1
|
Lei H, Liu Y, Li J, Chen J, Chen L, Liu Y, Liu H, Li W, Jiang Z, Li Z, Su X. Colon-targeted dual-coating MOF nanoparticles for the delivery of curcumin with anti-inflammatory properties in the treatment of ulcerative colitis. Colloids Surf B Biointerfaces 2025; 250:114545. [PMID: 39908958 DOI: 10.1016/j.colsurfb.2025.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
The inflammatory response is the core mechanism of the pathogenesis and symptoms of ulcerative colitis (UC), and inhibiting inflammation is a promising therapeutic approach to improving UC. Curcumin is considered a potential treatment for UC due to its significant anti-inflammatory and antioxidant effects. However, its bioavailability in the post-oral administration is limited. Therefore, the stability, sustained release, and colon targeting of curcumin in the treatment of UC have become a challenge. Herein, curcumin was efficiently filled in the porous structure of University of Oslo 66 (UiO-66). Amino-functionalized UiO-66 (MOF) was bound to hyaluronic acid (HA) via chemical crosslinking and electrostatic interactions. Polydopamine (PDA) layer was then applied to form Cur@MOF@HA-PDA NPs for colon targeting for UC treatment. Cur@MOF@HA-PDA NPs not only enhanced the stability of curcumin but also possessed acid resistance and reactive oxygen species (ROS) responsive properties, enabling it to be effectively delivered to the UC lesion site for curcumin release after oral administration, thereby enhancing the therapeutic effect. In vitro studies revealed that Cur@MOF@HA-PDA NPs possessed the ability to eliminate intracellular ROS, inhibit inflammatory (M1) polarization, and promote anti-inflammatory (M2) polarization. Additionally, in vivo experiments demonstrated that Cur@MOF@HA-PDA NPs could effectively alleviate the intestinal inflammatory symptoms of UC mice, promoting intestinal tissue repair. Furthermore, it was also confirmed that Cur@MOF@HA-PDA NPs achieved the treatment of UC by inhibiting inflammatory responses, modulating intestinal immune functions, and promoting the polarization of M2 macrophages. In short, Cur@MOF@HA-PDA NPs, as colon-targeted drug delivery nanosystems, offer a promising therapeutic strategy for the treatment of UC.
Collapse
Affiliation(s)
- Haoqiang Lei
- Huangpu People's Hospital of Zhongshan, Zhongshan, Guangdong 528429, PR China
| | - Yipeng Liu
- The Second People's Hospital of Foshan, Foshan, Guangdong 528000, PR China
| | - Jing Li
- Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong 523871, PR China
| | - Junyuan Chen
- Huangpu People's Hospital of Zhongshan, Zhongshan, Guangdong 528429, PR China
| | - Liji Chen
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong 523710, PR China
| | - Ying Liu
- Guangdong Huayi Biomedical Science and Technology Center, Guangzhou, Guangdong 511450, PR China
| | - Hongsheng Liu
- Guangdong Huayi Biomedical Science and Technology Center, Guangzhou, Guangdong 511450, PR China
| | - Wenqiang Li
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Zhuofei Jiang
- Dong Guan Maternal and Child Health Care Hospital, Dongguan, Guangdong 523808, PR China.
| | - Zhidong Li
- Guangdong Medical University, Dongguan, Guangdong 523808, PR China.
| | - Xiaohua Su
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong 523710, PR China; Guangdong Medical University, Dongguan, Guangdong 523808, PR China.
| |
Collapse
|
2
|
Xie Y, Yu Q, Yao S, Peng R, Li J. Transcriptomic Insights into the Molecular Mechanisms of Indole Analogues from the Periplaneta americana Extract and Their Therapeutic Effects on Ulcerative Colitis. Animals (Basel) 2024; 15:63. [PMID: 39795006 PMCID: PMC11718871 DOI: 10.3390/ani15010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Ulcerative colitis (UC) is an inflammatory disease of the intestinal mucosa, and its incidence is steadily increasing worldwide. As a traditional Chinese medicinal insect, Periplaneta americana has been broadly utilized in clinical practice to treat wound healing. The tryptophan (Trp), tryptamine (Try), and 1,2,3,4-tetrahydrogen-β-carboline-3-carboxylic acid (Thcc) identified from P. americana concentrated ethanol-extract liquid (PACEL) exhibit significant cell proliferation-promoting and anti-inflammatory effects in the treatment of UC, but the mechanism involved remains obscure. Here, a dextran sulfate sodium (DSS)-induced UC mouse model was used to investigate the efficacy of high/low doses of PACEL, Trp, Try, and Thcc. Transcriptome sequencing was employed to detect the gene expression in the mouse intestine. The results showed that high doses of PACEL, Trp, Try, and Thcc could significantly improve weight loss and diarrhea, notably in the PACEL and Trp groups. Transcriptome analysis indicated that statistically changed genes in four treatment groups were specifically enriched in the immune system. Of these, the integrated analysis identified six hub genes (IL1β, CCL4, CXCL5, CXCR2, LCN2, and MMP9) regulated by NF-κB, which were significantly downregulated. This study investigates the molecular mechanisms underlying the UC treatment properties of indole analogues from PACEL, potentially through the inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuchen Xie
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qi Yu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China;
| | - Rui Peng
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Dong G, Pang X, Wang X, Peng L, Xiao Q, Guo S, Dai W. Protective effect of Huanglian Pingwei San on DSS-induced ulcerative colitis in mice through amelioration of the inflammatory response and oxidative stress. Front Pharmacol 2024; 15:1484532. [PMID: 39697546 PMCID: PMC11652202 DOI: 10.3389/fphar.2024.1484532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Ulcerative colitis (UC) results in the breakdown of the mucosal barrier caused by persistent inflammation and oxidative stress. Huanglian Pingwei San (HLPWS) is a commonly prescribed traditional Chinese medicine for treating colitis, but the precise mechanism remains unclear. The aim of this study was to systematically investigate the protective effect of HLPWS on UC mice and to elucidate the underlying mechanisms involved. Materials UC mouse model was established in C57BL/6 mice via 2.25% dextran sulfate sodium (DSS). The chemical composition of HLPWS was examined through UPLC/MS Q-TOF analysis. The efficacy of HLPWS in treating UC was assessed. A TUNEL assay was used to detect apoptotic cells. An ELISA was used to evaluate the levels of inflammatory cytokines in colon tissues and serum. The percentages of Treg and Th17 cells were measured via flow cytometry. The protein expression in the colonic tissue was validated via immunohistochemistry (IHC) and Western blotting. Results HLPWS significantly improved UC symptoms and colon tissue histology in mice. The structure and function of the intestinal barrier were restored by HLPWS treatment, as shown by increased DAO content, reduced levels of FITC-dextran, and increased protein expression of ZO-1, occludin, claudin, and MUC2. HLPWS dose-dependently decreased the number of apoptotic cells by inhibiting P53, P21, P27, cleaved caspase 3, and p-H2AX expression. HLPWS also reduced abnormal oxidative stress by reducing Keap1 expression and increasing Nrf2 and HO-1 levels. Furthermore, HLPWS rebalanced the Treg/Th17 ratio to alleviated inflammatory reactions in UC mice. Conclusion These findings suggest that HLPWS alleviated colonic intestinal barrier dysfunction in UC mice by reducing oxidative stress and restoring immune balance. This study underscores the potential therapeutic benefits of HLPWS and highlights its potential as a future pharmaceutical candidate for UC treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weibo Dai
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| |
Collapse
|
4
|
Yang Y, Wu R, Qian C, Wu D, Ou J. Mume fructus alters the abundance of intestinal microbiota and alleviates damaged intestinal barrier and inflammation in rats with DSS induced colitis. Mol Immunol 2024; 176:60-72. [PMID: 39579562 DOI: 10.1016/j.molimm.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The gut microbiota plays a crucial role in the development of colitis by influencing the immune response and inflammation in the colon. Previous research has shown that Mume Fructus, a traditional Chinese medicine, can alleviate colitis by reducing the activity of inflammatory pathways. However, the specific connection between Mume Fructus-treated colitis and regulation of gut flora remains unclear, prompting further investigation. This research aims to delve deeper into the possible impact of the gut microbiota in colitis when treated with the aqueous decoction of Mume Fructus (MF). The effects of MF on rats with DSS-induced colitis were assessed through examination of pathological indicators, intestinal barrier proteins, and analysis of 16S rDNA sequencing to investigate its impact on the gut microbiota. In addition, the colon contents of rats after the administration of MF were transplanted into rats with colitis, and the effect of MF on intestinal flora was verified, and "beneficial bacteria" were identified by 16S rDNA sequencing and Spearman's correlation analysis. In summary, our findings suggest that MF has the potential to ameliorate symptoms of colitis through modulation of intestinal microbiota and restoration of intestinal barrier function.
Collapse
Affiliation(s)
- Yatian Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Jiangsu Kanion Pharmaceutical Co.,Ltd, Lianyungang 222001, China
| | - Rui Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chengcheng Qian
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Deling Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of New Manufacturing Technology of Chinese Medicine Pieces, Hefei 230012, China.
| | - Jinmei Ou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Key Laboratory of New Manufacturing Technology of Chinese Medicine Pieces, Hefei 230012, China.
| |
Collapse
|
5
|
Golestanifar F, Garkani-Nejad Z. In silico design and ADMET evaluation of new inhibitors for PIM1 kinase using QSAR studies, molecular docking, and molecular dynamic simulation. Heliyon 2024; 10:e38309. [PMID: 39397962 PMCID: PMC11467636 DOI: 10.1016/j.heliyon.2024.e38309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
The proviral Integration site of Moloney (PIM) kinase is highly expressed in various diseases, including cancer, making the development of selective inhibitors for this protein important. A series of PIM1 inhibitors, triazolo [4, 3-b] pyridazin-3-yl-quinoline derivatives, have been studied to design new inhibitors. The activity and structural features of these derivatives were investigated to understand their interactions with PIM1 using molecular docking, molecular dynamic simulation, and QSAR techniques. In a study of 30 compounds using the structure-activity technique and the MLR method, a linear model with R2 train = 0.91 and R2 test = 0.96 was obtained. The model utilized descriptors such as RDF080v, RDF105v, RDF135v, Mor03v, and H046 to express the structural characteristics of the inhibitors. To enhance the model, the SVR non-linear method with the RBF function was also used, resulting in an improved model with R2 train = 0.98 and R2 test = 0.98. Furthermore, the molecular docking technique was employed to investigate the interaction of compounds with high (compound 25) and low (compound 13) inhibitory activity. It was observed that the rings with nitrogen atoms interacted with the protein. The molecular binding results indicate that groups such as OMe and rings with Nitrogen can enhance the inhibitory activity of the compounds. Additionally, oxygen and nitrogen atoms contribute to an increased number of hydrogen bonds, thereby increasing the inhibitory activity of the compounds. Additionally, the stability and bonding modes of active and inactive compounds were studied using molecular dynamic simulation. Based on the results, four new inhibitors were designed, demonstrating better inhibition efficiency with the PIM1 kinase compared to the reference compounds. Moreover, the designed compounds underwent evaluation for ADMET, yielding promising results.
Collapse
Affiliation(s)
- Fereshteh Golestanifar
- Chemistry Department, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
- Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zahra Garkani-Nejad
- Chemistry Department, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
6
|
Yang Y, Guo L, Wei L, Yu J, Zhu S, Li X, Liu J, Liang R, Peng W, Ge F, Zhang J. Da-yuan-yin decoction alleviates ulcerative colitis by inhibiting complement activation, LPS-TLR4/NF-κB signaling pathway and NET formation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118392. [PMID: 38797378 DOI: 10.1016/j.jep.2024.118392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da-yuan-yin decoction (DYY) is a classical traditional Chinese medicine prescription for ulcerative colitis (UC). AIM OF STUDY This study explored the protective effects and mechanisms of DYY on UC. MATERIALS AND METHODS The mice were fed 2.5% dextran sulfate sodium (DSS) for 7 days to establish UC. On the second day, DYY (0.4 g/kg, 0.8 g/kg, 1.6 g/kg) was orally administered daily for 7 consecutive days. The colon tissues and serum were measured by histopathological examination and biochemical analysis. RESULTS DYY significantly reduced the disease activity index (DAI) and severity of colon shortening and alleviated pathological changes in the colon tissue. DYY restored the protein expression of intestinal tight junction (TJ) protein (ZO-1, occludin and claudin-3). DYY remarkably decreased the level of lipopolysaccharide (LPS), Lactic acid (LA), circulating free DNA (cfDNA), complement (C3, C3a, C3c, C3aR1, C5a and C5aR1) and regulated the levels of inflammatory cytokines in serum. DYY significantly inhibited the expressions of nuclear factor kappa-B p65 (NF-κB p65) and Toll-like receptor 4 (TLR4), citrullinated histone H3 (CitH3) and myeloperoxidase (MPO), reactive oxygen species (ROS) peptidylarginine deiminase 4 (PAD4) and CD 11b, the mRNA levels of PADI4, MPO and ELANE in colon tissues. CONCLUSIONS DYY significantly attenuated DSS-induced UC, which was related with regulating the inflammatory response by the inhibition of complement activation, the LPS-TLR4/NF-κB signaling pathway and neutrophil extracellular traps (NETs) formation. DYY is a potential therapeutic agent for UC.
Collapse
Affiliation(s)
- Yun Yang
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| | - Lengqiu Guo
- Suzhou Vocational Health College, Suzhou, 215009, China
| | - Lan Wei
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Jinghua Yu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Song Zhu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Xinyi Li
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Jiangyun Liu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Rui Liang
- Suzhou Vocational Health College, Suzhou, 215009, China
| | - Wei Peng
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Fei Ge
- Department of Gastroenterology, Haian Hospital of Traditional Chinese Medicine, Nantong, 226000, China.
| | - Jian Zhang
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
7
|
Li J, Luo X, Shiu PHT, Cheng Y, Nie X, Rangsinth P, Lau BWM, Zheng C, Li X, Li R, Lee SMY, Fu C, Seto SW, Zhang J, Leung GPH. Protective effects of Amauroderma rugosum on dextran sulfate sodium-induced ulcerative colitis through the regulation of macrophage polarization and suppression of oxidative stress. Biomed Pharmacother 2024; 176:116901. [PMID: 38878683 DOI: 10.1016/j.biopha.2024.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Amauroderma rugosum (AR) is a medicinal mushroom commonly used to treat inflammation, gastric disorders, epilepsy, and cancers due to its remarkable anti-inflammatory and anti-oxidative properties. This study was designed to evaluate the pharmacological effects of AR and its underlying mechanism of action against ulcerative colitis (UC) in vitro and in vivo. METHODS A UC mouse model was established by administration of dextran sulfate sodium (DSS). AR extract was administered intragastrically to mice for 7 days. At the end of the experiment, histopathology, macrophage phenotype, oxidative stress, and inflammatory status were examined in vivo. Furthermore, RAW 264.7, THP-1, and Caco-2 cells were used to elucidate the mechanism of action of AR in vitro. RESULTS AR extract (0.5-2 mg/mL) significantly suppressed lipopolysaccharide (LPS) and interferon-gamma (IFN-γ)-induced M1 macrophage (pro-inflammatory) polarization in both RAW 264.7 and THP-1 cells. LPS-induced pro-inflammatory mediators (nitric oxide, TNF-α, IL-1β, MCP-1, and IL-6) were reduced by AR extract in a concentration-dependent manner. Similarly, AR extract downregulated MAPK signaling activity in LPS-stimulated RAW 264.7 cells. AR extract elicited a concentration-dependent increase in the mRNA expression of M2 (anti-inflammatory) phenotype markers (CD206, Arg-1, Fizz-1, and Ym-1) in RAW 264.7 cells. Moreover, AR extract suppressed DSS-induced ROS generation and mitochondrial dysfunction in Caco-2 cells. The in vivo experiment revealed that AR extract (200 mg/kg) increased colon length compared to the DSS-treated group. In addition, disease activity index, spleen ratio, body weight, oxidative stress, and colonic inflammation were markedly improved by AR treatment in DSS-induced UC mice. Finally, AR suppressed M1 and promoted M2 macrophage polarization in UC mice. CONCLUSION The AR extract protected against DSS-induced UC by regulating macrophage polarization and suppressing oxidative stress. These valuable findings suggest that adequate intake of AR can prevent and/or treat UC.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Xi Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yanfen Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Nie
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Benson Wui Man Lau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Simon Ming-Yuen Lee
- Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sai-Wang Seto
- Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Mok HL, Cheng KW, Xu Y, Huang C, Lyu C, Xu J, Hu D, Zhu L, Lin C, Tan HY, Bian Z. Modified Zhenwu Decoction suppresses chronic colitis via targeting macrophage CCR2/Fyn/p38 MAPK signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155694. [PMID: 38733904 DOI: 10.1016/j.phymed.2024.155694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is associated with intestinal macrophage infiltration due to disruption of the mucosal barrier and bacterial invasion. Therefore, it is crucial to identify therapeutic agents capable of attenuating the macrophage-induced inflammatory response to preserve mucosal homeostasis and immune tolerance. The modified Zhenwu decoction (CDD-2103) is a novel herbal formulation developed based on the principles of Traditional Chinese medicine. To date, there are no clinically approved herbal formulations for UC with a well-known mechanism of action on macrophages. PURPOSE The objective of this study was to systematically investigate the inhibitory effect of the active fraction of CDD-2103 in a mouse model of chronic colitis and delineate the mechanisms underlying its inhibitory action. METHODS CDD-2103 was extracted into four fractions using organic solvents with increasing polarity. A chronic 49-day dextran sulfate sodium (DSS)-induced colitis mice model, closely resembling human clinical conditions, was used to examine the effect of CDD-2103 on chronic colitis. To confirm the effect of CDD-2103 on macrophages in this chronic colitis model, adoptive macrophage transfer and CCL2 supplementation were conducted. The mechanisms of action of CDD-2103 were further elucidated utilizing bone marrow-derived macrophages (BMDMs). Transcriptome analysis was conducted to gain insights into the underlying mechanism of action of CDD-2103 in BMDMs. RESULTS Our in vitro and in vivo findings demonstrated that the ethanol-enriched fraction of CDD-2103 exhibited significant anti-inflammatory effects, leading to the suppression of colitis severity. This effect was associated with diminished accumulation of colonic macrophages in the lamina propria of CDD-2103-intervened colitis mice. Specifically, CDD-2103 inhibited CCR2/L2-mediated proinflammatory macrophage infiltration into the colon without affecting macrophage proliferation. Mechanistically, CDD-2103 inhibited Fyn expression-mediated p38 MAPK activation and subsequently suppressed CCR2 expression in BMDMs. CONCLUSIONS Collectively, our study supports the potential use of CDD-2103 to limit macrophage infiltration, thereby reducing inflammation during UC treatment. CDD-2103 and the components in the ethanolic fraction are promising candidates for the development of novel drugs for UC management. Additionally, our study underscores Fyn-mediated CCR2 expression as a potential therapeutic target for the management of UC.
Collapse
Affiliation(s)
- Heung Lam Mok
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ka Wing Cheng
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yiqi Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Cheng Lyu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jiaruo Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Die Hu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lin Zhu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Zhaoxiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
9
|
Huang C, Lyu C, Mok HL, Xu Y, Cheng KW, Zhang C, Hu D, Zhu L, Lin C, Chen X, Tan HY, Bian Z. Tolerogenic dendritic cell-mediated regulatory T cell differentiation by Chinese herbal formulation attenuates colitis progression. J Adv Res 2024:S2090-1232(24)00167-X. [PMID: 38677546 DOI: 10.1016/j.jare.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic inflammatory disease characterized by loss of immune tolerance to luminal antigens and progressive intestinal tissue injury. Thus, the re-establishment of immune tolerance is crucial for suppressing aberrant immune responses and UC progression. OBJECTIVES This study aimed to investigate the mechanisms underlying the action of CDD-2103 and its bioactive compounds in mediating immune regulation in mouse models of colitis. METHODS Two experimental colitis models, chronic 2,4,6-trinitrobenzene sulfonic acid (TNBS)- and T-cell transfer-induced Rag1-/- mice, were used to determine the effects of CDD-2103 on colitis progression. Single-cell transcriptome analysis was used to profile the immune landscape and its interactions after CDD-2103 treatment. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the major components interacting with lymphoid cells. A primary cell co-culture system was used to confirm the effects of bioactive component. RESULTS CDD-2103 dose-dependently suppresses the progression of colitis induced by chemicals or T cell transplantation in Rag1-/- mice. The effect of CDD-2103 is primarily attributable to an increase in the de novo generation of regulatory T cells (Tregs) in the lamina propria (LP). Single-cell transcriptomic analysis revealed that CDD-2103 treatment increased the number of tolerogenic dendritic cells (DCs). Mechanistically, CDD-2103 promoted tolerogenic DCs accumulation and function by upregulating several genes in the electron transport chain related to oxidative phosphorylation, leading to increased differentiation of Tregs. Further LC-MS analysis identified several compounds in CDD-2103, particularly those distributed within the mesenteric lymph nodes of mice. Subsequent studies revealed that palmatine and berberine promoted tolerogenic bone marrow-derived dendritic cells (BMDC)-mediated Treg differentiation. CONCLUSION Overall, our study demonstrated that the clinically beneficial effect of CDD-2103 in the treatment of UC is based on the induction of immune tolerance. In addition, this study supports berberine and palmatine as potential chemical entities in CDD-2103 that modulate immune tolerance.
Collapse
Affiliation(s)
- Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Cheng Lyu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Heung-Lam Mok
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Yiqi Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Ka-Wing Cheng
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Die Hu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Lin Zhu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Regions of China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China.
| | - Zhaoxiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China.
| |
Collapse
|
10
|
Norouzkhani N, Faramarzi M, Bahari A, Shirvani JS, Eslami S, Tabesh H. Inflammatory bowel disease patients' perspectives of non-medical needs. BMC Gastroenterol 2024; 24:134. [PMID: 38615013 PMCID: PMC11016217 DOI: 10.1186/s12876-024-03214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) imposes a huge burden on the healthcare systems and greatly declines the patient's quality of life. However, there is a paucity of detailed data regarding information and supportive needs as well as sources and methods of obtaining information to control different aspects of the disease from the perspectives of the patients themselves. This study aimed to establish the IBD patients' preferences of informational and supportive needs through Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA). METHODS IBD patients were recruited from different centers. Considering inclusion and exclusion criteria, 521 participants were filled a predefined questionnaire. This questionnaire was prepared through literature review of the recent well-known guidelines on the needs of IBD patients, which was further approved by the experts of IBD area in three rounds of Delphi consensus. It includes 56 items in four sections of informational needs (25), supportive needs (15), sources of information (7), and methods of obtaining information (9). RESULTS In particular, EFA was used to apply data reduction and structure detection. Given that this study tries to identify patterns, structures as well as inter-relationships and classification of the variables, EFA was utilized to simplify presentation of the variables in a way that large amounts of observations transform into fewer ones. Accordingly, the EFA identified five factors out of 25 items in the information needs section, three factors out of 15 items in the supportive needs section, two factors out of 7 items in the information sources section, and two factors out of 9 items in the information presentation methods. Through the CFA, all 4 models were supported by Root Mean Squared Error of Approximation (RMSEA); Incremental Fit Index (IFI); Comparative Fit Index (CFI); Tucker-Lewis Index (TLI); and SRMR. These values were within acceptable ranges, indicating that the twelve factors achieved from EFA were validated. CONCLUSIONS This study introduced a reliable 12-factor model as an efficient tool to comprehensively identify preferences of IBD patients in informational and supportive needs along with sources and methods of obtaining information. An in-depth understanding of the needs of IBD patients facilitates informing and supporting health service provision. It also assists patients in a fundamental way to improve adaptation and increase the quality of life. We suggest that health care providers consider the use of this tool in clinical settings in order to precisely assess its efficacy.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 13944-91388, Iran
| | - Mahbobeh Faramarzi
- Population, Family and Spiritual Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Bahari
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 13944- 91388, Iran
| | - Javad Shokri Shirvani
- Department of Internal Medicine, Babol University of Medical Sciences, Babol, 47176-47754, Iran
| | - Saeid Eslami
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 13944-91388, Iran
| | - Hamed Tabesh
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 13944-91388, Iran.
| |
Collapse
|
11
|
Li X, Wang Q, Wang M, Liu Y, Chen L, Wang F, Chen H. Integrated metabolomics and network pharmacology revealed the key active ingredients for the treatment of ulcerative colitis in the Citrus reticulata 'Dahongpao' peel. J Pharm Biomed Anal 2024; 239:115887. [PMID: 38056284 DOI: 10.1016/j.jpba.2023.115887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
Citrus reticulata pericarpium (CRP), the peel of Citrus reticulata 'Dahongpao' (DHP) is a medicinal herb with significant therapeutic value for treating ulcerative colitis (UC). However, the active therapeutic components of CRP are unclear. This study aims to reveal the metabolites potentially associated with the pharmacological properties of CRP. We performed flavonoid-targeting metabolomics to characterize the components of CRP (anti-UC part), tangerine pith and Citrus reticulata semen (no anti-UC effects parts) of DHP and further screened active components of CRP using network pharmacology and molecular docking. Lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were used to study the anti-inflammatory effect of the selected biologically active components. The therapeutic effects of the selected components were further investigated in a mouse model of UC induced by DSS. Three compounds, namely nobiletin, sinensetin, and hispidulin had the lowest docking scores among all screened ingredients. IL-6 and NO concentrations were significantly decreased in the LPS-stimulated RAW264.7 cells compared with control cells treated with these compounds. Moreover, UC mice treated with these compounds showed a reversal in weight loss, inhibition of shortening of colon length, and amelioration of colon injury. Our results indicated that sinensetin, nobiletin, and hispidulin can be potentially used for the treatment of UC.
Collapse
Affiliation(s)
- Xue Li
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Standardization Education Ministry Key Laboratory of Traditional Chinese Medicine, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resource, Sichuan 611137, China
| | - Qiaozhen Wang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Standardization Education Ministry Key Laboratory of Traditional Chinese Medicine, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resource, Sichuan 611137, China
| | - Min Wang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Standardization Education Ministry Key Laboratory of Traditional Chinese Medicine, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resource, Sichuan 611137, China
| | - Youping Liu
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Standardization Education Ministry Key Laboratory of Traditional Chinese Medicine, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resource, Sichuan 611137, China
| | - Lin Chen
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Standardization Education Ministry Key Laboratory of Traditional Chinese Medicine, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resource, Sichuan 611137, China.
| | - Fu Wang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Standardization Education Ministry Key Laboratory of Traditional Chinese Medicine, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resource, Sichuan 611137, China.
| | - Hongping Chen
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Standardization Education Ministry Key Laboratory of Traditional Chinese Medicine, Sichuan 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resource, Sichuan 611137, China.
| |
Collapse
|
12
|
Wang X, Liang F, Dai Z, Feng X, Qiu F. Combination of Coptis chinensis polysaccharides and berberine ameliorates ulcerative colitis by regulating gut microbiota and activating AhR/IL-22 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117050. [PMID: 37595814 DOI: 10.1016/j.jep.2023.117050] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis Franch. polysaccharide (CCP) and berberine (BBR) are the primary active components of Coptis chinensis Franch. BBR is clinically used for the treatment of intestinal infections and gastroenteritis. CCP was also reported to be effective for the treatment of ulcerative colitis (UC). However, whether CCP combined with BBR shows a synergistic effect on the treatment of UC has not been elucidated yet. AIM OF THE STUDY This study aspired to investigate the therapeutic effect and the possible mechanisms of the combination of CCP with BBR on chronic UC. MATERIALS AND METHODS By periodic administration of dextran sulfate sodium (DSS) to C57BL/6J mice, chronic UC model mice were induced. CCP (15 mg/kg), BBR (50 mg/kg), and CCP.BBR (a combination of 15 mg/kg CCP and 50 mg/kg BBR) were orally administered to the model mice for 10 days. Changes of body weight, disease activity index, colon length, organ index, histopathological damage, expression of cytokines, and intestinal tight junction proteins were determined to evaluate the therapeutic effects. 16S rDNA sequencing, targeted short-chain fatty acid metabolomics, qPCR, and western blotting were performed to elucidate the potential mechanism. RESULTS Both CCP and BBR alleviated UC via improving colon pathological damage, inhibiting the inflammatory response, and regulating the expression of intestinal tight junction proteins. The combination of CCP with BBR showed a more substantial therapeutic effect via increasing the relative abundance of short-chain fatty acids (SCFAs) producing bacteria, thereby increasing the contents of SCFAs in vivo and activating AhR/IL-22 pathway. CONCLUSION The combination of CCP and BBR showed a synergistic effect on the therapy of chronic UC and the mechanism was associated with regulating gut microbiota and activating AhR/IL-22 pathway.
Collapse
Affiliation(s)
- Xuemei Wang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Fengni Liang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Zhaoyuan Dai
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
13
|
Harwansh RK, Bhati H, Deshmukh R. Recent Updates on the Therapeutics Benefits, Clinical Trials, and Novel Delivery Systems of Chlorogenic Acid for the Management of Diseases with a Special Emphasis on Ulcerative Colitis. Curr Pharm Des 2024; 30:420-439. [PMID: 38299405 DOI: 10.2174/0113816128295753240129074035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Ulcerative colitis (UC) is a multifactorial disorder of the large intestine, especially the colon, and has become a challenge globally. Allopathic medicines are primarily available for the treatment and prevention of UC. However, their uses are limited due to several side effects. Hence, an alternative therapy is of utmost importance in this regard. Herbal medicines are considered safe and effective for managing human health problems. Chlorogenic acid (CGA), the herbal-derived bioactive, has been reported for pharmacological effects like antiinflammatory, immunomodulatory, antimicrobial, hepatoprotective, antioxidant, anticancer, etc. This review aims to understand the antiinflammatory and chemopreventive potential of CGA against UC. Apart from its excellent therapeutic potential, it has been associated with low absorption and poor oral bioavailability. In this context, colon-specific novel drug delivery systems (NDDS)are pioneering to overcome these problems. The pertinent literature was compiled from a thorough search on various databases such as ScienceDirect, PubMed, Google Scholar, etc., utilizing numerous keywords, including ulcerative colitis, herbal drugs, CGA, pharmacological activities, mechanism of actions, nanoformulations, clinical updates, and many others. Relevant publications accessed till now were chosen, whereas non-relevant papers, unpublished data, and non-original articles were excluded. The present review comprises recent studies on pharmacological activities and novel drug delivery systems of CGA for managing UC. In addition, the clinical trials of CGA against UC have been discussed.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
14
|
Wang X, Shen C, Wang X, Tang J, Wu Z, Huang Y, Shao W, Geng K, Xie H, Pu Z. Schisandrin protects against ulcerative colitis by inhibiting the SGK1/NLRP3 signaling pathway and reshaping gut microbiota in mice. Chin Med 2023; 18:112. [PMID: 37674245 PMCID: PMC10481484 DOI: 10.1186/s13020-023-00815-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND According to the Chinese Pharmacopoeia, the fruit of Schisandra chinensis (Turcz.) Baill. (SC) is an important traditional Chinese medicine that can be used to treat diarrhea. Despite the increasing research on the anti-inflammatory and anti-oxidant aspects of SC, the studies on the anti-ulcerative colitis of Schisandrin (SCH), the main constituent of SC, are relatively few. METHODS The mice used in the study were randomly distributed into 6 groups: control, model, 5-ASA, and SCH (20, 40, 80 mg/kg/d). The mice in the model group were administered 3% (w/v) dextran sulfate sodium (DSS) through drinking water for 7 days, and the various parameters of disease activity index (DAI) such as body weight loss, stool consistency, and gross blood were measured. ELISA was used to detect inflammatory factors, and bioinformatics combined with transcriptome analysis was done to screen and verify relevant targets. 16S rDNA high-throughput sequencing was used to analyze the composition of the gut microbiota(GM), while mass spectrometry was done to analyze the changes in the content of bile acids (BAs) in the intestine. RESULTS Mice treated with SCH experienced significant weight gain, effectively alleviating the severity of colitis, and decreasing the levels of inflammatory factors such as TNF-α, IL-1β, IL-18, IL-6, and other related proteins (NLRP3, Caspase-1, SGK1) in UC mice. Furthermore, the analysis of GM and BAs in mice revealed that SCH increased the relative abundance of Lactobacilli spp, reduced the relative abundance of Bacteroides, and promoted the conversion of primary BAs to secondary BAs. These effects contributed to a significant improvement in the DSS-induced GM imbalance and the maintenance of intestinal homeostasis. CONCLUSION It seems that there is a close relationship between the SCH mechanism and the regulation of SGK1/NLRP3 pathway and the restoration of GM balance. Therefore, it can be concluded that SCH could be a potential drug for the treatment of UC.
Collapse
Affiliation(s)
- Xiaohu Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Chaozhuang Shen
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Xingwen Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Jin Tang
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Zijing Wu
- Department of Pharmacy, Bengbu First People's Hospital, Bengbu, 233000, China
| | - Yunzhe Huang
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Wenxin Shao
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Kuo Geng
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| | - Zhichen Pu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| |
Collapse
|
15
|
Zhuang J, Mo J, Huang Z, Yan Y, Wang Z, Cao X, Yang C, Shen B, Zhang F. Mechanisms of Xiaozheng decoction for anti-bladder cancer effects via affecting the GSK3β/β-catenin signaling pathways: a network pharmacology-directed experimental investigation. Chin Med 2023; 18:104. [PMID: 37608369 PMCID: PMC10464372 DOI: 10.1186/s13020-023-00818-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/12/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE The combination of Xiaozheng decoction with postoperative intravesical instillation has been shown to improve the prognosis of bladder cancer patients and prevent recurrence. However, the mechanisms underlying the efficacy of this herbal formula remain largely unclear. This research aims to identify the important components of Xiaozheng decoction and explore their anti-bladder cancer effect and mechanism using network pharmacology-based experiments. METHODS The chemical ingredients of each herb in the Xiaozheng decoction were collected from the Traditional Chinese Medicine (TCM) database. Network pharmacology was employed to predict the target proteins and pathways of action. Disease databases were utilized to identify target genes associated with bladder cancer. A Protein-Protein Interaction (PPI) network was constructed to illustrate the interaction with intersected target proteins. Key targets were identified using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis. A compound-target-pathway network was established after molecular docking predictions. In vitro experiments with bladder cancer cell lines were conducted using core chemical components confirmed by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-qTOF-MS) to verify the conclusions of network pharmacology. RESULTS 45 active compounds were extracted, and their relationships with Traditional Chinese Medicines (TCMs) and protein targets were presented, comprising 7 herbs, 45 active compounds, and 557 protein targets. The intersection between potential TCM target genes and bladder cancer-related genes yielded 322 genes. GO and KEGG analyses indicated that these targets may be involved in numerous cancer-related pathways. Molecular docking results showed that candidate compounds except mandenol could form stable conformations with the receptor. In vitro experiments on three bladder cancer cell lines demonstrated that quercetin and two other impressive new compounds, bisdemethoxycurcumin (BDMC) and kumatakenin, significantly promoted cancer cell apoptosis through the B-cell lymphoma 2/Bcl-2-associated X (Bcl-2/BAX) pathway and inhibited proliferation and migration through the glycogen synthase kinase 3 beta (GSK3β)/β-catenin pathway. CONCLUSION By employing network pharmacology and conducting in vitro experiments, the mechanism of Xiaozheng decoction's effect against bladder cancer was tentatively elucidated, and its main active ingredients and targets were identified, providing a scientific basis for future research.
Collapse
Affiliation(s)
- Jingming Zhuang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahang Mo
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Zhengnan Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyi Wang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Li YY, Cui Y, Dong WR, Liu TT, Zhou G, Chen YX. Terminalia bellirica Fruit Extract Alleviates DSS-Induced Ulcerative Colitis by Regulating Gut Microbiota, Inflammatory Mediators, and Cytokines. Molecules 2023; 28:5783. [PMID: 37570753 PMCID: PMC10421151 DOI: 10.3390/molecules28155783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease significantly impacting patients' lives. This study aimed to elucidate the alleviating effect of ethyl acetate extract (TBEA) from Terminalia bellirica fruit on UC and to explore its mechanism. TBEA was the fraction with the best anti-inflammatory activity screened using in vitro anti-inflammatory assays, and HPLC initially characterized its composition. The mice model of ulcerative colitis was established after free drinking of 2.5% dextran sulfate sodium for six days, and the experimental group was treated with 50 mg/kg and 100 mg/kg TBEA for seven days. We found that TBEA significantly alleviated symptoms in UC mice, including a physiologically significant reduction in disease activity index and pathological damage to colonic tissue. TBEA dramatically slowed down oxidative stress and inflammatory process in UC mice, as evidenced by decreasing myeloperoxidase and malondialdehyde activities and increasing glutathione and catalase levels by reducing the concentrations of IL-6, IL-1β, TNF-α, and NO in UC mice, as well as by regulating key proteins in the IL-6/JAK2/STAT3 pathway. Meanwhile, TBEA maintained intestinal homeostasis by regulating intestinal flora structure. Our study provides new ideas for developing TBEA into a new drug to treat UC.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu-Xin Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
17
|
Sun R, Jin D, Fei F, Xu Z, Cao B, Li J. Mushroom polysaccharides from Grifola frondosa (Dicks.) Gray and Inonotus obliquus (Fr.) Pilat ameliorated dextran sulfate sodium-induced colitis in mice by global modulation of systemic metabolism and the gut microbiota. Front Pharmacol 2023; 14:1172963. [PMID: 37351508 PMCID: PMC10282762 DOI: 10.3389/fphar.2023.1172963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction: Polysaccharides from Grifola frondosa (Dicks.) Gray (HSH) and Inonotus obliquus (Fr.) Pilat (BHR) showed noticeable effects on dextran sulfate sodium (DSS)-induced colitis, but their systemic modulation effects have not been fully revealed. This study aimed to investigate the regulation of the gut microbiota and systemic metabolism by HSH and BHR in DSS-induced colitis. Methods: C57BL/6J mice were given DSS (2.5%) in water and were treated with HSH and BHR (200 mg/kg/day) by gavage. Body weight and colon length were recorded, and H&E and AB-PAS staining of the colon were conducted to evaluate the model and the protective effect of the polysaccharides. Additionally, an LC-QTOF/MS-based untargeted metabolomic platform was used to identify the metabolites in the serum, colon tissue, gut contents, and faeces and investigate differential metabolites and metabolic pathways. 16S rDNA gene sequencing was used to measure the composition of bacterial communities. Results: The results showed that the mouse colitis model was established successfully, as evidenced by an increased disease activity index score [2.83 ± 0.62 vs. 0.06 ± 0.14 (p < 0.001)] and shortened colon length [5.43 ± 0.64 cm vs. 7.04 ± 0.29 cm (p < 0.001)], and HSH and BHR ameliorated DSS-induced colitis by improving the disease activity index (2.17 ± 0.28 and 1.83 ± 0.29, respectively) and restoring the colon length (6.12 ± 0.30 cm and 6.62 ± 0.35 cm, respectively). HSH and BHR significantly modulated metabolites involved in aromatic amino acid metabolism, the citrate cycle, purine metabolism, pyrimidine metabolism, etc. HSH and BHR increased the Chao1 index by 64.25% and 60.25%, respectively, and they increased the Shannon index by 13.02% and 10.23%, respectively. They both reversed the increase in the abundances of g_Odoribacter, g_Clostridium, g_AF12, g_Parabacteroides and g_Turicibacter and reversed the decrease in the abundance of g_unclassified_Bacteria induced by DSS. Specifically, HSH reversed the reductions in g_unclassified_Lactobacillales and g_Ruminococcus, and BHR reversed the decreases in g_unidentified_Coriobacteriaceae and g_unclassified_Firmicutes. Discussion: These results suggested that HSH and BHR may ameliorate DSS-induced colitis by global modulation of systemic metabolism and the gut microbiota. Targeting the gut microbiota may be a potentially effective strategy to modulate systemic metabolism and treat colitis.
Collapse
Affiliation(s)
- Runbin Sun
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dandan Jin
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei Fei
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bei Cao
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Zhang S, Cao Y, Wang Z, Liu H, Teng Y, Li G, Liu J, Xia X. Fermented Sargassum fusiforme Mitigates Ulcerative Colitis in Mice by Regulating the Intestinal Barrier, Oxidative Stress, and the NF-κB Pathway. Foods 2023; 12:foods12101928. [PMID: 37238746 DOI: 10.3390/foods12101928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, Sargassum fusiforme has gained increasing attention for its ability to improve human health and reduce the risk of disease. Nevertheless, there have been few reports on the beneficial functions of fermented Sargassum fusiforme. In this study, the role of fermented Sargassum fusiforme in the mitigation of ulcerative colitis was investigated. Both fermented and unfermented Sargassum fusiforme demonstrated significant improvement in weight loss, diarrhea, bloody stools, and colon shortening in mice with acute colitis. Fermented Sargassum fusiforme further protected against goblet cell loss, decreased intestinal epithelium permeability, and enhanced the expression of tight junction proteins. Fermented Sargassum fusiforme reduced oxidative stress, which was demonstrated by a decrease in nitric oxide (NO), myeloperoxidase (MPO), and malondialdehyde (MDA) concentrations in the colon of mice and an increase in total superoxide dismutase (T-SOD) activity in the colon. Meanwhile, catalase (CAT) concentrations in both the colon and serum of mice were significantly increased. Fermented Sargassum fusiforme also attenuated the inflammatory response, which was evidenced by the decreased level of pro-inflammatory cytokines in the colon. Moreover, fermented Sargassum fusiforme inhibited the nuclear factor-κB (NF-κB) signaling pathway and increased the production of short-chain fatty acids in the intestine. These findings indicate that fermented Sargassum fusiforme may have the potential to be developed as an alternative strategy for alleviating colitis.
Collapse
Affiliation(s)
- Siteng Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Cao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zixuan Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Huanhuan Liu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yue Teng
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Guopeng Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiaxiu Liu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
19
|
Wang T, Su X, Peng J, Tan X, Yang G, Zhang T, Chen F, Wang C, Ma K. Deciphering the pharmacological mechanisms of Fraxini Cortex for ulcerative colitis treatment based on network pharmacology and in vivo studies. BMC Complement Med Ther 2023; 23:152. [PMID: 37161415 PMCID: PMC10170718 DOI: 10.1186/s12906-023-03983-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a common type of inflammatory bowel disease. Due to the elusive pathogenesis, safe and effective treatment strategies are still lacking. Fraxini Cortex (FC) has been widely used as a medicinal herb to treat some diseases. However, the pharmacological mechanisms of FC for UC treatment are still unclear. METHODS An integrated platform combining network pharmacology and experimental studies was introduced to decipher the mechanism of FC against UC. The active compounds, therapeutic targets, and the molecular mechanism of action were acquired by network pharmacology, and the interaction between the compounds and target proteins were verified by molecular docking. Dextran sulfate sodium (DSS)-induced colitis model was employed to assess the therapeutic effect of FC on UC, and validate the molecular mechanisms of action predicted by network pharmacology. RESULTS A total of 20 bioactive compounds were retrieved, and 115 targets were predicted by using the online databases. Ursolic acid, fraxetin, beta-sitosterol, and esculetin were identified as the main active compounds of FC against UC. PPI network analysis identified 28 FC-UC hub genes that were mainly enriched in the IL-17 signaling pathway, the TNF signaling pathway, and pathways in cancer. Molecular docking confirmed that the active compounds had high binding affinities to the predicted target proteins. GEO dataset analysis showed that these target genes were highly expressed in the UC clinical samples compared with that in the healthy controls. Experimental studies showed that FC alleviated DSS-induced colitis symptoms, reduced inflammatory cytokines release, and suppressed the expression levels of IL1β, COX2, MMP3, IL-17 and RORγt in colon tissues. CONCLUSION FC exhibits anti-UC properties through regulating multi-targets and multi-pathways with multi-components. In vivo results demonstrated that FC alleviated DSS-induced colitis.
Collapse
Affiliation(s)
- Tianming Wang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Xuyang Su
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Jing Peng
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Xiaofen Tan
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Guangshan Yang
- The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, 230001, People's Republic of China
| | - Tengyue Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, 230001, People's Republic of China
| | - Feng Chen
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Changzhong Wang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Kelong Ma
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
20
|
Zhang Z, Xu W, Xu L, Li G, Aobulikasimu N, Gao J, Hu Y, Guan P, Mu Y, Huang X, Han L. Discovery, Preliminary Structure-Activity Relationship, and Evaluation of Oleanane-Type Saponins from Pulsatilla chinensis for the Treatment of Ulcerative Colitis. J Med Chem 2023; 66:3635-3647. [PMID: 36843292 DOI: 10.1021/acs.jmedchem.3c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
To discover ulcerative colitis (UC) treatment agents, 28 oleanane-type triterpenoid saponins (1-28) including three new saponins, pulsatillosides P-R (1-3), were isolated from Pulsatilla chinensis. The isolated saponins could observably ameliorate UC by improving the intestinal epithelial cell barrier and intestinal flora in vivo. The structure-activity relationship indicated that the oligosaccharide chain at C-28 was essential for their anti-UC activities; the methyl group at the C-23 site of triterpene saponins showed important effects on anti-UC efficacy; the chain length of oligosaccharides at position C-28 had little effect on their anti-UC activities. In vivo investigation of representative saponins 1 and 13 further confirmed that 23-methyl-3,28-bisdesmosidic oleanane-type saponins inhibited the TNFα-NFκB-MLCK axis to improve the intestinal epithelial cell barrier of the colon in UC mice. These findings revealed the potential of 23-methyl-3,28-bisdesmosidic oleanane-type saponins from P. chinensis as promising candidates for the treatment of UC.
Collapse
Affiliation(s)
- Zengguang Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Wenfei Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Lixiao Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Guiding Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Nuerbiye Aobulikasimu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jingyi Gao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yixuan Hu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Peipei Guan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yu Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xueshi Huang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Li Han
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
21
|
Liu SY, Hu LL, Wang SJ, Liao ZL. Administration of modified Gegen Qinlian decoction for hemorrhagic chronic radiation proctitis: A case report and review of literature. World J Clin Cases 2023; 11:1129-1136. [PMID: 36874424 PMCID: PMC9979297 DOI: 10.12998/wjcc.v11.i5.1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/24/2022] [Accepted: 01/20/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Hemorrhagic chronic radiation proctitis (CRP) is a common late complication of irradiation of the pelvis and seriously impairs life quality. There is no standard treatment for hemorrhagic CRP. Medical treatment, interventional treatment, and surgery are available, but they are limited in their applications due to nondefinite efficacy or side effects. Chinese herbal medicine (CHM), as a complementary or alternative therapy, may provide another option for hemorrhagic CRP treatment.
CASE SUMMARY A 51-year-old woman with cervical cancer received intensity-modulated radiation therapy and brachytherapy with a total dose of 93 Gy fifteen days after hysterectomy and bilateral adnexectomy. She received six additional cycles of chemotherapy with carboplatin and paclitaxel. Nine months after radiotherapy treatment, she mainly complained of 5-6 times diarrhea daily and bloody purulent stools for over 10 d. After colonoscopy examinations, she was diagnosed with hemorrhagic CRP with a giant ulcer. After assessment, she received CHM treatment. The specific regimen was 150 mL of modified Gegen Qinlian decoction (GQD) used as a retention enema for 1 mo, followed by replacement with oral administration of 150 mL of modified GQD three times per day for 5 mo. After the whole treatment, her diarrhea reduced to 1-2 times a day. Her rectal tenesmus and mild pain in lower abdomen disappeared. Both colonoscopy and magnetic resonance imaging confirmed its significant improvement. During treatment, there were no side effects, such as liver and renal function damage.
CONCLUSION Modified GQD may be another effective and safe option for hemorrhagic CRP patients with giant ulcers.
Collapse
Affiliation(s)
- Shao-Yong Liu
- Traditional Chinese Medicine Cancer Treatment Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Liu-Ling Hu
- The Center for Gastroenterology, Diagnosis and Minimally Invasive Treatment of Early Gastrointestinal Cancer, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Shi-Jun Wang
- The Center for Gastroenterology, Diagnosis and Minimally Invasive Treatment of Early Gastrointestinal Cancer, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Zhong-Li Liao
- The Center for Gastroenterology, Diagnosis and Minimally Invasive Treatment of Early Gastrointestinal Cancer, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
22
|
Li X, Xu S, Zhang Y, Li K, Gao XJ, Guo MY. Berberine Depresses Inflammation and Adjusts Smooth Muscle to Ameliorate Ulcerative Colitis of Cats by Regulating Gut Microbiota. Microbiol Spectr 2022; 10:e0320722. [PMID: 36287004 PMCID: PMC9769923 DOI: 10.1128/spectrum.03207-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023] Open
Abstract
Intestinal microbiota dysbiosis is a well established characteristic of ulcerative colitis (UC). Regulating the gut microbiota is an effective UC treatment strategy. Berberine (BBR), an alkaloid extracted from several Chinese herbs, is a common traditional Chinese medicine. To establish the efficacy and mechanism of action of BBR, we constructed a UC model using healthy adult shorthair cats to conduct a systematic study of colonic tissue pathology, inflammatory factor expression, and gut microbiota structure. We investigated the therapeutic capacity of BBR for regulating the gut microbiota and thus work against UC in cats using 16S rRNA genes amplicon sequencing technology. Our results revealed that dextran sulfate sodium (DSS)-induced cat models of UC showed weight loss, diarrhea accompanied by mucous and blood, histological abnormalities, and shortening of the colon, all of which were significantly alleviated by supplementation with BBR. A 16S rRNA gene-based microbiota analysis demonstrated that BBR could significantly benefit gut microbiota. Western blot, quantitative PCR, and enzyme-linked immunosorbent assays (ELISAs) showed that in DSS-induced cat models, the expression of the inflammatory factors was increased, activating the JAK2/STAT3 signaling pathway, and treatment with BBR reversed this effect. The myosin light chain (MLC) phosphorylation in the smooth muscle of the intestines is associated with motility of inflammation-related diarrhea in cats. This study used gut flora analyses to demonstrate the anti-UC effects of BBR and its potential therapeutic mechanisms and offers novel insights into the prevention of inflammatory diseases using natural products. IMPORTANCE Ulcerative colitis (UC) is common in clinics. Intestinal microbiota disorder is correlated with ulcerative colitis. Although there are many studies on ulcerative colitis in rats, there are few studies on colitis in cats. Therefore, this study explored the possibility of the use of BBR as a safe and efficient treatment for colitis in cats. The results demonstrated the therapeutic effects of BBR on UC based on the state of the intestinal flora. The study found BBR supplementation to be effective against dextran sulfate sodium (DSS)-induced colitis, smooth muscle damage, and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Xueying Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Shuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Yanhe Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Kan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Xue-Jiao Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Meng-yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
23
|
Bian Z, Qin Y, Li L, Su L, Fei C, Li Y, Hu M, Chen X, Zhang W, Mao C, Yuan X, Lu T, Ji D. Schisandra chinensis (Turcz.) Baill. Protects against DSS-induced colitis in mice: Involvement of TLR4/NF-κB/NLRP3 inflammasome pathway and gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115570. [PMID: 35868549 DOI: 10.1016/j.jep.2022.115570] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE the fruit of Schisandra chinensis (Turcz.) Baill. (SC) is an important traditional Chinese herbal medicine, which has been widely used in traditional Chinese medicine (TCM) for treating intestinal diseases. It is also traditionally used as health product and medicine in Russia and other countries. However, the effect of SC ethanol extract on anti-ulcerative colitis (UC) has not been systematically studied yet. AIM OF THE STUDY We investigated the protective effects and underlying action mechanisms of SC extract (SCE) for UC treatment. MATERIALS AND METHODS An animal model of UC induced by dextran sulfate sodium (DSS) was established. After oral administration of SCE, the Disease Activity Index (DAI) was calculated, the length of colon measured, levels of proinflammatory factors determined, and histopathology carried out to assess the therapeutic efficacy of SCE on UC. The effects of SCE on the toll-like receptor 4/nuclear factor-kappa B/nucleotide-binding and oligomerization domain-like receptor family pyrin domain containing 3 inflammasome (TLR4/NF-κB/NLRP3 inflammasome) signaling pathway were evaluated by western blotting. High-throughput sequencing was done to reveal the effect of SCE on the change of the gut microbiota (GM) in mice with DSS-induced colitis. RESULTS SCE significantly reduced the DAI score, restored colon-length shortening, and ameliorated colonic histopathologic injury in mice with DSS-induced colitis. SCE inhibited the inflammatory response by regulating the TLR4/NF-κB/NLRP3 inflammasome pathway in mice with UC. SCE also maintained gut barrier function by increasing the levels of zonula occludens (ZO)-1 and occludin. 16S rRNA sequencing showed that SCE could reverse the GM imbalance caused by UC. CONCLUSIONS SCE can ameliorate DSS-induced colitis, and that its effects might be associated with suppression of the TLR4/NF-κB/NLRP3 inflammasome pathway and GM regulation, which may provide significant supports for the development of potential candidates for UC treatment.
Collapse
Affiliation(s)
- Zhenhua Bian
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Yuwen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lin Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chenghao Fei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Minmin Hu
- Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Xiaowei Chen
- Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Wei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaohang Yuan
- Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
24
|
Wang W, Kou F, Wang J, Quan Z, Zhao S, Wang Y, Hu X, Sun H, Cao L. Pretreatment with millet-derived selenylated soluble dietary fiber ameliorates dextran sulfate sodium-induced colitis in mice by regulating inflammation and maintaining gut microbiota balance. Front Nutr 2022; 9:928601. [PMID: 36159466 PMCID: PMC9494682 DOI: 10.3389/fnut.2022.928601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory activation and intestinal flora imbalance play key roles in the development and progression of inflammatory bowel disease (IBD). Soluble dietary fiber (SDF) and selenium have been proven to be effective for preventing and relieving IBD. This study investigated and compared the therapeutic efficacy of millet-derived selenylated-soluble dietary fiber (Se-SDF) against dextran sulfate sodium (DSS)-induced colitis in mice alone or through the synergistic interaction between selenium and SDF. In female mice, Se-SDF markedly alleviated body weight loss, decreased colon length, reduced histological damage scores, and enhanced IL-10 expression to maintain the barrier function of intestinal mucosa compared to male mice. The 16S rRNA sequence analysis further indicated that pretreatment with Se-SDF restored the gut microbiota composition in female mice by increasing the relative abundance of Lactobacillus and the Firmicutes/Bacteroidetes ratio. In conclusion, these findings demonstrated that Se-SDF can protect against DSS-induced colitis in female mice by regulating inflammation and maintaining gut microbiota balance. This study, therefore, provides new insights into the development of Se-SDF as a supplement for the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Weihao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Fang Kou
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Juan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhigang Quan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuting Zhao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yifei Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xin Hu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hunan Sun
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
- Hunan Sun,
| | - Longkui Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Longkui Cao,
| |
Collapse
|
25
|
Yang Z, Lin S, Feng W, Liu Y, Song Z, Pan G, Zhang Y, Dai X, Ding X, Chen L, Wang Y. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: Macrophage polarization. Front Pharmacol 2022; 13:999179. [PMID: 36147340 PMCID: PMC9486102 DOI: 10.3389/fphar.2022.999179] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal macrophages are the main participants of intestinal immune homeostasis and intestinal inflammation. Under different environmental stimuli, intestinal macrophages can be polarized into classical activated pro-inflammatory phenotype (M1) and alternative activated anti-inflammatory phenotype (M2). Its different polarization state is the “guide” to promoting the development and regression of inflammation. Under normal circumstances, intestinal macrophages can protect the intestine from inflammatory damage. However, under the influence of some genetic and environmental factors, the polarization imbalance of intestinal M1/M2 macrophages will lead to the imbalance in the regulation of intestinal inflammation and transform the physiological inflammatory response into pathological intestinal injury. In UC patients, the disorder of intestinal inflammation is closely related to the imbalance of intestinal M1/M2 macrophage polarization. Therefore, restoring the balance of M1/M2 macrophage polarization may be a potentially valuable therapeutic strategy for UC. Evidence has shown that traditional Chinese medicine (TCM) has positive therapeutic effects on UC by restoring the balance of M1/M2 macrophage polarization. This review summarizes the clinical evidence of TCM for UC, the vital role of macrophage polarization in the pathophysiology of UC, and the potential mechanism of TCM regulating macrophage polarization in the treatment of UC. We hope this review may provide some new enlightenment for the clinical treatment, fundamental research, and research and development of new Chinese medicine of UC.
Collapse
Affiliation(s)
- Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Lin
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wanying Feng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangxi Liu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiyun Pan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiangdong Dai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinya Ding
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Chen, ; Yi Wang,
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lu Chen, ; Yi Wang,
| |
Collapse
|