1
|
Briglia M, Allia F, Avola R, Signorini C, Cardile V, Romano GL, Giurdanella G, Malaguarnera R, Bellomo M, Graziano ACE. Diet and Nutrients in Rare Neurological Disorders: Biological, Biochemical, and Pathophysiological Evidence. Nutrients 2024; 16:3114. [PMID: 39339713 PMCID: PMC11435074 DOI: 10.3390/nu16183114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Rare diseases are a wide and heterogeneous group of multisystem life-threatening or chronically debilitating clinical conditions with reduced life expectancy and a relevant mortality rate in childhood. Some of these disorders have typical neurological symptoms, presenting from birth to adulthood. Dietary patterns and nutritional compounds play key roles in the onset and progression of neurological disorders, and the impact of alimentary needs must be enlightened especially in rare neurological diseases. This work aims to collect the in vitro, in vivo, and clinical evidence on the effects of diet and of nutrient intake on some rare neurological disorders, including some genetic diseases, and rare brain tumors. Herein, those aspects are critically linked to the genetic, biological, biochemical, and pathophysiological hallmarks typical of each disorder. Methods: By searching the major web-based databases (PubMed, Web of Science Core Collection, DynaMed, and Clinicaltrials.gov), we try to sum up and improve our understanding of the emerging role of nutrition as both first-line therapy and risk factors in rare neurological diseases. Results: In line with the increasing number of consensus opinions suggesting that nutrients should receive the same attention as pharmacological treatments, the results of this work pointed out that a standard dietary recommendation in a specific rare disease is often limited by the heterogeneity of occurrent genetic mutations and by the variability of pathophysiological manifestation. Conclusions: In conclusion, we hope that the knowledge gaps identified here may inspire further research for a better evaluation of molecular mechanisms and long-term effects.
Collapse
Affiliation(s)
- Marilena Briglia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Fabio Allia
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Rosanna Avola
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy;
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Maria Bellomo
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy; (M.B.); (F.A.); (R.A.); (G.L.R.); (R.M.); (M.B.)
| |
Collapse
|
2
|
Ketata I, Ellouz E. From pathological mechanisms in Krabbe disease to cutting-edge therapy: A comprehensive review. Neuropathology 2024; 44:255-277. [PMID: 38444347 DOI: 10.1111/neup.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Since its initial documentation by Knud Krabbe in 1916, numerous studies have scrutinized the characteristics of Krabbe disease (KD) until the identification of the mutation in the GALC gene. In alignment with that, we investigated the natural history of KD spanning eight decades to gain a deeper understanding of the evolutionary trajectory of its mechanisms. Through our comprehensive analysis, we unearthed additional novel elements in molecular biology involving the micropathological mechanism of the disease. This review offers an updated perspective on the metabolic disorder that defines KD. Recently, extracellular vesicles (EVs), autophagy impairment, and α-synuclein have emerged as pivotal players in the neuropathological processes. EVs might serve as a cellular mechanism to avoid or alleviate the detrimental impacts of excessive toxic psychosine levels, and extracting EVs could contribute to synapse dysfunction. Autophagy impairment was found to be independent of psychosine and reliant on AKT and B-cell lymphoma 2. Additionally, α-synuclein has been recognized for inducing cellular death and dysfunction in common biological pathways. Our objective is to assess the effectiveness of advanced therapies in addressing this particular condition. While hematopoietic stem cells have been a primary treatment, its administration proves challenging, particularly in the presymptomatic phase. In this review, we have compiled information from over 10 therapy trials, comparing them based on their benefits and disadvantage.
Collapse
Affiliation(s)
- Imen Ketata
- Neurology Department, University Hospital of Gabes, Gabes, Tunisia
- Sfax University, Sfax Faculty of Medicine, Sfax, Tunisia
| | - Emna Ellouz
- Neurology Department, University Hospital of Gabes, Gabes, Tunisia
- Sfax University, Sfax Faculty of Medicine, Sfax, Tunisia
| |
Collapse
|
3
|
Hwang N, Kim SM, Kim YG, Ha C, Lee J, Choi BO, Sung WJ, Kim SH, Kim YM, Lee YW, Kim J, Kim JW, Jang JH, Lee J, Park HD. Clinical feature, GALC variant spectrum, and genotype-phenotype correlation in Korean Krabbe disease patients: Multicenter experience over 13 years. Clin Genet 2024; 106:150-160. [PMID: 38515343 DOI: 10.1111/cge.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/14/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Krabbe disease (KD) is an autosomal recessive neurodegenerative disorder caused by deficiency of the galactocerebrosidase (GALC) due to variants in the GALC gene. Here, we provide the first and the largest comprehensive analysis of clinical and genetic characteristics, and genotype-phenotype correlations of KD in Korean in comparison with other ethnic groups. From June 2010 to June 2023, 10 patients were diagnosed with KD through sequencing of GALC. Clinical features, and results of GALC sequencing, biochemical test, neuroimaging, and neurophysiologic test were obtained from medical records. An additional nine previously reported Korean KD patients were included for review. In Korean KD patients, the median age of onset was 2 years (3 months-34 years) and the most common phenotype was adult-onset (33%, 6/18) KD, followed by infantile KD (28%, 5/18). The most frequent variants were c.683_694delinsCTC (23%) and c.1901T>C (23%), while the 30-kb deletion was absent. Having two heterozygous pathogenic missense variants was associated with later-onset phenotype. Clinical features were similar to those of other ethnic groups. In Korean KD patients, the most common phenotype was the adult-onset type and the GALC variant spectrum was different from that of the Caucasian population. This study would further our understanding of KD.
Collapse
Affiliation(s)
- Narae Hwang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang-Mi Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Young-Gon Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Changhee Ha
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Jae Sung
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Young Mi Kim
- Department of Pediatrics, Pusan National University Hospital, Pusan, Republic of Korea
| | - Yong-Wha Lee
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Jieun Kim
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung-Doo Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Mächtel R, Dobert J, Hehr U, Weiss A, Kettwig M, Laugwitz L, Groeschel S, Schmidt M, Arnold P, Regensburger M, Zunke F. Late-onset Krabbe disease presenting as spastic paraplegia - implications of GCase and CTSB/D. Ann Clin Transl Neurol 2024; 11:1715-1731. [PMID: 38837642 PMCID: PMC11251474 DOI: 10.1002/acn3.52078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 06/07/2024] Open
Abstract
OBJECTIVE Krabbe disease (KD) is a multisystem neurodegenerative disorder with severe disability and premature death, mostly with an infancy/childhood onset. In rare cases of late-onset phenotypes, symptoms are often milder and difficult to diagnose. We here present a translational approach combining diagnostic and biochemical analyses of a male patient with a progressive gait disorder starting at the age of 44 years, with a final diagnosis of late-onset KD (LOKD). METHODS Additionally to cerebral MRI, protein structural analyses of the β-galactocerebrosidase protein (GALC) were performed. Moreover, expression, lysosomal localization, and activities of β-glucocerebrosidase (GCase), cathepsin B (CTSB), and cathepsin D (CTSD) were analyzed in leukocytes, fibroblasts, and lysosomes of fibroblasts. RESULTS Exome sequencing revealed biallelic likely pathogenic variants: GALC exons 11-17: 33 kb deletion; exon 4: missense variant (c.334A>G, p.Thr112Ala). We detected a reduced GALC activity in leukocytes and fibroblasts. While histological KD phenotypes were absent in fibroblasts, they showed a significantly decreased activities of GCase, CTSB, and CTSD in lysosomal fractions, while expression levels were unaffected. INTERPRETATION The presented LOKD case underlines the age-dependent appearance of a mildly pathogenic GALC variant and its interplay with other lysosomal proteins. As GALC malfunction results in reduced ceramide levels, we assume this to be causative for the here described decrease in CTSB and CTSD activity, potentially leading to diminished GCase activity. Hence, we emphasize the importance of a functional interplay between the lysosomal enzymes GALC, CTSB, CTSD, and GCase, as well as between their substrates, and propose their conjoined contribution in KD pathology.
Collapse
Affiliation(s)
- Rebecca Mächtel
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Jan‐Philipp Dobert
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Ute Hehr
- Center for Human GeneticsRegensburgGermany
| | - Alexander Weiss
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Matthias Kettwig
- Department of Pediatrics and Pediatric NeurologyUniversity Medical Center Göttingen, Georg August University GöttingenGöttingenGermany
| | - Lucia Laugwitz
- Department of Pediatric NeurologyUniversity Children's Hospital TübingenTübingenGermany
| | - Samuel Groeschel
- Department of Pediatric NeurologyUniversity Children's Hospital TübingenTübingenGermany
| | | | - Philipp Arnold
- Institute of Functional and Clinical AnatomyFAUErlangenGermany
| | - Martin Regensburger
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
- Department of Stem Cell BiologyFAUErlangenGermany
- Deutsches Zentrum Immuntherapie (DZI)University Hospital ErlangenErlangenGermany
| | - Friederike Zunke
- Department of Molecular NeurologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| |
Collapse
|
5
|
Adang LA, Sevagamoorthy A, Sherbini O, Fraser JL, Bonkowsky JL, Gavazzi F, D'Aiello R, Modesti NB, Yu E, Mutua S, Kotes E, Shults J, Vincent A, Emrick LT, Keller S, Van Haren KP, Woidill S, Barcelos I, Pizzino A, Schmidt JL, Eichler F, Fatemi A, Vanderver A. Longitudinal natural history studies based on real-world data in rare diseases: Opportunity and a novel approach. Mol Genet Metab 2024; 142:108453. [PMID: 38522179 PMCID: PMC11131438 DOI: 10.1016/j.ymgme.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
Growing interest in therapeutic development for rare diseases necessitate a systematic approach to the collection and curation of natural history data that can be applied consistently across this group of heterogenous rare diseases. In this study, we discuss the challenges facing natural history studies for leukodystrophies and detail a novel standardized approach to creating a longitudinal natural history study using existing medical records. Prospective studies are uniquely challenging for rare diseases. Delays in diagnosis and overall rarity limit the timely collection of natural history data. When feasible, prospective studies are often cross-sectional rather than longitudinal and are unlikely to capture pre- or early- symptomatic disease trajectories, limiting their utility in characterizing the full natural history of the disease. Therapeutic development in leukodystrophies is subject to these same obstacles. The Global Leukodystrophy Initiative Clinical Trials Network (GLIA-CTN) comprises of a network of research institutions across the United States, supported by a multi-center biorepository protocol, to map the longitudinal clinical course of disease across leukodystrophies. As part of GLIA-CTN, we developed Standard Operating Procedures (SOPs) that delineated all study processes related to staff training, source documentation, and data sharing. Additionally, the SOP detailed the standardized approach to data extraction including diagnosis, clinical presentation, and medical events, such as age at gastrostomy tube placement. The key variables for extraction were selected through face validity, and common electronic case report forms (eCRF) across leukodystrophies were created to collect analyzable data. To enhance the depth of the data, clinical notes are extracted into "original" and "imputed" encounters, with imputed encounter referring to a historic event (e.g., loss of ambulation 3 months prior). Retrospective Functional Assessments were assigned by child neurologists, using a blinded dual-rater approach and score discrepancies were adjudicated by a third rater. Upon completion of extraction, data source verification is performed. Data missingness was evaluated using statistics. The proposed methodology will enable us to leverage existing medical records to address the persistent gap in natural history data within this unique disease group, allow for assessment of clinical trajectory both pre- and post-formal diagnosis, and promote recruitment of larger cohorts.
Collapse
Affiliation(s)
- Laura Ann Adang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Anjana Sevagamoorthy
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Omar Sherbini
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jamie L Fraser
- Rare Disease Institute, Children's National Medical Center, Washington, DC, USA; Leukodystrophy and Myelin Disorders Program, Children's National Medical Center, Washington, DC, USA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, UT, USA
| | - Francesco Gavazzi
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russel D'Aiello
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nicholson B Modesti
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily Yu
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sylvia Mutua
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emma Kotes
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Justine Shults
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ariel Vincent
- CHOP Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa T Emrick
- Division of Neurology and Developmental Neuroscience in Department Pediatrics, Baylor College Medicine and Texas Children's Hospital, Houston, TX, USA; Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie Keller
- Children's Healthcare of Atlanta Scottish Rite Hospital, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Sarah Woidill
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Isabella Barcelos
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amy Pizzino
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Johanna L Schmidt
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Ali Fatemi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD, USA; Departments of Neurology & Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
6
|
Muthusamy K, Sivadasan A, Dixon L, Sudhakar S, Thomas M, Danda S, Wszolek ZK, Wierenga K, Dhamija R, Gavrilova R. Adult-onset leukodystrophies: a practical guide, recent treatment updates, and future directions. Front Neurol 2023; 14:1219324. [PMID: 37564735 PMCID: PMC10410460 DOI: 10.3389/fneur.2023.1219324] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 08/12/2023] Open
Abstract
Adult-onset leukodystrophies though individually rare are not uncommon. This group includes several disorders with isolated adult presentations, as well as several childhood leukodystrophies with attenuated phenotypes that present at a later age. Misdiagnoses often occur due to the clinical and radiological overlap with common acquired disorders such as infectious, immune, inflammatory, vascular, metabolic, and toxic etiologies. Increased prevalence of non-specific white matter changes in adult population poses challenges during diagnostic considerations. Clinico-radiological spectrum and molecular landscape of adult-onset leukodystrophies have not been completely elucidated at this time. Diagnostic approach is less well-standardized when compared to the childhood counterpart. Absence of family history and reduced penetrance in certain disorders frequently create a dilemma. Comprehensive evaluation and molecular confirmation when available helps in prognostication, early initiation of treatment in certain disorders, enrollment in clinical trials, and provides valuable information for the family for reproductive counseling. In this review article, we aimed to formulate an approach to adult-onset leukodystrophies that will be useful in routine practice, discuss common adult-onset leukodystrophies with usual and unusual presentations, neuroimaging findings, recent advances in treatment, acquired mimics, and provide an algorithm for comprehensive clinical, radiological, and genetic evaluation that will facilitate early diagnosis and consider active treatment options when available. A high index of suspicion, awareness of the clinico-radiological presentations, and comprehensive genetic evaluation are paramount because treatment options are available for several disorders when diagnosed early in the disease course.
Collapse
Affiliation(s)
- Karthik Muthusamy
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
| | - Ajith Sivadasan
- Department of Neurological Sciences, Christian Medical College, Tamil Nadu, Vellore, India
| | - Luke Dixon
- Department of Radiology, Imperial College, NHS Trust, London, United Kingdom
| | - Sniya Sudhakar
- Department of Radiology, Great Ormond Street Hospital, London, United Kingdom
| | - Maya Thomas
- Department of Neurological Sciences, Christian Medical College, Tamil Nadu, Vellore, India
| | - Sumita Danda
- Department of Medical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Klaas Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, United States
| | - Radhika Dhamija
- Department of Clinical Genomics and Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Ralitza Gavrilova
- Department of Clinical Genomics and Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
7
|
Heller G, Bradbury AM, Sands MS, Bongarzone ER. Preclinical studies in Krabbe disease: A model for the investigation of novel combination therapies for lysosomal storage diseases. Mol Ther 2023; 31:7-23. [PMID: 36196048 PMCID: PMC9840155 DOI: 10.1016/j.ymthe.2022.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Krabbe disease (KD) is a lysosomal storage disease (LSD) caused by mutations in the galc gene. There are over 50 monogenetic LSDs, which largely impede the normal development of children and often lead to premature death. At present, there are no cures for LSDs and the available treatments are generally insufficient, short acting, and not without co-morbidities or long-term side effects. The last 30 years have seen significant advances in our understanding of LSD pathology as well as treatment options. Two gene therapy-based clinical trials, NCT04693598 and NCT04771416, for KD were recently started based on those advances. This review will discuss how our knowledge of KD got to where it is today, focusing on preclinical investigations, and how what was discovered may prove beneficial for the treatment of other LSDs.
Collapse
Affiliation(s)
- Gregory Heller
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, 808 S. Wood St M/C 512, Chicago, IL, USA.
| | - Allison M Bradbury
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Abigail Wexner Research Institute Nationwide Children's Hospital Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH 43205, USA.
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue Box 8007, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue Box 8007, St. Louis, MO, USA.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, 808 S. Wood St M/C 512, Chicago, IL, USA.
| |
Collapse
|
8
|
Sasaki M, Ebata M, Tanei ZI, Oda Y, Hamauchi A, Tanikawa S, Sugino H, Ishida Y, Abe T, Arai N, Sako K, Tanaka S. An autopsy case report of adult-onset Krabbe disease: Comparison with an infantile-onset case. Pathol Int 2022; 72:558-565. [PMID: 36200664 DOI: 10.1111/pin.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022]
Abstract
Krabbe disease is a lysosomal storage disease caused by a deficiency of the galactocerebrosidase (GALC) enzyme, which leads to demyelination of the central and peripheral nervous systems. Almost all patients with Krabbe disease are infants, and this is the first report of adult-onset cases that describe pathological findings. Here, we present two autopsy cases: a 73-year-old female and a 2-year-old male. The adult-onset case developed symptoms in her late thirties and was diagnosed by the identification of GALC D528N and L634S mutations and by T2-weighted magnetic resonance imaging; she had increased signal in the white matter along the pyramidal tract to the bilateral precentral gyrus, as well as from the triangular part to the posterior horn of the lateral ventricle. Microscopically, Klüver-Barrera staining was pale in the white matter of the precentral gyrus and occipito-thalamic radiation, and a few globoid cells were observed. The GALC mutations that were identified in the present adult-onset case do not completely inactivate GALC enzyme activity, resulting in focal demyelination of the brain.
Collapse
Affiliation(s)
- Miu Sasaki
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Miori Ebata
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Zen-Ichi Tanei
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Akiko Hamauchi
- Department of Neurology, Nakamura Memorial Hospital, Sapporo, Japan.,Department of Internal Medicine & Neurology, Takeuchi Clinic, Doushoukai Medical Corporation, Setouchi, Japan
| | - Satoshi Tanikawa
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Hirokazu Sugino
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Ishida
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takenori Abe
- Department of Neurology, Nakamura Memorial Hospital, Sapporo, Japan
| | - Nobutaka Arai
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuya Sako
- Department of Neurology, Nakamura Memorial Hospital, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Adang L. Leukodystrophies. Continuum (Minneap Minn) 2022; 28:1194-1216. [PMID: 35938662 PMCID: PMC11320896 DOI: 10.1212/con.0000000000001130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW This article reviews the most common leukodystrophies and is focused on diagnosis, clinical features, and emerging therapeutic options. RECENT FINDINGS In the past decade, the recognition of leukodystrophies has exponentially increased, and now this class includes more than 30 distinct disorders. Classically recognized as progressive and fatal disorders affecting young children, it is now understood that leukodystrophies are associated with an increasing spectrum of neurologic trajectories and can affect all ages. Next-generation sequencing and newborn screening allow the opportunity for the recognition of presymptomatic and atypical cases. These new testing opportunities, in combination with growing numbers of natural history studies and clinical consensus guidelines, have helped improve diagnosis and clinical care. Additionally, a more granular understanding of disease outcomes informs clinical trial design and has led to several recent therapeutic advances. This review summarizes the current understanding of the clinical manifestations of disease and treatment options for the most common leukodystrophies. SUMMARY As early testing becomes more readily available through next-generation sequencing and newborn screening, neurologists will better understand the true incidence of the leukodystrophies and be able to diagnose children within the therapeutic window. As targeted therapies are developed, it becomes increasingly imperative that this broad spectrum of disorders is recognized and diagnosed. This work summarizes key advances in the leukodystrophy field.
Collapse
|
10
|
Kempińska W, Korta K, Marchaj M, Paprocka J. Microcephaly in Neurometabolic Diseases. CHILDREN (BASEL, SWITZERLAND) 2022; 9:97. [PMID: 35053723 PMCID: PMC8774396 DOI: 10.3390/children9010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022]
Abstract
Neurometabolic disorders are an important group of diseases that mostly occur in neonates and infants. They are mainly due to the lack or dysfunction of an enzyme or cofactors necessary for a specific biochemical reaction, which leads to a deficiency of essential metabolites in the brain. This, in turn, can cause certain neurometabolic diseases. Disruption of metabolic pathways, and the inhibition at earlier stages, may lead to the storage of reaction intermediates, which are often toxic to the developing brain. Symptoms are caused by the progressive deterioration of mental, motor, and perceptual functions. The authors review the diseases with microcephaly, which may be one of the most visible signs of neurometabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Justyna Paprocka
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (W.K.); (K.K.); (M.M.)
| |
Collapse
|
11
|
Abstract
OBJECTIVE The purpose of our study was to understand the healthcare burden and incidence of Krabbe disease (Krabbe). METHODS Retrospective analysis of Krabbe patients identified October 1, 2015 through December 31, 2020, ages birth through age 3, evaluated in two national databases. We estimated point prevalence and incidence from year 2016 data. RESULTS We identified 98 unique Krabbe patients with 736 visits including 260 were inpatient admissions. Total healthcare charges were $51.5 million dollars. We determined a point prevalence of 34 68 Krabbe patients in 2016 ages 0 3 years. This estimates a birth incidence of ~1 in 310,000 live births. Significance: Krabbe disease patients had over $51 million in health care charges and hundreds of hospitalizations. Estimated prevalence and birth incidence is similar to rates observed from newborn screening. Our findings show the tremendous health impacts of Krabbe disease, and provide guidance for efforts in screening and treatment planning.
Collapse
Affiliation(s)
| | | | - Bradley J. Barney
- Division of Critical Care, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Joshua L. Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine; Primary Children’s Center for Personalized Medicine, Primary Children’s Hospital, Salt Lake City, Utah
| |
Collapse
|
12
|
Zhou H, Wu Z, Wang Y, Wu Q, Hu M, Ma S, Zhou M, Sun Y, Yu B, Ye J, Jiang W, Fu Z, Gong Y. Rare Diseases in Glycosphingolipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:189-213. [DOI: 10.1007/978-981-19-0394-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Ghabash G, Wilkes J, Bonkowsky JL. National U.S. Patient and Transplant Data for Krabbe Disease. Front Pediatr 2021; 9:764626. [PMID: 34900869 PMCID: PMC8660087 DOI: 10.3389/fped.2021.764626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Krabbe disease (KD) is a leukodystrophy caused by mutations in the galactosylceramidase gene. Presymptomatic hematopoietic stem cell transplantation (HSCT) is associated with improved outcomes, but most data are from single-center studies. Our objective was to characterize national patterns of HSCT for KD including whether there were disparities in HSCT utilization and outcomes. We conducted a retrospective study of KD patients ≤ age 18 years from November 1, 2015, through December 31, 2019, using the U.S. Children's Hospital Association's Pediatric Health Information System database. We evaluated outcomes for HSCT, intensive care unit days, and mortality, comparing age, sex, race/ethnicity, rural/urban location, and median household income. We identified 91 KD patients. HSCT, performed in 32% of patients, was associated with reduced mortality, 31 vs. 68% without HSCT (p < 0.003). Trends included the fact that more males than females had HSCT (39 vs. 23%); more Asian and White patients had HSCT compared to Black or Hispanic patients (75, 33, 25, and 17%, respectively); and patients from households with the lowest-income quartile (< $25,000) had more HSCT compared to higher-income quartiles (44 vs. 33, 30, and 0%). Overall, receiving HSCT was associated with reduced mortality. We noted trends in patient groups who received HSCT. Our findings suggest that disparities in receiving HSCT could affect outcomes for KD patients.
Collapse
Affiliation(s)
- Gabrielle Ghabash
- University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jacob Wilkes
- Intermountain Healthcare, Salt Lake City, UT, United States
| | - Joshua L. Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
- Primary Children's Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, UT, United States
| |
Collapse
|
14
|
Zhang X, Niu G, Song P, Wang L, Han R, Chu M, Guo Q, Xu Z, Yan L, Jia T. Compound heterozygous pathogenic variants in the GALC gene cause infant-onset Krabbe disease. Transl Pediatr 2021; 10:2552-2562. [PMID: 34765479 PMCID: PMC8578788 DOI: 10.21037/tp-21-403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/02/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Krabbe disease, also called globoid cell leukodystrophy, is an autosomal recessive disease caused by a deficiency of lysosomal galactocerebrosidase. Infantile Krabbe occurring before 12 months of age accounts for most cases. Typical clinical features include irritability, seizures, peripheral neuropathy, and progressive neurodegeneration. METHODS We collected and summarized the clinical and genetic data of an 8-month-old boy who demonstrated Krabbe disease onset at around 6 months. Potential pathogenic variants were screened by whole exome sequencing, and effects of candidate variants on alternative transcript and truncated protein were further validated at the RNA and protein level. RESULTS Galactocerebrosidase activity was nearly absent in his blood, and whole exome sequencing revealed compound heterozygous variants [NM_000153.4: (c.658C>T); (c.328+5G>T)] in galactosylceramidase (GALC). The variant c.328+5G>T was predicted to alter splicing, and the abnormal isoform transcript was validated by observation of abnormal RNA isoforms. The variant c.658C>T was predicted to cause truncation of the protein, which was validated by western blotting. CONCLUSIONS Our findings revealed compound heterozygous variants with solid experimental results for Krabbe disease and provides strong evidence for further Krabbe disease screening and clinical consulting. As a rare inherited systemic disorder, genetic variants in Krabbe disease should be investigated, as experimental validation for clinical diagnosis is needed.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohui Niu
- Department of Children Rehabilitation, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panpan Song
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Wang
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Han
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Manman Chu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiliang Guo
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhao Xu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihong Yan
- Department of Medical Imaging, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianming Jia
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Stellingwerff MD, Al-Saady ML, van de Brug T, Barkhof F, Pouwels PJW, van der Knaap MS. MRI Natural History of the Leukodystrophy Vanishing White Matter. Radiology 2021; 300:671-680. [PMID: 34184934 DOI: 10.1148/radiol.2021210110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background In vanishing white matter (VWM), a form of leukodystrophy, earlier onset is associated with faster clinical progression. MRI typically shows rarefaction and cystic destruction of the cerebral white matter. Information on the evolution of VWM according to age at onset is lacking. Purpose To determine whether nature and progression of cerebral white matter abnormalities in VWM differ according to age at onset. Materials and Methods Patients with genetically confirmed VWM were stratified into six groups according to age at onset: younger than 1 year, 1 year to younger than 2 years, 2 years to younger than 4 years, 4 years to younger than 8 years, 8 years to younger than 18 years, and 18 years or older. With institutional review board approval, all available MRI scans obtained between 1985 and 2019 were retrospectively analyzed with three methods: (a) ratio of the width of the lateral ventricles over the skull (ventricle-to-skull ratio [VSR]) was measured to estimate brain atrophy; (b) cerebral white matter was visually scored as percentage normal, hyperintense, rarefied, or cystic on fluid-attenuated inversion recovery (FLAIR) images and converted into a white matter decay score; and (c) the intracranial volume was segmented into normal-appearing white and gray matter, abnormal but structurally present (FLAIR-hyperintense) and rarefied or cystic (FLAIR-hypointense) white matter, and ventricular and extracerebral cerebrospinal fluid (CSF). Multilevel regression analyses with patient as a clustering variable were performed to account for the nested data structure. Results A total of 461 examinations in 270 patients (median age, 7 years [interquartile range, 3-18 years]; 144 female patients) were evaluated; 112 patients had undergone serial imaging. Patients with later onset had higher VSR [F(5) = 8.42; P < .001] and CSF volume [F(5) = 21.7; P < .001] and lower white matter decay score [F(5) = 4.68; P < .001] and rarefied or cystic white matter volume [F(5) = 13.3; P < .001]. Rate of progression of white matter decay scores [b = -1.6, t(109) = -3.9; P < .001] and VSRs [b = -0.05, t (109) = -3.7; P < .001] were lower with later onset. Conclusion A radiologic spectrum based on age at onset exists in vanishing white matter. The earlier the onset, the faster and more cystic the white matter decay, whereas with later onset, white matter atrophy and gliosis predominate. © RSNA, 2021.
Collapse
Affiliation(s)
- Menno D Stellingwerff
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Murtadha L Al-Saady
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Tim van de Brug
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Frederik Barkhof
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Petra J W Pouwels
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| | - Marjo S van der Knaap
- From the Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands (M.D.S., M.L.A., M.S.v.d.K.); Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam, the Netherlands (T.v.d.B.); Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands (F.B., P.J.W.P.); Institutes of Neurology and Health Care Engineering, University College London, London, England (F.B.); and Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands (M.S.v.d.K.)
| |
Collapse
|
16
|
Quinville BM, Deschenes NM, Ryckman AE, Walia JS. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. Int J Mol Sci 2021; 22:ijms22115793. [PMID: 34071409 PMCID: PMC8198874 DOI: 10.3390/ijms22115793] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids. The biosynthesis and catabolism of these lipids play an integral role in small- and large-scale body functions, including participation in membrane domains and signalling; cell proliferation, death, migration, and invasiveness; inflammation; and central nervous system development. Recently, sphingolipids have become the focus of several fields of research in the medical and biological sciences, as these bioactive lipids have been identified as potent signalling and messenger molecules. Sphingolipids are now being exploited as therapeutic targets for several pathologies. Here we present a comprehensive review of the structure and metabolism of sphingolipids and their many functional roles within the cell. In addition, we highlight the role of sphingolipids in several pathologies, including inflammatory disease, cystic fibrosis, cancer, Alzheimer’s and Parkinson’s disease, and lysosomal storage disorders.
Collapse
|
17
|
Beck‐Wödl S, Kehrer C, Harzer K, Haack TB, Bürger F, Haas D, Rieß A, Groeschel S, Krägeloh‐Mann I, Böhringer J. Long-term disease course of two patients with multiple sulfatase deficiency differs from metachromatic leukodystrophy in a broad cohort. JIMD Rep 2021; 58:80-88. [PMID: 33728250 PMCID: PMC7932862 DOI: 10.1002/jmd2.12189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Multiple sulfatase deficiency (MSD) is a lysosomal storage disease caused by a deficiency of formylglycine-generating enzyme due to SUMF1 defects. MSD may be misdiagnosed as metachromatic leukodystrophy (MLD), as neurological and neuroimaging findings are similar, and arylsulfatase A (ARSA) deficiency and enhanced urinary sulfatide excretion may also occur. While ARSA deficiency seems a cause for neurological symptoms and later neurodegenerative disease course, deficiency of other sulfatases results in clinical features such as dysmorphism, dysostosis, or ichthyosis. We report on a girl and a boy of the same origin presenting with severe ARSA deficiency and neurological and neuroimaging features compatible with MLD. However, exome sequencing revealed not yet described homozygosity of the missense variant c.529G > C, p.Ala177Pro in SUMF1. We asked whether dynamics of disease course differs between MSD and MLD. Comparison to a cohort of 59 MLD patients revealed different disease course concerning onset and disease progression in both MSD patients. The MSD patients showed first gross motor symptoms earlier than most patients with juvenile MLD (<10th percentile of Gross-Motor-Function in MLD [GMFC-MLD] 1). However, subsequent motor decline was more protracted (75th and 90th percentile of GMFC-MLD 2 (loss of independent walking) and 75th percentile of GMFC-MLD 5 (loss of any locomotion)). Language decline started clearly after 50th percentile of juvenile MLD and progressed rapidly. Thus, dynamics of disease course may be a further clue for the characterization of MSD. These data may contribute to knowledge of natural course of ultra-rare MSD and be relevant for counseling and therapy.
Collapse
Affiliation(s)
- Stefanie Beck‐Wödl
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Christiane Kehrer
- Department of NeuropediatricsUniversity Children's HospitalTübingenGermany
| | - Klaus Harzer
- Department of NeuropediatricsUniversity Children's HospitalTübingenGermany
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | | | - Dorothea Haas
- Metabolic CentreUniversity Children's HospitalHeidelbergGermany
| | - Angelika Rieß
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Samuel Groeschel
- Department of NeuropediatricsUniversity Children's HospitalTübingenGermany
| | | | - Judith Böhringer
- Department of NeuropediatricsUniversity Children's HospitalTübingenGermany
| |
Collapse
|