1
|
Li-Yang M, Ma C, Wang X, You J. OSBPL2 inhibition leads to apoptosis of cochlea hair cells in age-related hearing loss by inhibiting the AKT/FOXG1 signaling pathway. Aging (Albany NY) 2024; 16:13132-13144. [PMID: 39475791 PMCID: PMC11552636 DOI: 10.18632/aging.206138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/19/2024] [Indexed: 11/07/2024]
Abstract
Age-related hearing loss (AHL) is a prevalent and multifaceted condition that significantly impacts a substantial portion of the aging population. Oxysterol Binding Protein-like 2 (OSBPL2) has been identified as a causal gene for hearing loss. However, its role in AHL is still unclear. In this study, we investigated the effect of OSBPL2 on the survival of cochlea hair cells. To simulate AHL in vitro, hair cell-like inner ear cells (HEI-OC1) were exposed to H2O2 treatment. OSBPL2 expression was significantly increased in HEI-OC1 cells after H2O2 treatment. OSBPL2 knockdown augmented cell death and apoptosis in H2O2-induced HEI-OC1 cells. Besides, H2O2 treatment also led to the inactivation of the AKT and FOXG1 signaling pathways in HEI-OC1 cells. Mechanistically, OSBPL2 silencing reinforced the inactivation of the FOXG1 signaling pathway in H2O2-treated HEI-OC1 cells by inhibiting the AKT signaling pathway. Under H2O2 treatment, AKT inhibition by MK2206 augmented the apoptosis of HEI-OC1 cells; on the contrary, AKT activation by SC79 treatment partially rescued the apoptosis of OSBPL2-knockdown HEI-OC1 cells. In addition, FOXG1 silencing significantly reversed the effects of AKT activation on OSBPL2-knockdown HEI-OC1 cells. Moreover, OSBPL2 expression and the activation status of the AKT/FOXG1 signaling pathway were confirmed in the cochleae of young and old C57BL/6 mice. In conclusion, our study provides evidence that OSBPL2 inhibition sensitizes HEI-OC1 cells to H2O2-induced apoptosis via inactivation of the AKT/FOXG1 signaling pathway, suggesting that OSBPL2 acts as an important regulator in AHL.
Collapse
Affiliation(s)
- Meina Li-Yang
- Department of Otolaryngology, The First People’s Hospital of Changzhou, Jiangsu 213003, China
| | - Chao Ma
- Department of Cardiothoracic Surgery, The First People’s Hospital of Changzhou, Jiangsu 213003, China
| | - Xiaoye Wang
- Department of Otolaryngology, The First People’s Hospital of Changzhou, Jiangsu 213003, China
| | - Jianqiang You
- Department of Otolaryngology, The First People’s Hospital of Changzhou, Jiangsu 213003, China
| |
Collapse
|
2
|
Wang Y, Zhao A, Zhou N, Wang X, Pan C, Zhou S, Huang H, Yang Y, Yang J, Yang Y, Zhang J, Chen F, Cao Q, Zhao J, Zhang S, Li M, Li M. OSBPL2 compound heterozygous variants cause dyschromatosis, ichthyosis, deafness and atopic disease syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167207. [PMID: 38701954 DOI: 10.1016/j.bbadis.2024.167207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE In this study, we identified and diagnosed a novel inherited condition called Dyschromatosis, Ichthyosis, Deafness, and Atopic Disease (DIDA) syndrome. We present a series of studies to clarify the pathogenic variants and specific mechanism. METHODS Exome sequencing and Sanger sequencing was conducted in affected and unaffected family members. A variety of human and cell studies were performed to explore the pathogenic process of keratosis. RESULTS Our finding indicated that DIDA syndrome was caused by compound heterozygous variants in the oxysterol-binding protein-related protein 2 (OSBPL2) gene. Furthermore, our findings revealed a direct interaction between OSBPL2 and Phosphoinositide phospholipase C-beta-3 (PLCB3), a key player in hyperkeratosis. OSBPL2 effectively inhibits the ubiquitylation of PLCB3, thereby stabilizing PLCB3. Conversely, OSBPL2 variants lead to enhanced ubiquitination and subsequent degradation of PLCB3, leading to epidermal hyperkeratosis, characterized by aberrant proliferation and delayed terminal differentiation of keratinocytes. CONCLUSIONS Our study not only unveiled the association between OSBPL2 variants and the newly identified DIDA syndrome but also shed light on the underlying mechanism.
Collapse
Affiliation(s)
- Yumeng Wang
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Anqi Zhao
- Department of Dermatology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Naihui Zhou
- Department of Dermatology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006 Suzhou, China
| | - Xiaoxiao Wang
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Chaolan Pan
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Shengru Zhou
- Department of Dermatology, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital; Medical Center of Soochow University), 215125 Suzhou, China
| | - Haisheng Huang
- Anhui University of Science and Technology School of Medicine, 232001, Anhui, China
| | - Yijun Yang
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Jianqiu Yang
- Department of Dermatology, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital; Medical Center of Soochow University), 215125 Suzhou, China
| | - Yifan Yang
- Department of Dermatology, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital; Medical Center of Soochow University), 215125 Suzhou, China
| | - Jingwen Zhang
- Department of Dermatology, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital; Medical Center of Soochow University), 215125 Suzhou, China
| | - Fuying Chen
- Department of Dermatology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Qiaoyu Cao
- Department of Dermatology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Jingjun Zhao
- Dermatology Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 200032 Shanghai, China.
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, 201102 Shanghai, China.
| | - Min Li
- Department of Dermatology, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital; Medical Center of Soochow University), 215125 Suzhou, China.
| |
Collapse
|
3
|
Yun Y, Lee SY. Updates on Genetic Hearing Loss: From Diagnosis to Targeted Therapies. J Audiol Otol 2024; 28:88-92. [PMID: 38695053 PMCID: PMC11065549 DOI: 10.7874/jao.2024.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory disorder, with a high Mendelian genetic contribution. Considering the genotypic and phenotypic heterogeneity of SNHL, the advent of next-generation sequencing technologies has revolutionized knowledge on its genomic architecture. Nonetheless, the conventional application of panel and exome sequencing in real-world practice is being challenged by the emerging need to explore the diagnostic capability of whole-genome sequencing, which enables the detection of both noncoding and structural variations. Small molecules and gene therapies represent good examples of how breakthroughs in genetic understanding can be translated into targeted therapies for SNHL. For example, targeted small molecules have been used to ameliorate autoinflammatory hearing loss caused by gain-of-function variants of NLRP3 and inner ear proteinopathy with OSBPL2 variants underlying dysfunctional autophagy. Strikingly, the successful outcomes of the first-in-human trial of OTOF gene therapy highlighted its potential in the treatment of various forms of genetic hearing loss. clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies are currently being developed for site-specific genome editing to treat human genetic disorders. These advancements have led to an era of genotype- and mechanism-based precision medicine in SNHL practice.
Collapse
Affiliation(s)
- Yejin Yun
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
4
|
Lin K, Zhao Y, Tang Y, Chen Y, Lin M, He L. Collagen I-induced VCAN/ERK signaling and PARP1/ZEB1-mediated metastasis facilitate OSBPL2 defect to promote colorectal cancer progression. Cell Death Dis 2024; 15:85. [PMID: 38267463 PMCID: PMC10808547 DOI: 10.1038/s41419-024-06468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
The global burden of colorectal cancer (CRC) has rapidly increased in recent years. Dysregulated cholesterol homeostasis facilitated by extracellular matrix (ECM) remodeling transforms the tumor microenvironment. Collagen I, a major with ECM component is highly expressed in colorectal tumors with infiltrative growth. Although oxysterol binding protein (OSBP)-related proteins accommodate tumorigenesis, OSBPL2, which is usually involved in deafness, is not associated with CRC progression. Therefore, we aimed to investigate the pathological function of OSBPL2 and identify the molecular link between ECM-Collagen I and OSBPL2 in CRC to facilitate the development of new treatments for CRC. OSBPL2 predicted a favorable prognosis in stage IV CRC and substantially repressed Collagen I-induced focal adhesion, migration, and invasion. The reduction of OSBPL2 activated ERK signaling through the VCAN/AREG/EREG axis during CRC growth, while relying on PARP1 via ZEB1 in CRC metastasis. OSBPL2 defect supported colorectal tumor growth and metastasis, which were suppressed by the ERK and PARP1 inhibitors SCH772984 and AG14361, respectively. Overall, our findings revealed that the Collagen I-induced loss of OSBPL2 aggravates CRC progression through VCAN-mediated ERK signaling and the PARP1/ZEB1 axis. This demonstrates that SCH772984 and AG14361 are reciprocally connective therapies for OSBPL2Low CRC, which could contribute to further development of targeted CRC treatment.
Collapse
Affiliation(s)
- Kang Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yuqi Tang
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Ying Chen
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Moubin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China.
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Luwei He
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute of Gastrointestinal Surgery and Translational Medicine, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Aldè M, Cantarella G, Zanetti D, Pignataro L, La Mantia I, Maiolino L, Ferlito S, Di Mauro P, Cocuzza S, Lechien JR, Iannella G, Simon F, Maniaci A. Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review. Biomedicines 2023; 11:1616. [PMID: 37371710 DOI: 10.3390/biomedicines11061616] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered in all cases of negative family history. To date, more than 50 genes and 80 loci have been identified for autosomal dominant non-syndromic HL. DFNA22 (MYO6 gene), DFNA8/12 (TECTA gene), DFNA20/26 (ACTG1 gene), DFNA6/14/38 (WFS1 gene), DFNA15 (POU4F3 gene), DFNA2A (KCNQ4 gene), and DFNA10 (EYA4 gene) are some of the most common forms of autosomal dominant non-syndromic HL. The characteristics of autosomal dominant non-syndromic HL are heterogenous. However, in most cases, HL tends to be bilateral, post-lingual in onset (childhood to early adulthood), high-frequency (sloping audiometric configuration), progressive, and variable in severity (mild to profound degree). DFNA1 (DIAPH1 gene) and DFNA6/14/38 (WFS1 gene) are the most common forms of autosomal dominant non-syndromic HL affecting low frequencies, while DFNA16 (unknown gene) is characterized by fluctuating HL. A long audiological follow-up is of paramount importance to identify hearing threshold deteriorations early and ensure prompt treatment with hearing aids or cochlear implants.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Ignazio La Mantia
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Paola Di Mauro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Jérôme René Lechien
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giannicola Iannella
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Francois Simon
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Antonino Maniaci
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| |
Collapse
|
6
|
Koh YI, Oh KS, Kim JA, Noh B, Choi HJ, Joo SY, Rim JH, Kim HY, Kim DY, Yu S, Kim DH, Lee SG, Jung J, Choi JY, Gee HY. OSBPL2 mutations impair autophagy and lead to hearing loss, potentially remedied by rapamycin. Autophagy 2022; 18:2593-2614. [PMID: 35253614 PMCID: PMC9629061 DOI: 10.1080/15548627.2022.2040891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intracellular accumulation of mutant proteins causes proteinopathies, which lack targeted therapies. Autosomal dominant hearing loss (DFNA67) is caused by frameshift mutations in OSBPL2. Here, we show that DFNA67 is a toxic proteinopathy. Mutant OSBPL2 accumulated intracellularly and bound to macroautophagy/autophagy proteins. Consequently, its accumulation led to defective endolysosomal homeostasis and impaired autophagy. Transgenic mice expressing mutant OSBPL2 exhibited hearing loss, but osbpl2 knockout mice or transgenic mice expressing wild-type OSBPL2 did not. Rapamycin decreased the accumulation of mutant OSBPL2 and partially rescued hearing loss in mice. Rapamycin also partially improved hearing loss and tinnitus in individuals with DFNA67. Our findings indicate that dysfunctional autophagy is caused by mutant proteins in DFNA67; hence, we recommend rapamycin for DFNA67 treatment.Abbreviations: ABR: auditory brainstem response; ACTB: actin beta; CTSD: cathepsin D; dB: decibel; DFNA67: deafness non-syndromic autosomal dominant 67; DPOAE: distortion product otoacoustic emission; fs: frameshift; GFP: green fluorescent protein; HsQ53R-TG: human p.Q53Rfs*100-transgenic: HEK 293: human embryonic kidney 293; HFD: high-fat diet; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NSHL: non-syndromic hearing loss; OHC: outer hair cells; OSBPL2: oxysterol binding protein-like 2; SEM: scanning electron microscopy; SGN: spiral ganglion neuron; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TG: transgenic; WES: whole-exome sequencing; YUHL: Yonsei University Hearing Loss; WT: wild-type.
Collapse
Affiliation(s)
- Young Ik Koh
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Kyung Seok Oh
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Jung Ah Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Byunghwa Noh
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Hye Ji Choi
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Sun Young Joo
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - John Hoon Rim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Dong Yun Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Seyoung Yu
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Da Hye Kim
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Sang-Guk Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, SeoulSeoul03722Republic of Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea,CONTACT Jinsei Jung Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea,Jae Young Choi Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seou, 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul03722, Republic of Korea,Heon Yung Gee Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Gao G, Guo S, Zhang Q, Zhang H, Zhang C, Peng G. Kiaa1024L/Minar2 is essential for hearing by regulating cholesterol distribution in hair bundles. eLife 2022; 11:e80865. [PMID: 36317962 PMCID: PMC9714970 DOI: 10.7554/elife.80865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Unbiased genetic screens implicated a number of uncharacterized genes in hearing loss, suggesting some biological processes required for auditory function remain unexplored. Loss of Kiaa1024L/Minar2, a previously understudied gene, caused deafness in mice, but how it functioned in the hearing was unclear. Here, we show that disruption of kiaa1024L/minar2 causes hearing loss in the zebrafish. Defects in mechanotransduction, longer and thinner hair bundles, and enlarged apical lysosomes in hair cells are observed in the kiaa1024L/minar2 mutant. In cultured cells, Kiaa1024L/Minar2 is mainly localized to lysosomes, and its overexpression recruits cholesterol and increases cholesterol labeling. Strikingly, cholesterol is highly enriched in the hair bundle membrane, and loss of kiaa1024L/minar2 reduces cholesterol localization to the hair bundles. Lowering cholesterol levels aggravates, while increasing cholesterol levels rescues the hair cell defects in the kiaa1024L/minar2 mutant. Therefore, cholesterol plays an essential role in hair bundles, and Kiaa1024L/Minar2 regulates cholesterol distribution and homeostasis to ensure normal hearing.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Shuyu Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Quan Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Hefei Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Cuizhen Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Gang Peng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| |
Collapse
|
8
|
Searching for the Molecular Basis of Partial Deafness. Int J Mol Sci 2022; 23:ijms23116029. [PMID: 35682719 PMCID: PMC9181477 DOI: 10.3390/ijms23116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Hearing is an important human sense for communicating and connecting with others. Partial deafness (PD) is a common hearing problem, in which there is a down-sloping audiogram. In this study, we apply a practical system for classifying PD patients, used for treatment purposes, to distinguish two groups of patients: one with almost normal hearing thresholds at low frequencies (PDT-EC, n = 20), and a second group with poorer thresholds at those same low frequencies (PDT-EAS, n = 20). After performing comprehensive genetic testing with a panel of 237 genes, we found that genetic factors can explain a significant proportion of both PDT-EC and PDT-EAS hearing losses, accounting, respectively, for approx. one-fifth and one-half of all the cases in our cohort. Most of the causative variants were located in dominant and recessive genes previously linked to PD, but more than half of the variants were novel. Among the contributors to PDT-EC we identified OSBPL2 and SYNE4, two relatively new hereditary hearing loss genes with a low publication profile. Our study revealed that, for all PD patients, a postlingual hearing loss more severe in the low-frequency range is associated with a higher detection rate of causative variants. Isolating a genetic cause of PD is important in terms of prognosis, therapeutic effectiveness, and risk of recurrence.
Collapse
|
9
|
Olkkonen VM, Ikonen E. Cholesterol transport in the late endocytic pathway: Roles of ORP family proteins. J Steroid Biochem Mol Biol 2022; 216:106040. [PMID: 34864207 DOI: 10.1016/j.jsbmb.2021.106040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022]
Abstract
Oxysterol-binding protein (OSBP) homologues, designated ORP or OSBPL proteins, constitute one of the largest families of intracellular lipid-binding/transfer proteins (LTP). This review summarizes the mounting evidence that several members of this family participate in the machinery facilitating cholesterol trafficking in the late endocytic pathway. There are indications that OSBP, besides acting as a cholesterol/phosphatidylinositol 4-phosphate (PI4P) exchanger at the endoplasmic reticulum (ER)-trans-Golgi network (TGN) membrane contact sites (MCS), also exchanges these lipids at ER-lysosome (Lys) contacts, increasing Lys cholesterol content. The long isoform of ORP1 (ORP1L), which also targets ER-late endosome (LE)/Lys MCS, has the capacity to mediate cholesterol transport either from ER to LE or in the opposite direction. Moreover, it regulates the motility, positioning and fusion of LE as well as autophagic flux. ORP2, the closest relative of ORP1, is mainly cytosolic, but also targets PI(4,5)P2-rich endosomal compartments. Our latest data suggest that ORP2 transfers cholesterol from LE to recycling endosomes (RE) in exchange for PI(4,5)P2, thus stimulating the recruitment of focal adhesion kinase (FAK) on the RE and cell adhesion. FAK activates phosphoinositide kinase on the RE to enhance PI(4,5)P2 synthesis. ORP2 in turn transfers PI(4,5)P2 from RE to LE, thus regulating LE tubule formation and transport activity.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Shi H, Wang H, Zhang C, Lu Y, Yao J, Chen Z, Xing G, Wei Q, Cao X. Mutations in OSBPL2 cause hearing loss associated with primary cilia defects via Sonic Hedgehog signaling. JCI Insight 2022; 7:149626. [PMID: 35041619 PMCID: PMC8876550 DOI: 10.1172/jci.insight.149626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Defective primary cilia cause a range of diseases called ciliopathies, which include hearing loss (HL). Variants in the human oxysterol-binding protein like 2 (OSBPL2/ORP2) are responsible for autosomal dominant nonsyndromic HL (DFNA67). However, the pathogenesis of OSBPL2 deficiency has not been fully elucidated. In this study, we show that the Osbpl2-KO mice exhibited progressive HL and abnormal cochlear development with defective cilia. Further research revealed that OSBPL2 was located at the base of the kinocilia in hair cells (HCs) and primary cilia in supporting cells (SCs) and functioned in the maintenance of ciliogenesis by regulating the homeostasis of PI(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) on the cilia membrane. OSBPL2 deficiency led to a significant increase of PI(4,5)P2 on the cilia membrane, which could be partially rescued by the overexpression of INPP5E. In addition, smoothened and GL13, the key molecules in the Sonic Hedgehog (Shh) signaling pathway, were detected to be downregulated in Osbpl2-KO HEI-OC1 cells. Our findings revealed that OSBPL2 deficiency resulted in ciliary defects and abnormal Shh signaling transduction in auditory cells, which helped to elucidate the underlying mechanism of OSBPL2 deficiency in HL.
Collapse
Affiliation(s)
- Hairong Shi
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Cheng Zhang
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| |
Collapse
|
11
|
Arora A, Taskinen JH, Olkkonen VM. Coordination of inter-organelle communication and lipid fluxes by OSBP-related proteins. Prog Lipid Res 2022; 86:101146. [PMID: 34999137 DOI: 10.1016/j.plipres.2022.101146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute one of the largest families of lipid-binding/transfer proteins (LTPs) in eukaryotes. The current view is that many of them mediate inter-organelle lipid transfer over membrane contact sites (MCS). The transfer occurs in several cases in a 'counter-current' fashion: A lipid such as cholesterol or phosphatidylserine (PS) is transferred against its concentration gradient driven by transport of a phosphoinositide in the opposite direction. In this way ORPs are envisioned to maintain the distinct organelle lipid compositions, with impacts on multiple organelle functions. However, the functions of ORPs extend beyond lipid homeostasis to regulation of processes such as cell survival, proliferation and migration. Important expanding areas of mammalian ORP research include their roles in viral and bacterial infections, cancers, and neuronal function. The yeast OSBP homologue (Osh) proteins execute multifaceted functions in sterol and glycerophospholipid homeostasis, post-Golgi vesicle transport, phosphatidylinositol-4-phosphate, sphingolipid and target of rapamycin (TOR) signalling, and cell cycle control. These observations identify ORPs as lipid transporters and coordinators of signals with an unforeseen variety of cellular processes. Understanding their activities not only enlightens the biology of the living cell but also allows their employment as targets of new therapeutic approaches for disease.
Collapse
Affiliation(s)
- Amita Arora
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
12
|
Van Heurck R, Carminho-Rodrigues MT, Ranza E, Stafuzza C, Quteineh L, Gehrig C, Hammar E, Guipponi M, Abramowicz M, Senn P, Guinand N, Cao-Van H, Paoloni-Giacobino A. Benefits of Exome Sequencing in Children with Suspected Isolated Hearing Loss. Genes (Basel) 2021; 12:genes12081277. [PMID: 34440452 PMCID: PMC8391342 DOI: 10.3390/genes12081277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose: Hearing loss is characterized by an extensive genetic heterogeneity and remains a common disorder in children. Molecular diagnosis is of particular benefit in children, and permits the early identification of clinically-unrecognized hearing loss syndromes, which permits effective clinical management and follow-up, including genetic counselling. Methods: We performed whole-exome sequencing with the analysis of a panel of 189 genes associated with hearing loss in a prospective cohort of 61 children and 9 adults presenting mainly with isolated hearing loss. Results: The overall diagnostic rate using exome sequencing was 47.2% (52.5% in children; 22% in adults). In children with confirmed molecular results, 17/32 (53.2%) showed autosomal recessive inheritance patterns, 14/32 (43.75%) showed an autosomal dominant condition, and one case had X-linked hearing loss. In adults, the two patients showed an autosomal dominant inheritance pattern. Among the 32 children, 17 (53.1%) had nonsyndromic hearing loss and 15 (46.7%) had syndromic hearing loss. One adult was diagnosed with syndromic hearing loss and one with nonsyndromic hearing loss. The most common causative genes were STRC (5 cases), GJB2 (3 cases), COL11A1 (3 cases), and ACTG1 (3 cases). Conclusions: Exome sequencing has a high diagnostic yield in children with hearing loss and can reveal a syndromic hearing loss form before other organs/systems become involved, allowing the surveillance of unrecognized present and/or future complications associated with these syndromes.
Collapse
Affiliation(s)
- Roxane Van Heurck
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Maria Teresa Carminho-Rodrigues
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Emmanuelle Ranza
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Caterina Stafuzza
- Ear-Nose-Throat/Head and Neck Surgery Division, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.S.); (P.S.); (N.G.); (H.C.-V.)
| | - Lina Quteineh
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Corinne Gehrig
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Eva Hammar
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Michel Guipponi
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Marc Abramowicz
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
| | - Pascal Senn
- Ear-Nose-Throat/Head and Neck Surgery Division, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.S.); (P.S.); (N.G.); (H.C.-V.)
| | - Nils Guinand
- Ear-Nose-Throat/Head and Neck Surgery Division, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.S.); (P.S.); (N.G.); (H.C.-V.)
| | - Helene Cao-Van
- Ear-Nose-Throat/Head and Neck Surgery Division, Geneva University Hospitals, 1205 Geneva, Switzerland; (C.S.); (P.S.); (N.G.); (H.C.-V.)
| | - Ariane Paoloni-Giacobino
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland; (R.V.H.); (M.T.C.-R.); (E.R.); (L.Q.); (C.G.); (E.H.); (M.G.); (M.A.)
- Correspondence:
| |
Collapse
|
13
|
Takahashi K, Kanerva K, Vanharanta L, Almeida‐Souza L, Lietha D, Olkkonen VM, Ikonen E. ORP2 couples LDL-cholesterol transport to FAK activation by endosomal cholesterol/PI(4,5)P 2 exchange. EMBO J 2021; 40:e106871. [PMID: 34124795 PMCID: PMC8281050 DOI: 10.15252/embj.2020106871] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Low-density lipoprotein (LDL)-cholesterol delivery from late endosomes to the plasma membrane regulates focal adhesion dynamics and cell migration, but the mechanisms controlling it are poorly characterized. Here, we employed auxin-inducible rapid degradation of oxysterol-binding protein-related protein 2 (ORP2/OSBPL2) to show that endogenous ORP2 mediates the transfer of LDL-derived cholesterol from late endosomes to focal adhesion kinase (FAK)-/integrin-positive recycling endosomes in human cells. In vitro, cholesterol enhances membrane association of FAK to PI(4,5)P2 -containing lipid bilayers. In cells, ORP2 stimulates FAK activation and PI(4,5)P2 generation in endomembranes, enhancing cell adhesion. Moreover, ORP2 increases PI(4,5)P2 in NPC1-containing late endosomes in a FAK-dependent manner, controlling their tubulovesicular trafficking. Together, these results provide evidence that ORP2 controls FAK activation and LDL-cholesterol plasma membrane delivery by promoting bidirectional cholesterol/PI(4,5)P2 exchange between late and recycling endosomes.
Collapse
Affiliation(s)
- Kohta Takahashi
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Present address:
Laboratory of Microbiology and ImmunologyGraduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Kristiina Kanerva
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Lauri Vanharanta
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Leonardo Almeida‐Souza
- Helsinki Institute of Life Science, HiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Daniel Lietha
- Centro de Investigaciones Biológicas Margarita Salas (CIB)Spanish National Research Council (CSIC)MadridSpain
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| |
Collapse
|
14
|
Wang T, Zhang T, Tang Y, Wang H, Wei Q, Lu Y, Yao J, Qu Y, Cao X. Oxysterol-binding protein-like 2 contributes to the developmental progression of preadipocytes by binding to β-catenin. Cell Death Discov 2021; 7:109. [PMID: 34001864 PMCID: PMC8129138 DOI: 10.1038/s41420-021-00503-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Oxysterol-binding protein-like 2 (OSBPL2), also known as oxysterol-binding protein-related protein (ORP) 2, is a member of lipid transfer protein well-known for its role in regulating cholesterol homeostasis. A recent study reported that OSBPL2/ORP2 localizes to lipid droplets (LDs) and is associated with energy metabolism and obesity. However, the function of OSBPL2/ORP2 in adipocyte differentiation is poorly understood. Here, we report that OSBPL2/ORP2 contributes to the developmental progression of preadipocytes. We found that OSBPL2/ORP2 binds to β-catenin, a key effector in the Wnt signaling pathway that inhibits adipogenesis. This complex plays a role in regulating the protein level of β-catenin only in preadipocytes, not in mature adipocytes. Our data further indicated that OSBPL2/ORP2 mediates the transport of β-catenin into the nucleus and thus regulates target genes related to adipocyte differentiation. Deletion of OSBPL2/ORP2 markedly reduces β-catenin both in the cytoplasm and in the nucleus, promotes preadipocytes maturation, and ultimately leads to obesity-related characteristics. Altogether, we provide novel insight into the function of OSBPL2/ORP2 in the developmental progression of preadipocytes and suggest OSBPL2/ORP2 may be a potential therapeutic target for the treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Tianming Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Tianyu Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Youzhi Tang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yuan Qu
- Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China. .,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Smits JJ, van Beelen E, Weegerink NJD, Oostrik J, Huygen PLM, Beynon AJ, Lanting CP, Kunst HPM, Schraders M, Kremer H, de Vrieze E, Pennings RJE. A Novel COCH Mutation Affects the vWFA2 Domain and Leads to a Relatively Mild DFNA9 Phenotype. Otol Neurotol 2021; 42:e399-e407. [PMID: 33710989 DOI: 10.1097/mao.0000000000003004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To study the genotype and phenotype of a Dutch family with autosomal dominantly inherited hearing loss. STUDY DESIGN Genotype-phenotype correlation study. Genetic analysis consisted of linkage analysis, variable number of tandem repeats analysis, and Sanger sequencing. Audiovestibular function was examined. Regression analysis was performed on pure tone audiometry and speech recognition scores and correlated with the age and/or level of hearing loss. SETTING Tertiary referral center. PATIENTS A large Dutch family presenting with sensorineural hearing loss. MAIN OUTCOME MEASURES Identification of the underlying genetic defect of the hearing loss in this family. Results of pure tone and speech audiometry, onset age, progression of hearing loss and vestibular (dys)function. RESULTS A novel mutation in COCH, c.1312C > T p.(Arg438Cys), cosegregates with hearing loss and a variable degree of vestibular (dys)function in this family. The reported mean age of onset of hearing loss is 33 years (range, 18-49 yr). Hearing loss primarily affects higher frequencies and its progression is relatively mild (0.8 dB/yr). Speech perception is remarkably well preserved in affected family members when compared with other DFNA9 families with different COCH mutations. CONCLUSION These findings expand the genotypic and phenotypic spectrum of DFNA9. The c.1312C > T mutation, which affects the vWFA2 domain, causes a relatively mild audiovestibular phenotype when compared with other COCH mutations.
Collapse
Affiliation(s)
- Jeroen J Smits
- Department of Otorhinolaryngology, Hearing & Genes
- Donders Institute for Brain, Cognition and Behaviour
| | | | | | - Jaap Oostrik
- Department of Otorhinolaryngology, Hearing & Genes
| | | | | | - Cornelis P Lanting
- Department of Otorhinolaryngology, Hearing & Genes
- Donders Institute for Brain, Cognition and Behaviour
| | - Henricus P M Kunst
- Department of Otorhinolaryngology, Hearing & Genes
- Radboud Institute for Health Sciences
| | - Margit Schraders
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Hearing & Genes
- Donders Institute for Brain, Cognition and Behaviour
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Hearing & Genes
- Donders Institute for Brain, Cognition and Behaviour
| | - Ronald J E Pennings
- Department of Otorhinolaryngology, Hearing & Genes
- Donders Institute for Brain, Cognition and Behaviour
| |
Collapse
|
16
|
Vona B, Doll J, Hofrichter MAH, Haaf T, Varshney GK. Small fish, big prospects: using zebrafish to unravel the mechanisms of hereditary hearing loss. Hear Res 2020; 397:107906. [PMID: 32063424 PMCID: PMC7415493 DOI: 10.1016/j.heares.2020.107906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/13/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Over the past decade, advancements in high-throughput sequencing have greatly enhanced our knowledge of the mutational signatures responsible for hereditary hearing loss. In its present state, the field has a largely uncensored view of protein coding changes in a growing number of genes that have been associated with hereditary hearing loss, and many more that have been proposed as candidate genes. Sequencing data can now be generated using methods that have become widespread and affordable. The greatest hurdles facing the field concern functional validation of uncharacterized genes and rapid application to human diseases, including hearing and balance disorders. To date, over 30 hearing-related disease models exist in zebrafish. New genome editing technologies, including CRISPR/Cas9 will accelerate the functional validation of hearing loss genes and variants in zebrafish. Here, we discuss current progress in the field and recent advances in genome editing approaches.
Collapse
Affiliation(s)
- Barbara Vona
- Department of Otolaryngology--Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University Tübingen, Tübingen, Germany.
| | - Julia Doll
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | | | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.
| |
Collapse
|
17
|
Wang T, Wei Q, Liang L, Tang X, Yao J, Lu Y, Qu Y, Chen Z, Xing G, Cao X. OSBPL2 Is Required for the Binding of COPB1 to ATGL and the Regulation of Lipid Droplet Lipolysis. iScience 2020; 23:101252. [PMID: 32650117 PMCID: PMC7348002 DOI: 10.1016/j.isci.2020.101252] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/03/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
The accumulation of giant lipid droplets (LDs) increases the risk of metabolic disorders including obesity and insulin resistance. The lipolysis process involves the activation and transfer of lipase, but the molecular mechanism is not completely understood. The translocation of ATGL, a critical lipolysis lipase, from the ER to the LD surface is mediated by an energy catabolism complex. Oxysterol-binding protein-like 2 (OSBPL2/ORP2) is one of the lipid transfer proteins that regulates intracellular cholesterol homeostasis. A recent study has proven that Osbpl2−/− pigs exhibit hypercholesterolemia and obesity phenotypes with an increase in adipocytes. In this study, we identified that OSBPL2 links the endoplasmic reticulum (ER) with LDs, binds to COPB1, and mediates ATGL transport. We provide important insights into the function of OSBPL2, indicating that it is required for the regulation of lipid droplet lipolysis. LD lipolysis is impaired in OSBPL2/osbpl2b-mutant HepG2 cells and zebrafish OSBPL2 interacts with COPB1, a subunit of the COPI complex located on LDs Altered COPI complexes on LDs may perturb the trafficking of lipolysis lipase ATGL
Collapse
Affiliation(s)
- Tianming Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Lihong Liang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Xujun Tang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Qu
- Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Zhibin Chen
- Department of Otolaryngology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Guangqian Xing
- Department of Otolaryngology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
18
|
Ahmadmehrabi S, Brant J, Epstein DJ, Ruckenstein MJ, Rader DJ. Genetics of Postlingual Sensorineural Hearing Loss. Laryngoscope 2020; 131:401-409. [PMID: 32243624 DOI: 10.1002/lary.28646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/19/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Literature and clinical practice around adult-onset hearing loss (HL) has traditionally focused on environmental risk factors, including noise exposure, ototoxic drug exposure, and cardiovascular disease. The most common diagnosis in adult-onset HL is presbycusis. However, the age of onset of presbycusis varies, and patients often describe family history of HL as well as individual variation in progression and severity. In recent years, there has been accumulating evidence of gene-environment interactions underlying adult cases of HL. Susceptibility loci for age-related HL have been identified, and genes related to postlingual nonsyndromic HL continue to be discovered through individual reports and genome-wide association studies. This review will outline main concepts in genetics as related to HL, identify implicated genes, and discuss clinical implications. Laryngoscope, 131:401-409, 2021.
Collapse
Affiliation(s)
- Shadi Ahmadmehrabi
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason Brant
- Department of Otorhinolaryngology Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Ruckenstein
- Department of Otorhinolaryngology Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Lee S, Dondzillo A, Gubbels SP, Raphael Y. Practical aspects of inner ear gene delivery for research and clinical applications. Hear Res 2020; 394:107934. [PMID: 32204962 DOI: 10.1016/j.heares.2020.107934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
The application of gene therapy is widely expanding in research and continuously improving in preparation for clinical applications. The inner ear is an attractive target for gene therapy for treating environmental and genetic diseases in both the auditory and vestibular systems. With the lack of spontaneous cochlear hair cell replacement, hair cell regeneration in adult mammals is among the most important goals of gene therapy. In addition, correcting gene defects can open up a new era for treating inner ear diseases. The relative isolation and small size of the inner ear dictate local administration routes and carefully calculated small volumes of reagents. In the current review, we will cover effective timing, injection routes and types of vectors for successful gene delivery to specific target cells within the inner ear. Differences between research purposes and clinical applications are also discussed.
Collapse
Affiliation(s)
- Sungsu Lee
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, USA
| | - Anna Dondzillo
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Samuel P Gubbels
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Shi H, Wang H, Yao J, Lin C, Wei Q, Lu Y, Cao X. Comparative transcriptome analysis of auditory OC-1 cells and zebrafish inner ear tissues in the absence of human OSBPL2 orthologues. Biochem Biophys Res Commun 2019; 521:42-49. [PMID: 31629475 DOI: 10.1016/j.bbrc.2019.10.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022]
Abstract
In our previous study, Oxysterol-binding protein-related protein 2 (OSBPL2) was first identified as a new deafness-causative gene contribute to non-syndromic hearing loss. However, the underlying mechanism of OSBPL2-induced hearing loss remains unknown. Here, we used hearing-specific cells and tissues OC-1 cells and zebrafish inner ear tissues as models to identify common transcriptome changes in genes and pathways in the absence of human OSBPL2 orthologues by RNA-seq analysis. In total, 2112 differentially expressed genes (DEGs) were identified between wild-type (WT) and Osbpl2-/- OC-1 cells, and 877 DEGs were identified between WT and osbpl2b-/- zebrafish inner ear tissues. Functional annotation implicated Osbpl2/osbpl2b in lipid metabolism, cell adhesion and the extracellular matrix in both OC-1 cells and zebrafish inner ear tissues. Protein-protein interaction (PPI) analysis indicated that Osbpl2/osbpl2b were also involved in ubiquitination. Further experiments showed that Osbpl2-/- OC-1 cells exhibited an abnormal focal adhesion morphology characterized by inhibited FAK activity and impaired cell adhesion. In conclusion, we identified novel pathways modulated by OSBPL2 orthologues, providing new insight into the mechanism of hearing loss induced by OSBPL2 deficiency.
Collapse
Affiliation(s)
- Hairong Shi
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Zhang C, Zhang H, Zhang M, Lin C, Wang H, Yao J, Wei Q, Lu Y, Chen Z, Xing G, Cao X. OSBPL2 deficiency upregulate SQLE expression increasing intracellular cholesterol and cholesteryl ester by AMPK/SP1 and SREBF2 signalling pathway. Exp Cell Res 2019; 383:111512. [PMID: 31356817 DOI: 10.1016/j.yexcr.2019.111512] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that oxysterol binding protein like 2 (OSBPL2) knockdown is closely related to cholesterol metabolism. However, whether there is a direct relation between OSBPL2 and cholesterol synthesis is unknown. This study explored the mechanism of OSBPL2 deficiency in the upregulation of squalene epoxidase (SQLE) and the subsequent accumulation of intracellular cholesterol and cholesteryl ester. Here, we constructed an OSBPL2-deleted HeLa cell line using CRISPR/Cas9 technology, screened differentially expressed genes and examined the transcriptional regulation of SQLE using a dual-luciferase reporter gene. RNA-seq analysis showed that SQLE was upregulated significantly and the dual luciferase reporter gene assay revealed that two new functional transcription factor binding sites of Sp1 transcription factor (SP1) and sterol regulatory element-binding transcription factor 2 (SREBF2) in the SQLE promoter participated in the SQLE transcription and expression. In addition, we also observed that OSBPL2 deletion inhibited the AMPK signalling pathway and that the inhibition of AMPK signalling promoted SP1 and SREBF2 entry into the nuclear to upregulate SQLE expression. Therefore, these data support that OSBPL2 deficiency upregulates SQLE expression and increases the accumulation of cholesterol and cholesteryl ester by suppressing AMPK signalling, which provides new evidence of the connection between OSBPL2 and cholesterol synthesis.
Collapse
Affiliation(s)
- Cui Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongdu Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
22
|
Olkkonen VM, Koponen A, Arora A. OSBP-related protein 2 (ORP2): Unraveling its functions in cellular lipid/carbohydrate metabolism, signaling and F-actin regulation. J Steroid Biochem Mol Biol 2019; 192:105298. [PMID: 30716465 DOI: 10.1016/j.jsbmb.2019.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Oxysterol-binding protein (OSBP)-related proteins (ORPs) constitute a family of intracellular lipid-binding/transport proteins (LTPs) in eukaryotes. They typically have a modular structure comprising a lipid-binding domain and membrane targeting determinants, being thus suited for function at membrane contact sites. Among the mammalian ORPs, ORP2/OSBPL2 is the only member that only exists as a 'short' variant lacking a membrane-targeting pleckstrin homology domain. ORP2 is expressed ubiquitously and has been assigned a multitude of functions. Its OSBP-related domain binds cholesterol, oxysterols, and phosphoinositides, and its overexpression enhances cellular cholesterol efflux. Consistently, the latest observations suggest a function of ORP2 in cholesterol transport to the plasma membrane (PM) in exchange for phosphatidylinositol 4,5-bisphosphate (PI4,5P2), with significant impacts on the concentrations of PM cholesterol and PI4,5P2. On the other hand, ORP2 localizes at the surface of cytoplasmic lipid droplets (LDs) and at endoplasmic-reticulum-LD contact sites, and its depletion modifies cellular triglyceride (TG) metabolism. Study in an adrenocortical cell line further suggested a function of ORP2 in the synthesis of steroid hormones. Our recent knock-out of ORP2 in human hepatoma cells revealed its function in hepatocellular PI3K/Akt signaling, glucose and triglyceride metabolism, as well as in actin cytoskeletal regulation, cell adhesion, migration and proliferation. ORP2 was shown to interact physically with F-actin regulators such as DIAPH1, ARHGAP12, SEPT9 and MLC12, as well as with IQGAP1 and the Cdc37-Hsp90 chaperone complex controlling the activity of Akt. Interestingly, mutations in OSBPL2 encoding ORP2 are associated with autosomal dominant non-syndromic hearing loss, and the protein was found to localize in cochlear hair cell stereocilia. The functions assigned to ORP2 suggest that this protein, in concert with other LTPs, controls the subcellular distribution of cholesterol in various cell types and steroid hormone synthesis in adrenocortical cells. However, it also impacts cellular TG and carbohydrate metabolism and F-actin-dependent functions, revealing a bewildering spectrum of activities.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland.
| | - Annika Koponen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Amita Arora
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| |
Collapse
|
23
|
Wang H, Lin C, Yao J, Shi H, Zhang C, Wei Q, Lu Y, Chen Z, Xing G, Cao X. Deletion of OSBPL2 in auditory cells increases cholesterol biosynthesis and drives reactive oxygen species production by inhibiting AMPK activity. Cell Death Dis 2019; 10:627. [PMID: 31427568 PMCID: PMC6700064 DOI: 10.1038/s41419-019-1858-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023]
Abstract
Oxysterol-binding protein like 2 (OSBPL2) was identified as a novel causal gene for autosomal dominant nonsyndromic hearing loss. However, the pathogenesis of OSBPL2 deficits in ADNSHL was still unclear. The function of OSBPL2 as a lipid-sensing regulator in multiple cellular processes suggested that OSBPL2 might play an important role in the regulation of cholesterol-homeostasis, which was essential for inner ear. In this study the potential roles of OSBPL2 in cholesterol biosynthesis and ROS production were investigated in Osbpl2-KO OC1 cells and osbpl2b-KO zebrafish. RNA-seq-based analysis suggested that OSBPL2 was implicated in cholesterol biosynthesis and AMPK signaling pathway. Furthermore, Osbpl2/osbpl2b-KO resulted in a reduction of AMPK activity and up-regulation of Srebp2/srebp2, Hmgcr/hmgcr and Hmgcs1/hmgcs1, key genes in the sterol biosynthetic pathway and associated with AMPK signaling. In addition, OSBPL2 was also found to interact with ATIC, key activator of AMPK. The levels of total cholesterol and ROS in OC1 cells or zebrafish inner ear were both increased in Osbpl2/osbpl2b-KO mutants and the mitochondrial damage was detected in Osbpl2-KO OC1 cells. This study uncovered the regulatory roles of OSBPL2 in cellular cholesterol biosynthesis and ROS production. These founds might contribute to the deep understanding of the pathogenesis of OSBPL2 mutation in ADNSHL.
Collapse
Affiliation(s)
- Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Hairong Shi
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Cui Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China. .,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China. .,The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
24
|
OSBPL2-disrupted pigs recapitulate dual features of human hearing loss and hypercholesterolaemia. J Genet Genomics 2019; 46:379-387. [PMID: 31451425 DOI: 10.1016/j.jgg.2019.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Oxysterol binding protein like 2 (OSBPL2), an important regulator in cellular lipid metabolism and transport, was identified as a novel deafness-causal gene in our previous work. To resemble the phenotypic features of OSBPL2 mutation in animal models and elucidate the potential genotype-phenotype associations, the OSBPL2-disrupted Bama miniature (BM) pig model was constructed using CRISPR/Cas9-mediated gene editing, somatic cell nuclear transfer (SCNT) and embryo transplantation approaches, and then subjected to phenotypic characterization of auditory function and serum lipid profiles. The OSBPL2-disrupted pigs displayed progressive hearing loss (HL) with degeneration/apoptosis of cochlea hair cells (HCs) and morphological abnormalities in HC stereocilia, as well as hypercholesterolaemia. High-fat diet (HFD) feeding aggravated the development of HL and led to more severe hypercholesterolaemia. The dual phenotypes of progressive HL and hypercholesterolaemia resembled in OSBPL2-disrupted pigs confirmed the implication of OSBPL2 mutation in nonsydromic hearing loss (NSHL) and contributed to the potential linkage between auditory dysfunction and dyslipidaemia/hypercholesterolaemia.
Collapse
|
25
|
D'Aguillo C, Bressler S, Yan D, Mittal R, Fifer R, Blanton SH, Liu X. Genetic screening as an adjunct to universal newborn hearing screening: literature review and implications for non-congenital pre-lingual hearing loss. Int J Audiol 2019; 58:834-850. [PMID: 31264897 DOI: 10.1080/14992027.2019.1632499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective: Universal newborn hearing screening (UNHS) uses otoacoustic emissions testing (OAE) and auditory brainstem response testing (ABR) to screen all newborn infants for hearing loss (HL), but may not identify infants with mild HL at birth or delayed onset HL. The purpose of this review is to examine the role of genetic screening to diagnose children with pre-lingual HL that is not detected at birth by determining the rate of children who pass UNHS but have a positive genetic screening. This includes a summary of the current UNHS and its limitations and a review of genetic mutations and screening technologies used to detect patients with an increased risk of undiagnosed pre-lingual HL.Design: Literature review of studies that compare UNHS with concurrent genetic screening.Study sample: Infants and children with HLResults: Sixteen studies were included encompassing 137,895 infants. Pathogenic mutations were detected in 8.66% of patients. In total, 545 patients passed the UNHS but had a positive genetic screening. The average percentage of patients who passed UNHS but had a positive genetic screening was 1.4%.Conclusions: This review demonstrates the positive impact of concurrent genetic screening with UNHS to identify patients with pre-lingual HL.
Collapse
Affiliation(s)
- Christine D'Aguillo
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sara Bressler
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert Fifer
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susan H Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Human Genetics, Dr. John T. Macdonald Foundation, Miami, FL, USA.,John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Human Genetics, Dr. John T. Macdonald Foundation, Miami, FL, USA.,John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Tsinghua University School of Medicine, Beijing, PR China
| |
Collapse
|
26
|
Wu N, Husile H, Yang L, Cao Y, Li X, Huo W, Bai H, Liu Y, Wu Q. A novel pathogenic variant in OSBPL2 linked to hereditary late-onset deafness in a Mongolian family. BMC MEDICAL GENETICS 2019; 20:43. [PMID: 30894143 PMCID: PMC6425609 DOI: 10.1186/s12881-019-0781-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/11/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND To investigate the clinical features and the underlying causal gene of a family with hereditary late-onset deafness in Inner Mongolia of China, and to provide evidence for the early genetic screening and diagnosis of this disease. METHODS Family data were collected to draw a pedigree. Audiological testing and physical examination of the family members were conducted following questionnaire. Genomic DNA was extracted from peripheral blood of 5 family members (3 patients and 2 normal control) and subjected to whole genome sequencing for identifying deafness casual genes. The pathogenic variant in the deafness gene was further confirmed by Sanger sequencing. RESULTS The family is composed of a total of 6 generations, with 53 traceable individuals. In this family,19 of them were diagnosed with post lingual deafness with the age of onset between 10 and 40 years, displaying delayed and progressive hearing loss. Patients with hearing loss showed bilateral symmetry and mild to severe sensorineural deafness. The pattern of deafness inheritance in this family is autosomal dominant. Whole genome sequencing identified a novel pathogenic frameshift mutation, c.158_159delAA (p.Gln53Arg fs*100) in the gene OSBPL2 (Oxysterol-binding protein-related protein 2, NM_144498.2), which is absent from genomic data of 201 unrelated normal subjects. This pathogenic variant was further validated by Sanger sequencing, and was found to co-segregate in this family. CONCLUSIONS Whole genome sequencing identified a two-nucleotide deletion in OSBPL2 (c.158_159delAA) as the pathogenic variant for deafness in the family. Our finding expands the mutational spectrum of OSBPL2 and contributes to the pathogenic variant list in genetic counseling for deafness screening.
Collapse
Affiliation(s)
- Ningjin Wu
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, China.,Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Husile Husile
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, China.,Inner Mongolia Engineering Research Center of Personalized Medicine, Tongliao, 028000, China
| | - Liqing Yang
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, China.,Inner Mongolia Engineering Research Center of Personalized Medicine, Tongliao, 028000, China
| | - Yaning Cao
- School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Xing Li
- School of Life Science, Inner Mongolia University for the Nationalities, Tongliao, 028000, China
| | - Wenyan Huo
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, China.,Inner Mongolia Engineering Research Center of Personalized Medicine, Tongliao, 028000, China
| | - Haihua Bai
- Inner Mongolia Engineering Research Center of Personalized Medicine, Tongliao, 028000, China.,School of Life Science, Inner Mongolia University for the Nationalities, Tongliao, 028000, China
| | - Yangjian Liu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Qizhu Wu
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, China. .,Inner Mongolia Engineering Research Center of Personalized Medicine, Tongliao, 028000, China.
| |
Collapse
|
27
|
Rasika S, Passemard S, Verloes A, Gressens P, El Ghouzzi V. Golgipathies in Neurodevelopment: A New View of Old Defects. Dev Neurosci 2019; 40:396-416. [PMID: 30878996 DOI: 10.1159/000497035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The Golgi apparatus (GA) is involved in a whole spectrum of activities, from lipid biosynthesis and membrane secretion to the posttranslational processing and trafficking of most proteins, the control of mitosis, cell polarity, migration and morphogenesis, and diverse processes such as apoptosis, autophagy, and the stress response. In keeping with its versatility, mutations in GA proteins lead to a number of different disorders, including syndromes with multisystem involvement. Intriguingly, however, > 40% of the GA-related genes known to be associated with disease affect the central or peripheral nervous system, highlighting the critical importance of the GA for neural function. We have previously proposed the term "Golgipathies" in relation to a group of disorders in which mutations in GA proteins or their molecular partners lead to consequences for brain development, in particular postnatal-onset microcephaly (POM), white-matter defects, and intellectual disability (ID). Here, taking into account the broader role of the GA in the nervous system, we refine and enlarge this emerging concept to include other disorders whose symptoms may be indicative of altered neurodevelopmental processes, from neurogenesis to neuronal migration and the secretory function critical for the maturation of postmitotic neurons and myelination.
Collapse
Affiliation(s)
- Sowmyalakshmi Rasika
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Sandrine Passemard
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Alain Verloes
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Pierre Gressens
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Vincent El Ghouzzi
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France,
| |
Collapse
|
28
|
Wang Q, Lin C, Zhang C, Wang H, Lu Y, Yao J, Wei Q, Xing G, Cao X. 25-hydroxycholesterol down-regulates oxysterol binding protein like 2 (OSBPL2) via the p53/SREBF2/NFYA signaling pathway. J Steroid Biochem Mol Biol 2019; 187:17-26. [PMID: 30391516 DOI: 10.1016/j.jsbmb.2018.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022]
Abstract
Oxysterol Binding Protein Like 2 (OSBPL2) is a lipid-binding protein implicated in various cellular processes. Previous studies have shown that depression of OSBPL2 significantly increases the level of cellular 25-hydroxycholesterol (25-OHC) which regulates the expression of lipid-metabolism-related genes. However, whether 25-OHC can regulate the expression of OSBPL2 remains unanswered. This study aimed to explore the molecular mechanism of 25-OHC regulating the expression of OSBPL2. Using dual-luciferase reporter assay, we found a decrease of nuclear transcription factor Y subunit alpha (NFYA) bound with OSBPL2 promoter when HeLa cells were treated with 25-OHC. Furthermore, transcriptome sequencing and RNA interference results revealed that the p53/sterol regulatory element binding transcription factor 2 (SREBF2) signaling pathway was involved in the NFYA-dependent transcription of OSBPL2 induced by 25-OHC. Based on these results, we concluded that pleomorphic adenoma gene 1 (PLAG1) and NFYA participated in the basal transcription of OSBPL2 and that 25-OHC decreased the transcription of OSBPL2 via the p53/SREBF2/NFYA signaling pathway. 25-OHC will accumulate over time in OSBPL2 knockdown cells. These results may provide a new insight into the deafness caused by OSBPL2 mutation.
Collapse
Affiliation(s)
- Quan Wang
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Cui Zhang
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China; The Laboratory Center for Basic Medical Sciences, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China; The Laboratory Center for Basic Medical Sciences, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
29
|
Carpena NT, Lee MY. Genetic Hearing Loss and Gene Therapy. Genomics Inform 2018; 16:e20. [PMID: 30602081 PMCID: PMC6440668 DOI: 10.5808/gi.2018.16.4.e20] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Genetic hearing loss crosses almost all the categories of hearing loss which includes the following: conductive, sensory, and neural; syndromic and nonsyndromic; congenital, progressive, and adult onset; high-frequency, low-frequency, or mixed frequency; mild or profound; and recessive, dominant, or sex-linked. Genes play a role in almost half of all cases of hearing loss but effective treatment options are very limited. Genetic hearing loss is considered to be extremely genetically heterogeneous. The advancements in genomics have been instrumental to the identification of more than 6,000 causative variants in more than 150 genes causing hearing loss. Identification of genes for hearing impairment provides an increased insight into the normal development and function of cells in the auditory system. These defective genes will ultimately be important therapeutic targets. However, the auditory system is extremely complex which requires tremendous advances in gene therapy including gene vectors, routes of administration, and therapeutic approaches. This review summarizes and discusses recent advances in elucidating the genomics of genetic hearing loss and technologies aimed at developing a gene therapy that may become a treatment option for in the near future.
Collapse
Affiliation(s)
- Nathanial T Carpena
- Department of Otolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan 31116, Korea
| | - Min Young Lee
- Department of Otolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan 31116, Korea.,Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
30
|
DiStefano MT, Hemphill SE, Cushman BJ, Bowser MJ, Hynes E, Grant AR, Siegert RK, Oza AM, Gonzalez MA, Amr SS, Rehm HL, Abou Tayoun AN. Curating Clinically Relevant Transcripts for the Interpretation of Sequence Variants. J Mol Diagn 2018; 20:789-801. [PMID: 30096381 PMCID: PMC6204605 DOI: 10.1016/j.jmoldx.2018.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/20/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022] Open
Abstract
Variant interpretation depends on accurate annotations using biologically relevant transcripts. We have developed a systematic strategy for designating primary transcripts and have applied it to 109 hearing loss-associated genes that were divided into three categories. Category 1 genes (n = 38) had a single transcript; category 2 genes (n = 33) had multiple transcripts, but a single transcript was sufficient to represent all exons; and category 3 genes (n = 38) had multiple transcripts with unique exons. Transcripts were curated with respect to gene expression reported in the literature and the Genotype-Tissue Expression Project. In addition, high-frequency loss-of-function variants in the Genome Aggregation Database and disease-causing variants in ClinVar and the Human Gene Mutation Database across the 109 genes were queried. These data were used to classify exons as clinically significant, insignificant, or of uncertain significance. Interestingly, 6% of all exons, containing 124 reportedly disease-causing variants, were of uncertain significance. Finally, we used exon-level next-generation sequencing quality metrics generated at two clinical laboratories and identified a total of 43 technically challenging exons in 20 different genes that had inadequate coverage and/or homology issues that might lead to false-variant calls. We have demonstrated that transcript analysis plays a critical role in accurate clinical variant interpretation.
Collapse
Affiliation(s)
- Marina T DiStefano
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Sarah E Hemphill
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Brandon J Cushman
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Mark J Bowser
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Elizabeth Hynes
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Andrew R Grant
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Rebecca K Siegert
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Andrea M Oza
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts
| | - Michael A Gonzalez
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sami S Amr
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Heidi L Rehm
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Medical and Population Genetics, The Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Ahmad N Abou Tayoun
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Genetics Department, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates.
| |
Collapse
|
31
|
Pietrangelo A, Ridgway ND. Bridging the molecular and biological functions of the oxysterol-binding protein family. Cell Mol Life Sci 2018; 75:3079-3098. [PMID: 29536114 PMCID: PMC11105248 DOI: 10.1007/s00018-018-2795-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/18/2018] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large eukaryotic gene family that transports and regulates the metabolism of sterols and phospholipids. The original classification of the family based on oxysterol-binding activity belies the complex dual lipid-binding specificity of the conserved OSBP homology domain (OHD). Additional protein- and membrane-interacting modules mediate the targeting of select OSBP/ORPs to membrane contact sites between organelles, thus positioning the OHD between opposing membranes for lipid transfer and metabolic regulation. This unique subcellular location, coupled with diverse ligand preferences and tissue distribution, has identified OSBP/ORPs as key arbiters of membrane composition and function. Here, we will review how molecular models of OSBP/ORP-mediated intracellular lipid transport and regulation at membrane contact sites relate to their emerging roles in cellular and organismal functions.
Collapse
Affiliation(s)
- Antonietta Pietrangelo
- Atlantic Research Center, C306 CRC Bldg, Department of Pediatrics, and Biochemistry and Molecular Biology, Dalhousie University, 5849 University Av., Halifax, NS, B3H4R2, Canada
| | - Neale D Ridgway
- Atlantic Research Center, C306 CRC Bldg, Department of Pediatrics, and Biochemistry and Molecular Biology, Dalhousie University, 5849 University Av., Halifax, NS, B3H4R2, Canada.
| |
Collapse
|
32
|
You D, Guo L, Li W, Sun S, Chen Y, Chai R, Li H. Characterization of Wnt and Notch-Responsive Lgr5+ Hair Cell Progenitors in the Striolar Region of the Neonatal Mouse Utricle. Front Mol Neurosci 2018; 11:137. [PMID: 29760650 PMCID: PMC5937014 DOI: 10.3389/fnmol.2018.00137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022] Open
Abstract
Dysfunctions in hearing and balance are largely connected with hair cell (HC) loss. Although regeneration of HCs in the adult cochlea does not occur, there is still limited capacity for HC regeneration in the mammalian utricle from a distinct population of supporting cells (SCs). In response to HC damage, these Lgr5+ SCs, especially those in the striolar region, can regenerate HCs. In this study, we isolated Lgr5+ SCs and Plp1+ SCs (which originate from the striolar and extrastriolar regions, respectively) from transgenic mice by flow cytometry so as to compare the properties of these two subsets of SCs. We found that the Lgr5+ progenitors had greater proliferation and HC regeneration ability than the Plp1+ SCs and that the Lgr5+ progenitors responded more strongly to Wnt and Notch signaling than Plp1+ SCs. We then compared the gene expression profiles of the two populations by RNA-Seq and identified several genes that were significantly differentially expressed between the two populations, including genes involved in the cell cycle, transcription and cell signaling pathways. Targeting these genes and pathways might be a potential way to activate HC regeneration.
Collapse
Affiliation(s)
- Dan You
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yan Chen
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences and The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Kentala H, Koponen A, Kivelä AM, Andrews R, Li C, Zhou Y, Olkkonen VM. Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation. FASEB J 2018; 32:1281-1295. [PMID: 29092904 DOI: 10.1096/fj.201700604r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ORP2 is implicated in cholesterol transport, triglyceride metabolism, and adrenocortical steroid hormone production. We addressed ORP2 function in hepatocytes by generating ORP2-knockout (KO) HuH7 cells by CRISPR-Cas9 gene editing, followed by analyses of transcriptome, F-actin morphology, migration, adhesion, and proliferation. RNA sequencing of ORP2-KO cells revealed >2-fold changes in 579 mRNAs. The Ingenuity Pathway Analysis (IPA) uncovered alterations in the following functional categories: cellular movement, cell-cell signaling and interaction, cellular development, cellular function and maintenance, cellular growth and proliferation, and cell morphology. Many pathways in these categories involved actin cytoskeleton, cell migration, adhesion, or proliferation. Analysis of the ORP2 interactome uncovered 109 putative new partners. Their IPA analysis revealed Ras homolog A (RhoA) signaling as the most significant pathway. Interactions of ORP2 with SEPT9, MLC12, and ARHGAP12 were validated by independent assays. ORP2-KO resulted in abnormal F-actin morphology characterized by impaired capacity to form lamellipodia, migration defect, and impaired adhesion and proliferation. Rescue of the migration phenotype and generation of typical cell surface morphology required an intact ORP2 phosphoinositide binding site, suggesting that ORP2 function involves phosphoinositide binding and transport. The results point at a novel function of ORP2 as a lipid-sensing regulator of the actin cytoskeleton, with impacts on hepatocellular migration, adhesion, and proliferation.-Kentala, H., Koponen, A., Kivelä, A. M., Andrews, R., Li, C., Zhou, Y., Olkkonen, V. M. Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annika Koponen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annukka M Kivelä
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Robert Andrews
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - ChunHei Li
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - You Zhou
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
34
|
Mahmoudian-Sani MR, Mehri-Ghahfarrokhi A, Ahmadinejad F, Hashemzadeh-Chaleshtori M, Saidijam M, Jami MS. MicroRNAs: effective elements in ear-related diseases and hearing loss. Eur Arch Otorhinolaryngol 2017; 274:2373-2380. [PMID: 28224282 DOI: 10.1007/s00405-017-4470-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
miRNAs are important factors for post-transcriptional process that controls gene expression at mRNA level. Various biological processes, including growth and differentiation, are regulated by miRNAs. miRNAs have been demonstrated to play an essential role in development and progression of hearing loss. Nowadays, miRNAs are known as critical factors involved in different physiological, biological, and pathological processes, such as gene expression, progressive sensorineural hearing loss, age-related hearing loss, noise-induced hearing loss, cholesteatoma, schwannomas, and inner ear inflammation. The miR-183 family (miR-183, miR-96 and miR-182) is expressed abundantly in some types of sensory cells in inner ear specially mechanosensory hair cells that exhibit a great expression level of this family. The plasma levels of miR-24-3p, miR-16-5p, miR-185-5p, and miR-451a were upregulated during noise exposures, and increased levels of miR-21 have been found in vestibular schwannomas and human cholesteatoma. In addition, upregulation of pro-apoptotic miRNAs and downregulation of miRNAs which promote differentiation and proliferation in age-related degeneration of the organ of Corti may potentially serve as a helpful biomarker for the early detection of age-related hearing loss. This knowledge represents miRNAs as promising diagnostic and therapeutic tools in the near future.
Collapse
Affiliation(s)
- Mohammad-Reza Mahmoudian-Sani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Fereshteh Ahmadinejad
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
35
|
Neuhaus C, Lang-Roth R, Zimmermann U, Heller R, Eisenberger T, Weikert M, Markus S, Knipper M, Bolz H. Extension of the clinical and molecular phenotype of DIAPH1
-associated autosomal dominant hearing loss (DFNA1
). Clin Genet 2016; 91:892-901. [DOI: 10.1111/cge.12915] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
Affiliation(s)
- C. Neuhaus
- Bioscientia Center for Human Genetics; Ingelheim Germany
| | - R. Lang-Roth
- Department of Otorhinolaryngology, Head and Neck Surgery; University of Cologne; Cologne Germany
| | - U. Zimmermann
- Molecular Physiology of Hearing, Hearing Research Centre Tübingen (THRC), Department of Otolaryngology; University of Tübingen; Tübingen Germany
| | - R. Heller
- Institute of Human Genetics; University Hospital of Cologne; Cologne Germany
| | - T. Eisenberger
- Bioscientia Center for Human Genetics; Ingelheim Germany
| | - M. Weikert
- Gemeinschaftspraxis für Phoniatrie; Pädaudiologie und Hals-Nasen-Ohrenheilkunde; Regensburg Germany
| | - S. Markus
- Kompetenzzentrum für Humangenetik; Gynäkologie und Laboratoriumsmedizin; Regensburg Germany
| | - M. Knipper
- Department of Otorhinolaryngology, Head and Neck Surgery; University of Cologne; Cologne Germany
| | - H.J. Bolz
- Bioscientia Center for Human Genetics; Ingelheim Germany
- Institute of Human Genetics; University Hospital of Cologne; Cologne Germany
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW In the age of targeted genomic enrichment and massively parallel sequencing, there is no more efficient genetic testing method for the diagnosis of hereditary hearing loss. More clinical tests are on the market, which can make choosing good tests difficult. RECENT FINDINGS More and larger comprehensive genetic studies in patients with hearing loss have been published recently. They remind us of the importance of looking for both single nucleotide variation and copy number variation in all genes implicated in nonsyndromic hearing loss. They also inform us of how a patient's history and phenotype provide essential information in the interpretation of genetic data. SUMMARY Choosing the most comprehensive genetic test improves the chances of a genetic diagnosis and thereby impacts clinical care.
Collapse
|
37
|
Intracellular cholesterol transport proteins: roles in health and disease. Clin Sci (Lond) 2016; 130:1843-59. [DOI: 10.1042/cs20160339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
Effective cholesterol homoeostasis is essential in maintaining cellular function, and this is achieved by a network of lipid-responsive nuclear transcription factors, and enzymes, receptors and transporters subject to post-transcriptional and post-translational regulation, whereas loss of these elegant, tightly regulated homoeostatic responses is integral to disease pathologies. Recent data suggest that sterol-binding sensors, exchangers and transporters contribute to regulation of cellular cholesterol homoeostasis and that genetic overexpression or deletion, or mutations, in a number of these proteins are linked with diseases, including atherosclerosis, dyslipidaemia, diabetes, congenital lipoid adrenal hyperplasia, cancer, autosomal dominant hearing loss and male infertility. This review focuses on current evidence exploring the function of members of the ‘START’ (steroidogenic acute regulatory protein-related lipid transfer) and ‘ORP’ (oxysterol-binding protein-related proteins) families of sterol-binding proteins in sterol homoeostasis in eukaryotic cells, and the evidence that they represent valid therapeutic targets to alleviate human disease.
Collapse
|
38
|
Liu C, Yao J, Wei Q, Xing G, Cao X. Spatial and temporal expression patterns of Osbpl2a and Osbpl2b during zebrafish embryonic development. Int J Pediatr Otorhinolaryngol 2016; 84:174-9. [PMID: 27063776 DOI: 10.1016/j.ijporl.2016.02.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The mutated OSBPL2 (OMIM: 606731), encoding oxysterol binding protein-like protein 2, was recently identified as a novel causative gene for autosomal dominant nonsyndromic hearing loss (ADNSHL). We reported the expression patterns of Osbpl2 in zebrafish, in order to further understand the role of OSBPL2 in hearing formation and development. METHODS Zebrafish was used as an animal model, and the expression of Osbpl2 was investigated by whole mount in situ hybridization. RESULTS Bioinformatics analysis indicates that zebrafish has two homologues of Osbpl2 gene (Osbpl2a and Osbpl2b) and Osbpl2b is the orthologous gene of human OSBPL2. No expression of Osbpl2a and Osbpl2b mRNA is detected at 75% epiboly. The zygotical expression of the two genes has not been started at 11-somite stage. At 24h post-fertilization (hpf), both Osbpl2a and Osbpl2b are found at ventricle zone of brain, however, the expression level of Osbpl2a is higher than that of Osbpl2b. When embryos are 48hpf, the expression level of Osbpl2a and Osbpl2b becomes higher at the ventricle zone. At 72hpf, Osbpl2b is only found at liver primordium, while Osbpl2a is not detected anywhere obviously. At 96hpf, Osbpl2b is found at pharyngeal arches, liver, digestive tract and otic vesicle, while Osbpl2a remains undetected. CONCLUSION Osbpl2b was demonstrated to be the orthologous gene of human OSBPL2, which has strong maternal expression, while Osbpl2a was detected without obvious maternal expression. This work would contribute to the further study of the molecular mechanism and function of OSBPL2 implicated with ADNSHL.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Biotechnology, School of Basic Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jun Yao
- Department of Biotechnology, School of Basic Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Qinjun Wei
- Department of Biotechnology, School of Basic Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Guangqian Xing
- Department of Otolaryngology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Xin Cao
- Department of Biotechnology, School of Basic Medicine, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
39
|
Lewis MA, Buniello A, Hilton JM, Zhu F, Zhang WI, Evans S, van Dongen S, Enright AJ, Steel KP. Exploring regulatory networks of miR-96 in the developing inner ear. Sci Rep 2016; 6:23363. [PMID: 26988146 PMCID: PMC4796898 DOI: 10.1038/srep23363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/24/2016] [Indexed: 12/16/2022] Open
Abstract
Mutations in the microRNA Mir96 cause deafness in mice and humans. In the diminuendo mouse, which carries a single base pair change in the seed region of miR-96, the sensory hair cells crucial for hearing fail to develop fully and retain immature characteristics, suggesting that miR-96 is important for coordinating hair cell maturation. Our previous transcriptional analyses show that many genes are misregulated in the diminuendo inner ear and we report here further misregulated genes. We have chosen three complementary approaches to explore potential networks controlled by miR-96 using these transcriptional data. Firstly, we used regulatory interactions manually curated from the literature to construct a regulatory network incorporating our transcriptional data. Secondly, we built a protein-protein interaction network using the InnateDB database. Thirdly, gene set enrichment analysis was used to identify gene sets in which the misregulated genes are enriched. We have identified several candidates for mediating some of the expression changes caused by the diminuendo mutation, including Fos, Myc, Trp53 and Nr3c1, and confirmed our prediction that Fos is downregulated in diminuendo homozygotes. Understanding the pathways regulated by miR-96 could lead to potential therapeutic targets for treating hearing loss due to perturbation of any component of the network.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Annalisa Buniello
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Fei Zhu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - William I Zhang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Stephanie Evans
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | | | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
40
|
Hosoya M, Fujioka M, Ogawa K, Okano H. Distinct Expression Patterns Of Causative Genes Responsible For Hereditary Progressive Hearing Loss In Non-Human Primate Cochlea. Sci Rep 2016; 6:22250. [PMID: 26915689 PMCID: PMC4768099 DOI: 10.1038/srep22250] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/10/2016] [Indexed: 12/18/2022] Open
Abstract
Hearing impairment is the most frequent sensory deficit in humans. Deafness genes, which harbor pathogenic mutations that have been identified in families with hereditary hearing loss, are commonly expressed in the auditory end organ or the cochlea and may contribute to normal hearing function, yet some of the mouse models carrying these mutations fail to recapitulate the hearing loss phenotype. In this study, we find that distinct expression patterns of those deafness genes in the cochlea of a non-human primate, the common marmoset (Callithrix jacchus). We examined 20 genes whose expression in the cochlea has already been reported. The deafness genes GJB3, CRYM, GRHL2, DFNA5, and ATP6B1 were expressed in marmoset cochleae in patterns different from those in mouse cochleae. Of note, all those genes are causative for progressive hearing loss in humans, but not in mice. The other tested genes, including the deafness gene COCH, in which mutation recapitulates deafness in mice, were expressed in a similar manner in both species. The result suggests that the discrepancy in the expression between rodents and primates may account for the phenotypic difference. This limitation of the rodent models can be bypassed by using non-human primate models such as the marmoset.
Collapse
Affiliation(s)
- Makoto Hosoya
- Keio University School of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, 35 Shinanomachi Shinjyuku-ku Tokyo, 160-8582, Japan
| | - Masato Fujioka
- Keio University School of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, 35 Shinanomachi Shinjyuku-ku Tokyo, 160-8582, Japan
| | - Kaoru Ogawa
- Keio University School of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, 35 Shinanomachi Shinjyuku-ku Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Keio University School of Medicine, Department of Physiology, 35 Shinanomachi Shinjyuku-ku Tokyo, 160-8582, Japan
| |
Collapse
|
41
|
Egilmez OK, Kalcioglu MT. Genetics of Nonsyndromic Congenital Hearing Loss. SCIENTIFICA 2016; 2016:7576064. [PMID: 26989561 PMCID: PMC4775805 DOI: 10.1155/2016/7576064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
Congenital hearing impairment affects nearly 1 in every 1000 live births and is the most frequent birth defect in developed societies. Hereditary types of hearing loss account for more than 50% of all congenital sensorineural hearing loss cases and are caused by genetic mutations. HL can be either nonsyndromic, which is restricted to the inner ear, or syndromic, a part of multiple anomalies affecting the body. Nonsyndromic HL can be categorised by mode of inheritance, such as autosomal dominant (called DFNA), autosomal recessive (DFNB), mitochondrial, and X-linked (DFN). To date, 125 deafness loci have been reported in the literature: 58 DFNA loci, 63 DFNB loci, and 4 X-linked loci. Mutations in genes that control the adhesion of hair cells, intracellular transport, neurotransmitter release, ionic hemeostasis, and cytoskeleton of hair cells can lead to malfunctions of the cochlea and inner ear. In recent years, with the increase in studies about genes involved in congenital hearing loss, genetic counselling and treatment options have emerged and increased in availability. This paper presents an overview of the currently known genes associated with nonsyndromic congenital hearing loss and mutations in the inner ear.
Collapse
Affiliation(s)
- Oguz Kadir Egilmez
- Department of Otorhinolaryngology, Faculty of Medicine, Istanbul Medeniyet University, 34722 Istanbul, Turkey
| | - M. Tayyar Kalcioglu
- Department of Otorhinolaryngology, Faculty of Medicine, Istanbul Medeniyet University, 34722 Istanbul, Turkey
| |
Collapse
|
42
|
Kentala H, Weber-Boyvat M, Olkkonen VM. OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:299-340. [PMID: 26811291 DOI: 10.1016/bs.ircmb.2015.09.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxysterol-binding protein (OSBP) and its related protein homologs, ORPs, constitute a conserved family of lipid-binding/transfer proteins (LTPs) expressed ubiquitously in eukaryotes. The ligand-binding domain of ORPs accommodates cholesterol and oxysterols, but also glycerophospholipids, particularly phosphatidylinositol-4-phosphate (PI4P). ORPs have been implicated as intracellular lipid sensors or transporters. Most ORPs carry targeting determinants for the endoplasmic reticulum (ER) and non-ER organelle membrane. ORPs are located and function at membrane contact sites (MCSs), at which ER is closely apposed with other organelle limiting membranes. Such sites have roles in lipid transport and metabolism, control of Ca(2+) fluxes, and signaling events. ORPs are postulated either to transport lipids over MCSs to maintain the distinct lipid compositions of organelle membranes, or to control the activity of enzymes/protein complexes with functions in signaling and lipid metabolism. ORPs may transfer PI4P and another lipid class bidirectionally. Transport of PI4P followed by its hydrolysis would in this model provide the energy for transfer of the other lipid against its concentration gradient. Control of organelle lipid compositions by OSBP/ORPs is important for the life cycles of several pathogenic viruses. Targeting ORPs with small-molecular antagonists is proposed as a new strategy to combat viral infections. Several ORPs are reported to modulate vesicle transport along the secretory or endocytic pathways. Moreover, antagonists of certain ORPs inhibit cancer cell proliferation. Thus, ORPs are LTPs, which mediate interorganelle lipid transport and coordinate lipid signals with a variety of cellular regimes.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| |
Collapse
|
43
|
Olkkonen VM. OSBP-Related Protein Family in Lipid Transport Over Membrane Contact Sites. Lipid Insights 2015; 8:1-9. [PMID: 26715851 PMCID: PMC4685180 DOI: 10.4137/lpi.s31726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that oxysterol-binding protein-related proteins (ORPs) localize at membrane contact sites, which are high-capacity platforms for inter-organelle exchange of small molecules and information. ORPs can simultaneously associate with the two apposed membranes and transfer lipids across the interbilayer gap. Oxysterol-binding protein moves cholesterol from the endoplasmic reticulum to trans-Golgi, driven by the retrograde transport of phosphatidylinositol-4-phosphate (PI4P). Analogously, yeast Osh6p mediates the transport of phosphatidylserine from the endoplasmic reticulum to the plasma membrane in exchange for PI4P, and ORP5 and -8 are suggested to execute similar functions in mammalian cells. ORPs may share the capacity to bind PI4P within their ligand-binding domain, prompting the hypothesis that bidirectional transport of a phosphoinositide and another lipid may be a common theme among the protein family. This model, however, needs more experimental support and does not exclude a function of ORPs in lipid signaling.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland. ; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
44
|
Vona B, Nanda I, Hofrichter MAH, Shehata-Dieler W, Haaf T. Non-syndromic hearing loss gene identification: A brief history and glimpse into the future. Mol Cell Probes 2015; 29:260-70. [PMID: 25845345 DOI: 10.1016/j.mcp.2015.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 11/27/2022]
Abstract
From the first identified non-syndromic hearing loss gene in 1995, to those discovered in present day, the field of human genetics has witnessed an unparalleled revolution that includes the completion of the Human Genome Project in 2003 to the $1000 genome in 2014. This review highlights the classical and cutting-edge strategies for non-syndromic hearing loss gene identification that have been used throughout the twenty year history with a special emphasis on how the innovative breakthroughs in next generation sequencing technology have forever changed candidate gene approaches. The simplified approach afforded by next generation sequencing technology provides a second chance for the many linked loci in large and well characterized families that have been identified by linkage analysis but have presently failed to identify a causative gene. It also discusses some complexities that may restrict eventual candidate gene discovery and calls for novel approaches to answer some of the questions that make this simple Mendelian disorder so intriguing.
Collapse
Affiliation(s)
- Barbara Vona
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany.
| | - Indrajit Nanda
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | | | - Wafaa Shehata-Dieler
- Comprehensive Hearing Center, Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Surgery, University Hospital, Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| |
Collapse
|