1
|
Ingoglia F, Tanfous M, Ellezam B, Anderson KJ, Pasquali M, Botto LD. MADD-like pattern of acylcarnitines associated with sertraline use. Mol Genet Metab Rep 2024; 41:101142. [PMID: 39318848 PMCID: PMC11421287 DOI: 10.1016/j.ymgmr.2024.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a primary mitochondrial dysfunction affecting mitochondrial fatty acid and protein metabolism, caused by biallelic pathogenic variants in ETFA, ETFB, or ETFDH genes. The heterogeneous phenotypes associated with MADD have been classified into three groups: neonatal onset with congenital anomalies (type 1), neonatal onset without congenital anomalies (type 2), and attenuated and/or later onset (type 3). Here, we present two cases with biochemical profiles mimicking late-onset MADD but negative genetic testing, associated with the use of sertraline, a commonly used antidepressant. Case 1 is a 22 yo woman diagnosed with depression and profound fatigue who was referred to the metabolic clinic because of carnitine deficiency and a plasma acylcarnitine profile with a MADD-like pattern. Case 2 is a 61 yo woman with a history of chronic fatigue who was admitted to the emergency department with difficulty swallowing, metabolic acidosis, and mild rhabdomyolysis. Plasma acylcarnitine profile showed a MADD-like pattern. The muscle biopsy revealed lipid droplet accumulation and proliferation of mitochondria with abnormal osmiophilic inclusions, and a biochemical assay of the respiratory chain showed a deficit in complex II activity. In both cases, urine organic acid profile was normal, and genetic tests did not detect variants in the genes involved in MADD. Sertraline was on their list of medications and considering its association with inhibition of mitochondrial function and rhabdomyolysis, the team recommended the discontinuation under medical supervision. In Case 1 after discontinuation, the plasma acylcarnitine test normalized, only to return abnormal when the patient resumed sertraline. In Case 2, after sertraline was discontinued rhabdomyolysis resolved, and the muscle biopsy and biochemical assay of the respiratory chain normalized. Although sertraline is considered a safe drug, these two cases suggest that the use of sertraline may be associated with a potentially reversible form of mitochondrial dysfunction mimicking MADD. Further studies are needed to confirm and estimate the risk of MADD-like presentations with the use of sertraline, as well as identifying additional contributing factors, including genetic factors. Metabolic physicians should consider sertraline use in the differential diagnosis of MADD, particularly when genetic testing is negative.
Collapse
Affiliation(s)
- Filippo Ingoglia
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| | - Mohsen Tanfous
- CHAUR CIUSSS-MCQ University Hospital, Trois-Rivieres, Canada
| | - Benjamin Ellezam
- Department of Pathology, Sainte-Justine Hospital, Université de Montréal, Montréal, QC, Canada
| | - Katherine J. Anderson
- Department of Pediatrics, Division of Clinical Genetics, University of Vermont, Burlington, VT, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- CHAUR CIUSSS-MCQ University Hospital, Trois-Rivieres, Canada
- Pediatrics, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
2
|
Sunebo S, Appelqvist H, Häggqvist B, Danielsson O. Multiple Acyl-Coenzyme A Dehydrogenase Deficiency Is Associated with Sertraline Use - Is There an Acquired Form? Ann Neurol 2024; 96:802-811. [PMID: 39092677 DOI: 10.1002/ana.27030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is a disorder of fatty acid oxidation and considered an inborn error of metabolism. In recent years, we have diagnosed an increasing number of patients where, despite extensive investigation, no disease-causing mutations have been found. We therefore investigated a cohort of consecutive patients, with the objective to detect possible non-genetic causes. METHODS We searched the patient records and the registry of muscle biopsies, for patients with MADD, diagnosed within the past 10 years. The patient records were reviewed regarding symptoms, clinical findings, comorbidities, drugs, diagnostic investigations, and response to treatment. In addition, complementary investigations of muscle tissue were performed. RESULTS We identified 9 patients diagnosed with late-onset MADD. All presented with muscle weakness and elevated levels of creatine kinase. A lipid storage myopathy was evident in the muscle biopsies, as was elevated acylcarnitines in blood. Despite thorough genetic investigations, a probable genetic cause was found in only 2 patients. Remarkably, all 7 patients without disease-causing mutations were treated with sertraline. In some cases, a deterioration of symptoms closely followed dose increase, and discontinuation resulted in an improved acylcarnitine profile. All 9 patients responded to riboflavin treatment with normalization of creatine kinase and muscle biopsy findings, and in 8 patients the clinical symptoms clearly improved. INTERPRETATION Our findings strongly suggest that sertraline may induce an acquired form of MADD in some patients. Importantly, riboflavin treatment seems to be similarly effective as in genetic MADD, but discontinuation of sertraline is reasonably warranted. ANN NEUROL 2024;96:802-811.
Collapse
Affiliation(s)
- Sofie Sunebo
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hanna Appelqvist
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bo Häggqvist
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Olof Danielsson
- Department of Neurology in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Meier C, Burns K, Manolikos C, Hodge S, Bell DA. Multiple acyl-Coa dehydrogenase deficiency: an underdiagnosed disorder in adults. Intern Med J 2024; 54:1567-1571. [PMID: 39132981 DOI: 10.1111/imj.16473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/27/2024] [Indexed: 08/13/2024]
Abstract
Inherited metabolic diseases, as a first presentation in adults, are an under-recognised condition associated with significant morbidity and mortality. Diagnosis is challenging because of non-specific clinical and biochemical findings, resemblance to common conditions such as neuropsychiatric disorders and the misconception that these disorders predominantly affect paediatric populations. We describe a series of patients with multiple acyl-CoA dehydrogenase deficiency (MADD)/MADD-like disorders to highlight these diagnostic challenges.
Collapse
Affiliation(s)
- Ciselle Meier
- The Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Kharis Burns
- The Medical School, University of Western Australia, Perth, Western Australia, Australia
- Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Catherine Manolikos
- Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Dietetics and Nutrition, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Samantha Hodge
- Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Dietetics and Nutrition, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Damon A Bell
- The Medical School, University of Western Australia, Perth, Western Australia, Australia
- Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Biochemistry, Fiona Stanley and Royal Perth Hospital Network, PathWest Laboratory Medicine WA, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Li XX, Yang XN, Pan HD, Liu L. Fatal multiple acyl-CoA dehydrogenase deficiency caused by ETFDH gene mutation: A case report. World J Clin Cases 2024; 12:5422-5430. [PMID: 39156098 PMCID: PMC11238677 DOI: 10.12998/wjcc.v12.i23.5422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) is a disease of rare autosomal recessive disorder. There are three types of MADD. Type I is a neonatal-onset form with congenital anomalies. Type II is a neonatal-onset form without congenital anomalies. Type III is considered to a milder form and usually responds to riboflavin. However, late-onset form could also be fatal and not responsive to treatments. CASE SUMMARY We report a severe case of a young man with onset type III MADD induced by drugs and strenuous exercise characterized by rhabdomyolysis and liver dysfunction. Urine analysis indicated 12 out of 70 kinds of organic acids like glutaric acid-2 were detected. Serum analysis in genetic metabolic diseases revealed 24 out of 43 tested items were abnormal, revealing the elevation of several acylcarnitines and the reduction of carnitine in the patient. By next generation sequencing technology for gene sequencing related to fatty acid oxidation and carnitine cycle defects, a rare ETFDH gene variant was identified: NM_004453:4:C.1448C>T(p.Pro483 Leu). The patient was diagnosed with late-onset GAII. He was not responsive to riboflavin and progressively worsened into multiple organ failure that finally led to death. CONCLUSION Type III MADD can also be fatal and not responsive to treatments.
Collapse
Affiliation(s)
- Xue-Xia Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Xiao-Nan Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hu-Dan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong Province, China
| |
Collapse
|
5
|
Demetriou K, Nisbet J, Coman D, Ewing AD, Phillips L, Smith S, Lipke M, Inwood A, Spicer J, Atthow C, Wilgen U, Robertson T, McWhinney A, Swenson R, Espley B, Snowdon B, McGill JJ, Summers KM. Molecular genetic analysis of candidate genes for glutaric aciduria type II in a cohort of patients from Queensland, Australia. Mol Genet Metab 2024; 142:108516. [PMID: 38941880 DOI: 10.1016/j.ymgme.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Glutaric aciduria type II (GAII) is a heterogeneous genetic disorder affecting mitochondrial fatty acid, amino acid and choline oxidation. Clinical manifestations vary across the lifespan and onset may occur at any time from the early neonatal period to advanced adulthood. Historically, some patients, in particular those with late onset disease, have experienced significant benefit from riboflavin supplementation. GAII has been considered an autosomal recessive condition caused by pathogenic variants in the gene encoding electron-transfer flavoprotein ubiquinone-oxidoreductase (ETFDH) or in the genes encoding electron-transfer flavoprotein subunits A and B (ETFA and ETFB respectively). Variants in genes involved in riboflavin metabolism have also been reported. However, in some patients, molecular analysis has failed to reveal diagnostic molecular results. In this study, we report the outcome of molecular analysis in 28 Australian patients across the lifespan, 10 paediatric and 18 adult, who had a diagnosis of glutaric aciduria type II based on both clinical and biochemical parameters. Whole genome sequencing was performed on 26 of the patients and two neonatal onset patients had targeted sequencing of candidate genes. The two patients who had targeted sequencing had biallelic pathogenic variants (in ETFA and ETFDH). None of the 26 patients whose whole genome was sequenced had biallelic variants in any of the primary candidate genes. Interestingly, nine of these patients (34.6%) had a monoallelic pathogenic or likely pathogenic variant in a single primary candidate gene and one patient (3.9%) had a monoallelic pathogenic or likely pathogenic variant in two separate genes within the same pathway. The frequencies of the damaging variants within ETFDH and FAD transporter gene SLC25A32 were significantly higher than expected when compared to the corresponding allele frequencies in the general population. The remaining 16 patients (61.5%) had no pathogenic or likely pathogenic variants in the candidate genes. Ten (56%) of the 18 adult patients were taking the selective serotonin reuptake inhibitor antidepressant sertraline, which has been shown to produce a GAII phenotype, and another two adults (11%) were taking a serotonin-norepinephrine reuptake inhibitor antidepressant, venlafaxine or duloxetine, which have a mechanism of action overlapping that of sertraline. Riboflavin deficiency can also mimic both the clinical and biochemical phenotype of GAII. Several patients on these antidepressants showed an initial response to riboflavin but then that response waned. These results suggest that the GAII phenotype can result from a complex interaction between monoallelic variants and the cellular environment. Whole genome or targeted gene panel analysis may not provide a clear molecular diagnosis.
Collapse
Affiliation(s)
- Kalliope Demetriou
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Janelle Nisbet
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - David Coman
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; Wesley Medical Centre, Auchenflower, QLD 4066, Australia; University of Queensland, St Lucia, QLD 4072, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Liza Phillips
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Sally Smith
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Michelle Lipke
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Anita Inwood
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; University of Queensland, St Lucia, QLD 4072, Australia
| | - Janette Spicer
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Catherine Atthow
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Urs Wilgen
- University of Queensland, St Lucia, QLD 4072, Australia; Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Thomas Robertson
- University of Queensland, St Lucia, QLD 4072, Australia; Anatomical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Avis McWhinney
- Chemical Pathology, Mater Pathology, Mater Hospital, Mater Hospital Brisbane, QLD 4101, Australia
| | - Rebecca Swenson
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Brayden Espley
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Brianna Snowdon
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - James J McGill
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia; Chemical Pathology, Mater Pathology, Mater Hospital, Mater Hospital Brisbane, QLD 4101, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
6
|
Aragão MÂ, Pires L, Santos-Buelga C, Barros L, Calhelha RC. Revitalising Riboflavin: Unveiling Its Timeless Significance in Human Physiology and Health. Foods 2024; 13:2255. [PMID: 39063339 PMCID: PMC11276209 DOI: 10.3390/foods13142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Since the early twentieth century, research on vitamins has revealed their therapeutic potential beyond their role as essential micronutrients. Riboflavin, known as vitamin B2, stands out for its unique characteristics. Despite numerous studies, riboflavin remains vital, with implications for human health. Abundantly present in various foods, riboflavin acts as a coenzyme in numerous enzymatic reactions crucial for human metabolism. Its role in energy production, erythrocyte synthesis, and vitamin metabolism underscores its importance in maintaining homeostasis. The impact of riboflavin extends to neurological function, skin health, and cardiovascular well-being, with adequate levels linked to reduced risks of various ailments. However, inadequate intake or physiological stress can lead to deficiency, a condition that poses serious health risks, including severe complications. This underscores the importance of maintaining sufficient levels of riboflavin for general wellness. The essential role of riboflavin in immune function further emphasises its significance for human health and vitality. This paper examines the diverse effects of riboflavin on health and stresses the importance of maintaining sufficient levels for overall well-being.
Collapse
Affiliation(s)
- M. Ângela Aragão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
7
|
Seyedtaghia MR, Jafarzadeh‐Esfehani R, Hosseini S, Kobravi S, Hakkaki M, Nilipour Y. A compound heterozygote case of glutaric aciduria type II in a patient carrying a novel candidate variant in ETFDH gene: A case report and literature review on compound heterozygote cases. Mol Genet Genomic Med 2024; 12:e2489. [PMID: 38967380 PMCID: PMC11225075 DOI: 10.1002/mgg3.2489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Glutaric aciduria type II (GA2) is a rare genetic disorder inherited in an autosomal recessive manner. Double dosage mutations in GA2 corresponding genes, ETFDH, ETFA, and ETFB, lead to defects in the catabolism of fatty acids, and amino acids lead to broad-spectrum phenotypes, including muscle weakness, developmental delay, and seizures. product of these three genes have crucial role in transferring electrons to the electron transport chain (ETC), but are not directly involve in ETC complexes. METHODS Here, by using exome sequencing, the cause of periodic cryptic gastrointestinal complications in a 19-year-old girl was resolved after years of diagnostic odyssey. Protein modeling for the novel variant served as another line of validation for it. RESULTS Exome Sequencing (ES) identified two variants in ETFDH: ETFDH:c.926T>G and ETFDH:c.1141G>C. These variants are likely contributing to the crisis in this case. To the best of our knowledge at the time of writing this manuscript, variant ETFDH:c.926T>G is reported here for the first time. Clinical manifestations of the case and pathological analysis are in consistent with molecular findings. Protein modeling provided another line of evidence proving the pathogenicity of the novel variant. ETFDH:c.926T>G is reported here for the first time in relation to the causation GA2. CONCLUSION Given the milder symptoms in this case, a review of GA2 cases caused by compound heterozygous mutations was conducted, highlighting the range of symptoms observed in these patients, from mild fatigue to more severe outcomes. The results underscore the importance of comprehensive genetic analysis in elucidating the spectrum of clinical presentations in GA2 and guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Mohammad Reza Seyedtaghia
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
| | - Reza Jafarzadeh‐Esfehani
- Blood Borne Infection Research Center, Academic Center for EducationCulcture and Research (ACECR)‐ Khorasan RazaviMashhadIran
| | - Seyedmojtaba Hosseini
- Medical Genetics Research Center, Student Research Committee, Department of Medical Genetics, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Medical Laboratory Sciences, 22 Bahman HospitalNeyshabur University of Medical SciencesNeyshaburIran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of DentistryTehran Azad UniversityTehranIran
| | - Mahdis Hakkaki
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for children's HealthShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Schee JP, Tan JS, Tan CY, Shahrizaila N, Wong KT, Goh KJ. Multiple Acyl-CoA Dehydrogenase Deficiency: Phenotypic and Genetic Features of a Malaysian Cohort. J Clin Neurol 2024; 20:422-430. [PMID: 38951975 PMCID: PMC11220347 DOI: 10.3988/jcn.2023.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Multiple acyl-CoA dehydrogenase deficiency (MADD) is an inherited disorder of fatty acid oxidation that causes lipid storage myopathy (LSM). This is the first report on MADD that describes the phenotypic and genetic features of a Malaysian cohort. METHODS Among the >2,500 patients in a local muscle biopsy database, patients with LSM were identified and their genomic DNA were extracted from muscle samples and peripheral blood. All 13 exons of the electron-transfer flavoprotein dehydrogenase gene (ETFDH) were subsequently sequenced. Fifty controls were included to determine the prevalence of identified mutations in the normal population. RESULTS Fourteen (82%) of the 17 LSM patients had MADD with ETFDH mutations. Twelve (86%) were Chinese and two were Malay sisters. Other unrelated patients reported that they had no relevant family history. Nine (64%) were females. The median age at onset was 18.5 years (interquartile range=16-37 years). All 14 demonstrated proximal limb weakness, elevated serum creatine kinase levels, and myopathic changes in electromyography. Three patients experienced a metabolic crisis at their presentation. Sanger sequencing of ETFDH revealed nine different variants/mutations, one of which was novel: c.998A>G (p.Y333C) in exon 9. Notably, 12 (86%) patients, including the 2 Malay sisters, carried a common c.250G>A (p.A84T) variant, consistent with the hotspot mutation reported in southern China. All of the patients responded well to riboflavin therapy. CONCLUSIONS Most of our Malaysian cohort with LSM had late-onset, riboflavin-responsive MADD with ETFDH mutations, and they demonstrated phenotypic and genetic features similar to those of cases reported in southern China. Furthermore, we report a novel ETFDH mutation and possibly the first ever MADD patients of Malay descent.
Collapse
Affiliation(s)
- Jie Ping Schee
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Joo San Tan
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cheng Yin Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nortina Shahrizaila
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Khean Jin Goh
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Wen B, Tang R, Tang S, Sun Y, Xu J, Zhao D, Wang T, Yan C. A comparative study on riboflavin responsive multiple acyl-CoA dehydrogenation deficiency due to variants in FLAD1 and ETFDH gene. J Hum Genet 2024; 69:125-131. [PMID: 38228875 DOI: 10.1038/s10038-023-01216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Lipid storage myopathy (LSM) is a heterogeneous group of lipid metabolism disorders predominantly affecting skeletal muscle by triglyceride accumulation in muscle fibers. Riboflavin therapy has been shown to ameliorate symptoms in some LSM patients who are essentially concerned with multiple acyl-CoA dehydrogenation deficiency (MADD). It is proved that riboflavin responsive LSM caused by MADD is mainly due to ETFDH gene variant (ETFDH-RRMADD). We described here a case with riboflavin responsive LSM and MADD resulting from FLAD1 gene variants (c.1588 C > T p.Arg530Cys and c.1589 G > C p.Arg530Pro, FLAD1-RRMADD). And we compared our patient together with 9 FLAD1-RRMADD cases from literature to 106 ETFDH-RRMADD cases in our neuromuscular center on clinical history, laboratory investigations and pathological features. Furthermore, the transcriptomics study on FLAD1-RRMADD and ETFDH-RRMADD were carried out. On muscle pathology, both FLAD1-RRMADD and ETFDH-RRMADD were proved with lipid storage myopathy in which atypical ragged red fibers were more frequent in ETFDH-RRMADD, while fibers with faint COX staining were more common in FLAD1-RRMADD. Molecular study revealed that the expression of GDF15 gene in muscle and GDF15 protein in both serum and muscle was significantly increased in FLAD1-RRMADD and ETFDH-RRMADD groups. Our data revealed that FLAD1-RRMADD (p.Arg530) has similar clinical, biochemical, and fatty acid metabolism changes to ETFDH-RRMADD except for muscle pathological features.
Collapse
Affiliation(s)
- Bing Wen
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Runqi Tang
- Department of Pathology, Maternal and Child Health Hospital of Liaocheng, Liaocheng, 252000, Shandong, China
| | - Shuyao Tang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Yuan Sun
- Department of Neurology, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, Shandong, China
| | - Jingwen Xu
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Dandan Zhao
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Tan Wang
- Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
| | - Chuanzhu Yan
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
- Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Harding JN, Mohannak N, Georgieva Z, Cunniffe NG. Sensory neuropathy as a manifestation of multiple acyl-coenzyme A dehydrogenase deficiency. BMJ Case Rep 2024; 17:e259192. [PMID: 38490702 PMCID: PMC10946377 DOI: 10.1136/bcr-2023-259192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is a rare metabolic disorder which typically manifests with muscle weakness. However, despite late-onset MADD being treatable, it is often misdiagnosed, due in part to the heterogeneity of presentations. We report a case of late-onset MADD manifesting first as a sensory neuropathy before progressing to myopathic symptoms and acute metabolic decompensation. Early diagnostic workup with acylcarnitine profiling and organic acid analysis was critical in patient outcome; metabolic decompensation and myopathic symptoms were completely reversed with riboflavin supplementation and dietary modification, although sensory neuropathy persisted. Clinical consideration of MADD as part of the differential diagnosis of neuropathy with myopathy is crucial for a timely diagnosis and treatment of MADD.
Collapse
Affiliation(s)
| | - Nika Mohannak
- The University of Notre Dame Australia School of Medicine, Fremantle, Australia
| | - Zoya Georgieva
- University of Cambridge Department of Clinical Neurosciences, Cambridge, UK
| | | |
Collapse
|
11
|
Ikeda N, Wada Y, Izumi T, Munakata Y, Katagiri H, Kure S. Stealthy progression of type 2 diabetes mellitus due to impaired ketone production in an adult patient with multiple acyl-CoA dehydrogenase deficiency. Mol Genet Metab Rep 2024; 38:101061. [PMID: 38469101 PMCID: PMC10926221 DOI: 10.1016/j.ymgmr.2024.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 03/13/2024] Open
Abstract
Background Multiple acyl-CoA dehydrogenase deficiency (MADD) is an inherited metabolic disorder caused by biallelic pathogenic variants in genes related to the flavoprotein complex. Dysfunction of the complex leads to impaired fatty acid oxidation and ketone body production which can cause hypoketotic hypoglycemia with prolonged fasting. Patients with fatty acid oxidation disorders (FAODs) such as MADD are treated primarily with a dietary regimen consisting of high-carbohydrate foods and avoidance of prolonged fasting. However, information on the long-term sequelae associated with this diet have not been accumulated. In general, high-carbohydrate diets can induce diseases such as type 2 diabetes mellitus (T2DM), although few patients with both MADD and T2DM have been reported. Case We present the case of a 32-year-old man with MADD who was on a high-carbohydrate diet for >30 years and exhibited symptoms resembling diabetic ketoacidosis. He presented with polydipsia, polyuria, and weight loss with a decrease in body mass index from 31 to 25 kg/m2 over 2 months. Laboratory tests revealed a HbA1c level of 13.9%; however, the patient did not show metabolic acidosis but only mild ketosis. Discussion/conclusion This report emphasizes the potential association between long-term adherence to high-carbohydrate dietary therapy and T2DM development. Moreover, this case underscores the difficulty of detecting diabetic ketosis in patients with FAODs such as MADD due to their inability to produce ketone bodies. These findings warrant further research of the long-term complications associated with this diet as well as warning of the potential progression of diabetes in patients with FAODs such as MADD.
Collapse
Affiliation(s)
- Nodoka Ikeda
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
12
|
Ma J, Zhang H, Liang F, Li G, Pang X, Zhao R, Wang J, Chang X, Guo J, Zhang W. The male-to-female ratio in late-onset multiple acyl-CoA dehydrogenase deficiency: a systematic review and meta-analysis. Orphanet J Rare Dis 2024; 19:72. [PMID: 38365830 PMCID: PMC10873946 DOI: 10.1186/s13023-024-03072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/03/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common lipid storage myopathy. There are sex differences in fat metabolism and it is not known whether late-onset MADD affects men and women equally. METHODS In this systematic review and meta-analysis, the PubMed, Embase, Web of Science, CNKI, CBM, and Wanfang databases were searched until 01/08/2023. Studies reporting sex distribution in patients with late-onset MADD were included. Two authors independently screened studies for eligibility, extracted data, and assessed risk of bias. Pre-specified outcomes of interest were the male-to-female ratio (MFR) of patients with late-onset MADD, the differences of clinical characteristics between the sexes, and factors influencing the MFR. RESULTS Of 3379 identified studies, 34 met inclusion criteria, yielding a total of 609 late-onset MADD patients. The overall pooled percentage of males was 58% (95% CI, 54-63%) with low heterogeneity across studies (I2 = 2.99%; P = 0.42). The mean onset ages, diagnostic delay, serum creatine kinase (CK), and allelic frequencies of 3 hotspot variants in ETFDH gene were similar between male and female patients (P > 0.05). Meta-regressions revealed that ethnic group was associated with the MFR in late-onset MADD, and subgroup meta-analyses demonstrated that East-Asian patients had a higher percentage of male, lower CK, and higher proportion of hotspot variants in ETFDH gene than non-East-Asian patients (P < 0.05). CONCLUSIONS Male patients with late-onset MADD were more common than female patients. Ethnicity was proved to be a factor influencing the MFR in late-onset MADD. These findings suggest that male sex may be a risk factor for the disease.
Collapse
Affiliation(s)
- Jing Ma
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Huiqiu Zhang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Feng Liang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Guanxi Li
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xiaomin Pang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Rongjuan Zhao
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Juan Wang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Xueli Chang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Junhong Guo
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China.
| | - Wei Zhang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China.
| |
Collapse
|
13
|
Herrero Martín JC, Salegi Ansa B, Álvarez-Rivera G, Domínguez-Zorita S, Rodríguez-Pombo P, Pérez B, Calvo E, Paradela A, Miguez DG, Cifuentes A, Cuezva JM, Formentini L. An ETFDH-driven metabolon supports OXPHOS efficiency in skeletal muscle by regulating coenzyme Q homeostasis. Nat Metab 2024; 6:209-225. [PMID: 38243131 PMCID: PMC10896730 DOI: 10.1038/s42255-023-00956-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Coenzyme Q (Q) is a key lipid electron transporter, but several aspects of its biosynthesis and redox homeostasis remain undefined. Various flavoproteins reduce ubiquinone (oxidized form of Q) to ubiquinol (QH2); however, in eukaryotes, only oxidative phosphorylation (OXPHOS) complex III (CIII) oxidizes QH2 to Q. The mechanism of action of CIII is still debated. Herein, we show that the Q reductase electron-transfer flavoprotein dehydrogenase (ETFDH) is essential for CIII activity in skeletal muscle. We identify a complex (comprising ETFDH, CIII and the Q-biosynthesis regulator COQ2) that directs electrons from lipid substrates to the respiratory chain, thereby reducing electron leaks and reactive oxygen species production. This metabolon maintains total Q levels, minimizes QH2-reductive stress and improves OXPHOS efficiency. Muscle-specific Etfdh-/- mice develop myopathy due to CIII dysfunction, indicating that ETFDH is a required OXPHOS component and a potential therapeutic target for mitochondrial redox medicine.
Collapse
Affiliation(s)
- Juan Cruz Herrero Martín
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Beñat Salegi Ansa
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Gerardo Álvarez-Rivera
- Laboratorio Foodomics, Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Pilar Rodríguez-Pombo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigación Universitaria La Paz (IDIPAZ), Madrid, Spain
| | - Belén Pérez
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigación Universitaria La Paz (IDIPAZ), Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Alberto Paradela
- Proteomics Unit, Centro Nacional de Biotecnología (CNB)-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David G Miguez
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Departamento de Física de la Materia Condensada, IFIMAC, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alejandro Cifuentes
- Laboratorio Foodomics, Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Laura Formentini
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO, UAM-CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.
- Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
14
|
Bisschoff M, Smuts I, Dercksen M, Schoonen M, Vorster BC, van der Watt G, Spencer C, Naidu K, Henning F, Meldau S, McFarland R, Taylor RW, Patel K, Fassad MR, Vandrovcova J, Wanders RJA, van der Westhuizen FH. Clinical, biochemical, and genetic spectrum of MADD in a South African cohort: an ICGNMD study. Orphanet J Rare Dis 2024; 19:15. [PMID: 38221620 PMCID: PMC10789041 DOI: 10.1186/s13023-023-03014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder resulting from pathogenic variants in three distinct genes, with most of the variants occurring in the electron transfer flavoprotein-ubiquinone oxidoreductase gene (ETFDH). Recent evidence of potential founder variants for MADD in the South African (SA) population, initiated this extensive investigation. As part of the International Centre for Genomic Medicine in Neuromuscular Diseases study, we recruited a cohort of patients diagnosed with MADD from academic medical centres across SA over a three-year period. The aim was to extensively profile the clinical, biochemical, and genomic characteristics of MADD in this understudied population. METHODS Clinical evaluations and whole exome sequencing were conducted on each patient. Metabolic profiling was performed before and after treatment, where possible. The recessive inheritance and phase of the variants were established via segregation analyses using Sanger sequencing. Lastly, the haplotype and allele frequencies were determined for the two main variants in the four largest SA populations. RESULTS Twelve unrelated families (ten of White SA and two of mixed ethnicity) with clinically heterogeneous presentations in 14 affected individuals were observed, and five pathogenic ETFDH variants were identified. Based on disease severity and treatment response, three distinct groups emerged. The most severe and fatal presentations were associated with the homozygous c.[1067G > A];c.[1067G > A] and compound heterozygous c.[976G > C];c.[1067G > A] genotypes, causing MADD types I and I/II, respectively. These, along with three less severe compound heterozygous genotypes (c.[1067G > A];c.[1448C > T], c.[740G > T];c.[1448C > T], and c.[287dupA*];c.[1448C > T]), resulting in MADD types II/III, presented before the age of five years, depending on the time and maintenance of intervention. By contrast, the homozygous c.[1448C > T];c.[1448C > T] genotype, which causes MADD type III, presented later in life. Except for the type I, I/II and II cases, urinary metabolic markers for MADD improved/normalised following treatment with riboflavin and L-carnitine. Furthermore, genetic analyses of the most frequent variants (c.[1067G > A] and c.[1448C > T]) revealed a shared haplotype in the region of ETFDH, with SA population-specific allele frequencies of < 0.00067-0.00084%. CONCLUSIONS This study reveals the first extensive genotype-phenotype profile of a MADD patient cohort from the diverse and understudied SA population. The pathogenic variants and associated variable phenotypes were characterised, which will enable early screening, genetic counselling, and patient-specific treatment of MADD in this population.
Collapse
Affiliation(s)
- Michelle Bisschoff
- Focus area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Marli Dercksen
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Maryke Schoonen
- Focus area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Barend C Vorster
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - George van der Watt
- Division of Chemical Pathology, National Health Laboratory Services, University of Cape Town, Cape Town, South Africa
| | - Careni Spencer
- Division of Human Genetics, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Kireshnee Naidu
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Franclo Henning
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Surita Meldau
- Division of Chemical Pathology, National Health Laboratory Services, University of Cape Town, Cape Town, South Africa
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Krutik Patel
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mahmoud R Fassad
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jana Vandrovcova
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
15
|
Schirinzi E, Ricci G, Torri F, Mancuso M, Siciliano G. Biomolecules of Muscle Fatigue in Metabolic Myopathies. Biomolecules 2023; 14:50. [PMID: 38254650 PMCID: PMC10812926 DOI: 10.3390/biom14010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic myopathies are a group of genetic disorders that affect the normal functioning of muscles due to abnormalities in metabolic pathways. These conditions result in impaired energy production and utilization within muscle cells, leading to limitations in muscle function with concomitant occurrence of related signs and symptoms, among which fatigue is one of the most frequently reported. Understanding the underlying molecular mechanisms of muscle fatigue in these conditions is challenging for the development of an effective diagnostic and prognostic approach to test targeted therapeutic interventions. This paper outlines the key biomolecules involved in muscle fatigue in metabolic myopathies, including energy substrates, enzymes, ion channels, and signaling molecules. Potential future research directions in this field are also discussed.
Collapse
|
16
|
Missaglia S. New perspectives in late-onset multiple acyl-CoA dehydrogenase deficiency: Clinical and genetic findings. J Neurol Sci 2023; 455:122809. [PMID: 38040566 DOI: 10.1016/j.jns.2023.122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Affiliation(s)
- Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, Milan, Italy; Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy.
| |
Collapse
|
17
|
Maier EM, Mütze U, Janzen N, Steuerwald U, Nennstiel U, Odenwald B, Schuhmann E, Lotz-Havla AS, Weiss KJ, Hammersen J, Weigel C, Thimm E, Grünert SC, Hennermann JB, Freisinger P, Krämer J, Das AM, Illsinger S, Gramer G, Fang-Hoffmann J, Garbade SF, Okun JG, Hoffmann GF, Kölker S, Röschinger W. Collaborative evaluation study on 18 candidate diseases for newborn screening in 1.77 million samples. J Inherit Metab Dis 2023; 46:1043-1062. [PMID: 37603033 DOI: 10.1002/jimd.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Analytical and therapeutic innovations led to a continuous but variable extension of newborn screening (NBS) programmes worldwide. Every extension requires a careful evaluation of feasibility, diagnostic (process) quality and possible health benefits to balance benefits and limitations. The aim of this study was to evaluate the suitability of 18 candidate diseases for inclusion in NBS programmes. Utilising tandem mass spectrometry as well as establishing specific diagnostic pathways with second-tier analyses, three German NBS centres designed and conducted an evaluation study for 18 candidate diseases, all of them inherited metabolic diseases. In total, 1 777 264 NBS samples were analysed. Overall, 441 positive NBS results were reported resulting in 68 confirmed diagnoses, 373 false-positive cases and an estimated cumulative prevalence of approximately 1 in 26 000 newborns. The positive predictive value ranged from 0.07 (carnitine transporter defect) to 0.67 (HMG-CoA lyase deficiency). Three individuals were missed and 14 individuals (21%) developed symptoms before the positive NBS results were reported. The majority of tested candidate diseases were found to be suitable for inclusion in NBS programmes, while multiple acyl-CoA dehydrogenase deficiency, isolated methylmalonic acidurias, propionic acidemia and malonyl-CoA decarboxylase deficiency showed some and carnitine transporter defect significant limitations. Evaluation studies are an important tool to assess the potential benefits and limitations of expanding NBS programmes to new diseases.
Collapse
Affiliation(s)
- Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Ulrike Mütze
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Nils Janzen
- Screening-Labor Hanover, Hanover, Germany
- Department of Clinical Chemistry, Hanover Medical School, Hanover, Germany
- Division of Laboratory Medicine, Centre for Children and Adolescents, Kinder- und Jugendkrankenhaus Auf der Bult, Hanover, Germany
| | | | - Uta Nennstiel
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Birgit Odenwald
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | | | - Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Katharina J Weiss
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Johanna Hammersen
- Department of Pediatrics, Division of Inborn Errors of Metabolism, University Hospital Erlangen, Erlangen, Germany
| | - Corina Weigel
- Department of Pediatrics, Division of Inborn Errors of Metabolism, University Hospital Erlangen, Erlangen, Germany
| | - Eva Thimm
- Department of General Pediatrics, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Julia B Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, Mainz University Medical Center, Mainz, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg, Reutlingen, Germany
| | - Johannes Krämer
- Department of Pediatric and Adolescent Medicine, Ulm University Medical School, Ulm, Germany
| | - Anibh M Das
- Hanover Medical School, Clinic for Pediatric Kidney-Liver- and Metabolic Diseases, Hanover, Germany
| | - Sabine Illsinger
- Hanover Medical School, Clinic for Pediatric Kidney-Liver- and Metabolic Diseases, Hanover, Germany
| | - Gwendolyn Gramer
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- University Medical Center Hamburg-Eppendorf, University Children's Hospital, Hamburg, Germany
| | - Junmin Fang-Hoffmann
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen G Okun
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Wulf Röschinger
- Laboratory Becker MVZ GbR, Newborn Screening Unit, Munich, Germany
| |
Collapse
|
18
|
Murgia C, Dehlia A, Guthridge MA. New insights into the nutritional genomics of adult-onset riboflavin-responsive diseases. Nutr Metab (Lond) 2023; 20:42. [PMID: 37845732 PMCID: PMC10580530 DOI: 10.1186/s12986-023-00764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Riboflavin, or vitamin B2, is an essential nutrient that serves as a precursor to flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). The binding of the FAD and/or FMN cofactors to flavoproteins is critical for regulating their assembly and activity. There are over 90 proteins in the human flavoproteome that regulate a diverse array of biochemical pathways including mitochondrial metabolism, riboflavin transport, ubiquinone and FAD synthesis, antioxidant signalling, one-carbon metabolism, nitric oxide signalling and peroxisome oxidative metabolism. The identification of patients with genetic variants in flavoprotein genes that lead to adult-onset pathologies remains a major diagnostic challenge. However, once identified, many patients with adult-onset inborn errors of metabolism demonstrate remarkable responses to riboflavin therapy. We review the structure:function relationships of mutant flavoproteins and propose new mechanistic insights into adult-onset riboflavin-responsive pathologies and metabolic dysregulations that apply to multiple biochemical pathways. We further address the vexing issue of how the inheritance of genetic variants in flavoprotein genes leads to an adult-onset disease with complex symptomologies and varying severities. We also propose a broad clinical framework that may not only improve the current diagnostic rates, but also facilitate a personalized approach to riboflavin therapy that is low cost, safe and lead to transformative outcomes in many patients.
Collapse
Affiliation(s)
- Chiara Murgia
- The School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, The University of Melbourne, Parkville, Australia.
| | - Ankush Dehlia
- School of Life and Environmental Sciences, Deakin University, Burwood, Australia
| | - Mark A Guthridge
- School of Life and Environmental Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
19
|
Keshri S, Goel AK, Johns J, Shah S. "Liver Failure in an Infant of Late-Onset Glutaric Aciduria Type II": Case Report. Indian J Clin Biochem 2023; 38:545-549. [PMID: 37746538 PMCID: PMC10516837 DOI: 10.1007/s12291-021-01007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
Glutaric aciduria type II, also known as Multiple acyl-CoA Dehydrogenase Deficiency, results from a defect in the mitochondrial electron transport chain resulting in an inability to break down fatty-acids and amino acids. There are three phenotypes- type 1 and 2 are of neonatal onset and severe form, with and without congenital anomalies, respectively, and presents with acidosis, severe hypotonia, cardiomyopathy, hepatomegaly, and non-ketotic hypoglycemia. Type 3 or late-onset Multiple acyl-CoA Dehydrogenase Deficiency usually presents in the adolescent or adult age group with phenotype ranging from mild forms of myopathy and exercise intolerance to severe forms of acute metabolic decompensation on its chronic course. Type 3 Multiple acyl-CoA Dehydrogenase Deficiency rarely presents in infancy and in liver failure. We present a five-month-old developmentally normal female child with acute encephalopathy, hypotonia, non-ketotic hypoglycemia, metabolic acidosis, and liver failure, with a history of sibling death of suspected inborn error of metabolism. The blood acyl-carnitine levels in Tandem Mass Spectrometry and urinary organic acid analysis through Gas Chromatography-Mass Spectrometry were unremarkable. The patient initially responded to riboflavin, CoQ, and supportive management but ultimately succumbed to sepsis with shock and multi-organ dysfunction. The clinical exome sequencing reported a homozygous missense variation in exon 11 of the ETFDH gene (chr4:g.158706270C > T) that resulted in the amino acid substitution of Leucine for Proline at codon 456 (p.Pro456Leu) suggestive of Glutaric aciduria type IIc (OMIM#231,680).
Collapse
Affiliation(s)
- Swasti Keshri
- Department of Pediatrics & Pediatric Emergency, All India Institute of Medical Sciences, Raipur, Chhattisgarh 492099 India
| | - Anil Kumar Goel
- Department of Pediatrics & Pediatric Emergency, All India Institute of Medical Sciences, Raipur, Chhattisgarh 492099 India
| | - Juliet Johns
- Department of Pediatrics & Pediatric Emergency, All India Institute of Medical Sciences, Raipur, Chhattisgarh 492099 India
| | - Seema Shah
- Department of Biochemistry, All India Institute of Medical Sciences, Tatibandh, Raipur, Chhattisgarh 492099 India
| |
Collapse
|
20
|
Liu J, Wu C, Gao F, Yan Q. A rare condition that mimic myopathy: Late-onset glutaric acidaemia type II. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:173-175. [PMID: 37781680 PMCID: PMC10538596 DOI: 10.2478/rir-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/15/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Jianwen Liu
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian province, China
| | - Chenmin Wu
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian province, China
| | - Fei Gao
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian province, China
| | - Qing Yan
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian province, China
| |
Collapse
|
21
|
Sharo AG, Zou Y, Adhikari AN, Brenner SE. ClinVar and HGMD genomic variant classification accuracy has improved over time, as measured by implied disease burden. Genome Med 2023; 15:51. [PMID: 37443081 PMCID: PMC10347827 DOI: 10.1186/s13073-023-01199-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Curated databases of genetic variants assist clinicians and researchers in interpreting genetic variation. Yet, these databases contain some misclassified variants. It is unclear whether variant misclassification is abating as these databases rapidly grow and implement new guidelines. METHODS Using archives of ClinVar and HGMD, we investigated how variant misclassification has changed over 6 years, across different ancestry groups. We considered inborn errors of metabolism (IEMs) screened in newborns as a model system because these disorders are often highly penetrant with neonatal phenotypes. We used samples from the 1000 Genomes Project (1KGP) to identify individuals with genotypes that were classified by the databases as pathogenic. Due to the rarity of IEMs, nearly all such classified pathogenic genotypes indicate likely variant misclassification in ClinVar or HGMD. RESULTS While the false-positive rates of both ClinVar and HGMD have improved over time, HGMD variants currently imply two orders of magnitude more affected individuals in 1KGP than ClinVar variants. We observed that African ancestry individuals have a significantly increased chance of being incorrectly indicated to be affected by a screened IEM when HGMD variants are used. However, this bias affecting genomes of African ancestry was no longer significant once common variants were removed in accordance with recent variant classification guidelines. We discovered that ClinVar variants classified as Pathogenic or Likely Pathogenic are reclassified sixfold more often than DM or DM? variants in HGMD, which has likely resulted in ClinVar's lower false-positive rate. CONCLUSIONS Considering misclassified variants that have since been reclassified reveals our increasing understanding of rare genetic variation. We found that variant classification guidelines and allele frequency databases comprising genetically diverse samples are important factors in reclassification. We also discovered that ClinVar variants common in European and South Asian individuals were more likely to be reclassified to a lower confidence category, perhaps due to an increased chance of these variants being classified by multiple submitters. We discuss features for variant classification databases that would support their continued improvement.
Collapse
Affiliation(s)
- Andrew G. Sharo
- Biophysics Graduate Group, University of California, Berkeley, CA 94720 USA
- Center for Computational Biology, University of California, Berkeley, CA 94720 USA
- Department of Ecology and Evolutionary Biology, University of California, 124 Biomed Building, 1156 High St., Santa Cruz, CA 95064 USA
| | - Yangyun Zou
- Center for Computational Biology, University of California, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California, 461 Koshland Hall, Berkeley, CA 94720 USA
- Currently at: Department of Clinical Research, Yikon Genomics Company, Ltd., Shanghai, China
| | - Aashish N. Adhikari
- Center for Computational Biology, University of California, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California, 461 Koshland Hall, Berkeley, CA 94720 USA
- Currently at: Illumina, Foster City, CA 94404 USA
| | - Steven E. Brenner
- Biophysics Graduate Group, University of California, Berkeley, CA 94720 USA
- Center for Computational Biology, University of California, Berkeley, CA 94720 USA
- Department of Plant and Microbial Biology, University of California, 461 Koshland Hall, Berkeley, CA 94720 USA
| |
Collapse
|
22
|
Grünert SC, Ziagaki A, Heinen A, Schumann A, Tucci S, Spiekerkoetter U, Schmidts M. Riboflavin 1 Transporter Deficiency: Novel SLC52A1 Variants and Expansion of the Phenotypic Spectrum. Genes (Basel) 2023; 14:1408. [PMID: 37510312 PMCID: PMC10378786 DOI: 10.3390/genes14071408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Riboflavin transporter 1 (RFVT1) deficiency is an ultrarare metabolic disorder due to autosomal dominant pathogenic variants in SLC52A1. The RFVT1 protein is mainly expressed in the placenta and intestine. To our knowledge, only five cases of RFVT1 deficiency from three families have been reported so far. While newborns and infants with SLC52A1 variants mainly showed a multiple acyl-CoA dehydrogenase deficiency-like presentation, individuals identified in adulthood were usually clinically asymptomatic. We report two patients with novel heterozygous SLC52A1 variants. Patient 1 presented at the age of 62 with mild hyperammonemia following gastroenteritis. An acylcarnitine analysis in dried blood spots was abnormal with a multiple acyl-CoA dehydrogenase deficiency-like pattern, and genetic analysis confirmed a heterozygous SLC52A1 variant, c.68C > A, p. Ser23Tyr. Patient 2 presented with recurrent seizures and hypsarrhythmia at the age of 7 months. Metabolic investigations yielded unremarkable results. However, whole exome sequencing revealed a heterozygous start loss variant, c.3G > A, p. Met1Ile in SLC52A1. These two cases expand the clinical spectrum of riboflavin transporter 1 deficiency and demonstrate that symptomatic presentation in adulthood is possible.
Collapse
Affiliation(s)
- Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.S.); (S.T.); (U.S.); (M.S.)
| | - Athanasia Ziagaki
- Medizinische Klinik für Endokrinologie und Stoffwechselmedizin, Campus Virchow, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - André Heinen
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Anke Schumann
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.S.); (S.T.); (U.S.); (M.S.)
| | - Sara Tucci
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.S.); (S.T.); (U.S.); (M.S.)
- Pharmacy, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.S.); (S.T.); (U.S.); (M.S.)
| | - Miriam Schmidts
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.S.); (S.T.); (U.S.); (M.S.)
- CIBSS—Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
23
|
Wang X, Fang H. Clinical and Gene Analysis of Fatty Acid Oxidation Disorders Found in Neonatal Tandem Mass Spectrometry Screening. Pharmgenomics Pers Med 2023; 16:577-587. [PMID: 37305019 PMCID: PMC10254624 DOI: 10.2147/pgpm.s402760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Objective To investigate the clinical and gene mutation characteristics of fatty acid oxidative metabolic diseases found in neonatal screening. Methods A retrospective analysis was performed on 29,948 neonatal blood tandem mass spectrometry screening samples from January 2018 to December 2021 in our neonatal screening centre. For screening positive, recall review is still suspected of fatty acid oxidation metabolic disorders in children as soon as possible to improve the genetic metabolic disease-related gene detection package to confirm the diagnosis. All diagnosed children were followed up to the deadline. Results Among 29,948 neonates screened by tandem mass spectrometry, 14 cases of primary carnitine deficiency, six cases of short-chain acyl coenzyme A dehydrogenase deficiency, two cases of carnitine palmitoyltransferase-I deficiency and one case of multiple acyl coenzyme A dehydrogenase deficiency were recalled. Except for two cases of multiple acyl coenzyme A dehydrogenase deficiency that exhibited [manifestations], the other 21 cases were diagnosed pre-symptomatically. Eight mutations of SLC22A5 gene were detected, including c.51C>G, c.403G>A, c.506G>A, c.1400C>G, c.1085C>T, c.706C>T, c.1540G>C and c.338G>A. Compound heterozygous mutation of CPT1A gene c.2201T>C, c.1318G>A, c.2246G>A, c.2125G>A and ETFA gene c.365G>A and c.699_701delGTT were detected, and new mutation sites were found. Conclusion Neonatal tandem mass spectrometry screening is an effective method for identifying fatty acid oxidative metabolic diseases, but it should be combined with urine gas chromatography-mass spectrometry and gene sequencing technology. Our findings enrich the gene mutation profile of fatty acid oxidative metabolic disease and provide evidence for genetic counselling and prenatal diagnosis in families.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, People’s Republic of China
| | - Haining Fang
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, People’s Republic of China
| |
Collapse
|
24
|
Baonza G, Stanescu S, Belanger-Quintana A, Martínez-Pardo M, Arrieta F. Successful pregnancy in a patient with multiple acyl-CoA dehydrogenase deficiency. ENDOCRINOL DIAB NUTR 2023; 70 Suppl 2:64-65. [PMID: 37268358 DOI: 10.1016/j.endien.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/21/2022] [Indexed: 06/04/2023]
Affiliation(s)
- Gonzalo Baonza
- Servicio Endocrinología y Nutrición, Unidad de Errores Congénitos del Metabolismo (CSUR y MetabERN), Hospital Universitario Ramon y Cajal, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain
| | - Sinziana Stanescu
- Servicio Pediatría, Unidad de Errores Congénitos del Metabolismo (CSUR y MetabERN), Hospital Universitario Ramon y Cajal, CIBER-ER, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain
| | - Amaya Belanger-Quintana
- Servicio Pediatría, Unidad de Errores Congénitos del Metabolismo (CSUR y MetabERN), Hospital Universitario Ramon y Cajal, CIBER-ER, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain
| | - Mercedes Martínez-Pardo
- Servicio Pediatría, Unidad de Errores Congénitos del Metabolismo (CSUR y MetabERN), Hospital Universitario Ramon y Cajal, CIBER-ER, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain
| | - Francisco Arrieta
- Servicio Endocrinología y Nutrición, Unidad de Errores Congénitos del Metabolismo (CSUR y MetabERN), Hospital Universitario Ramon y Cajal, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Spain.
| |
Collapse
|
25
|
Rao NN, Burns K, Manolikos C, Hodge S. Late-onset multiple acyl-CoA dehydrogenase deficiency: an insidious presentation. BMJ Case Rep 2023; 16:e252668. [PMID: 37217231 PMCID: PMC10230867 DOI: 10.1136/bcr-2022-252668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare inborn error of metabolism that results in impairment of mitochondrial β-oxidation of fatty acids. It is inherited in an autosomal recessive manner and impairs electron transfer in the electron transport chain. The clinical manifestations of MADD are highly variable and include exercise intolerance, myopathy, cardiomyopathy, encephalopathy, coma and death. Early-onset MADD is often associated with a high mortality with significant number of patients presenting with severe metabolic acidosis, non-ketotic hypoglycaemia and/or hyperammonaemic presentations. While late-onset MADD is suggested to have a lower mortality, the severe encephalopathic presentations may well be under-reported as a diagnosis of MADD may not be considered.MADD is treatable with riboflavin and appropriate nutrition with a focus on prevention and early management of metabolic decompensation. The neonatal phenotype differs significantly from late-onset MADD, where diagnosis may be delayed due to heterogeneity in clinical features, atypical presentation and confounding comorbidities, together with lower awareness among physicians.This report describes a woman in her 30s who presented with acute-onset ataxia, confusion and hyperammonaemic encephalopathy requiring intubation. Subsequent biochemical investigation revealed a diagnosis of MADD. At present, there are no national guidelines in Australia for the management of MADD. This case highlights the investigation and treatment of late-onset MADD.
Collapse
Affiliation(s)
- Naini Nishita Rao
- Department of Endocrinology and Diabetes, Royal Perth Hospital, Perth, Western Australia, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Kharis Burns
- Department of Endocrinology and Diabetes, Royal Perth Hospital, Perth, Western Australia, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Catherine Manolikos
- Department of Endocrinology and Diabetes, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Dietetics and Nutrition, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Samantha Hodge
- Department of Endocrinology and Diabetes, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Dietetics and Nutrition, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
26
|
Nana Sede Mbakop R, Forlemu AN, Manatsathit W. Multiple Acyl-CoA Dehydrogenase Deficiency: A Rare Cause of Hepatomegaly. ACG Case Rep J 2023; 10:e01036. [PMID: 37168503 PMCID: PMC10166334 DOI: 10.14309/crj.0000000000001036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/27/2023] [Indexed: 05/13/2023] Open
Abstract
Multiple Acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder that can manifest with hepatic and muscular dysfunction. MADD can be fatal in neonates; however, late-onset MADD has a milder course and often becomes symptomatic during adulthood. A 20-year-old patient presented to the hepatology clinic with elevated liver enzymes and hepatomegaly. Several investigations including a liver biopsy were unremarkable. Subsequently, the patient developed rhabdomyolysis and nonketotic hypoglycemia raising suspicion for mitochondrial disorders. Plasma acylcarnitine levels performed showed elevated C4-C18:2 consistent with MADD. Although the patient denied a complete genetic evaluation, the patient had complete resolution of symptoms after riboflavin and diet modification.
Collapse
Affiliation(s)
- Raissa Nana Sede Mbakop
- Division of Gastroenterology, Department of Internal Medicine, Piedmont Athens Regional, Athens, GA
| | - Arnold Nongmoh Forlemu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Omaha, NE
| | - Wuttiporn Manatsathit
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Omaha, NE
| |
Collapse
|
27
|
Aboltaman R, Kiamehr Z, Cheraghi A, Malekfar R. Application of sensitive SERS plasmonic biosensor for high detection of metabolic disorders. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122204. [PMID: 36563438 DOI: 10.1016/j.saa.2022.122204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Due to the importance of early detection of metabolic diseases in newborns, it is essential to measure organoacids; L-Tryptophan, Sebacic acid, and Glutaric acid in very low concentrations. Therefore, the necessity of the construction of a powerful nondestructive biosensor just like the surface-enhanced Raman scattering (SERS) sensor is demonstrated. Through the growth of silver dendritic nanostructures on different substrates like aluminum (Al), copper (Cu), indium tin oxide (ITO), and silicon (Si), a new SERS-based biosensor was developed. Because the Raman signal of molecules adsorbed on dendritic nanostructures is significantly increased, SERS biosensors based on these nanostructures can be used to detect very low concentrations of materials. In this study, first, the organoacid L-Lysine was detected up to a concentration of 10-12 M, by using a biosensor based on Al, Cu, ITO, and Si substrates. Then, by comparing the results obtained from different substrates, the silicon substrate as the most successful substrate with the best results was used in the SERS biosensor to detect the organoacids, L-Tryptophan, Sebacic acid, and Glutaric acid up to a concentration of 10-12 M. SEM imaging was used to characterize silver dendritic nanostructures on solid substrates. The successful performance of the SERS biosensor based on silver dendrites in this study promises to be effective in diagnostic applications such as cancer diagnosis (the limit of single molecular detection).
Collapse
Affiliation(s)
- R Aboltaman
- Department of Physics, Faculty of Sciences, Arak University, Arak, Iran.
| | - Z Kiamehr
- Basic Sciences Group, Department of Marines Sciences, Chabahar Maritime University, Chabahar, Iran.
| | - A Cheraghi
- Faculty of Basic Sciences, Shahid Sattari University, Tehran, Iran.
| | - R Malekfar
- Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-175, Iran.
| |
Collapse
|
28
|
Prasun P, Evans A, Cork E, Houten SM, Webb BD. A novel deleterious ETFA promoter variant causative of multiple acyl-CoA dehydrogenase deficiency. Am J Med Genet A 2023; 191:1089-1093. [PMID: 36579410 DOI: 10.1002/ajmg.a.63104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/30/2022]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid, amino acid, and choline metabolism. We describe a patient identified through newborn screening in which the diagnosis of MADD was confirmed based on metabolic profiling, but clinical molecular sequencing of ETFA, ETFB, and ETFDH was normal. In order to identify the genetic etiology of MADD, we performed whole genome sequencing and identified a novel homozygous promoter variant in ETFA (c.-85G > A). Subsequent studies showed decreased ETFA protein expression in lymphoblasts. A promoter luciferase assay confirmed decreased activity of the mutant promoter. In both assays, the variant displayed considerable residual activity, therefore we speculate that our patient may have a late onset form of MADD (Type III). Our findings may be helpful in establishing a molecular diagnosis in other MADD patients with a characteristic biochemical profile but apparently normal molecular studies.
Collapse
Affiliation(s)
- Pankaj Prasun
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anthony Evans
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emalyn Cork
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sander M Houten
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bryn D Webb
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Genetics and Metabolism, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
29
|
Zhu S, Ding D, Jiang J, Liu M, Yu L, Fang Q. Case report: Novel ETFDH compound heterozygous mutations identified in a patient with late-onset glutaric aciduria type II. Front Neurol 2023; 14:1087421. [PMID: 36779069 PMCID: PMC9911658 DOI: 10.3389/fneur.2023.1087421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Glutaric aciduria type II (GA II) is an autosomal recessive metabolic disorder of fatty acid, amino acid, and choline metabolism. The late-onset form of this disorder is caused by a defect in the mitochondrial electron transfer flavoprotein dehydrogenase or the electron transfer flavoprotein dehydrogenase (ETFDH) gene. Thus far, the high clinical heterogeneity of late-onset GA II has brought a great challenge for its diagnosis. In this study, we reported a 21-year-old Chinese man with muscle weakness, vomiting, and severe pain. Muscle biopsy revealed myopathological patterns of lipid storage myopathy, and urine organic acid analyses showed a slight increase in glycolic acid. All the aforementioned results were consistent with GA II. Whole-exome sequencing (WES), followed by bioinformatics and structural analyses, revealed two compound heterozygous missense mutations: c.1034A > G (p.H345R) on exon 9 and c.1448C>A (p.P483Q) on exon 11, which were classified as "likely pathogenic" according to American College of Medical Genetics and Genomics (ACMG). In conclusion, this study described the phenotype and genotype of a patient with late-onset GA II. The two novel mutations in ETFDH were found in this case, which further expands the list of mutations found in patients with GA II. Because of the treatability of this disease, GA II should be considered in all patients with muscular symptoms and acute metabolism decompensation such as hypoglycemia and acidosis.
Collapse
Affiliation(s)
- Sijia Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongxue Ding
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianhua Jiang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meirong Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liqiang Yu
- Department of General Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China,*Correspondence: Liqiang Yu ✉
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China,Qi Fang ✉
| |
Collapse
|
30
|
Incorporating second-tier genetic screening for multiple acyl-CoA dehydrogenase deficiency. Clin Chim Acta 2022; 537:181-187. [DOI: 10.1016/j.cca.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
|
31
|
Multiple Acyl-Coenzyme A Dehydrogenase Deficiency Leading to Severe Metabolic Acidosis in a Young Adult. AACE Clin Case Rep 2022; 9:13-16. [PMID: 36654993 PMCID: PMC9837082 DOI: 10.1016/j.aace.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is a rare metabolic disorder affecting fatty acid oxidation. Incidence at birth is estimated at 1:250 000, but type III presents in adults. It is characterized by nonspecific symptoms but if undiagnosed may cause ketoacidosis and rhabdomyolysis. A review of 350 patients found less than one third presented with metabolic crises. Our objective is to describe an adult with weakness after carbohydrate restriction that developed a pulmonary embolism and ketoacidosis, and was diagnosed with MADD type III. Case Report A 27-year-old woman with obesity presented to the hospital with fatigue and weakness worsening over months causing falls and decreased intake. She presented earlier to clinic with milder symptoms starting months after initiating a low carbohydrate diet. Testing revealed mild hypothyroidism and she started Levothyroxine for presumed hypothyroid myopathy but progressed. Muscle biopsy suggested a lipid storage myopathy. Genetic testing revealed a mutation in the ETFDH (electron transfer flavoprotein dehydrogenase) gene likely pathogenic for MADD; however, before this was available she developed severe ketoacidosis and rhabdomyolysis. She empirically started a low-fat diet, carnitine, cyanocobalamin, and coenzyme Q10 supplementation with improvement. Over months her energy and strength normalized. Discussion MADD may cause ketoacidosis and rhabdomyolysis but this is rare in adults. Diagnosis requires clinical suspicion followed by biochemical and genetic testing. It should be considered when patients present with weakness or fasting intolerance. Treatment includes high carbohydrate, low-fat diets, supplementation, and avoiding fasting. Conclusion There should be greater awareness to consider MADD in adults presenting with neuromuscular symptoms, if untreated it may cause severe metabolic derangements.
Collapse
|
32
|
Lesner NP, Wang X, Chen Z, Frank A, Menezes CJ, House S, Shelton SD, Lemoff A, McFadden DG, Wansapura J, DeBerardinis RJ, Mishra P. Differential requirements for mitochondrial electron transport chain components in the adult murine liver. eLife 2022; 11:e80919. [PMID: 36154948 PMCID: PMC9648974 DOI: 10.7554/elife.80919] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial electron transport chain (ETC) dysfunction due to mutations in the nuclear or mitochondrial genome is a common cause of metabolic disease in humans and displays striking tissue specificity depending on the affected gene. The mechanisms underlying tissue-specific phenotypes are not understood. Complex I (cI) is classically considered the entry point for electrons into the ETC, and in vitro experiments indicate that cI is required for basal respiration and maintenance of the NAD+/NADH ratio, an indicator of cellular redox status. This finding has largely not been tested in vivo. Here, we report that mitochondrial complex I is dispensable for homeostasis of the adult mouse liver; animals with hepatocyte-specific loss of cI function display no overt phenotypes or signs of liver damage, and maintain liver function, redox and oxygen status. Further analysis of cI-deficient livers did not reveal significant proteomic or metabolic changes, indicating little to no compensation is required in the setting of complex I loss. In contrast, complex IV (cIV) dysfunction in adult hepatocytes results in decreased liver function, impaired oxygen handling, steatosis, and liver damage, accompanied by significant metabolomic and proteomic perturbations. Our results support a model whereby complex I loss is tolerated in the mouse liver because hepatocytes use alternative electron donors to fuel the mitochondrial ETC.
Collapse
Affiliation(s)
- Nicholas P Lesner
- Children's Medical Center Research Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Xun Wang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Zhenkang Chen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Anderson Frank
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
| | - Cameron J Menezes
- Children's Medical Center Research Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Sara House
- Children's Medical Center Research Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Spencer D Shelton
- Children's Medical Center Research Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
| | - David G McFadden
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical CenterDallasUnited States
| | - Janaka Wansapura
- Advanced Imaging Research Center, University of Texas Southwestern Medical CenterDallasUnited States
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical CenterDallasUnited States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Prashant Mishra
- Children's Medical Center Research Institute, University of Texas Southwestern Medical CenterDallasUnited States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pediatrics, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
33
|
De Pasquale L, Meo P, Fulia F, Anania A, Meli V, Mondello A, Raimondo MT, Tulino V, Coletta MS, Cacace C. A fatal case of neonatal onset multiple acyl-CoA dehydrogenase deficiency caused by novel mutation of ETFDH gene: case report. Ital J Pediatr 2022; 48:164. [PMID: 36064718 PMCID: PMC9446717 DOI: 10.1186/s13052-022-01356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II is an extremely rare autosomal recessive inborn error of fatty acid beta oxidation and branched-chain amino acids, secondary to mutations in the genes encoding the electron transfer flavoproteins A and B (ETFs; ETFA or ETFB) or ETF dehydrogenase (ETFDH). The clinical manifestation of MADD are heterogeneous, from severe neonatal forms to mild late-onset forms. CASE PRESENTATION We report the case of a preterm newborn who died a few days after birth for a severe picture of untreatable metabolic acidosis. The diagnosis of neonatal onset MADD was suggested on the basis of clinical features displaying congenital abnormalities and confirmed by the results of expanded newborn screening, which arrived the day the newborn died. Molecular genetic test revealed a homozygous indel variant c.606 + 1 _606 + 2insT in the ETFDH gene, localized in a canonical splite site. This variant, segregated from the two heterozygous parents, is not present in the general population frequency database and has never been reported in the literature. DISCUSSION AND CONCLUSION Recently introduced Expanded Newborn Screening is very important for a timely diagnosis of Inherited Metabolic Disorders like MADD. In some cases which are the most severe, diagnosis may arrive after symptoms are already present or may be the neonate already died. This stress the importance of collecting all possible samples to give parents a proper diagnosis and a genetic counselling for future pregnacies.
Collapse
Affiliation(s)
- Loredana De Pasquale
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy.
| | - Petronilla Meo
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Francesco Fulia
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Antonio Anania
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Valerio Meli
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Antonina Mondello
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Maria Tindara Raimondo
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Viviana Tulino
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Maria Sole Coletta
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Caterina Cacace
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| |
Collapse
|
34
|
Tolomeo M, Chimienti G, Lanza M, Barbaro R, Nisco A, Latronico T, Leone P, Petrosillo G, Liuzzi GM, Ryder B, Inbar-Feigenberg M, Colella M, Lezza AMS, Olsen RKJ, Barile M. Retrograde response to mitochondrial dysfunctions associated to LOF variations in FLAD1 exon 2: unraveling the importance of RFVT2. Free Radic Res 2022; 56:511-525. [PMID: 36480241 DOI: 10.1080/10715762.2022.2146501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavin adenine dinucleotide (FAD) synthase (EC 2.7.7.2), encoded by human flavin adenine dinucleotide synthetase 1 (FLAD1), catalyzes the last step of the pathway converting riboflavin (Rf) into FAD. FLAD1 variations were identified as a cause of LSMFLAD (lipid storage myopathy due to FAD synthase deficiency, OMIM #255100), resembling Multiple Acyl-CoA Dehydrogenase Deficiency, sometimes treatable with high doses of Rf; no alternative therapeutic strategies are available. We describe here cell morphological and mitochondrial alterations in dermal fibroblasts derived from a LSMFLAD patient carrying a homozygous truncating FLAD1 variant (c.745C > T) in exon 2. Despite a severe decrease in FAD synthesis rate, the patient had decreased cellular levels of Rf and flavin mononucleotide and responded to Rf treatment. We hypothesized that disturbed flavin homeostasis and Rf-responsiveness could be due to a secondary impairment in the expression of the Rf transporter 2 (RFVT2), encoded by SLC52A2, in the frame of an adaptive retrograde signaling to mitochondrial dysfunction. Interestingly, an antioxidant response element (ARE) is found in the region upstream of the transcriptional start site of SLC52A2. Accordingly, we found that abnormal mitochondrial morphology and impairments in bioenergetics were accompanied by increased cellular reactive oxygen species content and mtDNA oxidative damage. Concomitantly, an active response to mitochondrial stress is suggested by increased levels of PPARγ-co-activator-1α and Peroxiredoxin III. In this scenario, the treatment with high doses of Rf might compensate for the secondary RFVT2 molecular defect, providing a molecular rationale for the Rf responsiveness in patients with loss of function variants in FLAD1 exon 2.HIGHLIGHTSFAD synthase deficiency alters mitochondrial morphology and bioenergetics;FAD synthase deficiency triggers a mitochondrial retrograde response;FAD synthase deficiency evokes nuclear signals that adapt the expression of RFVT2.
Collapse
Affiliation(s)
- Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy.,Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Guglielmina Chimienti
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Martina Lanza
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Roberto Barbaro
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Bryony Ryder
- National Metabolic Service, Starship Children's Hospital, Auckland, New Zealand
| | - Michal Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Matilde Colella
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Angela M S Lezza
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
35
|
Baonza G, Stanescu S, Belanger-Quintana A, Martínez-Pardo M, Arrieta F. Successful pregnancy in a patient with multiple acyl-CoA dehydrogenase deficiency. ENDOCRINOL DIAB NUTR 2022. [DOI: 10.1016/j.endinu.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Pan X, Yuan Y, Wu B, Zheng W, Tian M. Lipid-storage myopathy with glycogen storage disease gene mutations mimicking polymyositis: a case report and review of the literature. J Int Med Res 2022; 50:3000605221084873. [PMID: 35296144 PMCID: PMC8943314 DOI: 10.1177/03000605221084873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A 26-year-old Asian woman with persistent muscle weakness was diagnosed with polymyositis based on biopsy findings at another hospital 11 years ago. However, her symptoms fluctuated repeatedly under treatment with prednisone and immunosuppressive agents, and worsened 2 months prior to the current presentation. A second muscle biopsy suggested metabolic myopathy, and genetic testing revealed a novel c.1074C > T variant in the glycogen synthase 1 gene (GYS1), which is implicated in muscle glycogen storage disease type 0. However, no abnormalities in glycogen deposition were found by biopsy; rather, muscle fibers exhibited large intracellular lipid droplets. Furthermore, muscle strength was greatly restored and circulating levels of creatine kinase indicative of muscle degeneration greatly reduced by vitamin B2 treatment. Therefore, the final diagnosis was lipid storage myopathy.
Collapse
Affiliation(s)
- Xiaoli Pan
- Department of Rheumatology and Immunology, 159358Affiliated Hospital of Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P. R. China
| | - Yuan Yuan
- School of Foreign Languages of Zunyi Medical University, Zunyi, Guizhou 563003, P. R. China
| | - Bangcui Wu
- Department of Rheumatology and Immunology, 159358Affiliated Hospital of Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P. R. China
| | - Wendan Zheng
- Department of Rheumatology and Immunology, 159358Affiliated Hospital of Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P. R. China
| | - Mei Tian
- Department of Rheumatology and Immunology, 159358Affiliated Hospital of Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P. R. China
| |
Collapse
|
37
|
Zhang B, Zhao Y. Novel variant of ETFDH leading to multiple acyl-CoA dehydrogenase deficiency by promoting protein degradation via ubiquitin proteasome pathway. Clin Chim Acta 2022; 530:104-112. [DOI: 10.1016/j.cca.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/03/2022]
|
38
|
AlFakhri N, Sojar S, Bortcosh W. Hyperammonemia and Altered Mental Status in a 17-year-old Girl. Pediatr Rev 2022; 43:112-115. [PMID: 35102399 DOI: 10.1542/pir.2020-003061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Nora AlFakhri
- Department of Pediatrics, University of Florida Health Shands Children's Hospital, University of Florida College of Medicine, Gainesville, FL
| | - Sakina Sojar
- Division of Pediatric Emergency Medicine, Alpert Medical School, Brown University, Providence, RI
| | - William Bortcosh
- Department of Pediatrics, University of Florida Health Shands Children's Hospital, University of Florida College of Medicine, Gainesville, FL.,Division of Pediatric Critical Care, University of Florida Health Shands Children's Hospital, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
39
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
40
|
Li Q, Yang C, Feng L, Zhao Y, Su Y, Liu H, Men H, Huang Y, Körner H, Wang X. Glutaric Acidemia, Pathogenesis and Nutritional Therapy. Front Nutr 2022; 8:704984. [PMID: 34977106 PMCID: PMC8714794 DOI: 10.3389/fnut.2021.704984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/26/2021] [Indexed: 01/13/2023] Open
Abstract
Glutaric acidemia (GA) are heterogeneous, genetic diseases that present with specific catabolic deficiencies of amino acid or fatty acid metabolism. The disorders can be divided into type I and type II by the occurrence of different types of recessive mutations of autosomal, metabolically important genes. Patients of glutaric acidemia type I (GA-I) if not diagnosed very early in infanthood, experience irreversible neurological injury during an encephalopathic crisis in childhood. If diagnosed early the disorder can be treated successfully with a combined metabolic treatment course that includes early catabolic emergency treatment and long-term maintenance nutrition therapy. Glutaric acidemia type II (GA- II) patients can present clinically with hepatomegaly, non-ketotic hypoglycemia, metabolic acidosis, hypotonia, and in neonatal onset cardiomyopathy. Furthermore, it features adult-onset muscle-related symptoms, including weakness, fatigue, and myalgia. An early diagnosis is crucial, as both types can be managed by simple nutraceutical supplementation. This review discusses the pathogenesis of GA and its nutritional management practices, and aims to promote understanding and management of GA. We will provide a detailed summary of current clinical management strategies of the glutaric academia disorders and highlight issues of nutrition therapy principles in emergency settings and outline some specific cases.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmacy, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Chunlan Yang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Feng
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yazi Zhao
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Su
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong Liu
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongkang Men
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Huang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Heinrich Körner
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
41
|
Korula S, Yoganathan S, Peter J, Chandran M, Christudass CS, Danda S. Late Onset Multiple Acyl-CoA Dehydrogenase Deficiency: A Rare Treatable Neurometabolic Disorder. Ann Indian Acad Neurol 2022; 25:983-985. [PMID: 36561017 PMCID: PMC9764879 DOI: 10.4103/aian.aian_370_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sophy Korula
- Paediatric Endocrinology and Metabolism Division, Paediatric Unit-1, Christian Medical College, Vellore, Tamil Nadu, India,Address for correspondence: Dr. Sophy Korula, Paediatric Endocrinology and Metabolism Division, Paediatric Unit-1, Christian Medical College, Vellore - 632004, Tamil Nadu, India. E-mail:
| | - Sangeetha Yoganathan
- Department of Neurological Sciences, Paediatric Neurology Unit, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jeyanthi Peter
- Department of Paediatrics, Christian Fellowship Hospital, Oddanchatram, Tamil Nadu, India
| | - Mahalakshmi Chandran
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Sumita Danda
- Department of Medical Genetics, Clinical Genetics Unit, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
42
|
Nalini A, Vengalil S, Polavarapu K, Preethish-Kumar V, Nashi S, Arunachal G, Chawla T, Bardhan M, Mohan D, Christopher R, Bevinahalli N, Kulanthaivelu K, Nishino I, Faruq M. Mutation spectrum of primary lipid storage myopathies. Ann Indian Acad Neurol 2022; 25:106-113. [PMID: 35342266 PMCID: PMC8954319 DOI: 10.4103/aian.aian_333_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/16/2021] [Accepted: 10/27/2021] [Indexed: 11/04/2022] Open
Abstract
Background: Lipid storage myopathies (LSM) constitute an important group of treatable myopathies. Genetic testing is essential for confirming the diagnosis and also helps in explaining phenotypic heterogeneity. The objective of this study was to describe the clinical features and genetic spectrum of LSM seen in a quaternary referral center in India. Methods: Eleven cases of suspected LSM underwent clinical, biochemical, histopathological and genetic evaluation. Tandem Mass Spectrometry and clinical exome sequencing with Sanger validation were performed. Results: All patients had exertion induced myalgia and either progressive or episodic limb girdle muscle weakness (LGMW). The age of onset ranged 10 to 31 years (mean- 21 ± 6.7y), age at presentation- 14 to 49 years (mean- 26.5 ± 9.5y). Mutations identified: ETFDH = 5, CPT2 = 3, FLAD1 = 1, ACADVL = 1, FLAD1 = 1. Dropped head syndrome was seen in two patients with ETFDH mutations. Bulbar symptoms and Beevor's sign were noted in a patient with FLAD1 variant. Novel variants were identified in seven patients. Conclusions: This is the first report on the genetic spectrum of LSM from India. LSM should be considered in patients with exertion induced myalgias, LGMW, cranial nerve involvement or dropped head syndrome. Genetic testing is essential for identification of these treatable disorders.
Collapse
|
43
|
Khadilkar S, Desai M. Editorial commentary: Lipid storage myopathies. Ann Indian Acad Neurol 2022; 25:5-6. [PMID: 35342242 PMCID: PMC8954336 DOI: 10.4103/aian.aian_1026_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
|
44
|
Tian H, Zhong Y, Liu Z, Wei L, Yuan Y, Zhang Y, Wang L. Lipid storage myopathy due to late-onset multiple Acyl-CoA dehydrogenase deficiency with novel mutations in ETFDH: A case report. Front Neurol 2022; 13:991060. [PMID: 36588907 PMCID: PMC9799051 DOI: 10.3389/fneur.2022.991060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Lipid storage myopathy (LSM) is an autosomal recessive inherited lipid and amino metabolic disorder with great clinical heterogeneity. Variations in the electron transfer flavoprotein dehydrogenase (ETFDH) gene cause multiple acyl-CoA dehydrogenase deficiency (MADD), and have a manifestation of LSM. Muscle biopsy helps clarify the diagnosis of LSM, and next-generation sequencing (NGS) can be useful in identifying genomic mutation sites. The diagnosis of MADD contributes to targeted therapy. CASE PRESENTATION We report on a teenager who appeared to have muscle weakness and exercise intolerance at the onset. Before the referral to our hospital, he was unsuccessfully treated with glucocorticoid for suspected polymyositis. The next-generation sequencing of the proband and his parents revealed heterozygous variations, c.365G>A (p.G122D) inherited from the father, c.176-194_176-193del, and c.832-316C>T inherited from the mother in the ETFDH gene. The tandem mass spectrometry identified the mutations to be pathogenic. However, his parents and his younger sister who were detected with a mutation of c.365G>A presented no clinical symptoms. This indicates that the combination of the three compound heterozygous mutations in ETFDH is significant. After MADD was diagnosed, a dramatic clinical recovery and biochemical improvement presented as riboflavin was given to the patient across a week, which further confirmed the diagnosis of MADD. CONCLUSION Our observations extend the spectrum of ETFDH variants in Chinese the population and reinforce the role of NGS in diagnosis of MADD. Early diagnosis and appropriate treatment of LSM lead to great clinical efficacy and avoid some lethal complications.
Collapse
Affiliation(s)
- Huihong Tian
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Neuroscience Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yi Zhong
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Neuroscience Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhihua Liu
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Neuroscience Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
- South China University of Technology School of Medicine, Guangzhou, China
| | - Liping Wei
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Neuroscience Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanbo Yuan
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Neuroscience Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Neuroscience Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Limin Wang
- Department of Neurology, Guangdong Provincial People's Hospital, Guangdong Neuroscience Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Limin Wang
| |
Collapse
|
45
|
Tang Z, Gao S, He M, Chen Q, Fang J, Luo Y, Yan W, Shi X, Huang H, Tang J. Clinical Presentations and Genetic Characteristics of Late-Onset MADD Due to ETFDH Mutations in Five Patients: A Case Series. Front Neurol 2021; 12:747360. [PMID: 34819910 PMCID: PMC8606537 DOI: 10.3389/fneur.2021.747360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Late-onset multiple acyl-CoA dehydrogenase deficiency (LO-MADD) describes a curable autosomal recessive genetic disease caused by ETFDH mutations that result in defects in ETF-ubiquinone oxidoreductase. Almost all patients are responsive to riboflavin. This study describes the clinical presentations and genetic characteristics of five LO-MADD patients. Methods: From 2018 to 2021, we collected clinical and genetic data on five patients diagnosed with LO-MADD at our hospital and retrospectively analyzed their clinical characteristics, laboratory examination, electromyography, muscle biopsy, genetic analysis, and outcome data. Results: This study included three males and two females with mean onset age of 37.8 years. Fluctuating exercise intolerance was the most common presentation. Serum creatine kinase (CK) levels were significantly elevated in all patients, and plasma acylcarnitine profiles revealed an increase in long-chain acylcarnitine species in three cases. The urinary organic acid study revealed a high level of hydroxyglutaric acid in all patients. Electrophysiology demonstrated myogenic impairment. Muscle biopsies revealed lipid storage myopathy. Molecular analysis identified nine mutations (three novels and six reported) in ETFDH. Exercise intolerance and muscle weakness were dramatically improved in all patients treated with riboflavin (100 mg) daily following diagnosis. Conclusions: LO-MADD is caused by ETFDH variants and responds well to riboflavin. Three novel ETFDH pathogenic variants were identified, expanding their spectrum in the Chinese population and facilitating future interpretation and analysis of ETFDH mutations.
Collapse
Affiliation(s)
- Zhenchu Tang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shan Gao
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao He
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qihua Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Fang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingying Luo
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiqian Yan
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoliu Shi
- Department of Medical Genetics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Huang
- Department of Medical Genetics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianguang Tang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Marra F, Lunetti P, Curcio R, Lasorsa FM, Capobianco L, Porcelli V, Dolce V, Fiermonte G, Scarcia P. An Overview of Mitochondrial Protein Defects in Neuromuscular Diseases. Biomolecules 2021; 11:1633. [PMID: 34827632 PMCID: PMC8615828 DOI: 10.3390/biom11111633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Neuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and β-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcome.
Collapse
Affiliation(s)
- Federica Marra
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Rosita Curcio
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Francesco Massimo Lasorsa
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Giuseppe Fiermonte
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Pasquale Scarcia
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| |
Collapse
|
47
|
Amidst the madness of genetic adult myopathies: a rare, treatable MADD. Neurol Sci 2021; 43:743-745. [PMID: 34714453 DOI: 10.1007/s10072-021-05695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
|
48
|
Wen B, Tang S, Lv X, Li D, Xu J, Olsen RKJ, Zhao Y, Li W, Wang T, Shao K, Zhao D, Yan C. Clinical, pathological and genetic features and follow-up of 110 patients with late-onset MADD: A single-center retrospective study. Hum Mol Genet 2021; 31:1115-1129. [PMID: 34718578 DOI: 10.1093/hmg/ddab308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To observe a long-term prognosis in late-onset multiple acyl-coenzyme-A dehydrogenation deficiency(MADD) patients and to determine whether riboflavin should be administrated in the long-term and high-dosage manner. METHODS We studied the clinical, pathological and genetic features of 110 patients with late-onset MADD in a single neuromuscular center. The plasma riboflavin levels and a long-term follow-up were performed. RESULTS Fluctuating proximal muscle weakness, exercise intolerance and dramatic responsiveness to riboflavin treatment were essential clinical features for all 110 MADD patients. Among them, we identified 106 cases with ETFDH variants, 1 case with FLAD1 variants and 3 cases without causal variants. On muscle pathology, fibers with cracks, atypical ragged red fibers(aRRFs) and diffuse decrease of SDH activity were the distinctive features of these MADD patients. The plasma riboflavin levels before treatment were significantly decreased in these patients as compared to healthy controls. Among 48 MADD patients with a follow-up of 6.1 years on average, 31 patients were free of muscle weakness recurrence, while 17 patients had episodes of slight muscle weakness upon riboflavin withdrawal, but recovered after retaking a small-dose of riboflavin for a short-term. Multivariate Cox regression analysis showed vegetarian diet and masseter weakness were independent risk factors for muscle weakness recurrence. CONCLUSION Fibers with cracks, aRRFs and diffuse decreased SDH activity distinguish MADD from other genotypes of lipid storage myopathy. For late-onset MADD, increased fatty acid oxidation and reduced riboflavin levels can induce episodes of muscle symptoms, which can be treated by short-term and small-dose of riboflavin therapy.
Collapse
Affiliation(s)
- Bing Wen
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Shuyao Tang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xiaoqing Lv
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Duoling Li
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Jingwen Xu
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Yuying Zhao
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wei Li
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Tan Wang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Kai Shao
- Department of Central Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong, China
| | - Dandan Zhao
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chuanzhu Yan
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.,Brain Science Research Institute, Qilu Hospital, Shandong University, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
49
|
Infant with early onset bilateral facial and bulbar weakness: Successful treatment of riboflavin in multiple acyl-CoA dehydrogenase deficiency caused by biallelic nonsense FLAD1 variants. Neuromuscul Disord 2021; 31:1194-1198. [PMID: 34454814 DOI: 10.1016/j.nmd.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a heterogeneous group of inborn error of metabolic disease affecting the oxidation of fatty acids and amino acids, and choline metabolism. Genes involved in electrons transfer to the mitochondrial respiratory chain typically induce MADD. Recently, FLAD1, which encodes flavin adenine dinucleotide synthase, has also been reported as a cause of MADD. Here, we present a case of a 28-month girl with progressive weakness in facial and bulbar muscle. She has been suffering from feeding difficulty and recurrent respiratory distress. Lipid storage myopathy was evident from muscle biopsy. Furthermore, whole exome sequencing identified homozygous variant of c.745C > T (p.Arg249*) in FLAD1, confirming the diagnosis of FLAD1-related MADD. The patient showed improvements in her symptoms and exhibited catch-up growth following the supplementation of riboflavin. Lipid storage myopathy with FLAD1-related MADD is potentially treatable. Therefore, we should have high clinical suspicion, even though the diagnosis is challenging.
Collapse
|
50
|
Staretz-Chacham O, Amar S, Almashanu S, Pode-Shakked B, Saada A, Wormser O, Hershkovitz E. Multiple Acyl-CoA Dehydrogenase Deficiency with Variable Presentation Due to a Homozygous Mutation in a Bedouin Tribe. Genes (Basel) 2021; 12:genes12081140. [PMID: 34440319 PMCID: PMC8393905 DOI: 10.3390/genes12081140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/08/2023] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a fatty acid and amino acid oxidation defect caused by a deficiency of the electron-transfer flavoprotein (ETF) or the electron-transfer flavoprotein dehydrogenase (ETFDH). There are three phenotypes of the disease, two neonatal forms and one late-onset. Previous studies have suggested that there is a phenotype-genotype correlation. We report on six patients from a single Bedouin tribe, five of whom were sequenced and found to be homozygous to the same variant in the ETFDH gene, with variable severity and age of presentation. The variant, NM_004453.3 (ETFDH): c.524G>A, p.(R175H), was previously recognized as pathogenic, although it has not been reported in the literature in a homozygous state before. R175H is located near the FAD binding site, likely affecting the affinity of FAD for EFT:QO. The single homozygous ETFDH pathogenic variant was found to be causing MADD in this cohort with an unexpectedly variable severity of presentation. The difference in severity could partly be explained by early diagnosis via newborn screening and early treatment with the FAD precursor riboflavin, highlighting the importance of early detection by newborn screening.
Collapse
Affiliation(s)
- Orna Staretz-Chacham
- Metabolic Clinic, Pediatric Division, Soroka University Medical Center, Beer Sheva 84101, Israel
- Faculty of Health Sciences, Ben-Gurion University, Beer Sheva 84101, Israel;
- Correspondence: ; Tel.: +972-545-713-191
| | - Shirly Amar
- Genetic Lab, Soroka University Medical Center, Beer Sheva 84101, Israel;
| | - Shlomo Almashanu
- National Newborn Screening Program, Ministry of Health, Tel-HaShomer, Ramat Gan 52621, Israel;
| | - Ben Pode-Shakked
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel;
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 39040, Israel
| | - Ann Saada
- Hadassah Medical Center, Department of Genetics, Jerusalem 911201, Israel;
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 911201, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics, National Institute for Biotechnology in the Negev and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84101, Israel;
| | - Eli Hershkovitz
- Faculty of Health Sciences, Ben-Gurion University, Beer Sheva 84101, Israel;
- Department of Pediatrics D, Soroka Medical Center, Beer Sheva 84101, Israel
| |
Collapse
|