1
|
Flannery KP, Safwat S, Matsell E, Battula N, Hamed AAA, Mohamed IN, Elseed MA, Koko M, Abubaker R, Abozar F, Elsayed LEO, Bhise V, Molday RS, Salih MA, Yahia A, Manzini MC. A novel missense variant in the ATPase domain of ATP8A2 and review of phenotypic variability of ATP8A2-related disorders caused by missense changes. Neurogenetics 2024; 25:425-433. [PMID: 39066872 PMCID: PMC11534842 DOI: 10.1007/s10048-024-00773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
ATPase, class 1, type 8 A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, impaired intellectual development, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings born from a consanguineous, first-cousin union from Sudan presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.
Collapse
Affiliation(s)
- Kyle P Flannery
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Sylvia Safwat
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada
| | - Namarata Battula
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ahlam A A Hamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Inaam N Mohamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha A Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Rayan Abubaker
- Sudanese Neurogenetics Research group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena E O Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, Riyadh, 11671, Saudi Arabia
| | - Vikram Bhise
- Department of Pediatrics and Neurology, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada
| | - Mustafa A Salih
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Solna, Sweden
| | - M Chiara Manzini
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
2
|
Poudel SP, Behura SK. Relevance of the regulation of the brain-placental axis to the nocturnal bottleneck of mammals. Placenta 2024; 155:11-21. [PMID: 39121583 DOI: 10.1016/j.placenta.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Evolutionary theory suggests that the ancestors of all placental animals were nocturnal. Visual perceptive function of mammalian brain has evolved extensively, but nearly 70 % of today's mammals are still nocturnal. While placental influence on brain development is known, if placenta plays a role in the visual perceptive function of mammalian brain remains untested. The present study aims to test this hypothesis. METHODS In this study, single-nuclei RNA sequencing was performed to identify genes expressed in the pig placenta and fetal brain, and then compared with the orthologous genes expressed in the placenta and fetal brain cells of mouse. Differential gene expression analysis was performed to identify placental genes regulated differentially between nocturnal and diurnal animals. Phylogenetic modeling was performed to test correlated evolution between placenta type, and the nocturnal or diurnal activity among different mammals. RESULTS The results showed that genes differentially regulated in the fetal brain were related to visual perception whereas the placental genes were related to the nocturnal or diurnal activity in placental animals. Phylogenetic modeling of these genes in thirty-four diverse mammalian species showed evidence for evolutionary link between placenta and the nocturnal/diurnal activity in animals. DISCUSSION The findings of this study suggest that the placenta plays a role in the evolution of visual perceptive function of brain to shape the nocturnal or diurnal activity of placental animals.
Collapse
Affiliation(s)
- Shankar P Poudel
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA; MU Institute for Data Science and Informatics, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA; Interdisciplinary Reproduction and Health Group, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA; Interdisciplinary Neuroscience Program, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
3
|
Spoto G, Ceraolo G, Butera A, Di Rosa G, Nicotera AG. Exploring the Genetic Landscape of Chorea in Infancy and Early Childhood: Implications for Diagnosis and Treatment. Curr Issues Mol Biol 2024; 46:5632-5654. [PMID: 38921008 PMCID: PMC11202702 DOI: 10.3390/cimb46060337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
Chorea is a hyperkinetic movement disorder frequently observed in the pediatric population, and, due to advancements in genetic techniques, an increasing number of genes have been associated with this disorder. In genetic conditions, chorea may be the primary feature of the disorder, or be part of a more complex phenotype characterized by epileptic encephalopathy or a multisystemic syndrome. Moreover, it can appear as a persistent disorder (chronic chorea) or have an episodic course (paroxysmal chorea). Managing chorea in childhood presents challenges due to its varied clinical presentation, often involving a spectrum of hyperkinetic movement disorders alongside neuropsychiatric and multisystemic manifestations. Furthermore, during infancy and early childhood, transient motor phenomena resembling chorea occurring due to the rapid nervous system development during this period can complicate the diagnosis. This review aims to provide an overview of the main genetic causes of pediatric chorea that may manifest during infancy and early childhood, focusing on peculiarities that can aid in differential diagnosis among different phenotypes and discussing possible treatment options.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy;
| | - Graziana Ceraolo
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Ambra Butera
- Unit of Child Neurology and Psychiatry, Department of Chemical, Biological, Farmaceutical & Environmental Science, University of Messina, 98125 Messina, Italy;
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Biomedical Sciences, Dental Sciences & Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy;
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Maternal-Infantile Department, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
4
|
Matsell E, Andersen JP, Molday RS. Functional and in silico analysis of ATP8A2 and other P4-ATPase variants associated with human genetic diseases. Dis Model Mech 2024; 17:dmm050546. [PMID: 38436085 PMCID: PMC11073571 DOI: 10.1242/dmm.050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
P4-ATPases flip lipids from the exoplasmic to cytoplasmic leaflet of cell membranes, a property crucial for many biological processes. Mutations in P4-ATPases are associated with severe inherited and complex human disorders. We determined the expression, localization and ATPase activity of four variants of ATP8A2, the P4-ATPase associated with the neurodevelopmental disorder known as cerebellar ataxia, impaired intellectual development and disequilibrium syndrome 4 (CAMRQ4). Two variants, G447R and A772P, harboring mutations in catalytic domains, expressed at low levels and mislocalized in cells. In contrast, the E459Q variant in a flexible loop displayed wild-type expression levels, Golgi-endosome localization and ATPase activity. The R1147W variant expressed at 50% of wild-type levels but showed normal localization and activity. These results indicate that the G447R and A772P mutations cause CAMRQ4 through protein misfolding. The E459Q mutation is unlikely to be causative, whereas the R1147W may display a milder disease phenotype. Using various programs that predict protein stability, we show that there is a good correlation between the experimental expression of the variants and in silico stability assessments, suggesting that such analysis is useful in identifying protein misfolding disease-associated variants.
Collapse
Affiliation(s)
- Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | - Robert S. Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
5
|
Flannery KP, Safwat S, Matsell E, Battula N, Hamed AAA, Mohamed IN, Elseed MA, Koko M, Abubaker R, Abozar F, Elsayed LEO, Bhise V, Molday RS, Salih MA, Yahia A, Manzini MC. A novel missense variant in the ATPase domain of ATP8A2 and review of phenotypic variability of ATP8A2-related disorders caused by missense changes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24306843. [PMID: 38798571 PMCID: PMC11118633 DOI: 10.1101/2024.05.15.24306843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
ATPase, class 1, type 8A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, mental retardation, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.
Collapse
Affiliation(s)
- Kyle P. Flannery
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Sylvia Safwat
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | - Namarata Battula
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | | | | | - Maha A. Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Rayan Abubaker
- Sudanese Neurogenetics Research group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Vikram Bhise
- Department of Pediatrics and Neurology, Rutgers – Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Robert S. Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | - Mustafa A. Salih
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women’s and Children’s Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Solna, Sweden
| | - M. Chiara Manzini
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
6
|
Norris AC, Mansueto AJ, Jimenez M, Yazlovitskaya EM, Jain BK, Graham TR. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119700. [PMID: 38382846 DOI: 10.1016/j.bbamcr.2024.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Mariana Jimenez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Mogensen LS, Mikkelsen SA, Tadini-Buoninsegni F, Holm R, Matsell E, Vilsen B, Molday RS, Andersen JP. On the track of the lipid transport pathway of the phospholipid flippase ATP8A2 - Mutation analysis of residues of the transmembrane segments M1, M2, M3 and M4. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119570. [PMID: 37678495 DOI: 10.1016/j.bbamcr.2023.119570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
P4-ATPases, also known as flippases, translocate specific lipids from the exoplasmic leaflet to the cytoplasmic leaflet of biological membranes, thereby generating an asymmetric lipid distribution essential for numerous cellular functions. A debated issue is which pathway within the protein the lipid substrate follows during the translocation. Here we present a comprehensive mutational screening of all amino acid residues in the transmembrane segments M1, M2, M3, and M4 of the flippase ATP8A2, thus allowing the functionally important residues in these transmembrane segments to be highlighted on a background of less important residues. Kinetic analysis of ATPase activity of 130 new ATP8A2 mutants, providing Vmax values as well as apparent affinities of the mutants for the lipid substrate, support a translocation pathway between M2 and M4 ("M2-M4 path"), extending from the entry site, where the lipid substrate binds from the exoplasmic leaflet, to a putative exit site at the cytoplasmic surface, formed by the divergence of M2 and M4. The effects of mutations in the M2-M4 path on the function of the entry site, including loss of lipid specificity in some mutants, suggest that the M2-M4 path and the entry site are conformationally coupled. Many of the residues of the M2-M4 path possess side chains with a potential for interacting with each other in a zipper-like mode, as well as with the head group of the lipid substrate, by ionic/hydrogen bonds. Thus, the translocation of the lipid substrate toward the cytoplasmic bilayer leaflet is comparable to unzipping a zipper of salt bridges/hydrogen bonds.
Collapse
Affiliation(s)
| | | | | | - Rikke Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Eli Matsell
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Ophthalmology and Visual Sciences, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
8
|
Teov B, Janchevska A, Beqiri-Jasari A, Tasic V, Kungulovski G, Gucev Z. Compound Heterozygosity in Cerebellar Ataxia, Mental Retardation, and Disequilibrium Syndrome Type 4. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2023; 44:85-90. [PMID: 38109455 DOI: 10.2478/prilozi-2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Cerebellar ataxia, mental retardation, and disequilibrium syndrome (CAMRQ) is a genetically and clinically heterogeneous disorder with four described subtypes. Autosomal recessive syndrome of cerebellar ataxia, mental retardation, and disequilibrium type 4 (CAMRQ4) is caused by mutations in the ATP8A2 gene. We report an 8-year-old boy with choreoathetosis, hypotonia, without the ability to keep his head up and profound mental retardation. There was quadrupedal locomotion, as well. MRI of the brain revealed a hypotrophy of the corpus callosum, diffuse white matter reduction, widespread delayed myelination and ventriculomegaly. Trio whole-exome sequencing revealed compound heterozygosity in the ATP8A2 gene consisting of a known variant c.1756C>T (p.Arg586*) inherited from the mother and a novel variant c.691_701delCTGATGAAGTT (p.Leu231fs) inherited from the father. CAMRQ type 4 has been found in about 50 patients. To the best of our knowledge, this is the first reported patient with CAMRQ4 with these gene variants. The clinical presentation is severe.
Collapse
Affiliation(s)
- Bojan Teov
- 1University Children's Hospital, Medical Faculty Skopje, North Macedonia
| | | | | | - Velibor Tasic
- 1University Children's Hospital, Medical Faculty Skopje, North Macedonia
| | | | - Zoran Gucev
- 1University Children's Hospital, Medical Faculty Skopje, North Macedonia
| |
Collapse
|
9
|
Alves Corazza L, Lopes Braga V, Yoshinaga Tonholo Silva T, Moura Rezende Filho F, Ferraz Sallum JM, Graziani Povoas Barsottini O, Pedroso JL. ATP8A2-Related Disorder: Beyond Cerebellar Ataxia. Mov Disord Clin Pract 2023; 10:1215-1216. [PMID: 37635783 PMCID: PMC10450237 DOI: 10.1002/mdc3.13820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 06/11/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Luíza Alves Corazza
- Department of Neurology and Neurosurgery, Escola Paulista de MedicinaUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Vinícius Lopes Braga
- Department of Neurology and Neurosurgery, Escola Paulista de MedicinaUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Thiago Yoshinaga Tonholo Silva
- Department of Neurology and Neurosurgery, Escola Paulista de MedicinaUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Flávio Moura Rezende Filho
- Department of Neurology and Neurosurgery, Escola Paulista de MedicinaUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | - Juliana Maria Ferraz Sallum
- Department of Neurology and Neurosurgery, Escola Paulista de MedicinaUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| | | | - José Luiz Pedroso
- Department of Neurology and Neurosurgery, Escola Paulista de MedicinaUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
| |
Collapse
|
10
|
Sakuragi T, Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00604-z. [PMID: 37106071 PMCID: PMC10134735 DOI: 10.1038/s41580-023-00604-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
Cellular membranes function as permeability barriers that separate cells from the external environment or partition cells into distinct compartments. These membranes are lipid bilayers composed of glycerophospholipids, sphingolipids and cholesterol, in which proteins are embedded. Glycerophospholipids and sphingolipids freely move laterally, whereas transverse movement between lipid bilayers is limited. Phospholipids are asymmetrically distributed between membrane leaflets but change their location in biological processes, serving as signalling molecules or enzyme activators. Designated proteins - flippases and scramblases - mediate this lipid movement between the bilayers. Flippases mediate the confined localization of specific phospholipids (phosphatidylserine (PtdSer) and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases randomly scramble phospholipids between leaflets and facilitate the exposure of PtdSer on the cell surface, which serves as an important signalling molecule and as an 'eat me' signal for phagocytes. Defects in flippases and scramblases cause various human diseases. We herein review the recent research on the structure of flippases and scramblases and their physiological roles. Although still poorly understood, we address the mechanisms by which they translocate phospholipids between lipid bilayers and how defects cause human diseases.
Collapse
Affiliation(s)
- Takaharu Sakuragi
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shigekazu Nagata
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
11
|
Meng T, Chen X, He Z, Huang H, Lin S, Liu K, Bai G, Liu H, Xu M, Zhuang H, Zhang Y, Waqas A, Liu Q, Zhang C, Sun XD, Huang H, Umair M, Yan Y, Feng D. ATP9A deficiency causes ADHD and aberrant endosomal recycling via modulating RAB5 and RAB11 activity. Mol Psychiatry 2023; 28:1219-1231. [PMID: 36604604 PMCID: PMC9816018 DOI: 10.1038/s41380-022-01940-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
ATP9A, a lipid flippase of the class II P4-ATPases, is involved in cellular vesicle trafficking. Its homozygous variants are linked to neurodevelopmental disorders in humans. However, its physiological function, the underlying mechanism as well as its pathophysiological relevance in humans and animals are still largely unknown. Here, we report two independent families in which the nonsense mutations c.433C>T/c.658C>T/c.983G>A (p. Arg145*/p. Arg220*/p. Trp328*) in ATP9A (NM_006045.3) cause autosomal recessive hypotonia, intellectual disability (ID) and attention deficit hyperactivity disorder (ADHD). Atp9a null mice show decreased muscle strength, memory deficits and hyperkinetic movement disorder, recapitulating the symptoms observed in patients. Abnormal neurite morphology and impaired synaptic transmission are found in the primary motor cortex and hippocampus of the Atp9a null mice. ATP9A is also required for maintaining neuronal neurite morphology and the viability of neural cells in vitro. It mainly localizes to endosomes and plays a pivotal role in endosomal recycling pathway by modulating small GTPase RAB5 and RAB11 activation. However, ATP9A pathogenic mutants have aberrant subcellular localization and cause abnormal endosomal recycling. These findings provide strong evidence that ATP9A deficiency leads to neurodevelopmental disorders and synaptic dysfunctions in both humans and mice, and establishes novel regulatory roles for ATP9A in RAB5 and RAB11 activity-dependent endosomal recycling pathway and neurological diseases.
Collapse
Affiliation(s)
- Tian Meng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Xiaoting Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Zhengjie He
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Haofeng Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Shiyin Lin
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Kunru Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Guo Bai
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China.,Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511500, China
| | - Mindong Xu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haixia Zhuang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ahmed Waqas
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, 54000, Pakistan
| | - Qian Liu
- Department of Cerebrovascular Disease Center, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Chuan Zhang
- Medical Genetics Center, Gansu Provincial Maternity and Child-care Hospital; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Lanzhou, 730050, China
| | - Xiang-Dong Sun
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huansen Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, 11481, Saudi Arabia. .,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 22209, Pakistan.
| | - Yousheng Yan
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| | - Du Feng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China. .,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China.
| |
Collapse
|
12
|
Li J, Zhao Y, Wang N. Physiological and Pathological Functions of TMEM30A: An Essential Subunit of P4-ATPase Phospholipid Flippases. J Lipids 2023; 2023:4625567. [PMID: 37200892 PMCID: PMC10188266 DOI: 10.1155/2023/4625567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/15/2023] [Indexed: 05/20/2023] Open
Abstract
Phospholipids are asymmetrically distributed across mammalian plasma membrane. The function of P4-ATPases is to maintain the abundance of phosphatidylserine (PS) and phosphatidylethanolamine (PE) in the inner leaflet as lipid flippases. Transmembrane protein 30A (TMEM30A, also named CDC50A), as an essential β subunit of most P4-ATPases, facilitates their transport and functions. With TMEM30A knockout mice or cell lines, it is found that the loss of TMEM30A has huge influences on the survival of mice and cells because of PS exposure-triggered apoptosis signaling. TMEM30A is a promising target for drug discovery due to its significant roles in various systems and diseases. In this review, we summarize the functions of TMEM30A in different systems, present current understanding of the protein structures and mechanisms of TMEM30A-P4-ATPase complexes, and discuss how these fundamental aspects of TMEM30A may be applied to disease treatment.
Collapse
Affiliation(s)
- Jingyi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yue Zhao
- Clinical Medical Laboratory, Wenjiang Hospital of Sichuan Provincial People's Hospital, Chengdu, China
| | - Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Jain BK, Wagner AS, Reynolds TB, Graham TR. Lipid Transport by Candida albicans Dnf2 Is Required for Hyphal Growth and Virulence. Infect Immun 2022; 90:e0041622. [PMID: 36214556 PMCID: PMC9670988 DOI: 10.1128/iai.00416-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a common cause of human mucosal yeast infections, and invasive candidiasis can be fatal. Antifungal medications are limited, but those targeting the pathogen cell wall or plasma membrane have been effective. Therefore, virulence factors controlling membrane biogenesis are potential targets for drug development. P4-ATPases contribute to membrane biogenesis by selecting and transporting specific lipids from the extracellular leaflet to the cytoplasmic leaflet of the bilayer to generate lipid asymmetry. A subset of heterodimeric P4-ATPases, including Dnf1-Lem3 and Dnf2-Lem3 from Saccharomyces cerevisiae, transport phosphatidylcholine (PC), phosphatidylethanolamine (PE), and the sphingolipid glucosylceramide (GlcCer). GlcCer is a critical lipid for Candida albicans polarized growth and virulence, but the role of GlcCer transporters in virulence has not been explored. Here, we show that the Candida albicans Dnf2 (CaDnf2) requires association with CaLem3 to form a functional transporter and flip fluorescent derivatives of GlcCer, PC, and PE across the plasma membrane. Mutation of conserved substrate-selective residues in the membrane domain strongly abrogates GlcCer transport and partially disrupts PC transport by CaDnf2. Candida strains harboring dnf2-null alleles (dnf2ΔΔ) or point mutations that disrupt substrate recognition exhibit defects in yeast-to-hypha growth transition, filamentous growth, and virulence in systemically infected mice. The influence of CaDNF1 deletion on the morphological phenotypes is negligible, although the dnf1ΔΔ dnf2ΔΔ strain was less virulent than the dnf2ΔΔ strain. These results indicate that the transport of GlcCer and/or PC by plasma membrane P4-ATPases is important for the pathogenicity of Candida albicans.
Collapse
Affiliation(s)
- Bhawik K. Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrew S. Wagner
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Narishige Y, Yaoita H, Shibuya M, Ikeda M, Kodama K, Kawahima A, Okubo Y, Endo W, Inui T, Togashi N, Tanaka S, Kobayashi Y, Onuma A, Takayama J, Tamiya G, Kikuchi A, Kure S, Haginoya K. Two Siblings with Cerebellar Ataxia, Mental Retardation, and Disequilibrium Syndrome 4 and a Novel Variant of ATP8A2. TOHOKU J EXP MED 2022; 256:321-326. [PMID: 35321980 DOI: 10.1620/tjem.2022.j010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yuta Narishige
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Hisao Yaoita
- Department of Pediatrics, Tohoku University School of Medicine
| | - Moriei Shibuya
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Miki Ikeda
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Kaori Kodama
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | | | - Yukimune Okubo
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Wakaba Endo
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Takehiko Inui
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Noriko Togashi
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Soichiro Tanaka
- Department of Pediatric Neurology, Miyagi Children's Hospital.,Department of Pediatric Neurology, Takuto Rehabilitation Center for Children
| | - Yasuko Kobayashi
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children
| | - Akira Onuma
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children
| | - Jun Takayama
- Tohoku University Graduate School of Medicine.,Tohoku Medical Megabank Organization, Tohoku University.,Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project
| | - Gen Tamiya
- Tohoku University Graduate School of Medicine.,Tohoku Medical Megabank Organization, Tohoku University.,Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital.,Department of Pediatric Neurology, Takuto Rehabilitation Center for Children
| |
Collapse
|
15
|
Biallelic truncation variants in ATP9A are associated with a novel autosomal recessive neurodevelopmental disorder. NPJ Genom Med 2021; 6:94. [PMID: 34764295 PMCID: PMC8586153 DOI: 10.1038/s41525-021-00255-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Intellectual disability (ID) is a highly heterogeneous disorder with hundreds of associated genes. Despite progress in the identification of the genetic causes of ID following the introduction of high-throughput sequencing, about half of affected individuals still remain without a molecular diagnosis. Consanguineous families with affected individuals provide a unique opportunity to identify novel recessive causative genes. In this report, we describe a novel autosomal recessive neurodevelopmental disorder. We identified two consanguineous families with homozygous variants predicted to alter the splicing of ATP9A which encodes a transmembrane lipid flippase of the class II P4-ATPases. The three individuals homozygous for these putatively truncating variants presented with severe ID, motor and speech impairment, and behavioral anomalies. Consistent with a causative role of ATP9A in these patients, a previously described Atp9a−/− mouse model showed behavioral changes.
Collapse
|
16
|
Li T, Yu D, Oak HC, Zhu B, Wang L, Jiang X, Molday RS, Kriegstein A, Piao X. Phospholipid-flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure. EMBO J 2021; 40:e107915. [PMID: 34585770 PMCID: PMC8561630 DOI: 10.15252/embj.2021107915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an "eat me" signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses.
Collapse
Affiliation(s)
- Tao Li
- Weill Institute for NeuroscienceUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Newborn Brain Research InstituteUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
| | - Diankun Yu
- Weill Institute for NeuroscienceUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Newborn Brain Research InstituteUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
| | - Hayeon C Oak
- Weill Institute for NeuroscienceUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Newborn Brain Research InstituteUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
| | - Beika Zhu
- Weill Institute for NeuroscienceUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Newborn Brain Research InstituteUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
| | - Li Wang
- Weill Institute for NeuroscienceUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Xueqiao Jiang
- Weill Institute for NeuroscienceUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Newborn Brain Research InstituteUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
| | - Robert S Molday
- Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverBCCanada
| | - Arnold Kriegstein
- Weill Institute for NeuroscienceUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Xianhua Piao
- Weill Institute for NeuroscienceUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Newborn Brain Research InstituteUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
- Division of NeonatologyDepartment of PediatricsUniversity of California, San Francisco (UCSF)San FranciscoCAUSA
| |
Collapse
|
17
|
Richards EJ, McGirr JA, Wang JR, St John ME, Poelstra JW, Solano MJ, O'Connell DC, Turner BJ, Martin CH. A vertebrate adaptive radiation is assembled from an ancient and disjunct spatiotemporal landscape. Proc Natl Acad Sci U S A 2021; 118:e2011811118. [PMID: 33990463 PMCID: PMC8157919 DOI: 10.1073/pnas.2011811118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To investigate the origins and stages of vertebrate adaptive radiation, we reconstructed the spatial and temporal histories of adaptive alleles underlying major phenotypic axes of diversification from the genomes of 202 Caribbean pupfishes. On a single Bahamian island, ancient standing variation from disjunct geographic sources was reassembled into new combinations under strong directional selection for adaptation to the novel trophic niches of scale-eating and molluscivory. We found evidence for two longstanding hypotheses of adaptive radiation: hybrid swarm origins and temporal stages of adaptation. Using a combination of population genomics, transcriptomics, and genome-wide association mapping, we demonstrate that this microendemic adaptive radiation of novel trophic specialists on San Salvador Island, Bahamas experienced twice as much adaptive introgression as generalist populations on neighboring islands and that adaptive divergence occurred in stages. First, standing regulatory variation in genes associated with feeding behavior (prlh, cfap20, and rmi1) were swept to fixation by selection, then standing regulatory variation in genes associated with craniofacial and muscular development (itga5, ext1, cyp26b1, and galr2) and finally the only de novo nonsynonymous substitution in an osteogenic transcription factor and oncogene (twist1) swept to fixation most recently. Our results demonstrate how ancient alleles maintained in distinct environmental refugia can be assembled into new adaptive combinations and provide a framework for reconstructing the spatiotemporal landscape of adaptation and speciation.
Collapse
Affiliation(s)
- Emilie J Richards
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720
| | - Joseph A McGirr
- Department of Environmental Toxicology, University of California, Davis, CA 95616
| | - Jeremy R Wang
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514
| | - Michelle E St John
- Department of Integrative Biology, University of California, Berkeley, CA 94720
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720
| | - Jelmer W Poelstra
- Molecular and Cellular Imaging Center, Ohio State University, Columbus, OH 43210
| | - Maria J Solano
- Department of Biology, University of North Carolina, Chapell Hill, NC 27514
| | | | - Bruce J Turner
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24601
| | - Christopher H Martin
- Department of Integrative Biology, University of California, Berkeley, CA 94720;
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The discovery of new disease-causing genes and availability of next-generation sequencing platforms have both progressed rapidly over the last few years. For the practicing neurologist, this presents an increasingly bewildering array both of potential diagnoses and of means to investigate them. We review the latest newly described genetic conditions associated with dystonia, and also address how the changing landscape of gene discovery and genetic testing can best be approached, from both a research and a clinical perspective. RECENT FINDINGS Several new genetic causes for disorders in which dystonia is a feature have been described in the last 2 years, including ZNF142, GSX2, IRF2BPL, DEGS1, PI4K2A, CAMK4, VPS13D and VAMP2. Dystonia has also been a newly described feature or alternative phenotype of several other genetic conditions, notably for genes classically associated with several forms of epilepsy. The DYT system for classifying genetic dystonias, however, last recognized a new gene discovery (KMT2B) in 2016. SUMMARY Gene discovery for dystonic disorders proceeds rapidly, but a high proportion of cases remain undiagnosed. The proliferation of rare disorders means that it is no longer realistic for clinicians to aim for diagnosis to the level of predicting genotype from phenotype in all cases, but rational and adaptive use of available genetic tests can certainly expedite diagnosis.
Collapse
|
19
|
Damásio J, Santos D, Morais S, Brás J, Guerreiro R, Sardoeira A, Cavaco S, Carrilho I, Barbot C, Barros J, Sequeiros J. Congenital ataxia due to novel variant in ATP8A2. Clin Genet 2021; 100:79-83. [PMID: 33682124 DOI: 10.1111/cge.13954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/22/2023]
Abstract
Congenital ataxias are a heterogeneous group of disorders characterized by congenital or early-onset ataxia. Here, we describe two siblings with congenital ataxia, who acquired independent gait by age 4 years. After 16 years of follow-up they presented near normal cognition, cerebellar ataxia, mild pyramidal signs, and dystonia. On exome sequencing, a novel homozygous variant (c.1580-18C > G - intron 17) in ATP8A2 was identified. A new acceptor splice site was predicted by bioinformatics tools, and functionally characterized through a minigene assay. Minigene constructs were generated by PCR-amplification of genomic sequences surrounding the variant of interest and cloning into the pCMVdi vector. Altered splicing was evaluated by expressing these constructs in HEK293T cells. The construct with the c.1580-18C > G homozygous variant produced an aberrant transcript, leading to retention of 17 bp of intron 17, by the use of an alternative acceptor splice site, resulting in a premature stop codon by insertion of four amino acids. These results allowed us to establish this as a disease-causing variant and expand ATP8A2-related disorders to include less severe forms of congenital ataxia.
Collapse
Affiliation(s)
- Joana Damásio
- UnIGENe/CGPP - Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Serviço Neurologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Diana Santos
- UnIGENe/CGPP - Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sara Morais
- UnIGENe/CGPP - Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - José Brás
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Ana Sardoeira
- Serviço Neurologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sara Cavaco
- Unidade Neuropsicologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Inês Carrilho
- Unidade Neurologia Pediátrica, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Clara Barbot
- UnIGENe/CGPP - Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - José Barros
- Serviço Neurologia, Centro Hospitalar Universitário do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe/CGPP - Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Heidari E, Harrison AN, Jafarinia E, Tavasoli AR, Almadani N, Molday RS, Garshasbi M. Novel variants in critical domains of ATP8A2 and expansion of clinical spectrum. Hum Mutat 2021; 42:491-497. [PMID: 33565221 DOI: 10.1002/humu.24180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/17/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
ATP8A2 is a P4-ATPase that flips phosphatidylserine across membranes to generate and maintain transmembrane phospholipid asymmetry. Loss-of-function variants cause severe neurodegenerative and developmental disorders. We have identified three ATP8A2 variants in unrelated Iranian families that cause intellectual disability, dystonia, below-average head circumference, mild optic atrophy, and developmental delay. Additionally, all the affected individuals displayed tooth abnormalities associated with defects in teeth development. Two variants (p.Asp825His and p.Met438Val) reside in critical functional domains of ATP8A2. These variants express at very low levels and lack ATPase activity. Inhibitor studies indicate that these variants are misfolded and degraded by the cellular proteasome. We conclude that Asp825, which coordinates with the Mg2+ ion within the ATP binding site, and Met438 are essential for the proper folding of ATP8A2 into a functional flippase. We also provide evidence on the association of tooth abnormalities with defects in ATP8A2, thereby expanding the clinical spectrum of the associated disease.
Collapse
Affiliation(s)
- Erfan Heidari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alexander N Harrison
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ehsan Jafarinia
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Reza Tavasoli
- Division of Pediatric Neurology, Myelin Disorders Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
21
|
Genome-wide association study for postweaning weight traits in Lori-Bakhtiari sheep. Trop Anim Health Prod 2021; 53:163. [PMID: 33586021 DOI: 10.1007/s11250-021-02595-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/27/2021] [Indexed: 01/20/2023]
Abstract
Marker-assisted selection is an effective method in novel animal breeding programs. This study was conducted to perform a genome-wide association study to detect candidate genes and quantitative trait loci associated with postweaning weight traits in meat-type sheep. Body weight records were collected during 29 years (1989 to 2017) in Lori-Bakhtiari sheep flock of the Shooli Breeding Station in Iran. A total of 132 animals were selected based on estimates of breeding values (EBVs) for body weight, using two-tailed and random selection strategies. Genomic DNA was extracted from whole blood samples. The samples were genotyped using Illumina OvineSNP50 BeadChip. De-regressed EBVs for postweaning body weight traits were used as pseudo-phenotypes in a genome-wide association study. One SNP on chromosome 10 (rs406324209) and two SNPs on chromosome 13 (rs401963094 and rs418761613) were significantly (Bonferroni-adjusted p-values < 0.05) associated with postweaning body weight traits. The significant variants accounted for 0.20% and 0.48% of the total genetic variances for 6- and 9-month body weights, respectively. Genomic heritabilities estimated for 6-, 9- and 12-month weights and postweaning weight gain were 0.28 ± 0.34, 0.35 ± 0.29, 0.37 ± 0.34, and 0.16 ± 0.33, respectively. Two significant SNPs were located within the ATP8A2 and PLXDC2 genes, on chromosomes 10 and 13, respectively. Based on the known gene ontologies, both ATP8A2 and PLXDC2 could be considered as candidate genes for postweaning body weight traits.
Collapse
|
22
|
Mohamadian M, Ghandil P, Naseri M, Bahrami A, Momen AA. A novel homozygous variant in an Iranian pedigree with cerebellar ataxia, mental retardation, and dysequilibrium syndrome type 4. J Clin Lab Anal 2020; 34:e23484. [PMID: 33079427 PMCID: PMC7676196 DOI: 10.1002/jcla.23484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cerebellar ataxia, mental retardation, and dysequilibrium (CAMRQ) syndrome is a rare and early-onset neurodevelopmental disorder. Four subtypes of this syndrome have been identified, which are clinically and genetically different. To date, altogether 32 patients have been described with ATP8A2 mutations and phenotypic features assigned to CAMRQ type 4. Herein, three additional patients in an Iranian consanguineous family with non-progressive cerebellar ataxia, severe hypotonia, intellectual disability, dysarthria, and cerebellar atrophy have been identified. METHODS Following the thorough clinical examination, consecutive detections including chromosome karyotyping, chromosomal microarray analysis, and whole exome sequencing (WES) were performed on the proband. The sequence variants derived from WES interpreted by a standard bioinformatics pipeline. Pathogenicity assessment of candidate variant was done by in silico analysis. The familial cosegregation of the WES finding was carried out by PCR-based Sanger sequencing. RESULTS A novel homozygous missense variant (c.1339G > A, p.Gly447Arg) in the ATP8A2 gene was identified and completely segregated with the phenotype in the family. In silico analysis and structural modeling revealed that the p.G477R substitution is deleterious and induced undesired effects on the protein stability and residue distribution in the ligand-binding pocket. The novel sequence variant occurred within an extremely conserved subregion of the ATP-binding domain. CONCLUSION Our findings expand the spectrum of ATP8A2 mutations and confirm the reported genotype-phenotype correlation. These results could improve genetic counseling and prenatal diagnosis in families with clinical presentations related to CAMRQ4 syndrome.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Pegah Ghandil
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Akbar Momen
- Department of Paediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
23
|
Baizabal-Carvallo JF, Cardoso F. Chorea in children: etiology, diagnostic approach and management. J Neural Transm (Vienna) 2020; 127:1323-1342. [DOI: 10.1007/s00702-020-02238-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/01/2020] [Indexed: 01/07/2023]
|
24
|
Guissart C, Harrison AN, Benkirane M, Oncel I, Arslan EA, Chassevent AK., Baraῆano K, Larrieu L, Iascone M, Tenconi R, Claustres M, Eroglu-Ertugrul N, Calvas P, Topaloglu H, Molday RS, Koenig M. ATP8A2-related disorders as recessive cerebellar ataxia. J Neurol 2019; 267:203-213. [DOI: 10.1007/s00415-019-09579-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 02/03/2023]
|
25
|
Choi H, Andersen JP, Molday RS. Expression and functional characterization of missense mutations in ATP8A2 linked to severe neurological disorders. Hum Mutat 2019; 40:2353-2364. [PMID: 31397519 DOI: 10.1002/humu.23889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/30/2019] [Accepted: 08/04/2019] [Indexed: 11/09/2022]
Abstract
ATP8A2 is a P4-ATPase (adenosine triphosphate) that actively flips phosphatidylserine and phosphatidylethanolamine from the exoplasmic to the cytoplasmic leaflet of cell membranes to generate and maintain phospholipid asymmetry. Mutations in the ATP8A2 gene have been reported to cause severe autosomal recessive neurological diseases in humans characterized by intellectual disability, hypotonia, chorea, and hyperkinetic movement disorders with or without optic and cerebellar atrophy. To determine the effect of disease-associated missense mutations on ATP8A2, we expressed six variants with the accessory subunit CDC50A in HEK293T cells. The level of expression, cellular localization, and functional activity were analyzed by western blot analysis, immunofluorescence microscopy, and ATPase activity assays. Two variants (p.Ile376Met and p.Lys429Met) expressed at normal ATP8A2 levels and preferentially localized to the Golgi-recycling endosomes, but were devoid of ATPase activity. Four variants (p.Lys429Asn, pAla544Pro, p.Arg625Trp, and p.Trp702Arg) expressed poorly, localized to the endoplasmic reticulum, and lacked ATPase activity. The expression of these variants was increased twofold by the addition of the proteasome inhibitor MG132. We conclude that the p.Ile376Met and p.Lys429Met variants fold in a native-like conformation, but lack key amino acid residues required for ATP-dependent lipid transport. In contrast, the p.Lys429Asn, pAla544Pro, p.Arg625Trp, and p.Trp702Arg variants are highly misfolded and undergo rapid proteosomal degradation.
Collapse
Affiliation(s)
- Hanbin Choi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jens P Andersen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Liou AY, Molday LL, Wang J, Andersen JP, Molday RS. Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells. J Biol Chem 2019; 294:6809-6821. [PMID: 30850395 DOI: 10.1074/jbc.ra118.007270] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/06/2019] [Indexed: 02/04/2023] Open
Abstract
ATP-dependent phospholipid flippase activity crucial for generating lipid asymmetry was first detected in red blood cell (RBC) membranes, but the P4-ATPases responsible have not been directly determined. Using affinity-based MS, we show that ATP11C is the only abundant P4-ATPase phospholipid flippase in human RBCs, whereas ATP11C and ATP8A1 are the major P4-ATPases in mouse RBCs. We also found that ATP11A and ATP11B are present at low levels. Mutations in the gene encoding ATP11C are responsible for blood and liver disorders, but the disease mechanisms are not known. Using heterologous expression, we show that the T415N substitution in the phosphorylation motif of ATP11C, responsible for congenital hemolytic anemia, reduces ATP11C expression, increases retention in the endoplasmic reticulum, and decreases ATPase activity by 61% relative to WT ATP11C. The I355K substitution in the transmembrane domain associated with cholestasis and anemia in mice was expressed at WT levels and trafficked to the plasma membrane but was devoid of activity. We conclude that the T415N variant causes significant protein misfolding, resulting in low protein expression, cellular mislocalization, and reduced functional activity. In contrast, the I355K variant folds and traffics normally but lacks key contacts required for activity. We propose that the loss in ATP11C phospholipid flippase activity coupled with phospholipid scramblase activity results in the exposure of phosphatidylserine on the surface of RBCs, decreasing RBC survival and resulting in anemia.
Collapse
Affiliation(s)
- Angela Y Liou
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - Laurie L Molday
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - Jiao Wang
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| | - Jens Peter Andersen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Building 1160, DK-8000 Aarhus C, Denmark
| | - Robert S Molday
- From the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada and
| |
Collapse
|
27
|
Yelamanchi SD, Tyagi A, Mohanty V, Dutta P, Korbonits M, Chavan S, Advani J, Madugundu AK, Dey G, Datta KK, Rajyalakshmi M, Sahasrabuddhe NA, Chaturvedi A, Kumar A, Das AA, Ghosh D, Jogdand GM, Nair HH, Saini K, Panchal M, Sarvaiya MA, Mohanraj SS, Sengupta N, Saxena P, Subramani PA, Kumar P, Akkali R, Reshma SV, Santhosh RS, Rastogi S, Kumar S, Ghosh SK, Irlapati VK, Srinivasan A, Radotra BD, Mathur PP, Wong GW, Satishchandra P, Chatterjee A, Gowda H, Bhansali A, Pandey A, Shankar SK, Mahadevan A, Prasad TSK. Proteomic Analysis of the Human Anterior Pituitary Gland. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:759-769. [PMID: 30571610 DOI: 10.1089/omi.2018.0160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.
Collapse
Affiliation(s)
| | - Ankur Tyagi
- 2 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Varshasnata Mohanty
- 2 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Pinaki Dutta
- 3 Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Márta Korbonits
- 4 Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Sandip Chavan
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Jayshree Advani
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India
| | - Anil K Madugundu
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India.,6 Center for Molecular Medicine, National Institute of Mental Health & Neurosciences, Bangalore, India.,7 Department of Laboratory Medicine and Pathology and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gourav Dey
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India
| | - Keshava K Datta
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - M Rajyalakshmi
- 8 Department of Biotechnology, BMS College of Engineering, Bangalore, India
| | | | - Abhishek Chaturvedi
- 9 Department of Biochemistry, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Amit Kumar
- 10 Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| | - Apabrita Ayan Das
- 11 Cell Biology and Physiology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Dhiman Ghosh
- 12 Protein Engineering and Neurobiology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| | | | - Haritha H Nair
- 13 Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Keshav Saini
- 14 Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Manoj Panchal
- 15 Department of Life Science, Central University of South Bihar, Gaya, India
| | | | - Soundappan S Mohanraj
- 17 Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nabonita Sengupta
- 18 Neuroinflammation Laboratory, National Brain Research Centre, Manesar, India
| | - Priti Saxena
- 14 Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | | | - Pradeep Kumar
- 20 Department of Biotechnology, VBS Purvanchal University, Jaunpur, India
| | - Rakhil Akkali
- 21 Department of Biotechnology, Indian Institute of Technology, Madras, India
| | | | | | - Sangita Rastogi
- 24 Microbiology Laboratory, National Institute of Pathology, New Delhi, India
| | - Sudarshan Kumar
- 25 Proteomics and Structural Biology Laboratory, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Susanta Kumar Ghosh
- 19 Department of Molecular Parasitology, National Institute of Malaria Research, Bangalore, India
| | | | - Anand Srinivasan
- 27 Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishan Das Radotra
- 28 Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Premendu P Mathur
- 29 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - G William Wong
- 30 Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Aditi Chatterjee
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Harsha Gowda
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Anil Bhansali
- 3 Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akhilesh Pandey
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India.,6 Center for Molecular Medicine, National Institute of Mental Health & Neurosciences, Bangalore, India.,7 Department of Laboratory Medicine and Pathology and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.,32 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,33 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland.,34 Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,35 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susarla K Shankar
- 36 Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.,37 Human Brain Tissue Repository, National Institute of Mental Health and Neuro Sciences, Neurobiology Research Centre, Bangalore, India
| | - Anita Mahadevan
- 36 Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.,37 Human Brain Tissue Repository, National Institute of Mental Health and Neuro Sciences, Neurobiology Research Centre, Bangalore, India
| | - T S Keshava Prasad
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,2 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
28
|
Talebi M, Yahya Vahidi Mehrjardi M, Kalhor K, Dehghani M. Is there any relationship between mutation in CPS1 Gene and pregnancy loss? Int J Reprod Biomed 2018; 17. [PMID: 31435610 PMCID: PMC6653490 DOI: 10.18502/ijrm.v17i5.4604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/03/2018] [Accepted: 10/17/2018] [Indexed: 12/27/2022] Open
Abstract
Background Carbamoyl phosphate synthetase 1 (CPS1) is a liver-specific enzyme with the lowest enzymatic rate, which determines the overall rate of the other reactions in the pathway that converts ammonia to carbamoyl phosphate in the first step of the urea cycle. Carbamoyl phosphate synthetase 1 deficiency (CPS1D), which usually presents as lethal hyperammonemia, is a rare autosomal recessive hereditary disease. Case We report a case of a two-day-old female neonate with lethal hyperammonemia. The newborn infant was presented with hyperammonemia (34.7 μg/ml; reference range 1.1–1.9). In Plasma amino acid analysis, there was a significant elevated levels of alanine (3,004 μmol/L; reference range, 236–410 μmol/L), glutamine (2,256 μmol/L; reference range, 20–107 μmol/L), asparagine (126 μmol/L; reference range, 30–69 μmol/L), glutamic acid (356 μmol/L; reference range, 14–192 μmol/L), aspartic acid (123 μmol/L; reference range, 0–24 μmol/L), and lysine (342 μmol/L; reference range, 114–269 μmol/L). We cannot diagnose the urea cycle disorder (UCD) CPS1D properly only based on the quantity of biochemical intermediary metabolites to exclude other UCDs with similar symptoms. Following next generation sequencing determined one homozygous mutation in CPS1 gene and also this mutation was determined in her parents. The identified mutation was c.2758G > C; p.Asp920His, in the 23 exon of CPS1. This novel homozygous mutation had not been reported previously. Conclusion We applied whole exome sequencing successfully to diagnose the patient with CPS1D in a clinical setting. This result supports the clinical applicability of whole exome sequencing for cost-effective molecular diagnosis of UCDs.
Collapse
Affiliation(s)
- Mehrdad Talebi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Kambiz Kalhor
- Department of Biological Science, Faculty of Science, University of Kordestan, Sanandaj, Iran
| | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Reproductive and Genetic Unit, Yazd Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|