1
|
Pohl KA, Zhang X, Ji JJ, Stiles L, Sadun AA, Yang XJ. Derivation and Characterization of Isogenic OPA1 Mutant and Control Human Pluripotent Stem Cell Lines. Cells 2025; 14:137. [PMID: 39851566 PMCID: PMC11764107 DOI: 10.3390/cells14020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Dominant optic atrophy (DOA) is the most commonly inherited optic neuropathy. The majority of DOA is caused by mutations in the OPA1 gene, which encodes a dynamin-related GTPase located to the mitochondrion. OPA1 has been shown to regulate mitochondrial dynamics and promote fusion. Within the mitochondrion, proteolytically processed OPA1 proteins form complexes to maintain membrane integrity and the respiratory chain complexity. Although OPA1 is broadly expressed, human OPA1 mutations predominantly affect retinal ganglion cells (RGCs) that are responsible for transmitting visual information from the retina to the brain. Due to the scarcity of human RGCs, DOA has not been studied in depth using the disease affected neurons. To enable studies of DOA using stem-cell-derived human RGCs, we performed CRISPR-Cas9 gene editing to generate OPA1 mutant pluripotent stem cell (PSC) lines with corresponding isogenic controls. CRISPR-Cas9 gene editing yielded both OPA1 homozygous and heterozygous mutant ESC lines from a parental control ESC line. In addition, CRISPR-mediated homology-directed repair (HDR) successfully corrected the OPA1 mutation in a DOA patient's iPSCs. In comparison to the isogenic controls, the heterozygous mutant PSCs expressed the same OPA1 protein isoforms but at reduced levels; whereas the homozygous mutant PSCs showed a loss of OPA1 protein and altered mitochondrial morphology. Furthermore, OPA1 mutant PSCs exhibited reduced rates of oxygen consumption and ATP production associated with mitochondria. These isogenic PSC lines will be valuable tools for establishing OPA1-DOA disease models in vitro and developing treatments for mitochondrial deficiency associated neurodegeneration.
Collapse
Affiliation(s)
- Katherine A. Pohl
- Jules Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.A.P.); (X.Z.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Xiangmei Zhang
- Jules Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.A.P.); (X.Z.)
| | - Johnny Jeonghyun Ji
- Jules Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.A.P.); (X.Z.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Linsey Stiles
- Department of Molecular and Medical Pharmacology, Davide Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alfredo A. Sadun
- Doheny Eye Center, Department of Ophthalmology, University of California, Los Angeles, CA 91103, USA;
| | - Xian-Jie Yang
- Jules Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.A.P.); (X.Z.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Bureau J, Manero F, Baris O, Bodin A, Verny C, Chevrollier A, Lenaers G, Codron P. Opa1 and MT-Nd6 mutations induce early mitochondrial changes in the retina and prelaminar optic nerve of hereditary optic neuropathy mouse models. Brain Commun 2024; 6:fcae404. [PMID: 39659974 PMCID: PMC11630736 DOI: 10.1093/braincomms/fcae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Hereditary optic neuropathies, including dominant optic atrophy and Leber's hereditary optic neuropathy, are genetic disorders characterized by retinal ganglion cell degeneration leading to vision loss, mainly associated with mitochondrial dysfunction. In this study, we analysed mitochondrial distribution and ultrastructure in the retina and longitudinal optic nerve sections of pre-symptomatic hereditary optic neuropathies mouse models with Opa1 and Nd6 deficiency to identify early mitochondrial changes. Our results show significant mitochondrial fragmentation and increased mitophagy in Opa1+/- mice, indicating early mitochondrial changes prior to neuronal loss. Conversely, Nd6P25L mice exhibited mitochondrial hypertrophy, suggesting an adaptive response to compensate for altered energy metabolism. These pre-symptomatic mitochondrial changes were mainly observed in the unmyelinated portion of the retinal ganglion cell axons, where the transmission of the visual information requires high energy expenditure, constituting the specific point of vulnerability in hereditary optic neuropathies. These findings highlight early focal mitochondrial changes prior to neuronal loss in hereditary optic neuropathies and provide insight into pre-symptomatic therapeutic approaches.
Collapse
Affiliation(s)
- Jacques Bureau
- Laboratoire de neurobiologie et neuropathologie, Centre Hospitalier Universitaire d’Angers, 49933 Angers, France
- University of Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR ICAT, 49933 Angers, France
| | - Florence Manero
- University of Angers, SCIAM Microscopy Core Facility, SFR ICAT, F-49000, 49933 Angers, France
| | - Olivier Baris
- University of Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR ICAT, 49933 Angers, France
| | - Alexia Bodin
- University of Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR ICAT, 49933 Angers, France
| | - Christophe Verny
- University of Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR ICAT, 49933 Angers, France
- Service de neurologie, centre de référence des maladies neurogénétiques, Centre Hospitalier Universitaire d’Angers, 49933 Angers, France
| | - Arnaud Chevrollier
- University of Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR ICAT, 49933 Angers, France
| | - Guy Lenaers
- University of Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR ICAT, 49933 Angers, France
- Service de neurologie, centre de référence des maladies neurogénétiques, Centre Hospitalier Universitaire d’Angers, 49933 Angers, France
| | - Philippe Codron
- Laboratoire de neurobiologie et neuropathologie, Centre Hospitalier Universitaire d’Angers, 49933 Angers, France
- University of Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, SFR ICAT, 49933 Angers, France
- Service de neurologie, centre de référence des maladies neurogénétiques, Centre Hospitalier Universitaire d’Angers, 49933 Angers, France
| |
Collapse
|
3
|
Di Nottia M, Rizza T, Baruffini E, Nesti C, Torraco A, Diodato D, Martinelli D, Dal Canto F, Gilea AI, Zoccola M, Siri B, Dionisi-Vici C, Bertini E, Santorelli FM, Goffrini P, Carrozzo R. Severe mitochondrial encephalomyopathy caused by de novo variants in OPA1 gene. Front Genet 2024; 15:1437959. [PMID: 39233737 PMCID: PMC11372846 DOI: 10.3389/fgene.2024.1437959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Background Mitochondria adjust their shape in response to the different energetic and metabolic requirements of the cell, through extremely dynamic fusion and fission events. Several highly conserved dynamin-like GTPases are involved in these processes and, among those, the OPA1 protein is a key player in the fusion of inner mitochondrial membranes. Hundreds of monoallelic or biallelic pathogenic gene variants have been described in OPA1, all associated with a plethora of clinical phenotypes without a straightforward genotype-phenotype correlation. Methods Here we report two patients harboring novel de novo variants in OPA1. DNA of two patients was analyzed using NGS technology and the pathogenicity has been evaluated through biochemical and morphological studies in patient's derived fibroblasts and in yeast model. Results The two patients here reported manifest with neurological signs resembling Leigh syndrome, thus further expanding the clinical spectrum associated with variants in OPA1. In cultured skin fibroblasts we observed a reduced amount of mitochondrial DNA (mtDNA) and altered mitochondrial network characterized by more fragmented mitochondria. Modeling in yeast allowed to define the deleterious mechanism and the pathogenicity of the identified gene mutations. Conclusion We have described two novel-single OPA1 mutations in two patients characterized by early-onset neurological signs, never documented, thus expanding the clinical spectrum of this complex syndrome. Moreover, both yeast model and patients derived fibroblasts showed mitochondrial defects, including decreased mtDNA maintenance, correlating with patients' clinical phenotypes.
Collapse
Affiliation(s)
- Michela Di Nottia
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Teresa Rizza
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Claudia Nesti
- Molecular Medicine, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Alessandra Torraco
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daria Diodato
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Diego Martinelli
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martina Zoccola
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Barbara Siri
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Enrico Bertini
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rosalba Carrozzo
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
5
|
García-López M, Jiménez-Vicente L, González-Jabardo R, Dorado H, Gómez-Manjón I, Martín MÁ, Ayuso C, Arenas J, Gallardo ME. Creation of an Isogenic Human iPSC-Based RGC Model of Dominant Optic Atrophy Harboring the Pathogenic Variant c.1861C>T (p.Gln621Ter) in the OPA1 Gene. Int J Mol Sci 2024; 25:7240. [PMID: 39000346 PMCID: PMC11242102 DOI: 10.3390/ijms25137240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Autosomal dominant optic atrophy (ADOA) is a rare progressive disease mainly caused by mutations in OPA1, a nuclear gene encoding for a mitochondrial protein that plays an essential role in mitochondrial dynamics, cell survival, oxidative phosphorylation, and mtDNA maintenance. ADOA is characterized by the degeneration of retinal ganglion cells (RGCs). This causes visual loss, which can lead to legal blindness in many cases. Nowadays, there is no effective treatment for ADOA. In this article, we have established an isogenic human RGC model for ADOA using iPSC technology and the genome editing tool CRISPR/Cas9 from a previously generated iPSC line of an ADOA plus patient harboring the pathogenic variant NM_015560.3: c.1861C>T (p.Gln621Ter) in heterozygosis in OPA1. To this end, a protocol based on supplementing the iPSC culture media with several small molecules and defined factors trying to mimic embryonic development has been employed. Subsequently, the created model was validated, confirming the presence of a defect of intergenomic communication, impaired mitochondrial respiration, and an increase in apoptosis and ROS generation. Finally, we propose the analysis of OPA1 expression by qPCR as an easy read-out method to carry out future drug screening studies using the created RGC model. In summary, this model provides a useful platform for further investigation of the underlying pathophysiological mechanisms of ADOA plus and for testing compounds with potential pharmacological action.
Collapse
Affiliation(s)
- Marta García-López
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Lydia Jiménez-Vicente
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Raquel González-Jabardo
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Helena Dorado
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Irene Gómez-Manjón
- Servicio de Genética, Hospital 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Miguel Ángel Martín
- Servicio de Genética, Hospital 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Carmen Ayuso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Joaquín Arenas
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - María Esther Gallardo
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
6
|
Del Negro I, Pauletto G, Verriello L, Spadea L, Salati C, Ius T, Zeppieri M. Uncovering the Genetics and Physiology behind Optic Neuritis. Genes (Basel) 2023; 14:2192. [PMID: 38137014 PMCID: PMC10742654 DOI: 10.3390/genes14122192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Optic neuritis (ON) is an inflammatory condition affecting the optic nerve, leading to vision impairment and potential vision loss. This manuscript aims to provide a comprehensive review of the current understanding of ON, including its definition, epidemiology, physiology, genetics, molecular pathways, therapy, ongoing clinical studies, and future perspectives. ON is characterized by inflammation of the optic nerve, often resulting from an autoimmune response. Epidemiological studies have shown a higher incidence in females and an association with certain genetic factors. The physiology of ON involves an immune-mediated attack on the myelin sheath surrounding the optic nerve, leading to demyelination and subsequent impairment of nerve signal transmission. This inflammatory process involves various molecular pathways, including the activation of immune cells and the release of pro-inflammatory cytokines. Genetic factors play a significant role in the susceptibility to ON. Several genes involved in immune regulation and myelin maintenance have been implicated in the disease pathogenesis. Understanding the genetic basis can provide insights into disease mechanisms and potential therapeutic targets. Therapy for ON focuses on reducing inflammation and promoting nerve regeneration. Future perspectives involve personalized medicine approaches based on genetic profiling, regenerative therapies to repair damaged myelin, and the development of neuroprotective strategies. Advancements in understanding molecular pathways, genetics, and diagnostic tools offer new opportunities for targeted therapies and improved patient outcomes in the future.
Collapse
Affiliation(s)
- Ilaria Del Negro
- Clinical Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy;
| | - Giada Pauletto
- Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (G.P.)
| | - Lorenzo Verriello
- Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (G.P.)
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| |
Collapse
|
7
|
Wong DCS, Harvey JP, Jurkute N, Thomasy SM, Moosajee M, Yu-Wai-Man P, Gilhooley MJ. OPA1 Dominant Optic Atrophy: Pathogenesis and Therapeutic Targets. J Neuroophthalmol 2023; 43:464-474. [PMID: 37974363 PMCID: PMC10645107 DOI: 10.1097/wno.0000000000001830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- David C. S. Wong
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Joshua P. Harvey
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Neringa Jurkute
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Sara M. Thomasy
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Mariya Moosajee
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Patrick Yu-Wai-Man
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| | - Michael J. Gilhooley
- Department of Clinical Neurosciences (DCSW, PY-W-M), John van Geest Center for Brain Repair, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit (DCSW, PY-W-M), Addenbrooke's Hospital, Cambridge, United Kingdom; UCL Institute of Ophthalmology (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust (JPH, NJ, MM, PY-W-M, MJG), London, United Kingdom; Department of Ophthalmology and Vision Science (SMT), School of Medicine, U.C. Davis, Sacramento, California; Department of Surgical and Radiological Sciences (SMT), School of Veterinary Medicine, U.C. Davis, California; Great Ormond Street Hospital (MM), London, United Kingdom; and The Francis Crick Institute (MM), London, United Kingdom
| |
Collapse
|
8
|
Atamena D, Gurram V, Petsophonsakul P, Khosrobakhsh F, Arrázola MS, Botella M, Wissinger B, Szelechowski M, Belenguer P. Genetic background modulates phenotypic expressivity in OPA1 mutated mice, relevance to DOA pathogenesis. Front Mol Neurosci 2023; 16:1241222. [PMID: 37736113 PMCID: PMC10510408 DOI: 10.3389/fnmol.2023.1241222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
Dominant optic atrophy (DOA) is mainly caused by OPA1 mutations and is characterized by the degeneration of retinal ganglion cells (RGCs), whose axons form the optic nerve. The penetrance of DOA is incomplete and the disease is marked by highly variable expressivity, ranging from asymptomatic patients to some who are totally blind or who suffer from multisystemic effects. No clear genotype-phenotype correlation has been established to date. Taken together, these observations point toward the existence of modifying genetic and/or environmental factors that modulate disease severity. Here, we investigated the influence of genetic background on DOA expressivity by switching the previously described DOA mouse model bearing the c.1065 + 5G → A Opa1 mutation from mixed C3H; C57BL/6 J to a pure C57BL/6 J background. We no longer observed retinal and optic nerve abnormalities; the findings indicated no degeneration, but rather a sex-dependent negative effect on RGC connectivity. This highlights the fact that RGC synaptic alteration might precede neuronal death, as has been proposed in other neurodegenerative diseases, providing new clinical considerations for early diagnosis as well as a new therapeutic window for DOA. Furthermore, our results demonstrate the importance of secondary genetic factors in the variability of DOA expressivity and offer a model for screening for aggravating environmental and genetic factors.
Collapse
Affiliation(s)
- Djamaa Atamena
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
| | - Venu Gurram
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
| | - Petnoï Petsophonsakul
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
| | - Farnoosh Khosrobakhsh
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
- Department of Biological Science, University of Kurdistan, Sanandaj, Iran
| | - Macarena S. Arrázola
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
| | - Marlène Botella
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Marion Szelechowski
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
| | - Pascale Belenguer
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III, CNRS, Toulouse, France
| |
Collapse
|
9
|
Pohl KA, Zhang X, Pham AH, Chan JW, Sadun AA, Yang XJ. Establishing induced pluripotent stem cell lines from two dominant optic atrophy patients with distinct OPA1 mutations and clinical pathologies. Front Genet 2023; 14:1251216. [PMID: 37745862 PMCID: PMC10513078 DOI: 10.3389/fgene.2023.1251216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Dominant optic atrophy (DOA) is an inherited disease that leads to the loss of retinal ganglion cells (RGCs), the projection neurons that relay visual information from the retina to the brain through the optic nerve. The majority of DOA cases can be attributed to mutations in optic atrophy 1 (OPA1), a nuclear gene encoding a mitochondrial-targeted protein that plays important roles in maintaining mitochondrial structure, dynamics, and bioenergetics. Although OPA1 is ubiquitously expressed in all human tissues, RGCs appear to be the primary cell type affected by OPA1 mutations. DOA has not been extensively studied in human RGCs due to the general unavailability of retinal tissues. However, recent advances in stem cell biology have made it possible to produce human RGCs from pluripotent stem cells (PSCs). To aid in establishing DOA disease models based on human PSC-derived RGCs, we have generated iPSC lines from two DOA patients who carry distinct OPA1 mutations and present very different disease symptoms. Studies using these OPA1 mutant RGCs can be correlated with clinical features in the patients to provide insights into DOA disease mechanisms.
Collapse
Affiliation(s)
- Katherine A. Pohl
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xiangmei Zhang
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anh H. Pham
- Department of Ophthalmology, Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, United States
| | - Jane W. Chan
- Department of Ophthalmology, Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, United States
| | - Alfredo A. Sadun
- Department of Ophthalmology, Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, United States
| | - Xian-Jie Yang
- Department of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Nyenhuis SB, Wu X, Strub MP, Yim YI, Stanton AE, Baena V, Syed ZA, Canagarajah B, Hammer JA, Hinshaw JE. OPA1 helical structures give perspective to mitochondrial dysfunction. Nature 2023; 620:1109-1116. [PMID: 37612506 DOI: 10.1038/s41586-023-06462-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
Dominant optic atrophy is one of the leading causes of childhood blindness. Around 60-80% of cases1 are caused by mutations of the gene that encodes optic atrophy protein 1 (OPA1), a protein that has a key role in inner mitochondrial membrane fusion and remodelling of cristae and is crucial for the dynamic organization and regulation of mitochondria2. Mutations in OPA1 result in the dysregulation of the GTPase-mediated fusion process of the mitochondrial inner and outer membranes3. Here we used cryo-electron microscopy methods to solve helical structures of OPA1 assembled on lipid membrane tubes, in the presence and absence of nucleotide. These helical assemblies organize into densely packed protein rungs with minimal inter-rung connectivity, and exhibit nucleotide-dependent dimerization of the GTPase domains-a hallmark of the dynamin superfamily of proteins4. OPA1 also contains several unique secondary structures in the paddle domain that strengthen its membrane association, including membrane-inserting helices. The structural features identified in this study shed light on the effects of pathogenic point mutations on protein folding, inter-protein assembly and membrane interactions. Furthermore, mutations that disrupt the assembly interfaces and membrane binding of OPA1 cause mitochondrial fragmentation in cell-based assays, providing evidence of the biological relevance of these interactions.
Collapse
Affiliation(s)
- Sarah B Nyenhuis
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Xufeng Wu
- Light Microscopy Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Marie-Paule Strub
- Protein Expression Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Yang-In Yim
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Abigail E Stanton
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
- Molecular Biology Department, Princeton University, Princeton, NJ, USA
| | - Valentina Baena
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Zulfeqhar A Syed
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Bertram Canagarajah
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - John A Hammer
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
11
|
Swirski S, May O, Ahlers M, Wissinger B, Greschner M, Jüschke C, Neidhardt J. In Vivo Efficacy and Safety Evaluations of Therapeutic Splicing Correction Using U1 snRNA in the Mouse Retina. Cells 2023; 12:cells12060955. [PMID: 36980294 PMCID: PMC10047704 DOI: 10.3390/cells12060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Efficacy and safety considerations constitute essential steps during development of in vivo gene therapies. Herein, we evaluated efficacy and safety of splice factor-based treatments to correct mutation-induced splice defects in an Opa1 mutant mouse line. We applied adeno-associated viruses to the retina. The viruses transduced retinal cells with an engineered U1 snRNA splice factor designed to correct the Opa1 splice defect. We found the treatment to be efficient in increasing wild-type Opa1 transcripts. Correspondingly, Opa1 protein levels increased significantly in treated eyes. Measurements of retinal morphology and function did not reveal therapy-related side-effects supporting the short-term safety of the treatment. Alterations of potential off-target genes were not detected. Our data suggest that treatments of splice defects applying engineered U1 snRNAs represent a promising in vivo therapeutic approach. The therapy increased wild-type Opa1 transcripts and protein levels without detectable morphological, functional or genetic side-effects in the mouse eye. The U1 snRNA-based therapy can be tailored to specific disease gene mutations, hence, raising the possibility of a wider applicability of this promising technology towards treatment of different inherited retinal diseases.
Collapse
Affiliation(s)
- Sebastian Swirski
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Oliver May
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Malte Ahlers
- Visual Neuroscience, Department of Neuroscience, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | - Martin Greschner
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
- Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Christoph Jüschke
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - John Neidhardt
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
12
|
Cartes-Saavedra B, Lagos D, Macuada J, Arancibia D, Burté F, Sjöberg-Herrera MK, Andrés ME, Horvath R, Yu-Wai-Man P, Hajnóczky G, Eisner V. OPA1 disease-causing mutants have domain-specific effects on mitochondrial ultrastructure and fusion. Proc Natl Acad Sci U S A 2023; 120:e2207471120. [PMID: 36927155 PMCID: PMC10041121 DOI: 10.1073/pnas.2207471120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/23/2023] [Indexed: 03/18/2023] Open
Abstract
Inner mitochondrial membrane fusion and cristae shape depend on optic atrophy protein 1, OPA1. Mutations in OPA1 lead to autosomal dominant optic atrophy (ADOA), an important cause of inherited blindness. The Guanosin Triphosphatase (GTPase) and GTPase effector domains (GEDs) of OPA1 are essential for mitochondrial fusion; yet, their specific roles remain elusive. Intriguingly, patients carrying OPA1 GTPase mutations have a higher risk of developing more severe multisystemic symptoms in addition to optic atrophy, suggesting pathogenic contributions for the GTPase and GED domains, respectively. We studied OPA1 GTPase and GED mutations to understand their domain-specific contribution to protein function by analyzing patient-derived cells and gain-of-function paradigms. Mitochondria from OPA1 GTPase (c.870+5G>A and c.889C>T) and GED (c.2713C>T and c.2818+5G>A) mutants display distinct aberrant cristae ultrastructure. While all OPA1 mutants inhibited mitochondrial fusion, some GTPase mutants resulted in elongated mitochondria, suggesting fission inhibition. We show that the GED is dispensable for fusion and OPA1 oligomer formation but necessary for GTPase activity. Finally, splicing defect mutants displayed a posttranslational haploinsufficiency-like phenotype but retained domain-specific dysfunctions. Thus, OPA1 domain-specific mutants result in distinct impairments in mitochondrial dynamics, providing insight into OPA1 function and its contribution to ADOA pathogenesis and severity.
Collapse
Affiliation(s)
- Benjamín Cartes-Saavedra
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA19107
| | - Daniel Lagos
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
| | - Josefa Macuada
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
| | - Duxan Arancibia
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta1240000, Chile
| | - Florence Burté
- Wellcome Trust for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NewcastleNE2 4HH, UK
| | - Marcela K. Sjöberg-Herrera
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
| | - María Estela Andrés
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
| | - Rita Horvath
- John Van Geest Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CambridgeCB2 0PY, UK
| | - Patrick Yu-Wai-Man
- John Van Geest Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CambridgeCB2 0PY, UK
- Mitochondrial Research Council Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, CambridgeCB2 0XY, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, CambridgeCB2 0QQ, UK
- University College London Institute of Ophthalmology, University College London, LondonEC1V 9EL, UK
- Moorfields Eye Hospital National Health Service Foundation Trust, LondonEC1V 2PD, UK
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA19107
| | - Verónica Eisner
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
| |
Collapse
|
13
|
Zhang Y, Sun X, Tian G, Chen Y. Comparison of the clinical and genetic features of autosomal dominant optic atrophy and normal tension glaucoma in young Chinese adults. Eye (Lond) 2023; 37:624-630. [PMID: 35273349 PMCID: PMC9998393 DOI: 10.1038/s41433-022-01990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND/OBJECTIVES To compare the clinical and optical coherence tomography (OCT) characteristics of autosomal dominant optic atrophy (ADOA) and normal tension glaucoma (NTG) in Chinese patients. SUBJECTS/METHODS Twenty-four unrelated patients with ADOA and 21 unrelated patients with NTG, younger than 30 years, were enrolled in this study. Data regarding the demographic and clinical characteristics of the patients were collected, and their peripapillary retinal nerve fibre layer (RNFL) and macular ganglion cell complex (GCC) thicknesses were evaluated using OCT. Sequencing of genes associated with neuro-ophthalmic disorders was performed for all patients. RESULTS The average age at onset of the ADOA group (13.92 ± 10.73 years) was significantly younger than that of the NTG group (23.67 ± 4.98 years, P = 0.002). Best-corrected visual acuity was significantly poorer in the ADOA group (0.75 ± 0.32) than in the NTG group (0.16 ± 0.19, P < 0.001). The average peripapillary RNFL thickness and the RNFL thicknesses in the temporal upper, temporal lower, and nasal lower sectors were significantly thinner in the ADOA group than in the NTG group (all P < 0.05). Moreover, the macular GCC thickness of the ADOA group was significantly thinner than that of the NTG group (P < 0.001). Twenty-three OPA1 variants (11 novel OPA1 variants) and one OPA3 variant were detected in 24 patients with ADOA. CONCLUSIONS Our study revealed a distinct difference between the patterns of RNFL and GCC loss in ADOA and NTG, which will help to differentiate ADOA from NTG in young patients. Additionally, this study expanded the genetic spectrum of ADOA.
Collapse
Affiliation(s)
- Youjia Zhang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Guohong Tian
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yuhong Chen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
OPA1 Dominant Optic Atrophy: Diagnostic Approach in the Pediatric Population. Curr Issues Mol Biol 2023; 45:465-478. [PMID: 36661516 PMCID: PMC9857649 DOI: 10.3390/cimb45010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
A clinical and genetic study was conducted with pediatric patients and their relatives with optic atrophy 1 (OPA1) mutations to establish whether there is a genotype-phenotype correlation among the variants detected within and between families. Eleven children with a confirmed OPA1 mutation were identified during the study period. The main initial complaint was reduced visual acuity (VA), present in eight patients of the cohort. Eight of eleven patients had a positive family history of optic atrophy. The mean visual acuity at the start of the study was 0.40 and 0.44 LogMAR in the right and left eye, respectively. At the end of the study, the mean visual acuity was unchanged. Optical coherence tomography during the first visit showed a mean retinal nerve fiber layer thickness of 81.6 microns and 80.5 microns in the right and left eye, respectively; a mean ganglion cell layer of 52.5 and 52.4 microns, respectively, and a mean central macular thickness of 229.5 and 233.5 microns, respectively. The most common visual field defect was a centrocecal scotoma, and nine out of eleven patients showed bilateral temporal disc pallor at baseline. Sequencing of OPA1 showed seven different mutations in the eleven patients, one of which, NM_130837.3: c.1406_1407del (p.Thr469LysfsTer16), has not been previously reported. Early diagnosis of dominant optic atrophy is crucial, both for avoiding unnecessary consultations and/or treatments and for appropriate genetic counseling.
Collapse
|
15
|
Abstract
Mitochondrial optic neuropathies have a leading role in the field of mitochondrial medicine ever since 1988, when the first mutation in mitochondrial DNA was associated with Leber's hereditary optic neuropathy (LHON). Autosomal dominant optic atrophy (DOA) was subsequently associated in 2000 with mutations in the nuclear DNA affecting the OPA1 gene. LHON and DOA are both characterized by selective neurodegeneration of retinal ganglion cells (RGCs) triggered by mitochondrial dysfunction. This is centered on respiratory complex I impairment in LHON and defective mitochondrial dynamics in OPA1-related DOA, leading to distinct clinical phenotypes. LHON is a subacute, rapid, severe loss of central vision involving both eyes within weeks or months, with age of onset between 15 and 35 years old. DOA is a more slowly progressive optic neuropathy, usually apparent in early childhood. LHON is characterized by marked incomplete penetrance and a clear male predilection. The introduction of next-generation sequencing has greatly expanded the genetic causes for other rare forms of mitochondrial optic neuropathies, including recessive and X-linked, further emphasizing the exquisite sensitivity of RGCs to compromised mitochondrial function. All forms of mitochondrial optic neuropathies, including LHON and DOA, can manifest either as pure optic atrophy or as a more severe multisystemic syndrome. Mitochondrial optic neuropathies are currently at the forefront of a number of therapeutic programs, including gene therapy, with idebenone being the only approved drug for a mitochondrial disorder.
Collapse
Affiliation(s)
- Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
16
|
Sladen PE, Jovanovic K, Guarascio R, Ottaviani D, Salsbury G, Novoselova T, Chapple JP, Yu-Wai-Man P, Cheetham ME. Modelling autosomal dominant optic atrophy associated with OPA1 variants in iPSC-derived retinal ganglion cells. Hum Mol Genet 2022; 31:3478-3493. [PMID: 35652445 PMCID: PMC9558835 DOI: 10.1093/hmg/ddac128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/14/2022] Open
Abstract
Autosomal dominant optic atrophy (DOA) is the most common inherited optic neuropathy, characterized by the preferential loss of retinal ganglion cells (RGCs), resulting in optic nerve degeneration and progressive bilateral central vision loss. More than 60% of genetically confirmed patients with DOA carry variants in the nuclear OPA1 gene, which encodes for a ubiquitously expressed, mitochondrial GTPase protein. OPA1 has diverse functions within the mitochondrial network, facilitating inner membrane fusion and cristae modelling, regulating mitochondrial DNA maintenance and coordinating mitochondrial bioenergetics. There are currently no licensed disease-modifying therapies for DOA and the disease mechanisms driving RGC degeneration are poorly understood. Here, we describe the generation of isogenic, heterozygous OPA1 null induced pluripotent stem cell (iPSC) (OPA1+/-) through clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing of a control cell line, in conjunction with the generation of DOA patient-derived iPSC carrying OPA1 variants, namely, the c.2708_2711delTTAG variant (DOA iPSC), and previously reported missense variant iPSC line (c.1334G>A, DOA plus [DOA]+ iPSC) and CRISPR/Cas9 corrected controls. A two-dimensional (2D) differentiation protocol was used to study the effect of OPA1 variants on iPSC-RGC differentiation and mitochondrial function. OPA1+/-, DOA and DOA+ iPSC showed no differentiation deficit compared to control iPSC lines, exhibiting comparable expression of all relevant markers at each stage of differentiation. OPA1+/- and OPA1 variant iPSC-RGCs exhibited impaired mitochondrial homeostasis, with reduced bioenergetic output and compromised mitochondrial DNA maintenance. These data highlight mitochondrial deficits associated with OPA1 dysfunction in human iPSC-RGCs, and establish a platform to study disease mechanisms that contribute to RGC loss in DOA, as well as potential therapeutic interventions.
Collapse
Affiliation(s)
- Paul E Sladen
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | - Daniele Ottaviani
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
- Department of Biology, University of Padua, and Veneto Institute of Molecular Medicine, Padua 35129, Italy
| | - Grace Salsbury
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Tatiana Novoselova
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Patrick Yu-Wai-Man
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospital, Cambridge CB2 0QQ, UK
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | | |
Collapse
|
17
|
Chen C, Guo S, Zhao R, Liu S, Wu J, Xiao Y, Hou S, Jiang L. A boy with amblyopia and familial exudative vitreoretinopathy harboring a new mutation of LRP5 and OPA1: A case report. Front Genet 2022; 13:998846. [PMID: 36246636 PMCID: PMC9556980 DOI: 10.3389/fgene.2022.998846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background: The study aimed to report a boy with familial exudative vitreoretinopathy and amblyopia harboring a new mutation of the LRP5 and OPA1 gene abnormality. Case presentation: A 9-year-old boy presented with a 2-year history of deteriorating visual acuity in the right eye. His best-corrected visual acuity was −7.00/−1.75 × 100 = 0.3 in the right eye and −2.50/−1.50 × 170 = 0.8 in the left eye. Two autosomal dominant gene mutation sites were identified in the patient: LRP5 (c.2551C > T, p.His851Tyr) from his father and OPA1 (c.565G > A, p.Glu189Lys) from his mother. Interestingly, his fraternal twin brother harbored no abnormal gene mutations, and his eye tests were normal. Conclusion: This case expands the spectrum of LRP5 gene mutations among Chinese patients with familial exudative vitreoretinopathy, and it is the first time to report a patient harboring both LRP5 and OPA1 gene mutations having anisometropic amblyopia and strabismus as the primary manifestations. These four family members exhibited individual heterogeneity of phenotypes and genotypes associated with hereditary ophthalmopathy. A comprehensive analysis of clinical phenotypes and genotypes provides clinical clues for improving the level of clinical and genetic diagnoses and a deeper understanding of the disease.
Collapse
Affiliation(s)
- Chunli Chen
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
- Beijing Institute of Ophthalmology, Beijing, China
| | - Sitong Guo
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Rui Zhao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Shoubin Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Jingjing Wu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Yuanyuan Xiao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Simeng Hou
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Libin Jiang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
- *Correspondence: Libin Jiang,
| |
Collapse
|
18
|
Akuetteh PDP, Huang H, Wu S, Zhou H, Jin G, Hong W, Yang H, Lan L, Shangguan F, Zhang Q. Synthetic oleanane triterpenoid derivative CDDO-Me disrupts cellular bioenergetics to suppress pancreatic ductal adenocarcinoma via targeting SLC1A5. J Biochem Mol Toxicol 2022; 36:e23192. [PMID: 35929395 DOI: 10.1002/jbt.23192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/16/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
To investigate the potential antitumor activity of synthetic triterpenoid, methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) in pancreatic ductal adenocarcinoma (PDAC), MTT cytotoxicity assay, and xenograft nude mice assay were performed to evaluate tumor growth in vitro and in vivo. Seahorse XFe96 bioenergetics analyzer was applied to determine aerobic glycolysis and mitochondrial respiration. Western blot and quantitative reverse transcription-polymerase chain reactions are used to detect protein and messenger RNA transcripts of SLC1A5 and metabolic enzymes. We confirmed the strong antitumor activity of CDDO-Me in suppressing PDAC growth. Mechanistically, we demonstrated CDDO-Me induced mitochondrial respiration and aerobic glycolysis dysfunction. We also verified CDDO-Me downregulated glutamine transporter SLC1A5, resulting in excessive reactive oxygen species (ROS) levels that suppressed tumor growth. Moreover, we confirmed that SLC1A5 depletion reduced the ratio of glutathione/oxidized glutathione. We also found CDDO-Me could inhibit N-linked glycosylation of SLC1A5, which promotes protease-mediated degradation. Finally, we confirmed SLC1A5 was significantly overexpressed in PDAC and closely correlated with the poor prognosis of PDAC patients. Our work uncovers CDDO-Me is effective at suppressing PDAC cell growth in vitro and in vivo and illuminates CDDO-Me caused excessive ROS and cellular bioenergetics disruption which contributed to CDDO-Me inhibited PDAC growth. Our data highlights CDDO-Me could be considered a potential compound for PDAC therapy, and SLC1A5 could be a novel biomarker for PDAC patients.
Collapse
Affiliation(s)
- Percy D P Akuetteh
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huimin Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongfei Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guihua Jin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Welong Hong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongbao Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyu Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Han J, Li Y, You Y, Fan K, Lei B. Autosomal dominant optic atrophy caused by six novel pathogenic OPA1 variants and genotype-phenotype correlation analysis. BMC Ophthalmol 2022; 22:322. [PMID: 35883160 PMCID: PMC9327245 DOI: 10.1186/s12886-022-02546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To describe the genetic and clinical features of nineteen patients from eleven unrelated Chinese pedigrees with OPA1-related autosomal dominant optic atrophy (ADOA) and define the phenotype-genotype correlations. METHODS Detailed ophthalmic examinations were performed. Targeted next-generation sequencing (NGS) was conducted in the eleven probands using a custom designed panel PS400. Sanger sequencing and cosegregation were used to verify the identified variants. The pathogenicity of gene variants was evaluated according to American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS Nineteen patients from the eleven unrelated Chinese ADOA pedigrees had impaired vision and optic disc pallor. Optical coherence tomography showed significant thinning of the retinal nerve fiber layer. The visual field showed varying degrees of central or paracentral scotoma. The onset of symptoms occurred between 3 and 24 years of age (median age 6 years). Eleven variants in OPA1 were identified in the cohort, and nine novel variants were identified. Among the novel variants, two splicing variants c.984 + 1_984 + 2delGT, c.1194 + 2 T > C, two stop-gain variants c.1937C > G, c.2830G > T, and one frameshift variant c.2787_2794del8, were determined to be pathogenic based on ACMG. A novel splicing variant c.1316-10 T > G was determined to be likely pathogenic. In addition, a novel missense c.1283A > C (p.N428T) and two novel splicing variants c.2496G > A and c.1065 + 5G > C were of uncertain significance. CONCLUSIONS Six novel pathogenic variants were identified. The findings will facilitate genetic counselling by expanding the pathogenic mutation spectrum of OPA1.
Collapse
Affiliation(s)
- Jinfeng Han
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University, Zheng-zhou, 450003, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Ya Li
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University, Zheng-zhou, 450003, China.,Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Ya You
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University, Zheng-zhou, 450003, China.,Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Ke Fan
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University, Zheng-zhou, 450003, China.,Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Bo Lei
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou University, Zheng-zhou, 450003, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China. .,Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
20
|
Charif M, Chevrollier A, Gueguen N, Kane S, Bris C, Goudenège D, Desquiret-Dumas V, Meunier I, Mochel F, Jeanjean L, Varenne F, Procaccio V, Reynier P, Bonneau D, Amati-Bonneau P, Lenaers G. Next-Generation Sequencing Identifies Novel PMPCA Variants in Patients with Late-Onset Dominant Optic Atrophy. Genes (Basel) 2022; 13:1202. [PMID: 35885985 PMCID: PMC9320445 DOI: 10.3390/genes13071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dominant Optic Atrophy (DOA) is one of the most common inherited mitochondrial diseases, leading to blindness. It is caused by the chronic degeneration of the retinal ganglion cells (RGCs) and their axons forming the optic nerve. Until now, DOA has been mainly associated with genes encoding proteins involved in mitochondrial network dynamics. Using next-generation and exome sequencing, we identified for the first time heterozygous PMPCA variants having a causative role in the pathology of late-onset primary DOA in five patients. PMPCA encodes an α subunit of the mitochondrial peptidase (MPP), responsible for the cleavage and maturation of the mitochondrial precursor proteins imported from the cytoplasm into mitochondria. Recently, PMPCA has been identified as the gene responsible for Autosomal Recessive Cerebellar Ataxia type 2 (SCAR2) and another severe recessive mitochondrial disease. In this study, four PMPCA variants were identified, two are frameshifts (c.309delA and c.820delG) classified as pathogenic and two are missenses (c.1363G>A and c.1547G>A) classified with uncertain pathological significance. Functional assays on patients’ fibroblasts show a hyperconnection of the mitochondrial network and revealed that frameshift variants reduced α-MPP levels, while not significantly affecting the respiratory machinery. These results suggest that alterations in mitochondrial peptidase function can affect the fusion-fission balance, a key element in maintaining the physiology of retinal ganglion cells, and consequently lead to their progressive degeneration.
Collapse
Affiliation(s)
- Majida Charif
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda 60000, Morocco
| | - Arnaud Chevrollier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
| | - Naïg Gueguen
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Selma Kane
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
| | - Céline Bris
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - David Goudenège
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Valerie Desquiret-Dumas
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, University Hospital of Montpellier, University of Montpellier, 34000 Montpellier, France;
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, 34000 Montpellier, France
| | - Fanny Mochel
- Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, 75013 Paris, France;
| | - Luc Jeanjean
- Department of Ophthalmology, Nîmes University Hospital, CEDEX 9, 30900 Nîmes, France;
| | - Fanny Varenne
- Department of Ophthalmology, Hôpital Pierre Paul Riquet CHU Purpan, 31300 Toulouse, France;
| | - Vincent Procaccio
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Genetics, University Hospital Angers, 49933 Angers, France
| | - Pascal Reynier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Dominique Bonneau
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Genetics, University Hospital Angers, 49933 Angers, France
| | - Patrizia Amati-Bonneau
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Guy Lenaers
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Service de Neurologie, University Hospital Angers, 49933 Angers, France
| |
Collapse
|
21
|
Biallelic Optic Atrophy 1 ( OPA1) Related Disorder-Case Report and Literature Review. Genes (Basel) 2022; 13:genes13061005. [PMID: 35741767 PMCID: PMC9223020 DOI: 10.3390/genes13061005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Dominant optic atrophy (DOA), MIM # 605290, is the most common hereditary optic neuropathy inherited in an autosomal dominant pattern. Clinically, it presents a progressive decrease in vision, central visual field defects, and retinal ganglion cell loss. A biallelic mode of inheritance causes syndromic DOA or Behr phenotype, MIM # 605290. This case report details a family with Biallelic Optic Atrophy 1 (OPA1). The proband is a child with a severe phenotype and two variants in the OPA1 gene. He presented with congenital nystagmus, progressive vision loss, and optic atrophy, as well as progressive ataxia, and was found to have two likely pathogenic variants in his OPA1 gene: c.2287del (p.Ser763Valfs*15) maternally inherited and c.1311A>G (p.lIle437Met) paternally inherited. The first variant is predicted to be pathogenic and likely to cause DOA. In contrast, the second is considered asymptomatic by itself but has been reported in patients with DOA phenotype and is presumed to act as a phenotypic modifier. On follow-up, he developed profound vision impairment, intractable seizures, and metabolic strokes. A literature review of reported biallelic OPA1-related Behr syndrome was performed. Twenty-one cases have been previously reported. All share an early-onset, severe ocular phenotype and systemic features, which seem to be the hallmark of the disease.
Collapse
|
22
|
Zehden JA, Raviskanthan S, Mortensen PW, Ferré M, Reynier P, Milea D, Lee AG. Dominant Optic Atrophy: How to Determine the Pathogenicity of Novel Variants? J Neuroophthalmol 2022; 42:149-153. [PMID: 34629404 DOI: 10.1097/wno.0000000000001352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jason A Zehden
- Baylor College of Medicine (JZ), Houston, Texas, US; Department of Ophthalmology (SR, PWM, AGL), Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas; MITOVASC Institute (MF, PR, DM), CNRS 6015, INSERM U1083, University of Angers, France ; Singapore National Eye Center (DM), Singapore, Singapore ; Singapore Eye Research Institute (DM), Singapore, Singapore ; Duke-NUS Medical School (DM), Singapore, Singapore ; Copenhagen University Hospital Denmark (DM), Copenhagen, Denmark; Departments of Ophthalmology (AGL), Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York; Department of Ophthalmology (AGL), University of Texas Medical Branch, Galveston, Texas; University of Texas MD Anderson Cancer Center (AGL), Houston, Texas; Texas A and M College of Medicine (AGL), Bryan, Texas; and Department of Ophthalmology (AGL), The University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | | | | | | | | | | | | |
Collapse
|
23
|
Cesareo M, Giannini C, Di Marino M, Aloe G, Martucci A, Aiello F, Cusumano A, Mancino R, Ricci F, Sorge RP, Nucci C. Optical coherence tomography angiography in the multimodal assessment of the retinal posterior pole in autosomal dominant optic atrophy. Acta Ophthalmol 2022; 100:e798-e806. [PMID: 34250739 DOI: 10.1111/aos.14972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/17/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE To assess retinal vascular involvement in patients with autosomal dominant optic atrophy (ADOA) genetically confirmed by the presence of the OPA1 (Optic Atrophy 1) gene mutation using a multimodal protocol of investigation of retinal posterior pole. METHODS In this cross-sectional, case-control, observational study, both eyes of 13 patients with a genetic diagnosis of ADOA were compared with both eyes of 13 healthy controls (HCs). All subjects underwent full ophthalmological examination, spectral domain-optical coherence tomography (SD-OCT), fundus perimetry (FP) and OCT angiography (OCTA). RESULTS Vessel density (VD) of the superficial and deep macular vascular plexi and of the radial peripapillary capillary plexus were significantly decreased (p ≤ 0.001) in ADOA patients compared with HCs. The area under the receiver operating characteristics analysis also revealed high values of sensitivity and specificity of OCTA parameters in distinguish between patients and HCs. A strong correlation (Pearson Coefficient, r = 0.91) emerged between OCTA VD of the superficial retinal plexus and the average Ganglion Cell Layer (GCL) thickness as measured by SD-OCT; a slightly lower correlation (Pearson Coefficient, r = 0.89) was also found between VD of the deep plexus and the average GCL thickness of the same eyes in patients with ADOA. The correlation among values of differential light sensitivity (DLS) measured by FP with VD and GCL thickness parameters was also investigated. The correlation analysis among DLS and the VD parameters showed from low-to-moderate correlation (ranging from r = 0.29 for the deep fovea VD to r = 0.59 for the deep whole image VD). The correlation coefficient between the mean DLS and the average thickness of GCL was more significant (Pearson Coefficient, r = 0.75). A significant correlation emerged also between the VD and the visual acuity, in terms of LogMAR BCVA (best-corrected visual acuity), especially for the VD of the deep capillary plexus (Pearson Coefficient for the Deep whole Image VD and LogMAR BCVA r = -0.75; for the Deep parafovea VD and LogMAR BCVA r = -0.78). CONCLUSION Retinal microvascular assessment by OCTA angiography can provide relevant clinical information on retinal involvement in ADOA patients. In patients with genetically confirmed OPA1-related ADOA, there is a decrease in retinal vessel density associated with GCL thinning and DLS reduction.
Collapse
Affiliation(s)
- Massimo Cesareo
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Clarissa Giannini
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Di Marino
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gianluca Aloe
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessio Martucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Aiello
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Cusumano
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Raffaele Mancino
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Federico Ricci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberto Pietro Sorge
- Laboratory of Biometry, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
24
|
First Description of Inheritance of a Postzygotic OPA1 Mosaic Variant. Genes (Basel) 2022; 13:genes13030478. [PMID: 35328032 PMCID: PMC8948733 DOI: 10.3390/genes13030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
Optic atrophy 1 (MIM #165500) is caused by pathogenic variants in the gene OPA1 (OPA1 MITOCHONDRIAL DYNAMIN-LIKE GTPase, MIM *605290) and is inherited in an autosomal dominant manner. We describe a 6-year-old male patient with severe early onset manifestation of optic atrophy, whose parents are subjectively asymptomatic. OPA1-sequence analysis revealed the heterozygous missense variant NM_015560.3:c.806C>T, p.(Ser269Phe) in the patient. Segregation analysis of the parents showed that the mother carried a low-grade postzygotic mosaic of this variant, which apparently also involves germline cells. In line with this, ophthalmological investigation of the mother showed subclinical manifestation of optic atrophy 1. This is the first report of an OPA1 postzygotic mosaic that was inherited to offspring.
Collapse
|
25
|
Cartes-Saavedra B, Macuada J, Lagos D, Arancibia D, Andrés ME, Yu-Wai-Man P, Hajnóczky G, Eisner V. OPA1 Modulates Mitochondrial Ca 2+ Uptake Through ER-Mitochondria Coupling. Front Cell Dev Biol 2022; 9:774108. [PMID: 35047497 PMCID: PMC8762365 DOI: 10.3389/fcell.2021.774108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Autosomal Dominant Optic Atrophy (ADOA), a disease that causes blindness and other neurological disorders, is linked to OPA1 mutations. OPA1, dependent on its GTPase and GED domains, governs inner mitochondrial membrane (IMM) fusion and cristae organization, which are central to oxidative metabolism. Mitochondrial dynamics and IMM organization have also been implicated in Ca2+ homeostasis and signaling but the specific involvements of OPA1 in Ca2+ dynamics remain to be established. Here we studied the possible outcomes of OPA1 and its ADOA-linked mutations in Ca2+ homeostasis using rescue and overexpression strategies in Opa1-deficient and wild-type murine embryonic fibroblasts (MEFs), respectively and in human ADOA-derived fibroblasts. MEFs lacking Opa1 required less Ca2+ mobilization from the endoplasmic reticulum (ER) to induce a mitochondrial matrix [Ca2+] rise ([Ca2+]mito). This was associated with closer ER-mitochondria contacts and no significant changes in the mitochondrial calcium uniporter complex. Patient cells carrying OPA1 GTPase or GED domain mutations also exhibited altered Ca2+ homeostasis, and the mutations associated with lower OPA1 levels displayed closer ER-mitochondria gaps. Furthermore, in Opa1 -/- MEF background, we found that acute expression of OPA1 GTPase mutants but no GED mutants, partially restored cytosolic [Ca2+] ([Ca2+]cyto) needed for a prompt [Ca2+]mito rise. Finally, OPA1 mutants' overexpression in WT MEFs disrupted Ca2+ homeostasis, partially recapitulating the observations in ADOA patient cells. Thus, OPA1 modulates functional ER-mitochondria coupling likely through the OPA1 GED domain in Opa1 -/- MEFs. However, the co-existence of WT and mutant forms of OPA1 in patients promotes an imbalance of Ca2+ homeostasis without a domain-specific effect, likely contributing to the overall ADOA progress.
Collapse
Affiliation(s)
- Benjamín Cartes-Saavedra
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Josefa Macuada
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Lagos
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Duxan Arancibia
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María E. Andrés
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patrick Yu-Wai-Man
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Verónica Eisner
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
26
|
Weisschuh N, Marino V, Schäferhoff K, Richter P, Park J, Haack TB, Dell'Orco D. Mutations at a split codon in the GTPase-encoding domain of OPA1 cause dominant optic atrophy through different molecular mechanisms. Hum Mol Genet 2021; 31:761-774. [PMID: 34559197 PMCID: PMC8895747 DOI: 10.1093/hmg/ddab286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Exonic (i.e. coding) variants in genes associated with disease can exert pathogenic effects both at the protein and mRNA level, either by altering the amino acid sequence or by affecting pre-mRNA splicing. The latter is often neglected due to the lack of RNA analyses in genetic diagnostic testing. In this study we considered both pathomechanisms and performed a comprehensive analysis of nine exonic nucleotide changes in OPA1, which is the major gene underlying autosomal dominant optic atrophy (DOA) and is characterized by pronounced allelic heterogeneity. We focused on the GTPase-encoding domain of OPA1, which harbors most of the missense variants associated with DOA. Given that the consensus splice sites extend into the exons, we chose a split codon, namely codon 438, for our analyses. Variants at this codon are the second most common cause of disease in our large cohort of DOA patients harboring disease-causing variants in OPA1. In silico splice predictions, heterologous splice assays, analysis of patient’s RNA when available, and protein modeling revealed different molecular outcomes for variants at codon 438. The wildtype aspartate residue at amino acid position 438 is directly involved in the dimerization of OPA1 monomers. We found that six amino acid substitutions at codon 438 (i.e. all substitutions of the first and second nucleotide of the codon) destabilized dimerization while only substitutions of the first nucleotide of the codon caused exon skipping. Our study highlights the value of combining RNA analysis and protein modeling approaches to accurately assign patients to future precision therapies.
Collapse
Affiliation(s)
- Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen 72076, Germany
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona 37134, Italy
| | - Karin Schäferhoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Paul Richter
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen 72076, Germany
| | - Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen 72076, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona 37134, Italy
| |
Collapse
|
27
|
Lin CW, Huang CW, Luo AC, Chou YT, Huang YS, Chen PL, Chen TC. Genetic Spectrum and Characteristics of Hereditary Optic Neuropathy in Taiwan. Genes (Basel) 2021; 12:genes12091378. [PMID: 34573359 PMCID: PMC8467776 DOI: 10.3390/genes12091378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
Hereditary optic neuropathy (HON) is a group of genetically heterogeneous diseases that cause optic nerve atrophy and lead to substantial visual impairment. HON may present with optic nerve atrophy only or in association with various systemic abnormalities. Although a genetic survey is indispensable for diagnosing HON, conventional sequencing techniques could render its diagnosis challenging. In this study, we attempted to explore the genetic background of patients with HON in Taiwan through capture-based next-generation sequencing targeting 52 HON-related genes. In total, 57 patients from 48 families were recruited, with 6 patients diagnosed as having Leber hereditary optic neuropathy through initial screening for three common variants (m.3460G>A, m.11778G>A, m.14484T>C). Disease-causing genotypes were identified in 14 (33.3%) probands, and OPA1 variants were the most prevalent cause of autosomal HON. Exposure to medications such as ethambutol could trigger an attack of autosomal dominant optic atrophy. WFS1 variants were identified in three probands with variable clinical features in our cohort. Hearing impairment could occur in patients with OPA1 or WFS1 variants. This is the first comprehensive study investigating the genetic characteristics of HON in Taiwan, especially for autosomal HON. Our results could provide useful information for clinical diagnosis and genetic counseling in this field.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Child
- Child, Preschool
- DNA Mutational Analysis/statistics & numerical data
- Female
- GTP Phosphohydrolases/genetics
- Genetic Counseling
- Genetic Testing/statistics & numerical data
- Humans
- Male
- Membrane Proteins/genetics
- Middle Aged
- Mutation
- Optic Atrophy, Autosomal Dominant/diagnosis
- Optic Atrophy, Autosomal Dominant/epidemiology
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Hereditary, Leber/diagnosis
- Optic Atrophy, Hereditary, Leber/epidemiology
- Optic Atrophy, Hereditary, Leber/genetics
- Taiwan/epidemiology
- Young Adult
Collapse
Affiliation(s)
- Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
| | - Ching-Wen Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
| | - Allen Chilun Luo
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan; (A.C.L.); (Y.-T.C.)
| | - Yuh-Tsyr Chou
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan; (A.C.L.); (Y.-T.C.)
| | - Yu-Shu Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan; (A.C.L.); (Y.-T.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: (P.-L.C.); (T.-C.C.); Tel.: +886-2-23123456 (ext. 71942) (P.-L.C.); +886-2-23123456 (ext. 63783) (T.-C.C.); Fax: +886-2-23934420 (T.-C.C.)
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-W.L.); (C.-W.H.); (Y.-S.H.)
- Correspondence: (P.-L.C.); (T.-C.C.); Tel.: +886-2-23123456 (ext. 71942) (P.-L.C.); +886-2-23123456 (ext. 63783) (T.-C.C.); Fax: +886-2-23934420 (T.-C.C.)
| |
Collapse
|
28
|
Chao de la Barca JM, Fogazza M, Rugolo M, Chupin S, Del Dotto V, Ghelli AM, Carelli V, Simard G, Procaccio V, Bonneau D, Lenaers G, Reynier P, Zanna C. Metabolomics hallmarks OPA1 variants correlating with their in vitro phenotype and predicting clinical severity. Hum Mol Genet 2021; 29:1319-1329. [PMID: 32202296 PMCID: PMC7254852 DOI: 10.1093/hmg/ddaa047] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/22/2023] Open
Abstract
Interpretation of variants of uncertain significance is an actual major challenge. We addressed this question on a set of OPA1 missense variants responsible for variable severity of neurological impairments. We used targeted metabolomics to explore the different signatures of OPA1 variants expressed in Opa1 deleted mouse embryonic fibroblasts (Opa1-/- MEFs), grown under selective conditions. Multivariate analyses of data discriminated Opa1+/+ from Opa1-/- MEFs metabolic signatures and classified OPA1 variants according to their in vitro severity. Indeed, the mild p.I382M hypomorphic variant was segregating close to the wild-type allele, while the most severe p.R445H variant was close to Opa1-/- MEFs, and the p.D603H and p.G439V alleles, responsible for isolated and syndromic presentations, respectively, were intermediary between the p.I382M and the p.R445H variants. The most discriminant metabolic features were hydroxyproline, the spermine/spermidine ratio, amino acid pool and several phospholipids, emphasizing proteostasis, endoplasmic reticulum (ER) stress and phospholipid remodeling as the main mechanisms ranking OPA1 allele impacts on metabolism. These results demonstrate the high resolving power of metabolomics in hierarchizing OPA1 missense mutations by their in vitro severity, fitting clinical expressivity. This suggests that our methodological approach can be used to discriminate the pathological significance of variants in genes responsible for other rare metabolic diseases and may be instrumental to select possible compounds eligible for supplementation treatment.
Collapse
Affiliation(s)
- Juan Manuel Chao de la Barca
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Mario Fogazza
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France.,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Michela Rugolo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Stéphanie Chupin
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Valentina Del Dotto
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Anna Maria Ghelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Valerio Carelli
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy
| | - Gilles Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Vincent Procaccio
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Dominique Bonneau
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Guy Lenaers
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
29
|
Guehlouz K, Foulonneau T, Amati-Bonneau P, Charif M, Colin E, Bris C, Desquiret-Dumas V, Milea D, Gohier P, Procaccio V, Bonneau D, den Dunnen JT, Lenaers G, Reynier P, Ferré M. ACO2 clinicobiological dataset with extensive phenotype ontology annotation. Sci Data 2021; 8:205. [PMID: 34354088 PMCID: PMC8342444 DOI: 10.1038/s41597-021-00984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/22/2021] [Indexed: 11/08/2022] Open
Abstract
Pathogenic variants of the aconitase 2 gene (ACO2) are responsible for a broad clinical spectrum involving optic nerve degeneration, ranging from isolated optic neuropathy with recessive or dominant inheritance, to complex neurodegenerative syndromes with recessive transmission. We created the first public locus-specific database (LSDB) dedicated to ACO2 within the "Global Variome shared LOVD" using exclusively the Human Phenotype Ontology (HPO), a standard vocabulary for describing phenotypic abnormalities. All the variants and clinical cases listed in the literature were incorporated into the database, from which we produced a dataset. We followed a rational and comprehensive approach based on the HPO thesaurus, demonstrating that ACO2 patients should not be classified separately between isolated and syndromic cases. Our data highlight that certain syndromic patients do not have optic neuropathy and provide support for the classification of the recurrent pathogenic variants c.220C>G and c.336C>G as likely pathogenic. Overall, our data records demonstrate that the clinical spectrum of ACO2 should be considered as a continuum of symptoms and refines the classification of some common variants.
Collapse
Affiliation(s)
- Khadidja Guehlouz
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Thomas Foulonneau
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
| | - Patrizia Amati-Bonneau
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Majida Charif
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
- Genetics, and immuno-cell therapy Team, Mohammed First University, Oujda, Morocco
| | - Estelle Colin
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Céline Bris
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Valérie Desquiret-Dumas
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Dan Milea
- Singapore National Eye Centre, Singapore Eye Research Institute, Duke-NUS, Singapore
| | - Philippe Gohier
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Vincent Procaccio
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Dominique Bonneau
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Johan T den Dunnen
- Human Genetics and Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Guy Lenaers
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
| | - Pascal Reynier
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Marc Ferré
- Unité Mixte de Recherche MITOVASC, CNRS 6015/INSERM 1083, Université d'Angers, Angers, France.
| |
Collapse
|
30
|
Weisschuh N, Schimpf-Linzenbold S, Mazzola P, Kieninger S, Xiao T, Kellner U, Neuhann T, Kelbsch C, Tonagel F, Wilhelm H, Kohl S, Wissinger B. Mutation spectrum of the OPA1 gene in a large cohort of patients with suspected dominant optic atrophy: Identification and classification of 48 novel variants. PLoS One 2021; 16:e0253987. [PMID: 34242285 PMCID: PMC8270428 DOI: 10.1371/journal.pone.0253987] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant optic atrophy is one of the most common inherited optic neuropathies. This disease is genetically heterogeneous, but most cases are due to pathogenic variants in the OPA1 gene: depending on the population studied, 32–90% of cases harbor pathogenic variants in this gene. The aim of this study was to provide a comprehensive overview of the entire spectrum of likely pathogenic variants in the OPA1 gene in a large cohort of patients. Over a period of 20 years, 755 unrelated probands with a diagnosis of bilateral optic atrophy were referred to our laboratory for molecular genetic investigation. Genetic testing of the OPA1 gene was initially performed by a combined analysis using either single-strand conformation polymorphism or denaturing high performance liquid chromatography followed by Sanger sequencing to validate aberrant bands or melting profiles. The presence of copy number variations was assessed using multiplex ligation-dependent probe amplification. Since 2012, genetic testing was based on next-generation sequencing platforms. Genetic screening of the OPA1 gene revealed putatively pathogenic variants in 278 unrelated probands which represent 36.8% of the entire cohort. A total of 156 unique variants were identified, 78% of which can be considered null alleles. Variant c.2708_2711del/p.(V903Gfs*3) was found to constitute 14% of all disease-causing alleles. Special emphasis was placed on the validation of splice variants either by analyzing cDNA derived from patients´ blood samples or by heterologous splice assays using minigenes. Splicing analysis revealed different aberrant splicing events, including exon skipping, activation of exonic or intronic cryptic splice sites, and the inclusion of pseudoexons. Forty-eight variants that we identified were novel. Nine of them were classified as pathogenic, 34 as likely pathogenic and five as variant of uncertain significance. Our study adds a significant number of novel variants to the mutation spectrum of the OPA1 gene and will thereby facilitate genetic diagnostics of patients with suspected dominant optic atrophy.
Collapse
Affiliation(s)
- Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Simone Schimpf-Linzenbold
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.,CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sinja Kieninger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ting Xiao
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ulrich Kellner
- Zentrum für seltene Netzhauterkrankungen, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, Siegburg, Germany.,RetinaScience, Bonn, Germany
| | | | - Carina Kelbsch
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Felix Tonagel
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Helmut Wilhelm
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disorder manifesting as gradual or progressive loss of neurological functions. Most patients present with relapsing-remitting disease courses. Extensive research over recent decades has expounded our insights into the presentations and diagnostic features of MS. Groups of genetic diseases, CADASIL and leukodystrophies, for example, have been frequently misdiagnosed with MS due to some overlapping clinical and radiological features. The delayed identification of these diseases in late adulthood can lead to severe neurological complications. Herein we discuss genetic diseases that have the potential to mimic multiple sclerosis, with highlights on clinical identification and practicing pearls that may aid physicians in recognizing MS-mimics with genetic background in clinical settings.
Collapse
Affiliation(s)
- Chueh Lin Hsu
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Chueh Hsuan Hsu
- Department of Neurology, China Medical University, Taichung, Taiwan
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
32
|
Lenaers G, Neutzner A, Le Dantec Y, Jüschke C, Xiao T, Decembrini S, Swirski S, Kieninger S, Agca C, Kim US, Reynier P, Yu-Wai-Man P, Neidhardt J, Wissinger B. Dominant optic atrophy: Culprit mitochondria in the optic nerve. Prog Retin Eye Res 2021; 83:100935. [PMID: 33340656 DOI: 10.1016/j.preteyeres.2020.100935] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Dominant optic atrophy (DOA) is an inherited mitochondrial disease leading to specific degeneration of retinal ganglion cells (RGCs), thus compromising transmission of visual information from the retina to the brain. Usually, DOA starts during childhood and evolves to poor vision or legal blindness, affecting the central vision, whilst sparing the peripheral visual field. In 20% of cases, DOA presents as syndromic disorder, with secondary symptoms affecting neuronal and muscular functions. Twenty years ago, we demonstrated that heterozygous mutations in OPA1 are the most frequent molecular cause of DOA. Since then, variants in additional genes, whose functions in many instances converge with those of OPA1, have been identified by next generation sequencing. OPA1 encodes a dynamin-related GTPase imported into mitochondria and located to the inner membrane and intermembrane space. The many OPA1 isoforms, resulting from alternative splicing of three exons, form complex homopolymers that structure mitochondrial cristae, and contribute to fusion of the outer membrane, thus shaping the whole mitochondrial network. Moreover, OPA1 is required for oxidative phosphorylation, maintenance of mitochondrial genome, calcium homeostasis and regulation of apoptosis, thus making OPA1 the Swiss army-knife of mitochondria. Understanding DOA pathophysiology requires the understanding of RGC peculiarities with respect to OPA1 functions. Besides the tremendous energy requirements of RGCs to relay visual information from the eye to the brain, these neurons present unique features related to their differential environments in the retina, and to the anatomical transition occurring at the lamina cribrosa, which parallel major adaptations of mitochondrial physiology and shape, in the pre- and post-laminar segments of the optic nerve. Three DOA mouse models, with different Opa1 mutations, have been generated to study intrinsic mechanisms responsible for RGC degeneration, and these have further revealed secondary symptoms related to mitochondrial dysfunctions, mirroring the more severe syndromic phenotypes seen in a subgroup of patients. Metabolomics analyses of cells, mouse organs and patient plasma mutated for OPA1 revealed new unexpected pathophysiological mechanisms related to mitochondrial dysfunction, and biomarkers correlated quantitatively to the severity of the disease. Here, we review and synthesize these data, and propose different approaches for embracing possible therapies to fulfil the unmet clinical needs of this disease, and provide hope to affected DOA patients.
Collapse
Affiliation(s)
- Guy Lenaers
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France.
| | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Ophthalmology University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Yannick Le Dantec
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Christoph Jüschke
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Ting Xiao
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Sarah Decembrini
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Ophthalmology University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sebastian Swirski
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Sinja Kieninger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Cavit Agca
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey; Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| | - Ungsoo S Kim
- Kim's Eye Hospital, Seoul, South Korea; Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK
| | - Pascal Reynier
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France; Department of Biochemistry, University Hospital of Angers, Angers, France
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - John Neidhardt
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, University Oldenburg, Oldenburg, Germany.
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
33
|
Xu X, Wang P, Jia X, Sun W, Li S, Xiao X, Hejtmancik JF, Zhang Q. Pathogenicity evaluation and the genotype-phenotype analysis of OPA1 variants. Mol Genet Genomics 2021; 296:845-862. [PMID: 33884488 DOI: 10.1007/s00438-021-01783-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/02/2021] [Indexed: 12/21/2022]
Abstract
Autosomal dominant optic atrophy (ADOA) is an important cause of irreversible visual impairment in children and adolescents. About 60-90% of ADOA is caused by the pathogenic variants of OPA1 gene. By evaluating the pathogenicity of OPA1 variants and summarizing the relationship between the genotype and phenotype, this study aimed to provide a reference for clinical genetic test involving OPA1. Variants in OPA1 were selected from the exome sequencing results in 7092 cases of hereditary eye diseases and control groups from our in-house data. At the same time, the urine cells of some optic atrophy patients with OPA1 variants as well as their family members were collected and oxygen consumption rates (OCR) were measured in these cells to evaluate the pathogenicity of variants. As a result, 97 variants were detected, including 94 rare variants and 3 polymorphisms. And the 94 rare variants were classified into three groups: pathogenic (33), variants of uncertain significance (19), and likely benign (42). Our results indicated that the frameshift variants at the 3' terminus might be pathogenic, while the variants in exon 7 and intron 4 might be benign. The penetrance of the missense variants was higher than that of truncation variants. The OCR of cells with pathogenic OPA1 variants were significantly lower than those without pathogenic variants. In conclusion, some variants might be benign although predicted pathogenic in previous studies while some might have unknown pathogenesis. Measuring the OCR in urine cells could be used as a method to evaluate the pathogenicity of some OPA1 variants.
Collapse
Affiliation(s)
- Xingyu Xu
- State Key Laboratory of Ophthalmology, Pediatric and Genetic Eye Clinic, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Pediatric and Genetic Eye Clinic, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Pediatric and Genetic Eye Clinic, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Pediatric and Genetic Eye Clinic, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Pediatric and Genetic Eye Clinic, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Pediatric and Genetic Eye Clinic, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Pediatric and Genetic Eye Clinic, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, 510060, China.
| |
Collapse
|
34
|
Charif M, Bris C, Goudenège D, Desquiret-Dumas V, Colin E, Ziegler A, Procaccio V, Reynier P, Bonneau D, Lenaers G, Amati-Bonneau P. Use of Next-Generation Sequencing for the Molecular Diagnosis of 1,102 Patients With a Autosomal Optic Neuropathy. Front Neurol 2021; 12:602979. [PMID: 33841295 PMCID: PMC8027346 DOI: 10.3389/fneur.2021.602979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Advances in next-generation sequencing (NGS) facilitate the diagnosis of genetic disorders. To evaluate its use for the molecular diagnosis of inherited optic neuropathy (ION), a blinding disease caused by the degeneration of retinal ganglion cells, we performed genetic analysis using targeted NGS of 22 already known and candidate genes in a cohort of 1,102 affected individuals. The panel design, library preparation, and sequencing reactions were performed using the Ion AmpliSeq technology. Pathogenic variants were detected in 16 genes in 245 patients (22%), including 186 (17%) and 59 (5%) dominant and recessive cases, respectively. Results confirmed that OPA1 variants are responsible for the majority of dominant IONs, whereas ACO2 and WFS1 variants are also frequently involved in both dominant and recessive forms of ION. All pathogenic variants were found in genes encoding proteins involved in the mitochondrial function, highlighting the importance of mitochondria in the survival of retinal ganglion cells.
Collapse
Affiliation(s)
- Majida Charif
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Céline Bris
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - David Goudenège
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Valérie Desquiret-Dumas
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Estelle Colin
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Alban Ziegler
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Vincent Procaccio
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Pascal Reynier
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Dominique Bonneau
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Guy Lenaers
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France
| | - Patrizia Amati-Bonneau
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| |
Collapse
|
35
|
Qian X, Wang J, Wang M, Igelman AD, Jones KD, Li Y, Wang K, Goetz KE, Birch DG, Yang P, Pennesi ME, Chen R. Identification of Deep-Intronic Splice Mutations in a Large Cohort of Patients With Inherited Retinal Diseases. Front Genet 2021; 12:647400. [PMID: 33737949 PMCID: PMC7960924 DOI: 10.3389/fgene.2021.647400] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
High throughput sequencing technologies have revolutionized the identification of mutations responsible for a diverse set of Mendelian disorders, including inherited retinal disorders (IRDs). However, the causal mutations remain elusive for a significant proportion of patients. This may be partially due to pathogenic mutations located in non-coding regions, which are largely missed by capture sequencing targeting the coding regions. The advent of whole-genome sequencing (WGS) allows us to systematically detect non-coding variations. However, the interpretation of these variations remains a significant bottleneck. In this study, we investigated the contribution of deep-intronic splice variants to IRDs. WGS was performed for a cohort of 571 IRD patients who lack a confident molecular diagnosis, and potential deep intronic variants that affect proper splicing were identified using SpliceAI. A total of six deleterious deep intronic variants were identified in eight patients. An in vitro minigene system was applied to further validate the effect of these variants on the splicing pattern of the associated genes. The prediction scores assigned to splice-site disruption positively correlated with the impact of mutations on splicing, as those with lower prediction scores demonstrated partial splicing. Through this study, we estimated the contribution of deep-intronic splice mutations to unassigned IRD patients and leveraged in silico and in vitro methods to establish a framework for prioritizing deep intronic variant candidates for mechanistic and functional analyses.
Collapse
Affiliation(s)
- Xinye Qian
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Meng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Austin D Igelman
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Kaylie D Jones
- Retina Foundation of the Southwest and Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Kerry E Goetz
- Office of the Director, National Eye Institute/National Institutes of Health, Bethesda, MD, United States
| | - David G Birch
- Retina Foundation of the Southwest and Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
36
|
Charif M, Wong YC, Kim S, Guichet A, Vignal C, Zanlonghi X, Bensaid P, Procaccio V, Bonneau D, Amati-Bonneau P, Reynier P, Krainc D, Lenaers G. Dominant mutations in MIEF1 affect mitochondrial dynamics and cause a singular late onset optic neuropathy. Mol Neurodegener 2021; 16:12. [PMID: 33632269 PMCID: PMC7905578 DOI: 10.1186/s13024-021-00431-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/08/2021] [Indexed: 02/01/2023] Open
Abstract
Inherited optic neuropathies are the most common mitochondrial diseases, leading to neurodegeneration involving the irreversible loss of retinal ganglion cells, optic nerve degeneration and central visual loss. Importantly, properly regulated mitochondrial dynamics are critical for maintaining cellular homeostasis, and are further regulated by MIEF1 (mitochondrial elongation factor 1) which encodes for MID51 (mitochondrial dynamics protein 51), an outer mitochondrial membrane protein that acts as an adaptor protein to regulate mitochondrial fission. However, dominant mutations in MIEF1 have not been previously linked to any human disease. Using targeted sequencing of genes involved in mitochondrial dynamics, we report the first heterozygous variants in MIEF1 linked to disease, which cause an unusual form of late-onset progressive optic neuropathy characterized by the initial loss of peripheral visual fields. Pathogenic MIEF1 variants linked to optic neuropathy do not disrupt MID51's localization to the outer mitochondrial membrane or its oligomerization, but rather, significantly disrupt mitochondrial network dynamics compared to wild-type MID51 in high spatial and temporal resolution confocal microscopy live imaging studies. Together, our study identifies dominant MIEF1 mutations as a cause for optic neuropathy and further highlights the important role of properly regulated mitochondrial dynamics in neurodegeneration.
Collapse
Affiliation(s)
- Majida Charif
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Yvette C. Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Agnès Guichet
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Catherine Vignal
- Neuroophthalmology Department, Rothschild Ophthalmologic Foundation, Paris, France
| | - Xavier Zanlonghi
- Centre de Compétence Maladies Rares, Clinique Pluridisciplinaire Jules Verne, Nantes, France
| | | | - Vincent Procaccio
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Dominique Bonneau
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Patrizia Amati-Bonneau
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Pascal Reynier
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Guy Lenaers
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
| |
Collapse
|
37
|
Ceccatelli Berti C, di Punzio G, Dallabona C, Baruffini E, Goffrini P, Lodi T, Donnini C. The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes (Basel) 2021; 12:300. [PMID: 33672627 PMCID: PMC7924180 DOI: 10.3390/genes12020300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (C.C.B.); (G.d.P.); (C.D.); (E.B.); (P.G.); (T.L.)
| |
Collapse
|
38
|
Hereditary Optic Neuropathies: Induced Pluripotent Stem Cell-Based 2D/3D Approaches. Genes (Basel) 2021; 12:genes12010112. [PMID: 33477675 PMCID: PMC7831942 DOI: 10.3390/genes12010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited optic neuropathies share visual impairment due to the degeneration of retinal ganglion cells (RGCs) as the hallmark of the disease. This group of genetic disorders are caused by mutations in nuclear genes or in the mitochondrial DNA (mtDNA). An impaired mitochondrial function is the underlying mechanism of these diseases. Currently, optic neuropathies lack an effective treatment, and the implementation of induced pluripotent stem cell (iPSC) technology would entail a huge step forward. The generation of iPSC-derived RGCs would allow faithfully modeling these disorders, and these RGCs would represent an appealing platform for drug screening as well, paving the way for a proper therapy. Here, we review the ongoing two-dimensional (2D) and three-dimensional (3D) approaches based on iPSCs and their applications, taking into account the more innovative technologies, which include tissue engineering or microfluidics.
Collapse
|
39
|
Weisschuh N, Mazzola P, Heinrich T, Haack T, Wissinger B, Tonagel F, Kelbsch C. First submicroscopic inversion of the OPA1 gene identified in dominant optic atrophy - a case report. BMC MEDICAL GENETICS 2020; 21:236. [PMID: 33243194 PMCID: PMC7690134 DOI: 10.1186/s12881-020-01166-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
Background Dominant optic atrophy (DOA) is an inherited optic neuropathy that mainly affects visual acuity, central visual fields and color vision due to a progressive loss of retinal ganglion cells and their axons that form the optic nerve. Approximately 45–90% of affected individuals with DOA harbor pathogenic variants in the OPA1 gene. The mutation spectrum of OPA1 comprises nonsense, canonical and non-canonical splice site, frameshift and missense as well as copy number variants, but intragenic inversions have not been reported so far. Case presentation We report a 33-year-old male with characteristic clinical features of DOA. Whole-genome sequencing identified a structural variant of 2.4 kb comprising an inversion of 937 bp at the OPA1 locus. Fine mapping of the breakpoints to single nucleotide level revealed that the structural variation was an inversion flanked by two deletions. As this rearrangement inverts the entire first exon of OPA1, it was classified as likely pathogenic. Conclusions We report the first DOA case harboring an inversion in the OPA1 gene. Our study demonstrates that copy-neutral genomic rearrangements have to be considered as a possible cause of disease in DOA cases. Supplementary Information The online version contains supplementary material available at 10.1186/s12881-020-01166-z.
Collapse
Affiliation(s)
- Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tilman Heinrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Felix Tonagel
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Carina Kelbsch
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
40
|
Charif M, Chevrollier A, Gueguen N, Bris C, Goudenège D, Desquiret-Dumas V, Leruez S, Colin E, Meunier A, Vignal C, Smirnov V, Defoort-Dhellemmes S, Drumare Bouvet I, Goizet C, Votruba M, Jurkute N, Yu-Wai-Man P, Tagliavini F, Caporali L, La Morgia C, Carelli V, Procaccio V, Zanlonghi X, Meunier I, Reynier P, Bonneau D, Amati-Bonneau P, Lenaers G. Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy. Neurol Genet 2020; 6:e428. [PMID: 32548275 PMCID: PMC7251510 DOI: 10.1212/nxg.0000000000000428] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/06/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To improve the genetic diagnosis of dominant optic atrophy (DOA), the most frequently inherited optic nerve disease, and infer genotype-phenotype correlations. METHODS Exonic sequences of 22 genes were screened by new-generation sequencing in patients with DOA who were investigated for ophthalmology, neurology, and brain MRI. RESULTS We identified 7 and 8 new heterozygous pathogenic variants in SPG7 and AFG3L2. Both genes encode for mitochondrial matricial AAA (m-AAA) proteases, initially involved in recessive hereditary spastic paraplegia type 7 (HSP7) and dominant spinocerebellar ataxia 28 (SCA28), respectively. Notably, variants in AFG3L2 that result in DOA are located in different domains to those reported in SCA28, which likely explains the lack of clinical overlap between these 2 phenotypic manifestations. In comparison, the SPG7 variants identified in DOA are interspersed among those responsible for HSP7 in which optic neuropathy has previously been reported. CONCLUSIONS Our results position SPG7 and AFG3L2 as candidate genes to be screened in DOA and indicate that regulation of mitochondrial protein homeostasis and maturation by m-AAA proteases are crucial for the maintenance of optic nerve physiology.
Collapse
Affiliation(s)
- Majida Charif
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Arnaud Chevrollier
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Naïg Gueguen
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Céline Bris
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - David Goudenège
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Valérie Desquiret-Dumas
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Stéphanie Leruez
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Estelle Colin
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Audrey Meunier
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Catherine Vignal
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Vasily Smirnov
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Sabine Defoort-Dhellemmes
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Isabelle Drumare Bouvet
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Cyril Goizet
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Marcela Votruba
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Neringa Jurkute
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Patrick Yu-Wai-Man
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Francesca Tagliavini
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Leonardo Caporali
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Chiara La Morgia
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Valerio Carelli
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Vincent Procaccio
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Xavier Zanlonghi
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Isabelle Meunier
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Pascal Reynier
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Dominique Bonneau
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Patrizia Amati-Bonneau
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Guy Lenaers
- MitoLab Team (M.C., A.C., C.B., D.G., V.D.-D., S.L., V.P., P.R., D.B., P.A.-B., G.L.), UMR CNRS 6015-INSERM U1083, Institut MitoVasc, Angers University and Hospital; Genetics and immuno-cell therapy Team (M.C.), Mohammed First University, Oujda, Morocco; Departments of Biochemistry and Genetics (C.B., D.G., V.D.-D., E.C., V.P., P.R., D.B., P.A.-B.), University Hospital Angers; Department of Ophthalmology (A.M.), Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium; Neuroophthalmology Department (C.V.), Rothschild Ophthalmologic Foundation, Paris; Exploration of Visual Function and Neuro-Ophthalmology Department (V.S., S.D.-D., I.D.B.), Lille University Hospital, Rue Emilie Laine, Lille Cedex; CHU Bordeaux (C.G.), Service de Génétique Médicale, Centre de Référence « Neurogénétique » and Université de Bordeaux, INSERM U 1211, Laboratoire Maladies Rares, Génétique et Métabolisme (MRGM) Bordeaux; School of Optometry and Vision Sciences (M.V.), Cardiff University and Cardiff Eye Unit, University Hospital of Wales; NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology (N.J., P.Y.-W.-M.), London; Department of Clinical Neurosciences (P.Y.-W.-M.), Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge; Cambridge Eye Unit (P.Y.-W.-M.), Addenbrooke's Hospital, Cambridge University Hospitals, UK; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.T., L.C., C.L.M., V.C.), Bellaria Hospital; Unit of Neurology (C.L.M., V.C.), Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Italy; Centre de Compétence Maladies Rares (X.Z.), Clinique Pluridisciplinaire Jules Verne, Nantes; and National Centre in Rare Diseases (I.M.), Genetics of Sensory Diseases, University Hospital, Montpellier, France
| |
Collapse
|
41
|
Mitochondrial disorders and the eye. Surv Ophthalmol 2019; 65:294-311. [PMID: 31783046 DOI: 10.1016/j.survophthal.2019.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Mitochondria are cellular organelles that play a key role in energy metabolism and oxidative phosphorylation. Malfunctioning of mitochondria has been implicated as the cause of many disorders with variable inheritance, heterogeneity of systems involved, and varied phenotype. Metabolically active tissues are more likely to be affected, causing an anatomic and physiologic disconnect in the treating physicians' mind between presentation and underlying pathophysiology. We shall focus on disorders of mitochondrial metabolism relevant to an ophthalmologist. These disorders can affect all parts of the visual pathway (crystalline lens, extraocular muscles, retina, optic nerve, and retrochiasm). After the introduction reviewing mitochondrial structure and function, each disorder is reviewed in detail, including approaches to its diagnosis and most current management guidelines.
Collapse
|