh weight (RFW), and water balance of tree peony 'Luoyang Hong' flowers. Additionally, malondialdehyde (MDA) and H2O2 content in pretreated petals were lower than the control during the vase life. The activities of superoxide dismutase (SOD) and catalase (CAT) in pretreated petals were lower than that of the control at the early vase stage and higher at the late vase life. Furthermore, pretreatments with Ag-NPs aqueous solution at 10 mg L-1 for 24 h could reduce bacterial proliferation in the xylem vessels on the stem ends by confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM). Overall, pretreatments with green synthesized Ag-NPs aqueous solution effectively reduced bacteria-induced xylem blockage of cut tree peony, resulting in improved water uptake, extended vase life, and enhanced postharvest quality. Therefore, this technique can be used as a promising postharvest technology in the cut flower industry.
Collapse
Affiliation(s)
- Zhanqiang Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Kaiyue Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Wei Guo
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Weiwei Yu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Junzhe Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Juan Li
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, China
| |
Collapse
|
28
|
Liang X, Zhou K, Li P, Wan D, Liu J, Yi X, Peng Y. Characteristics of endophytic bacteria and active ingredients in the Eucommiae cortex from different origins. Front Microbiol 2023; 14:1164674. [PMID: 37266017 PMCID: PMC10229866 DOI: 10.3389/fmicb.2023.1164674] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Objective This study aimed to explore the differences between Eucommiae cortex (EC) endophytic bacteria from different origins and their effects on the active ingredients of EC. Methods A total of 10 samples of Eucommia ulmoides Oliv. (E. ulmoides) bark were collected from each of the following four regions, namely, Zunyi in Guizhou (GZ), Baokang in Hubei (HUB), Cili in Hunan (HUN), and Loyang in Shaanxi (SX). Subsequently, the contents of the main active ingredients of EC were determined by ultra-performance liquid chromatography (UPLC), and the endophytic bacteria of EC were detected by 16S rRNA sequencing. The relationship between the dominant endophytic bacteria and the active ingredients was investigated by correlation analysis. Results A total of 4,551 different operational taxonomic units (OTUs) were delineated in the four groups of samples, of which 585, 439, 957, and 684 genera were annotated from GZ, HUB, HUN, and SX, respectively. The richness and diversity of endophytic bacteria from different origins were ranked as HUN > SX > GZ or HUB. The analysis demonstrated that there was no significant correlation between the diversity and richness of endophytic bacteria in EC and its active ingredients. Nevertheless, notable variations in the community structures of endophytic bacteria were observed across different origins, and they had a considerable impact on certain active ingredients in EC. Comamonas and Cedecea were the dominant genera. Characteristic bacteria of different origins could be clearly distinguished. Simultaneous, significant correlations had been identified between some characteristic endophytic bacteria derived from different origins and active ingredients of EC. For example, Delftia, a characteristic bacterium from GZ, showed a significant positive correlation with pinoresinol diglucoside. Paenibacillus and Klebsiella, two characteristic bacteria from HUB, exhibited significant positive correlations with geniposidic acid. Thauera, a characteristic bacterium from HUN, demonstrated a significant positive correlation with geniposide. Brevundimonas, a characteristic bacterium from SX, displayed a significant positive correlation with pinoresinol diglucoside. Conclusion There was a complex correlation between EC endophytic bacteria and active ingredient content, while EC endophytic bacteria from different origins had significant differences at the genus level.
Collapse
Affiliation(s)
- Xuejuan Liang
- Innovative Medicine Institute of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Kang Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Penghui Li
- Innovative Medicine Institute of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Dan Wan
- Innovative Medicine Institute of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xin Yi
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yanmei Peng
- Innovative Medicine Institute of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
29
|
Wu Y, Ma Y, Cao J, Xie R, Chen F, Hu W, Huang Y. Feasibility study on the use of "Qi-tonifying medicine compound" as an anti-fatigue functional food ingredient based on network pharmacology and molecular docking. Front Nutr 2023; 10:1131972. [PMID: 37215213 PMCID: PMC10196032 DOI: 10.3389/fnut.2023.1131972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Fatigue has attracted broad attention in recent years due to its high morbidity rates. The use of functional foods to relieve fatigue-associated symptoms is becoming increasingly popular and has achieved relatively good results. In this study, network pharmacology and molecular docking strategies were used to establish the material basis and mechanisms of Chinese herbal compounds in fatigue treatment. According to traditional medicine theories and relevant guidance documents published by the Chinese Ministry of Health, four herbal medicines, including Eucommia ulmoides Oliver bark, Eucommia ulmoides Oliver male flower, Panax notoginseng, and Syzygium aromaticum (EEPS), were selected to constitute the anti-fatigue herbal compound that may be suitable as functional food ingredients. Methods The major active ingredients in EEPS were identified via comprehensive literature search and Traditional Chinese Medicine Systems Pharmacology database search. Corresponding targets for these ingredients were predicted using SwissTargetPrediction. The network was constructed using Cytoscape 3.9.1 to obtain key ingredients. Prediction of absorption, distribution, metabolism, excretion and toxicity properties was performed using the ADMETIab 2.0 database. The anti-fatigue targets were retrieved from GeneCards v5.13, OMIM, TTD and DisGeNET 7.0 databases. Then, the potential targets of EEPS in fatigue treatment were screened through a Venn diagram. A protein-protein interaction (PPI) network of these overlapping targets was constructed, and the hub targets in the network selected through topological screening. Gene Ontology and KEGG pathway enrichment analyses were performed using the DAVID database and the bioinformatics online platform. Finally, AutoDock tools were used to verify the binding capacity between the key active ingredients and the core targets. Results and Discussion This study identified the active ingredients and potential molecular mechanisms of EEPS in fatigue treatment, which will provide a foundation for future research on applications of herbal medicines in the functional food industry.
Collapse
Affiliation(s)
- Yi Wu
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jinguo Cao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Rui Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Feng Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Department of Pediatric Surgery, The First Affiliated Hospital of GanNan Medical University, Ganzhou, China
| | - Wen Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
30
|
Song J, Zhang Y, Zhu Y, Jin X, Li L, Wang C, Zhou Y, Li Y, Wang D, Hu M. Structural characterization and anti-osteoporosis effects of polysaccharide purified from Eucommia ulmoides Oliver cortex based on its modulation on bone metabolism. Carbohydr Polym 2023; 306:120601. [PMID: 36746570 DOI: 10.1016/j.carbpol.2023.120601] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
EuOCP3, with a molecular weight of 38.1 kDa, is an acidic polysaccharide purified from Eucommia ulmoides Oliver cortex. Herein, we determined that the main backbone of EuOCP3 was predominantly composed of →4)-α-GalpA-(1 → 4)-α-GalpA-(1→, →4)-α-GalpA-(1 → 5)-α-Araf-(1→, →4)-α-GalpA-(1 → 2)-α-Rhap-(1→, and →4)-α-GalpA-(1 → 5)-α-Araf-(1 → 2)-α-Rhap-(1 → repeating blocks, which were connected by →2,3,5)-α-Araf-(1→. The side chains, substituted at C-2 and C-5 of →2,3,5)-α-Araf-(1→, contained T-β-Araf→ and T-β-Araf → 4)-α-GalpA-(1 → residues. In dexamethasone (Dex)-induced osteoporosis (OP) mice, EuOCP3 treatment restored cortical bone thickness, increased mineralized bone area, enhanced the number of osteoblasts, and decreased the number of osteoclasts on the surface of cortical bone. Combining analysis of gut microflora, serum metabolite profiles, and biological detection results, we demonstrated that EuOCP3 regulated the abundance of specific species within the gut microflora, such as g_Dorea and g_Prevotella, and ameliorated oxidative stress. In turn, enhancement of osteogenic function and restoration of bone metabolism via the extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathway was indicated. The current findings contribute to understanding the potential of EuOCP3 in anti-OP treatment.
Collapse
Affiliation(s)
- Jiyu Song
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Ying Zhou
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| | - Yutong Li
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| |
Collapse
|
31
|
Cui E, Tang P, Zhu X, Lv M, Wang S, Xue Y, Li C, Zhao S. Network Pharmacology Combined with an Experimental Validation Study to Reveal the Effect and Mechanism of Eucommia ulmoides Leaf Polysaccharide against Immunomodulation. Foods 2023; 12:foods12051062. [PMID: 36900578 PMCID: PMC10001223 DOI: 10.3390/foods12051062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
In the present study, the immuno-enhancing effect of Eucommia ulmoides leaf polysaccharide (ELP) was investigated in immunosuppressed mice induced by cyclophosphamide (CTX). To evaluate the immune enhancement mechanism of ELP, the immunoregulation effect of ELP was evaluated in vitro and in vivo. ELP is primarily composed of arabinose (26.61%), galacturonic acid (25.1%), galactose (19.35%), rhamnose (16.13%), and a small amount of glucose (12.9%). At 1000~5000 μg·mL-1, ELP could significantly enhance the proliferation and the phagocytosis of macrophages in vitro. Additionally, ELP could protect immune organs, reduce pathological damage, and reverse the decrease in the hematological indices. Moreover, ELP significantly increased the phagocytic index, enhanced the ear swelling response, augmented the production of inflammatory cytokines, and markedly up-regulated the expression of IL-1β, IL-6, and TNF-α mRNA levels. Furthermore, ELP improved phosphorylated p38, ERK1/2, and JNK levels, suggesting that MAPKs might be involved in immunomodulatory effects. The results provide a theoretical foundation for exploring the immune modulation function of ELP as a functional food.
Collapse
|
32
|
You J, Li H, Wang Q, Xu F, Lin S, Wang X, Huang S, Sheng Y, Zhu B, Zhang Q, Meng X, Qin L. Establishment of Male and Female Eucommia Fingerprints by UPLC Combined with OPLS-DA Model and Its Application. Chem Biodivers 2023; 20:e202201054. [PMID: 36790137 DOI: 10.1002/cbdv.202201054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
Eucommia ulmoides Oliver is a dioecious plant, which plays an important role in traditional Chinese medicine. However, there has not yet been any research on male and female E. ulmoides. The UPLC fingerprints and OPLS-DA approach were able to quickly and easily identify and quantify E. ulmoides and differentiate between the male and female fingerprints. In this study, we optimized the UPLC conditions and analyzed them to investigate fingerprints of twenty-four extracts of Eucommiae Cortex (EC) and twenty-four extracts of Eucommiae Folium (EF) under optimal conditions. It was demonstrated that thirteen and twelve substances were possible chemical markers for EC and EF male and female discrimination and that the level of these markers - chlorogenic acid and protocatechuic acid - was many times higher in male than in female. This approach offered a reference for quality control and precise treatment of male and female E. ulmoides in the clinic.
Collapse
Affiliation(s)
- Jinling You
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Huaqiang Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Qi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Fanjun Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Shangwei Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Xinrui Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Shen Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang Province, P. R. China
| |
Collapse
|
33
|
Wang P, Xu J, Sun Q, Ge Q, Qiu M, Zou K, Ying J, Yuan W, Chen J, Zeng Q, Cui Q, Jin H, Zhang C, Li F. Chondroprotective Mechanism of Eucommia ulmoides Oliv.- Glycyrrhiza uralensis Fisch. Couplet Medicines in Knee Osteoarthritis via Experimental Study and Network Pharmacology Analysis. Drug Des Devel Ther 2023; 17:633-646. [PMID: 36875721 PMCID: PMC9983602 DOI: 10.2147/dddt.s397185] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Background Knee osteoarthritis (KOA) is the primary prevalent disabling joint disorder among osteoarthritis (OA), and there is no particularly effective treatment at the clinic. Traditional Chinese medicine (TCM) herbs, such as Eucommia ulmoides Oliv. and Glycyrrhiza uralensis Fisch. (E.G.) couplet medicines, have been reported to exhibit beneficial health effects on KOA, exact mechanism of E.G. nevertheless is not fully elucidated. Purpose We assess the therapeutic effects of E.G. on KOA and explore its underlying molecular mechanism. Methods UPLC-Q-TOF/MS technique was used to analyze the active chemical constituents of E.G. The destabilization of the medial meniscus model (DMM) was employed to evaluate the chondroprotective action of E.G. in KOA mice using histomorphometry, μCT, behavioral testing and immunohistochemical staining. Additionally, network pharmacology and molecular docking were used to predict potential targets for anti-KOA activities of E.G., which was further verified through in vitro experiments. Results In vivo studies have shown that E.G. could significantly ameliorate DMM-induced KOA phenotypes including subchondral bone sclerosis, cartilage degradation, gait abnormality and thermal pain reaction sensibility. E.G. treatment could also promote extracellular matrix synthesis to protect articular chondrocytes, which was indicated by Col2 and Aggrecan expressions, as well as reducing matrix degradation by inhibiting MMP13 expression. Interestingly, network pharmacologic analysis showed that PPARG might be a therapeutic center. Further study proved that E.G.-containing serum (EGS) could up-regulate PPARG mRNA level in IL-1β-induced chondrocytes. Notably, significant effects of EGS on the increment of anabolic gene expressions (Col2, Aggrecan) and the decrement of catabolic gene expressions (MMP13, Adamts5) in KOA chondrocytes were abolished due to the silence of PPARG. Conclusion E.G. played a chondroprotective role in anti-KOA by inhibiting extracellular matrix degradation, which might be related to PPARG.
Collapse
Affiliation(s)
- Pinger Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jianbo Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qi Sun
- Department of Orthopedic Joint Surgery, Hangzhou Fuyang Hospital of TCM Orthopaedics and Traumatology, Hangzhou, People's Republic of China
| | - Qinwen Ge
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Min Qiu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Kaiao Zou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jun Ying
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,Department of Orthopedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jiali Chen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qinghe Zeng
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qi Cui
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China.,The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Chunchun Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Fanzhu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
34
|
Wei J, Lu X, Bao X, Zhang C, Li J, Ren C, Zhu Z, Ma B, Zhang N, Jin X, Ma B. Aucubin supplementation alleviate diabetes induced-disruption of blood-testis barrier and testicular damage via stabilizing cell junction integrity. Eur J Pharmacol 2022; 938:175430. [PMID: 36460131 DOI: 10.1016/j.ejphar.2022.175430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Disruption of blood-testis barrier (BTB) was a crucial pathological feature of diabetes induced-testicular injury at early phase. Aucubin (AU), a main active component in Eucommiae Cortex, has drawn attention for its benefits against male reproductive system disease. The current study was aimed at investigating the protective role of AU and exploring the underlying mechanism in diabetic model. A murine model of type 2 diabetes mellitus (T2DM) was induced by high-fat diet (HFD) combined with streptozocin (STZ). Testicular weight index and morphology, sperm quality, integrity of BTB and protein levels were analyzed. The underlying mechanism of the protective effect of AU was further explored in Sertoli cells (SCs) cultured with high glucose (HG). Our results showed AU inhibited testicular structural destruction, restored disruption of BTB and improved abnormal spermatogenic function in diabetic mice. Consistent with in vivo results, HG induced decreased transcellular resistance and increased permeability in SCs monolayers, while AU exposure reverses this trend. Meanwhile, reduced expression of Zonula occludin-1(ZO-1) and Connexin43(Cx43) in testicular tissue diabetic mice and HG-induced SCs was prominently reversed via AU treatment. Mechanistic studies suggested a high affinity interaction between AU and c-Src protein was identified based on molecular docking, and the activation of c-Src was significantly inhibited in AU treatment. Furthermore, AU significantly increased the expression of Cx43 and ZO-1 proteins HG-induced SCs, which can be further enhanced in gene-silenced c-Src cells to some extent. Our results suggested that AU ameliorated disruption of BTB and spermatogenesis dysfunction in diabetic mice via inactivating c-Src to stabilize cell junction integrity.
Collapse
Affiliation(s)
- Jingxun Wei
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Xuanzhao Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Xiaowen Bao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Chi Zhang
- Nanjing Tech University School of Economics & Management. Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Chaoxing Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhiming Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Beiting Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Nan Zhang
- School of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xin Jin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
35
|
Chen C, Lv L, Huang Y, Gao M, Jiang X, Ge X, Zheng D, Bao L. Optimized ultra-high-performance liquid chromatography tandem mass spectrometry method for detecting compositional changes in Eucommia ulmoides and Achyranthes bidentata paired decoctions in vitro and in vivo. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractRationaleThe bark of Eucommia ulmoides and the roots of Achyranthes bidentata are commonly used in traditional Chinese medicine, and their pairing appears in many traditional Chinese medicine formulas as a recognized compatible unit. However, the changes and interactions of the main components of these two formulas when paired remain unclear, and there is currently no standard or method for their quality control and assessment of pharmacological effects.MethodsAn optimized ultra-high-performance liquid chromatography triple-quadrupole mass spectrometry (UHPLC-MS/MS) method was established for the simultaneous identification of 10 components in E. ulmoides and A. bidentata using in vitro and in vivo models. Tributyltin methacrylate was the internal standard solution, and the blood samples were treated by an organic solvent precipitation method. Gradient elution was conducted on a C18 column at 25 °C with 0.1% formic acid water:acetonitrile as the mobile phase at a flow rate of 0.5 mL min−1. Dynamic multiple response monitoring was performed in negative-ion mode using an Agilent Jet Stream electrospray ionization ion source.ResultsIn negative-ion detection mode, eucommiol exhibited a good response, and the isomers ginsenoside Ro and achyranthoside C could also be well separated. The developed method accurately detected the five components with a low blood content. Compared to controls, the levels of ginsenoside Ro, chikusetsusaponin Ⅳa, and achyranthoside C increased; the contents of geniposidic acid and pinoresinol diglucoside were unchanged; and the levels of eucommiol, geniposide, β-ecdysterone, genipin, and achyranthoside D decreased in vitro. In vivo, the contents of geniposidic acid, geniposide, pinoresinol diglucoside, and β-ecdysterone were reduced; the contents of eucommiol and ginsenoside Ro were unchanged; and those of achyranthoside D, chikusetsusaponin Ⅳa, and achyranthoside C increased compared to the corresponding levels in the internal control.ConclusionsA method for the quality control of the E. ulmoides-A. bidentata drug pair was established for the first time and the main components in 10 drug pairs could be determined simultaneously in vitro and in vivo. These findings show that the E. ulmoides and A. bidentata drug pair cause a compositional change, providing new ideas for the development of this combination to improve clinical efficacy.
Collapse
Affiliation(s)
- Chun Chen
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Lei Lv
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yueying Huang
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Mingzhu Gao
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xue Jiang
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiaoying Ge
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Dan Zheng
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Leilei Bao
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
36
|
The Traditional Chinese Medicine Gedan Jiangya Decoction Alleviates Left Ventricular Hypertrophy via Suppressing the Ras/ERK1/2 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6924197. [PMID: 36437833 PMCID: PMC9699742 DOI: 10.1155/2022/6924197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022]
Abstract
Gedan Jiangya Decoction (GJD), a Chinese herbal medicine composed of six botanical medicines, was designed to treat hypertension (patent published number (CN114246896A)). The overexpression of the ERK (extracellular signal-regulated kinase) signaling pathway is essential in developing left ventricular hypertrophy (LVH). This study aimed to evaluate GJD's effects on LVH in spontaneously hypertensive rats (SHRs) and examine its potential mechanisms on Ras/ERK1/2 pathway regulation. Thirty-five ten-week-old SHRs were randomly assigned to one of five groups: GJD low dosage, medium dose, high dose, model, and captopril. Wistar–Kyoto (WKY) rats served as the control group. All rats received a 6-week treatment. The following parameters were measured: systolic (SBP) and diastolic blood pressure (DBP), left ventricular mass index (LVMI), and serum TGF-beta1. The pathologic structure was determined by H & E staining and Masson. TGF-beta1, Ras, ERK1/2, and C-Fos levels were determined using western blotting and real-time qPCR. SBP, DBP, and LVMI were reduced significantly in the GJD group compared with the model group. GJD inhibited TGF-beta1, Ras, ERK1/2, and C-Fos expression in LVH. In conclusion, GJD reduced the Ras/ERK1/2 pathway expression, which decreased hypertension-induced heart hypertrophy. GJD may protect hypertension-induced myocardial hypertrophy by altering gene expression patterns in the heart.
Collapse
|
37
|
Chen SY, Wang TY, Zhao C, Wang HJ. Oxidative stress bridges the gut microbiota and the occurrence of frailty syndrome. World J Gastroenterol 2022; 28:5547-5556. [PMID: 36304085 PMCID: PMC9594011 DOI: 10.3748/wjg.v28.i38.5547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 02/06/2023] Open
Abstract
The incidence of frailty gradually increases with age. This condition places a heavy burden on modern society, of which the aging population is increasing. Frailty is one of the most complicated clinical syndromes; thus, it is difficult to uncover its underlying mechanisms. Oxidative stress (OS) is involved in frailty in multiple ways. The association between the gut microbiota (GM) and frailty was recently reported. Herein, we propose that OS is involved in the association between the GM and the occurrence of frailty syndrome. An imbalance between oxidation and antioxidants can eventually lead to frailty, and the GM probably participates in this process through the production of reactive oxygen species. On the other hand, OS can disturb the GM. Such dysbiosis consequently induces or exacerbates tissue damage, leading to the occurrence of frailty syndrome. Finally, we discuss the possibility of improving frailty by intervening in the vicious cycle between the imbalance of OS and dysbiosis.
Collapse
Affiliation(s)
- Si-Yue Chen
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, Shanghai 201318, China
| | - Tong-Yao Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Frontiers Science Center, Shanghai 200032, China
| | - Hui-Jing Wang
- Laboratory of Neuropsychopharmacology, College of Fundamental Medicine, Shanghai University of Medicine & Health Science, Shanghai 201318, China
| |
Collapse
|
38
|
Eucommia ulmoides Oliver's Multitarget Mechanism for Treatment of Ankylosing Spondylitis: A Study Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3699146. [PMID: 36267087 PMCID: PMC9578855 DOI: 10.1155/2022/3699146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Background Eucommia ulmoides Oliver (EU) is a plant used in Chinese medicine as a medicinal herb to treat autoimmune and inflammatory conditions. We used network pharmacology to examine the active ingredients and estimate the main targets and pathways affected by EU when it is used to treat ankylosing spondylitis (AS). Materials and Methods The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform was used to search for active ingredients in EU and their target proteins. The GeneCards Database was used to find AS-related targets. The targets from the EU and AS searches that coincided were selected by constructing a Venn diagram. Then, a STRING network platform and Cytoscape software were used to analyse the protein-protein interaction (PPI) network and key targets. The strong affinity between EU and its targets was confirmed using molecular docking techniques. The Gene Ontology and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis of overlapping targets was performed using the database for annotation, visualization, and integrated discovery online tool. Results The number of active ingredients against AS in EU was discovered to be 28. Major targets against AS in the PPI network and core targets analyses were identified as IL-1B, PTGS2, IL-8, nMMP-9, CCL2, MYC, and IL-2. Furthermore, molecular docking studies showed the strong affinity between EU's bioactive molecules and their AS targets. Enrichment analysis revealed that active ingredients from EU were involved in a variety of biological processes, including the response to molecules derived from bacteria, extracellular stimuli, nutrient levels, and the regulation of reactive oxygen species, all of which are mediated by interleukin-17, TNF-α, and other signalling pathways. Conclusion The therapy for AS using EU involves a multitarget, multipathway, and multiselection mechanism that includes anti-inflammatory and analgesic effects. This study provides a theoretical basis for future research into targeted molecular therapies for AS.
Collapse
|
39
|
Data Mining and Network Pharmacology Analysis of Kidney-Tonifying Herbs on the Treatment of Renal Osteodystrophy Based on the Theory of "Kidney Governing Bones" in Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1116923. [PMID: 36238608 PMCID: PMC9552684 DOI: 10.1155/2022/1116923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
Background Renal osteodystrophy (ROD) secondary to chronic kidney disease is closely associated with osteoporosis and fractures. Based on the theory of “kidney governing bones” in traditional Chinese medicine (TCM), treating bone diseases from the perspective of the kidney has become a basic principle of treating ROD. However, there are many kidney-tonifying herbs and their mechanisms of treating ROD are not clear. Therefore, our study intends to use data mining and network pharmacology to study the commonly used kidney-tonifying herbs, as well as their active ingredients and mechanisms of treating ROD. Methods We established a clinical ROD database by searching PubMed, CNKI, and other databases and screened out a core herbal combination of treating ROD. Furthermore, by using databases such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and GeneCards, we obtained active ingredients and targets of the core herbal combination and ROD targets. The STRING website and Cytoscape software were then used to obtain information on key active ingredients and key targets. Finally, we conducted GO and KEGG analyses using the Metascape website and molecular docking using the AutoDock Vina software. Results Our study eventually included 58 prescriptions and 116 herbs of treating ROD. Through data mining, we found that yin-yang-huo, du-zhong, and bu-gu-zhi (YDB) constituted a core herbal combination to treat ROD. Network pharmacology showed that YDB mainly acted on targets such as estrogen receptor alpha through active ingredients such as quercetin by mitogen-activated protein kinase and other signaling pathways. Conclusion Many ingredients, targets, and pathways are involved in the treatment of YDB for ROD. Specifically, the flavonoids contained in YDB have great potential for ROD treatment.
Collapse
|
40
|
Quantitative Analysis and Stability Study on Iridoid Glycosides from Seed Meal of Eucommia ulmoides Oliver. Molecules 2022; 27:molecules27185924. [PMID: 36144657 PMCID: PMC9501183 DOI: 10.3390/molecules27185924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
As a traditional Chinese medicine, Eucommia ulmoides Oliver (E. ulmoides Oliv.) is an important medicinal plant, and its barks, male flowers, leaves, and fruits have high value of utilization. The seed meal of E. ulmoides Oliv. is the waste residue produced after oil extraction from seeds of E. ulmoides Oliv. Though the seed meal of E. ulmoides Oliv. is an ideal feed additive, its medicinal value is far from being developed and utilized. We identified six natural iridoid compounds from the seed meal of E. ulmoides Oliv., namely geniposidic acid (GPA), scyphiphin D (SD), ulmoidoside A (UA), ulmoidoside B (UB), ulmoidoside C (UC), and ulmoidoside D (UD). Six natural iridoid compounds were validated to have anti-inflammatory activities. Hence, six compounds were quantified at the optimum extracting conditions in the seed meal of E. ulmoides Oliv. by an established ultra-performance liquid chromatography (UPLC) method. Some interesting conversion phenomena of six tested compounds were uncovered by a systematic study of stability performed under different temperatures and pH levels. GPA was certified to be stable. SD, UA, and UC were only hydrolyzed under strong alkaline solution. UB and UD were affected by high temperature, alkaline, and strong acid conditions. Our findings reveal the active compounds and explore the quantitative analysis of the tested compounds, contributing to rational utilization for the seeds residues of E. ulmoides Oliv.
Collapse
|
41
|
Network Pharmacology and Molecular Docking-Based Mechanism Study to Reveal Antihypertensive Effect of Gedan Jiangya Decoction. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3353464. [PMID: 36046450 PMCID: PMC9423997 DOI: 10.1155/2022/3353464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Primary hypertension is understood as a disease with diverse etiology, a complicated pathological mechanism, and progressive changes. Gedan Jiangya Decoction (GJD), with the patent publication number CN114246896A, was designed to treat primary hypertension. It contains six botanical drugs; however, the underlying mechanism is uncertain. We utilized network pharmacology to predict the active components, targets, and signaling pathways of GJD in the treatment of primary hypertension. We also investigated the potential molecular mechanism using molecular docking and animal experiments. The Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), the Protein Database (UniProt), and a literature review were used to identify the active components and related targets of GJD's pharmacological effects. The GeneCards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and DrugBank databases were utilized to identify hypertension-related targets. Based on a Venn diagram of designed intersection targets, 214 intersection targets were obtained and 35 key targets for the treatment of hypertension were determined using the STRING data platform and Cytoscape software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of key targets revealed that the relevant molecular action pathways of GJD in the treatment of hypertension include the Toll-like receptor, MAPK, PI3K-Akt, and renin-angiotensin signaling pathways. A GJD active ingredient-key target-pathway connection diagram was created using Cytoscape software, and 11 essential active components were selected. Molecular docking was then used to verify the binding activity of key targets and key active ingredients in GJD to treat primary hypertension. The results of this study indicate that AGTR1, AKT1 with puerarin, EDNRA with tanshinone IIA, MAPK14 with daidzein, MAPK8 with ursolic acid, and CHRM2 with cryptotanshinone had high binding activity to the targets with active components, whereas AGTR1 was selected as target genes verified by our experiment. HPLC was utilized to identify the five active ingredients. Experiments in high-salt rats demonstrated that GJD might decrease the expression of AGTR1 in the kidney and thoracic aorta while increasing the expression of eNOS by preventing the activation of the renin-angiotensin pathway, thereby reducing lowering systolic and diastolic blood pressure.
Collapse
|
42
|
Wang Y, Fan Q, Xu Y, Zeng F, Liu X, Zhao D, Zhang L, Bai G. Effect of Eucommia water extract on gingivitis and periodontitis in experimental rats. BMC Oral Health 2022; 22:326. [PMID: 35932002 PMCID: PMC9356420 DOI: 10.1186/s12903-022-02353-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Herein, we evaluated the potential therapeutic effects of water extracts from Eucommia on periodontitis in experimental rats. We ligated the maxillary second molars of Sprague-Dawley(SD) rats with 4.0 silk threads and locally smeared Porphyromonas gingivalis(P. gingivalis) to induce gingivitis and periodontitis.After the model was successfully established, we exposed the rats to Eucommia water extracts through topical smearing and intragastric administration and evaluated the therapeutic effect of the extracts on gingivitis (for a 2 week treatment period) and periodontitis (over 4 weeks). We analyzed histopathological sections of the periodontal tissue and quantified the alveolar bone resorption levels, molecules related to periodontal oxidative stress, and periodontal inflammatory factors to assess the feasibility of Eucommia in treating gingivitis and periodontitis. We found that damage to the periodontal tissue was reduced after treatment with extracts,indicating that Eucommia has a positive effect in treating gingivitis and periodontitis in experimental rats. These findings are expected to provide the foothold for future research on secondary metabolites derived from Eucommia and guide the development of novel approaches for preventing and treating periodontal disease.
Collapse
Affiliation(s)
- Yueyue Wang
- grid.417409.f0000 0001 0240 6969Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000 China
| | - Qin Fan
- grid.417409.f0000 0001 0240 6969Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000 China
| | - Yanglong Xu
- grid.417409.f0000 0001 0240 6969Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000 China
| | - Fengjiao Zeng
- grid.417409.f0000 0001 0240 6969Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000 China
| | - Xia Liu
- grid.417409.f0000 0001 0240 6969Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000 China
| | - Dan Zhao
- grid.443382.a0000 0004 1804 268XInstitute of Agro-Bioengineering and College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025 China
| | - Lei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Guohui Bai
- Hospital of Stomatology, Zunyi Medical University, Zunyi, 563000, China. .,Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
43
|
Xi J, Kan W, Zhu Y, Huang S, Wu L, Wang J. Synthesis of silver nanoparticles using Eucommia ulmoides extract and their potential biological function in cosmetics. Heliyon 2022; 8:e10021. [PMID: 35942280 PMCID: PMC9356174 DOI: 10.1016/j.heliyon.2022.e10021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Silver nanoparticles (AgNPs) synthesized from plant extracts have recently emerged as a rapidly growing field with numerous applications in pharmaceutical and clinical contexts. The purpose of this research is to come up with a novel method for the biosynthesis of silver nanoparticles that use Eucommia ulmoides leaf extract as a reducing agent. The synthesis of AgNPs was confirmed using UV-vis spectroscopy, and the properties of AgNPs were characterized using Transmission Electron Microscope, Fourier Infrared Spectrometer, X-ray diffraction, Thermogravimetric Analysis, and Zeta potential. The results showed that the AgNPs exhibited a characteristic absorption peak at 430 nm, their diameter ranged from 4 nm to 52 nm, and C, O, and Cl elements, which might represent flavonoids and phenolic components absorbed on the surface of AgNPs. The zeta potential of AgNPs was found to be −30.5 mV, which indicates repulsion among AgNPs and they have good dispersion stability. AgNPs have been found to suppress the tyrosinase activity both in mushroom tyrosinase and A375 cells, as well as diminish ROS formation in HaCat cells. According to this study, AgNPs is a novel material that can enhance skin health by preventing melanin development.
Collapse
Affiliation(s)
- Jinfeng Xi
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wenjie Kan
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yan Zhu
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Shengwei Huang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
- Corresponding author.
| | - Lifang Wu
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- Zhongke Taihe Experimental Station, Taihe 236626, Anhui, China
- Corresponding authors at: The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| | - Jun Wang
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- Zhongke Taihe Experimental Station, Taihe 236626, Anhui, China
- Corresponding authors at: The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| |
Collapse
|
44
|
Wang T, Fan L, Feng S, Ding X, An X, Chen J, Wang M, Zhai X, Li Y. Network pharmacology of iridoid glycosides from Eucommia ulmoides Oliver against osteoporosis. Sci Rep 2022; 12:7430. [PMID: 35523810 PMCID: PMC9076851 DOI: 10.1038/s41598-022-10769-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Eucommia ulmoides Oliver is one of the commonly used traditional Chinese medicines for the treatment of osteoporosis, and iridoid glycosides are considered to be its active ingredients against osteoporosis. This study aims to clarify the chemical components and molecular mechanism of iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis by integrating network pharmacology and molecular simulations. The active iridoid glycosides and their potential targets were retrieved from text mining as well as Swiss Target Prediction, TargetNet database, and STITCH databases. At the same time, DisGeNET, GeneCards, and Therapeutic Target Database were used to search for the targets associated with osteoporosis. A protein–protein interaction network was built to analyze the interactions between targets. Then, DAVID bioinformatics resources and R 3.6.3 project were used to carry out Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Moreover, interactions between active compounds and potential targets were investigated through molecular docking, molecular dynamic simulation, and binding free energy analysis. The results showed that a total of 12 iridoid glycosides were identified as the active iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis. Among them, aucubin, reptoside, geniposide and ajugoside were the core compounds. The enrichment analysis suggested iridoid glycosides of Eucommia ulmoides Oliver prevented osteoporosis mainly through PI3K-Akt signaling pathway, MAPK signaling pathway and Estrogen signaling pathway. Molecular docking results indicated that the 12 iridoid glycosides had good binding ability with 25 hub target proteins, which played a critical role in the treatment of osteoporosis. Molecular dynamic and molecular mechanics Poisson–Boltzmann surface area results revealed these compounds showed stable binding to the active sites of the target proteins during the simulations. In conclusion, our research demonstrated that iridoid glycosides of Eucommia ulmoides Oliver in the treatment of osteoporosis involved a multi-component, multi-target and multi-pathway mechanism, which provided new suggestions and theoretical support for treating osteoporosis.
Collapse
Affiliation(s)
- Ting Wang
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Liming Fan
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shuai Feng
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinli Ding
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xinxin An
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jiahuan Chen
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Minjuan Wang
- Physical and Chemical Laboratory, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, 710054, China
| | - Xifeng Zhai
- School of Pharmaceutical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Yang Li
- Biomedicine Key Laboratory of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
45
|
Li XY, Fu YJ, Fu YF, Wei W, Xu C, Yuan XH, Gu CB. Simultaneous quantification of fourteen characteristic active compounds in Eucommia ulmoides Oliver and its tea product by ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-QqQ-MS/MS). Food Chem 2022; 389:133106. [PMID: 35504080 DOI: 10.1016/j.foodchem.2022.133106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
Abstract
Various kinds of bioactive compounds contribute to versatile health-promoting properties of Eucommia ulmoides Oliver (E. ulmoides). In present study, we developed a UPLC-QqQ-MS/MS method for simultaneous quantification of fourteen characteristic active compounds, including 3 lignans, 4 iridoids, 3 flavonoids and 4 phenolics in E. ulmoides and its tea product for the first time. The running time of the method is 6.5 min. It has good linearity, sensitivity, precision, accuracy, and stability. Using this high-throughput method, the distributions of fourteen characteristic active compounds in E. ulmoides and its tea product were clarified. Also, it was found that E. ulmoides tea exhibited superiority in contents of chlorogenic acid as compared with natural resources. Overall, the study provided a rapid, reliable, and efficient analysis method, which could be applied for the quality evaluation of E. ulmoides natural resources and their relative products in the field of food and medicine.
Collapse
Affiliation(s)
- Xin-Yue Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Yue-Feng Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China
| | - Wei Wei
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China
| | - Cheng Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China
| | - Xiao-Han Yuan
- Life Science and Biotechnique Research Center, Northeast Agricultural University, Harbin 150030, PR China
| | - Cheng-Bo Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, PR China.
| |
Collapse
|
46
|
Qingwei San treats oral ulcer subjected to stomach heat syndrome in db/db mice by targeting TLR4/MyD88/NF-κB pathway. Chin Med 2022; 17:1. [PMID: 34980192 PMCID: PMC8725453 DOI: 10.1186/s13020-021-00565-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background Qingwei San (QWS), one of classic Chinese Medicine prescripts, has been widely used to treat stomach heat syndrome which manifests oral ulcer (OU), periodontitis and upper gastrointestinal bleeding for seven hundred years. However, the therapeutic effects of QWS on diabetic OU subjected to stomach heat syndrome are still ambiguous. In the study, we investigated the pharmacological mechanisms. Methods The main components of QWS aqueous extract were analyzed by LC–MS, and potential pathways of QWS targeting OU were predicted by network pharmacology. The db/db mice were administered with the decoction of dried Zingiber officinale Rosc. rhizome combined with NaOH cauterization to establish the model of diabetic OU subjected to stomach heat syndrome. Subsequently, the model mice were treated with QWS, and OU wound healing status were recorded. The pathological changes of gastric tissue and oral mucosa were evaluated using hematoxylin–eosin staining, and the morphology of collagen fibers in oral mucosa was assessed by Masson staining. The levels of thromboxane B2 (TXB2), 6-Keto-prostaglandin F1α (6-keto-PGF1α), interleukin-1 β (IL-1β), IL-2, IL-6, tumor necrosis factor-α (TNF-α), β-endorphin (β-EP) and 5-Hydroxytryptamine (5-HT) were determined by ELISA assay. The protein expressions of Toll-like receptor 4 (TLR4), TNF receptor associated factor 6 (TRAF6), myeloid differentiation factor 88 (MyD88), inhibitor of NF-κB alpha (IκΒα), p-IκΒα and nuclear factor kappa-B (NF-κB) p65 were measured by Western Blotting. Results A total of 183 compounds in QWS were identified by LC–MS, and identified 79 bioactive compounds corresponded to 269 targets and 59 pathways. QWS high-dose treatment significantly reduced the level of TXB2 and the ratio of TXB2/6-keto-PGF1α. Meanwhile, it improved mucosal pathological morphology, and reduced the area of OU and local edema. Simultaneously, the levels of TNF-α, IL-1β, IL-6, IL-2 and 5-HT, and the expressions of TLR4, TRAF6, MyD88, p-IκΒα and NF-κB p65 were decreased. Conclusion QWS treatment facilitates the healing of OU, ameliorates pathological morphologies of gastric and oral mucosa and decreases the levels of pro-inflammatory cytokines in db/db mice subjected to stomach heat syndrome, whose mechanism may be associated with the inhibition of TLR4/MyD88/NF-κB signaling pathway to exert anti-inflammatory effects. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00565-5.
Collapse
|