1
|
Wu G, Ma T, Hancock CE, Gonzalez S, Aryal B, Vaz S, Chan G, Palarca-Wong M, Allen N, Chung CI, Shu X, Liu Q. Opposing GPCR signaling programs protein intake setpoint in Drosophila. Cell 2024; 187:5376-5392.e17. [PMID: 39197448 PMCID: PMC11437785 DOI: 10.1016/j.cell.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024]
Abstract
Animals defend a target level for their fundamental needs, including food, water, and sleep. Deviation from the target range, or "setpoint," triggers motivated behaviors to eliminate that difference. Whether and how the setpoint itself is encoded remains enigmatic for all motivated behaviors. Employing a high-throughput feeding assay in Drosophila, we demonstrate that the protein intake setpoint is set to different values in male, virgin female, and mated female flies to meet their varying protein demands. Leveraging this setpoint variability, we found, remarkably, that the information on the intake setpoint is stored within the protein hunger neurons as the resting membrane potential. Two RFamide G protein-coupled receptor (GPCR) pathways, by tuning the resting membrane potential in opposite directions, coordinately program and adjust the protein intake setpoint. Together, our studies map the protein intake setpoint to a single trackable physiological parameter and elucidate the cellular and molecular mechanisms underlying setpoint determination and modulation.
Collapse
Affiliation(s)
- Guangyan Wu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tianji Ma
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Clare E Hancock
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Santiago Gonzalez
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Binod Aryal
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sharon Vaz
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gabrielle Chan
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Madison Palarca-Wong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nick Allen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chan-I Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qili Liu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Kato H, Nakagawa H, Ishizaki C, Tomita J, Kume K. Preference of position in the proximity of various sugars revealed by location analysis of Drosophila melanogaster. Sci Rep 2024; 14:11285. [PMID: 38760389 PMCID: PMC11101431 DOI: 10.1038/s41598-024-61457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
Feeding behaviors are determined by two main factors. One is the internal state, such as hunger or previous experiences; the other is external factors, such as sensory stimulation. During starvation, animals must balance food-seeking behavior with energy conservation. The fruit fly, Drosophila melanogaster, serves as a useful model for studying food selectivity and various behaviors related to food intake. However, few studies have directly connected food selectivity with other behaviors, such as locomotor activity and sleep. In this study, we report that flies exhibited a preference for specific positions and spent more time in the proximity of sweet sugars, such as sucrose and sucralose, but not non-sweet and nutritious sugars like xylitol and sorbitol. On the other hand, prolonged exposure to sorbitol increased the staying time of flies in the proximity of sorbitol. Additionally, after starvation, flies immediately exhibited a position preference in the proximity of sorbitol. These findings suggest that flies prefer the proximity of sweet food, and starvation alters their preference for nutritious food, which may be beneficial for their survival.
Collapse
Affiliation(s)
- Haruki Kato
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe 3-1, Mizuho, Nagoya, Aichi, 467-8603, Japan
| | - Hiroyuki Nakagawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe 3-1, Mizuho, Nagoya, Aichi, 467-8603, Japan
| | - Chiaki Ishizaki
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe 3-1, Mizuho, Nagoya, Aichi, 467-8603, Japan
| | - Jun Tomita
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe 3-1, Mizuho, Nagoya, Aichi, 467-8603, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe 3-1, Mizuho, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
3
|
Gao J, Zhang S, Deng P, Wu Z, Lemaitre B, Zhai Z, Guo Z. Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat Commun 2024; 15:3514. [PMID: 38664401 PMCID: PMC11045819 DOI: 10.1038/s41467-024-47465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.
Collapse
Affiliation(s)
- Junjun Gao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Deng
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zongzhao Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, PR China.
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Opoola M, Fitzgerald L, Hwangbo DS. Con-FLIC: concurrent measurement of feeding behaviors and food consumption in Drosophila at single-fly resolution. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001128. [PMID: 38487478 PMCID: PMC10938163 DOI: 10.17912/micropub.biology.001128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Accurate quantification of food intake and feeding behaviors are essential for understanding various biological processes, such as metabolism and aging. Currently, no methods allow for the concurrent measurement of both parameters for the same individual flies. Here, we couple Con-Ex ( Con sumption- Ex cretion) and FLIC ( F ly L iquid-Food I nteraction C ounter), previously developed to measure food consumption and various feeding behaviors, respectively, into a single platform that we named Con-FLIC. Using starvation as a known condition that changes food intake and feeding behaviors, we validate that Con-FLIC enables concurrent measurement of feeding behaviors and food intake in Drosophila at a single-fly resolution. We expect that Con-FLIC will be an easy non-invasive option to quantify food consumption and feeding behaviors concurrently in the same individual flies.
Collapse
Affiliation(s)
- Mubaraq Opoola
- Department of Biology, University of Louisville, Louisville, Kentucky, United States
| | - Lucas Fitzgerald
- Department of Biology, University of Louisville, Louisville, Kentucky, United States
| | - Dae-Sung Hwangbo
- Department of Biology, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
5
|
Segu A, Radhakrishnan D, Kannan NN. Modified Capillary Feeder assay using micro-tips to measure real-time feeding in Drosophila. STAR Protoc 2023; 4:102393. [PMID: 37384520 PMCID: PMC10511848 DOI: 10.1016/j.xpro.2023.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
Capillary Feeder assay (CAFE) is a real-time feeding assay used in Drosophila that employs micro-capillaries, which are costly. Here, we present a modified version of the assay by replacing micro-capillaries with micro-tips, hence ensuring the same principle with cost reduction by 500 times. We developed a mathematical approach to measure volume for the conical shaped micro-tips. In this protocol, we describe step-by-step procedures of pre-assay setup along with fly rearing; assay setup included with detailed analysis for volume calculations. For further verification and use of this protocol, please refer to Segu and Kannan.1.
Collapse
Affiliation(s)
- Aishwarya Segu
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India.
| | - Devika Radhakrishnan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
6
|
Yang J, Tang R, Chen S, Chen Y, Yuan K, Huang R, Wang L. Exposure to high-sugar diet induces transgenerational changes in sweet sensitivity and feeding behavior via H3K27me3 reprogramming. eLife 2023; 12:e85365. [PMID: 37698486 PMCID: PMC10558205 DOI: 10.7554/elife.85365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/11/2023] [Indexed: 09/13/2023] Open
Abstract
Human health is facing a host of new threats linked to unbalanced diets, including high-sugar diet (HSD), which contributes to the development of both metabolic and behavioral disorders. Studies have shown that diet-induced metabolic dysfunctions can be transmitted to multiple generations of offspring and exert long-lasting health burden. Meanwhile, whether and how diet-induced behavioral abnormalities can be transmitted to the offspring remains largely unclear. Here, we showed that ancestral HSD exposure suppressed sweet sensitivity and feeding behavior in the offspring in Drosophila. These behavioral deficits were transmitted through the maternal germline and companied by the enhancement of H3K27me3 modifications. PCL-PRC2 complex, a major driver of H3K27 trimethylation, was upregulated by ancestral HSD exposure, and disrupting its activity eliminated the transgenerational inheritance of sweet sensitivity and feeding behavior deficits. Elevated H3K27me3 inhibited the expression of a transcriptional factor Cad and suppressed sweet sensitivity of the sweet-sensing gustatory neurons, reshaping the sweet perception and feeding behavior of the offspring. Taken together, we uncovered a novel molecular mechanism underlying behavioral abnormalities spanning multiple generations of offspring upon ancestral HSD exposure, which would contribute to the further understanding of long-term health risk of unbalanced diet.
Collapse
Affiliation(s)
- Jie Yang
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
| | - Shiye Chen
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Yinan Chen
- Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurosurgery, Xiangya Hospital, and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South UniversityChangshaChina
- The Biobank of Xiangya Hospital, Xiangya Hospital, Central South UniversityChangshaChina
| | - Rui Huang
- Center for Neurointelligence, School of Medicine, Chongqing UniversityChongqingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Liming Wang
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
7
|
Song T, Qin W, Lai Z, Li H, Li D, Wang B, Deng W, Wang T, Wang L, Huang R. Dietary cysteine drives body fat loss via FMRFamide signaling in Drosophila and mouse. Cell Res 2023:10.1038/s41422-023-00800-8. [PMID: 37055592 DOI: 10.1038/s41422-023-00800-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/17/2023] [Indexed: 04/15/2023] Open
Abstract
Obesity imposes a global health threat and calls for safe and effective therapeutic options. Here, we found that protein-rich diet significantly reduced body fat storage in fruit flies, which was largely attributed to dietary cysteine intake. Mechanistically, dietary cysteine increased the production of a neuropeptide FMRFamide (FMRFa). Enhanced FMRFa activity simultaneously promoted energy expenditure and suppressed food intake through its cognate receptor (FMRFaR), both contributing to the fat loss effect. In the fat body, FMRFa signaling promoted lipolysis by increasing PKA and lipase activity. In sweet-sensing gustatory neurons, FMRFa signaling suppressed appetitive perception and hence food intake. We also demonstrated that dietary cysteine worked in a similar way in mice via neuropeptide FF (NPFF) signaling, a mammalian RFamide peptide. In addition, dietary cysteine or FMRFa/NPFF administration provided protective effect against metabolic stress in flies and mice without behavioral abnormalities. Therefore, our study reveals a novel target for the development of safe and effective therapies against obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Tingting Song
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Wusa Qin
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Zeliang Lai
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Haoyu Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Daihan Li
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Baojia Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Wuquan Deng
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Tingzhang Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Liming Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Rui Huang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
8
|
Schoberleitner I, Mertens B, Bauer I, Lusser A. Regulation of sensory perception and motor abilities by brain-specific action of chromatin remodeling factor CHD1. Front Mol Neurosci 2022; 15:840966. [PMID: 35983070 PMCID: PMC9378821 DOI: 10.3389/fnmol.2022.840966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
The ATP-dependent chromatin remodeling factor CHD1 (chromodomain-helicase-DNA binding protein 1) is involved in both the de novo assembly and the remodeling of chromatin. Recently, we discovered a crucial role of CHD1 in the incorporation of the histone variant H3.3 in the fly brain illustrated by widespread transcriptional upregulation and shortened lifespan in Chd1-mutant animals. Because many genes linked to sensory perception were dysregulated in Chd1-mutant heads, we studied the role of CHD1 in these processes. Here we show that Chd1-mutant flies have severe defects in their response behavior to olfactory and gustatory but not visual stimuli. Further analyses suggested that poor performance in gustatory response assays was caused by reduced motivation for foraging and feeding rather than defects in taste perception. Moreover, we show that shortened lifespan of Chd1-mutant flies is accompanied by indications of premature functional aging as suggested by defects in negative geotaxis and exploratory walking assays. The latter phenotype was rescued by neuronal re-expression of Chd1, while the olfactory defects were not. Interestingly, we found evidence for indirect regulation of the non-neuronal expression of odorant binding proteins (Obp) by neuronal expression of Chd1. Together, these results emphasize the crucial role of CHD1 activity controlling diverse neuronal processes thereby affecting healthy lifespan.
Collapse
Affiliation(s)
| | | | | | - Alexandra Lusser
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Kojima T, Yamato S, Kawamura S. Natural and Synthetic Pyrethrins Act as Feeding Deterrents against the Black Blowfly, Phormia regina (Meigen). INSECTS 2022; 13:insects13080678. [PMID: 36005302 PMCID: PMC9409472 DOI: 10.3390/insects13080678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
Pyrethrum is a botanical insecticide derived from pyrethrum flowers. Feeding deterrence caused by pyrethrum has been reported in several sucking insects; however, there is no account of the cause of deterrence—whether from a single component or the combination of six active ingredients, called pyrethrins. We determined the feeding deterrence of natural pyrethrins, their two main components (pyrethrins I and II), and pyrethroid insecticides on the blowfly, Phormia regina. In a dual-choice feeding assay that minimized tarsal contact with food sources but allowed feeding through proboscises, natural pyrethrins, synthetic pyrethrins I/II, and allethrin were observed to induce deterrence at a concentration 16 times lower than the lowest concentration at which the knockdown rate increased. Feeding bouts were interrupted by intensive grooming of the proboscis at the deterring concentration, but no such grooming was observed to occur while feeding on the unpalatable tastants—NaCl, quinine, and tartaric acid. The underlying mode of action for the feeding deterrence of pyrethrins at sub-lethal concentrations probably occurs on the fly oral gustatory system, while differing from that of unpalatable tastants. The potent feeding deterrence of pyrethrins may provide effective protection for pyrethrum plants by rapidly deterring insects from feeding, before insecticidal activities occur.
Collapse
Affiliation(s)
- Takeshi Kojima
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., 2-1 Takatsukasa 4-Chome, Takarazuka, Hyogo 665-8555, Japan; (S.Y.); (S.K.)
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Correspondence:
| | - Seiji Yamato
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., 2-1 Takatsukasa 4-Chome, Takarazuka, Hyogo 665-8555, Japan; (S.Y.); (S.K.)
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shinichi Kawamura
- Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co., Ltd., 2-1 Takatsukasa 4-Chome, Takarazuka, Hyogo 665-8555, Japan; (S.Y.); (S.K.)
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
10
|
Eickelberg V, Lüersen K, Staats S, Rimbach G. Phenotyping of Drosophila Melanogaster-A Nutritional Perspective. Biomolecules 2022; 12:221. [PMID: 35204721 PMCID: PMC8961528 DOI: 10.3390/biom12020221] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The model organism Drosophila melanogaster was increasingly applied in nutrition research in recent years. A range of methods are available for the phenotyping of D. melanogaster, which are outlined in the first part of this review. The methods include determinations of body weight, body composition, food intake, lifespan, locomotor activity, reproductive capacity and stress tolerance. In the second part, the practical application of the phenotyping of flies is demonstrated via a discussion of obese phenotypes in response to high-sugar diet (HSD) and high-fat diet (HFD) feeding. HSD feeding and HFD feeding are dietary interventions that lead to an increase in fat storage and affect carbohydrate-insulin homeostasis, lifespan, locomotor activity, reproductive capacity and stress tolerance. Furthermore, studies regarding the impacts of HSD and HFD on the transcriptome and metabolome of D. melanogaster are important for relating phenotypic changes to underlying molecular mechanisms. Overall, D. melanogaster was demonstrated to be a valuable model organism with which to examine the pathogeneses and underlying molecular mechanisms of common chronic metabolic diseases in a nutritional context.
Collapse
Affiliation(s)
- Virginia Eickelberg
- Department of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany; (K.L.); (S.S.); (G.R.)
| | | | | | | |
Collapse
|
11
|
Intravital imaging strategy FlyVAB reveals the dependence of Drosophila enteroblast differentiation on the local physiology. Commun Biol 2021; 4:1223. [PMID: 34697396 PMCID: PMC8546075 DOI: 10.1038/s42003-021-02757-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Aging or injury in Drosophila intestine promotes intestinal stem cell (ISC) proliferation and enteroblast (EB) differentiation. However, the manner the local physiology couples with dynamic EB differentiation assessed by traditional lineage tracing method is still vague. Therefore, we developed a 3D-printed platform “FlyVAB” for intravital imaging strategy that enables the visualization of the Drosophila posterior midgut at a single cell level across the ventral abdomen cuticle. Using ISCs in young and healthy midgut and enteroendocrine cells in age-associated hyperplastic midgut as reference coordinates, we traced ISC-EB-enterocyte lineages with Notch signaling reporter for multiple days. Our results reveal a “differentiation-poised” EB status correlated with slow ISC divisions and a “differentiation-activated” EB status correlated with ISC hyperplasia and rapid EB to enterocyte differentiation. Our FlyVAB imaging strategy opens the door to long-time intravital imaging of intestinal epithelium. Tang et. al. demonstrate a 3Dprinted platform, FlyVAB, for intravital imaging and visualization of the Drosophila posterior midgut at a single-cell level. This method enables tracking of the stem cell lineage in the midgut of the flies constantly for up to 10 days.
Collapse
|
12
|
Cheriyamkunnel SJ, Rose S, Jacob PF, Blackburn LA, Glasgow S, Moorse J, Winstanley M, Moynihan PJ, Waddell S, Rezaval C. A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. Curr Biol 2021; 31:4231-4245.e4. [PMID: 34358444 PMCID: PMC8538064 DOI: 10.1016/j.cub.2021.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 01/28/2023]
Abstract
Animals must express the appropriate behavior that meets their most pressing physiological needs and their environmental context. However, it is currently unclear how alternative behavioral options are evaluated and appropriate actions are prioritized. Here, we describe how fruit flies choose between feeding and courtship; two behaviors necessary for survival and reproduction. We show that sex- and food-deprived male flies prioritize feeding over courtship initiation, and manipulation of food quality or the animal's internal state fine-tunes this decision. We identify the tyramine signaling pathway as an essential mediator of this decision. Tyramine biosynthesis is regulated by the fly's nutritional state and acts as a satiety signal, favoring courtship over feeding. Tyramine inhibits a subset of feeding-promoting tyramine receptor (TyrR)-expressing neurons and activates P1 neurons, a known command center for courtship. Conversely, the perception of a nutritious food source activates TyrR neurons and inhibits P1 neurons. Therefore, TyrR and P1 neurons are oppositely modulated by starvation, via tyramine levels, and food availability. We propose that antagonistic co-regulation of neurons controlling alternative actions is key to prioritizing competing drives in a context- dependent manner.
Collapse
Affiliation(s)
| | - Saloni Rose
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Pedro F Jacob
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | | | - Shaleen Glasgow
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jacob Moorse
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mike Winstanley
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Carolina Rezaval
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
13
|
Oh Y, Lai JSY, Min S, Huang HW, Liberles SD, Ryoo HD, Suh GSB. Periphery signals generated by Piezo-mediated stomach stretch and Neuromedin-mediated glucose load regulate the Drosophila brain nutrient sensor. Neuron 2021; 109:1979-1995.e6. [PMID: 34015253 DOI: 10.1016/j.neuron.2021.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/25/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Nutrient sensors allow animals to identify foods rich in specific nutrients. The Drosophila nutrient sensor, diuretic hormone 44 (DH44) neurons, helps the fly to detect nutritive sugar. This sensor becomes operational during starvation; however, the mechanisms by which DH44 neurons or other nutrient sensors are regulated remain unclear. Here, we identified two satiety signals that inhibit DH44 neurons: (1) Piezo-mediated stomach/crop stretch after food ingestion and (2) Neuromedin/Hugin neurosecretory neurons in the ventral nerve cord (VNC) activated by an increase in the internal glucose level. A subset of Piezo+ neurons that express DH44 neuropeptide project to the crop. We found that DH44 neuronal activity and food intake were stimulated following a knockdown of piezo in DH44 neurons or silencing of Hugin neurons in the VNC, even in fed flies. Together, we propose that these two qualitatively distinct peripheral signals work in concert to regulate the DH44 nutrient sensor during the fed state.
Collapse
Affiliation(s)
- Yangkyun Oh
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jason Sih-Yu Lai
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Soohong Min
- Harvard Medical School, Howard Hughes Medical Institute, Department of Cell Biology, Boston, MA 02115, USA
| | - Huai-Wei Huang
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York, NY 10016, USA
| | - Stephen D Liberles
- Harvard Medical School, Howard Hughes Medical Institute, Department of Cell Biology, Boston, MA 02115, USA
| | - Hyung Don Ryoo
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York, NY 10016, USA
| | - Greg S B Suh
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
14
|
Qi W, Wang G, Wang L. A novel satiety sensor detects circulating glucose and suppresses food consumption via insulin-producing cells in Drosophila. Cell Res 2021; 31:580-588. [PMID: 33273704 PMCID: PMC8089096 DOI: 10.1038/s41422-020-00449-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 10/26/2020] [Indexed: 01/29/2023] Open
Abstract
Sensing satiety is a crucial survival skill for all animal species including human. Despite the discovery of numerous neuromodulators that regulate food intake in Drosophila, the mechanism of satiety sensing remains largely elusive. Here, we investigated how neuropeptidergic circuitry conveyed satiety state to influence flies' food consumption. Drosophila tackykinin (DTK) and its receptor TAKR99D were identified in an RNAi screening as feeding suppressors. Two pairs of DTK+ neurons in the fly brain could be activated by elevated D-glucose in the hemolymph and imposed a suppressive effect on feeding. These DTK+ neurons formed a two-synapse circuitry targeting insulin-producing cells, a well-known feeding suppressor, via TAKR99D+ neurons, and this circuitry could be rapidly activated during food ingestion and cease feeding. Taken together, we identified a novel satiety sensor in the fly brain that could detect specific circulating nutrients and in turn modulate feeding, shedding light on the neural regulation of energy homeostasis.
Collapse
Affiliation(s)
- Wei Qi
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058 China ,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Gaohang Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Liming Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058 China
| |
Collapse
|
15
|
Mack JO, Zhang YV. A Rapid Food-Preference Assay in Drosophila. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2021:10.3791/62051. [PMID: 33645577 PMCID: PMC9908510 DOI: 10.3791/62051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To select food with nutritional value while avoiding the consumption of harmful agents, animals need a sophisticated and robust taste system to evaluate their food environment. The fruit fly, Drosophila melanogaster, is a genetically tractable model organism that is widely used to decipher the molecular, cellular, and neural underpinnings of food preference. To analyze fly food preference, a robust feeding method is needed. Described here is a two-choice feeding assay, which is rigorous, cost-saving, and fast. The assay is Petri-dish-based and involves the addition of two different foods supplemented with blue or red dye to the two halves of the dish. Then, ~70 prestarved, 2-4-day-old flies are placed in the dish and allowed to choose between blue and red foods in the dark for about 90 min. Examination of the abdomen of each fly is followed by the calculation of the preference index. In contrast to multiwell plates, each Petri dish takes only ~20 s to fill and saves time and effort. This feeding assay can be employed to quickly determine whether flies like or dislike a particular food.
Collapse
Affiliation(s)
- John O. Mack
- Monell Chemical Senses Center, University of Pennsylvania Perelman School of Medicine
| | - Yali V. Zhang
- Monell Chemical Senses Center, University of Pennsylvania Perelman School of Medicine,Department of Physiology, The Diabetes Research Center, University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
16
|
Wang P, Jia Y, Liu T, Jan YN, Zhang W. Visceral Mechano-sensing Neurons Control Drosophila Feeding by Using Piezo as a Sensor. Neuron 2020; 108:640-650.e4. [PMID: 32910893 DOI: 10.1016/j.neuron.2020.08.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/24/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Animal feeding is controlled by external sensory cues and internal metabolic states. Does it also depend on enteric neurons that sense mechanical cues to signal fullness of the digestive tract? Here, we identify a group of piezo-expressing neurons innervating the Drosophila crop (the fly equivalent of the stomach) that monitor crop volume to avoid food overconsumption. These neurons reside in the pars intercerebralis (PI), a neuro-secretory center in the brain involved in homeostatic control, and express insulin-like peptides with well-established roles in regulating food intake and metabolism. Piezo knockdown in these neurons of wild-type flies phenocopies the food overconsumption phenotype of piezo-null mutant flies. Conversely, expression of either fly Piezo or mammalian Piezo1 in these neurons of piezo-null mutants suppresses the overconsumption phenotype. Importantly, Piezo+ neurons at the PI are activated directly by crop distension, thus conveying a rapid satiety signal along the "brain-gut axis" to control feeding.
Collapse
Affiliation(s)
- Pingping Wang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yinjun Jia
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Ting Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Wei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Huang R, Song T, Su H, Lai Z, Qin W, Tian Y, Dong X, Wang L. High-fat diet enhances starvation-induced hyperactivity via sensitizing hunger-sensing neurons in Drosophila. eLife 2020; 9:e53103. [PMID: 32324135 PMCID: PMC7274782 DOI: 10.7554/elife.53103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
The function of the central nervous system to regulate food intake can be disrupted by sustained metabolic challenges such as high-fat diet (HFD), which may contribute to various metabolic disorders. Previously, we showed that a group of octopaminergic (OA) neurons mediated starvation-induced hyperactivity, an important aspect of food-seeking behavior (Yu et al., 2016). Here we find that HFD specifically enhances this behavior. Mechanistically, HFD increases the excitability of these OA neurons to a hunger hormone named adipokinetic hormone (AKH), via increasing the accumulation of AKH receptor (AKHR) in these neurons. Upon HFD, excess dietary lipids are transported by a lipoprotein LTP to enter these OA+AKHR+ neurons via the cognate receptor LpR1, which in turn suppresses autophagy-dependent degradation of AKHR. Taken together, we uncover a mechanism that links HFD, neuronal autophagy, and starvation-induced hyperactivity, providing insight in the reshaping of neural circuitry under metabolic challenges and the progression of metabolic diseases.
Collapse
Affiliation(s)
- Rui Huang
- Center for Neurointelligence, School of Medicine, Chongqing University & Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing UniversityChongqingChina
- Shenzhen Bay LaboratoryShenzhenChina
| | | | - Haifeng Su
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghaiChina
| | - Zeliang Lai
- Center for Neurointelligence, School of Medicine, Chongqing University & Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing UniversityChongqingChina
- Shenzhen Bay LaboratoryShenzhenChina
| | - Wusa Qin
- Shenzhen Bay LaboratoryShenzhenChina
| | - Yinjun Tian
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Xuan Dong
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Liming Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang UniversityHangzhouChina
| |
Collapse
|
18
|
Mahishi D, Huetteroth W. The prandial process in flies. CURRENT OPINION IN INSECT SCIENCE 2019; 36:157-166. [PMID: 31765996 DOI: 10.1016/j.cois.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Feeding is fundamental to any heterotroph organism; in its role to quell hunger it overrides most other motivational states. But feeding also literally opens the door to harmful risks, especially for a saprophagous animal like Drosophila; ingestion of poisonous substrate can lead to irreversible damage. Thus feeding incorporates a series of steps with several checkpoints to guarantee that the ingestion remains beneficial and provides a balanced diet, or the feeding process is interrupted. Subsequently, we will summarize and describe the feeding process in Drosophila in a comprehensive manner. We propose eleven distinct steps for feeding, grouped into four categories, to address our current knowledge of prandial regulatory mechanisms in Drosophila.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Biology, University of Leipzig, Leipzig, Germany
| | - Wolf Huetteroth
- Department of Biology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
19
|
Immediate and delayed effects of nutrient-sensing in fruit fly Drosophila melanogaster. Behav Processes 2019; 164:133-142. [DOI: 10.1016/j.beproc.2019.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 11/20/2022]
|
20
|
Lee SH, Min KJ. Drosophila melanogaster as a model system in the study of pharmacological interventions in aging. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
21
|
Schretter CE, Vielmetter J, Bartos I, Marka Z, Marka S, Argade S, Mazmanian SK. A gut microbial factor modulates locomotor behaviour in Drosophila. Nature 2018; 563:402-406. [PMID: 30356215 PMCID: PMC6237646 DOI: 10.1038/s41586-018-0634-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Catherine E Schretter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Jost Vielmetter
- Protein Expression Center, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Imre Bartos
- Department of Physics, Columbia University, New York, NY, USA
| | - Zsuzsa Marka
- Department of Physics, Columbia University, New York, NY, USA
| | - Szabolcs Marka
- Department of Physics, Columbia University, New York, NY, USA
| | - Sulabha Argade
- GlycoAnalytics Core, University of California, San Diego, CA, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
22
|
Yang Z, Huang R, Fu X, Wang G, Qi W, Mao D, Shi Z, Shen WL, Wang L. A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Res 2018; 28:1013-1025. [PMID: 30209352 PMCID: PMC6170445 DOI: 10.1038/s41422-018-0084-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/19/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022] Open
Abstract
Adequate protein intake is crucial for the survival and well-being of animals. How animals assess prospective protein sources and ensure dietary amino acid intake plays a critical role in protein homeostasis. By using a quantitative feeding assay, we show that three amino acids, L-glutamate (L-Glu), L-alanine (L-Ala) and L-aspartate (L-Asp), but not their D-enantiomers or the other 17 natural L-amino acids combined, rapidly promote food consumption in the fruit fly Drosophila melanogaster. This feeding-promoting effect of dietary amino acids is independent of mating experience and internal nutritional status. In vivo and ex vivo calcium imagings show that six brain neurons expressing diuretic hormone 44 (DH44) can be rapidly and directly activated by these amino acids, suggesting that these neurons are an amino acid sensor. Genetic inactivation of DH44+ neurons abolishes the increase in food consumption induced by dietary amino acids, whereas genetic activation of these neurons is sufficient to promote feeding, suggesting that DH44+ neurons mediate the effect of dietary amino acids to promote food consumption. Single-cell transcriptome analysis and immunostaining reveal that a putative amino acid transporter, CG13248, is enriched in DH44+ neurons. Knocking down CG13248 expression in DH44+ neurons blocks the increase in food consumption and eliminates calcium responses induced by dietary amino acids. Therefore, these data identify DH44+ neuron as a key sensor to detect amino acids and to enhance food intake via a putative transporter CG13248. These results shed critical light on the regulation of protein homeostasis at organismal levels by the nervous system.
Collapse
Affiliation(s)
- Zhe Yang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Rui Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing, 400030, China.,Medical School, Chongqing University, 400030, China
| | - Xin Fu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaohang Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei Qi
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Decai Mao
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhaomei Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Liming Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
23
|
Measurement of solid food intake in Drosophila via consumption-excretion of a dye tracer. Sci Rep 2018; 8:11536. [PMID: 30068981 PMCID: PMC6070562 DOI: 10.1038/s41598-018-29813-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/16/2018] [Indexed: 12/27/2022] Open
Abstract
Although the Drosophila melanogaster (fly) model is a popular platform for investigating diet-related phenomena, it can be challenging to measure the volume of agar-based food media flies consume. We addressed this challenge by developing a dye-based method called Consumption-Excretion (Con-Ex). In Con-Ex studies, flies consume solid food labeled with dye, and the volume of food consumed is reflected by the sum of the dye inside of and excreted by flies. Flies consumed-excreted measurable amounts of FD&C Blue No. 1 (Blue 1) and other dyes in Con-Ex studies, but only Blue 1 was readily detectable at concentrations that had no discernable effect on consumption-excretion. In studies with Blue 1, consumption-excretion (i) increased linearly with feeding duration out to 24 h at two different laboratory sites, (ii) was sensitive to starvation, mating status and strain, and (iii) changed in response to alteration of media composition as expected. Additionally, the volume of liquid Blue 1 consumed from capillary tubes was indistinguishable from the volume of Blue 1 excreted by flies, indicating that excreted Blue 1 reflects consumed Blue 1. Our results demonstrate that Con-Ex with Blue 1 as a food tracer is a useful method for assessing ingestion of agar-based food media in adult flies.
Collapse
|
24
|
Jiang L, Zhan Y, Zhu Y. Combining Quantitative Food-intake Assays and Forcibly Activating Neurons to Study Appetite in Drosophila. J Vis Exp 2018. [PMID: 29757269 DOI: 10.3791/56900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Food consumption is under the tight control of the brain, which integrates the physiological status, palatability, and nutritional contents of the food, and issues commands to start or stop feeding. Deciphering the processes underlying the decision-making of timely and moderate feeding carries major implications in our understanding of physiological and psychological disorders related to feeding control. Simple, quantitative, and robust methods are required to measure the food ingestion of animals after experimental manipulation, such as forcibly increasing the activities of certain target neurons. Here, we introduced dye-labeling-based feeding assays to facilitate the neurogenetic study of feeding control in adult fruit flies. We review available feeding assays, and then describe our methods step-by-step from setup to analysis, which combine thermogenetic and optogenetic manipulation of neurons controlling feeding motivation with dye-labeled food intake assay. We also discuss the advantages and limitations of our methods, compared with other feeding assays, to help readers choose an appropriate assay.
Collapse
Affiliation(s)
- Lifen Jiang
- School of Life Science, University of Science and Technology of China; State key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences
| | - Yinpeng Zhan
- State key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences; University of Chinese Academy of Sciences
| | - Yan Zhu
- State key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences; University of Chinese Academy of Sciences;
| |
Collapse
|
25
|
Staats S, Lüersen K, Wagner AE, Rimbach G. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3737-3753. [PMID: 29619822 DOI: 10.1021/acs.jafc.7b05900] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Drosophila melanogaster has been widely used in the biological sciences as a model organism. Drosophila has a relatively short life span of 60-80 days, which makes it attractive for life span studies. Moreover, approximately 60% of the fruit fly genes are orthologs to mammals. Thus, metabolic and signal transduction pathways are highly conserved. Maintenance and reproduction of Drosophila do not require sophisticated equipment and are rather cheap. Furthermore, there are fewer ethical issues involved in experimental Drosophila research compared with studies in laboratory rodents, such as rats and mice. Drosophila is increasingly recognized as a model organism in food and nutrition research. Drosophila is often fed complex solid diets based on yeast, corn, and agar. There are also so-called holidic diets available that are defined in terms of their amino acid, fatty acid, carbohydrate, vitamin, mineral, and trace element compositions. Feed intake, body composition, locomotor activity, intestinal barrier function, microbiota, cognition, fertility, aging, and life span can be systematically determined in Drosophila in response to dietary factors. Furthermore, diet-induced pathophysiological mechanisms including inflammation and stress responses may be evaluated in the fly under defined experimental conditions. Here, we critically evaluate Drosophila melanogaster as a versatile model organism in experimental food and nutrition research, review the corresponding data in the literature, and make suggestions for future directions of research.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| | - Anika E Wagner
- Institute of Nutritional Medicine , University of Lübeck , Ratzeburger Allee 160 , D-23538 Lübeck , Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science , University of Kiel , Hermann-Rodewald-Strasse 6 , D-24118 Kiel , Germany
| |
Collapse
|
26
|
Foriel S, Beyrath J, Eidhof I, Rodenburg RJ, Schenck A, Smeitink JAM. Feeding difficulties, a key feature of the Drosophila NDUFS4 mitochondrial disease model. Dis Model Mech 2018; 11:dmm032482. [PMID: 29590638 PMCID: PMC5897729 DOI: 10.1242/dmm.032482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are associated with a wide variety of clinical symptoms and variable degrees of severity. Patients with such diseases generally have a poor prognosis and often an early fatal disease outcome. With an incidence of 1 in 5000 live births and no curative treatments available, relevant animal models to evaluate new therapeutic regimes for mitochondrial diseases are urgently needed. By knocking down ND-18, the unique Drosophila ortholog of NDUFS4, an accessory subunit of the NADH:ubiquinone oxidoreductase (Complex I), we developed and characterized several dNDUFS4 models that recapitulate key features of mitochondrial disease. Like in humans, the dNDUFS4 KD flies display severe feeding difficulties, an aspect of mitochondrial disorders that has so far been largely ignored in animal models. The impact of this finding, and an approach to overcome it, will be discussed in the context of interpreting disease model characterization and intervention studies.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sarah Foriel
- Khondrion BV, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM) at the Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - Julien Beyrath
- Khondrion BV, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine (RCMM) at the Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Khondrion BV, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM) at the Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
27
|
Kaleeswaran G, Firake DM, Sanjukta R, Behere GT, Ngachan SV. Bamboo-Leaf Prickly Ash extract: A potential bio-pesticide against oriental leaf worm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 208:46-55. [PMID: 29248787 DOI: 10.1016/j.jenvman.2017.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/28/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Bamboo-Leaf Prickly Ash, Zanthoxylum armatum (Rutaceae) is a versatile and widely distributed plant species in nature. It is an edible plant species, commonly used in daily life for condiments and therapeutic remedies. Besides its bioactive and medicinal properties, different plant parts of the Z. armatum also have insecticidal potential. However, this potential has not been yet determined against many agricultural pests, including leaf worm, Spodoptera litura (Lepidoptera: Noctuidae). In this study, we demonstrated for the first time the contact and oral toxicity and sub-lethal effects (including antifeedent and ovicidal action) of various fractions of pericarp, leaf and seeds of Z. armatum against S. litura. Overall findings revealed that the n-hexane pericarp extract of Z. armatum has strong antifeedent, ovicidal and larvicidal properties against S. litura. Sub-lethal doses of pericarp extract can negatively alter the biology of S. litura. Since n-hexane extract of leaves also has better larvicidal properties, it could also be utilized for the S. litura management during period of unavailability of fruits (or pericarp). Accordingly, the Z. armatum pericarp and leaf extract has tremendous commercial utilization potential for the management of polyphagus pests like S. litura and other related species, which are quite difficult to manage even by chemical pesticides.
Collapse
Affiliation(s)
- G Kaleeswaran
- School of Crop Protection, College of Post Graduate-Studies (Central Agricultural University), Umiam 793103, Meghalaya, India
| | - D M Firake
- Division of Crop Protection, ICAR Research Complex for NEH Region, Umiam 793103, Meghalaya, India.
| | - R Sanjukta
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam 793103, Meghalaya, India
| | - G T Behere
- Division of Crop Protection, ICAR Research Complex for NEH Region, Umiam 793103, Meghalaya, India
| | - S V Ngachan
- Division of Crop Protection, ICAR Research Complex for NEH Region, Umiam 793103, Meghalaya, India
| |
Collapse
|
28
|
Lee YCG, Yang Q, Chi W, Turkson SA, Du WA, Kemkemer C, Zeng ZB, Long M, Zhuang X. Genetic Architecture of Natural Variation Underlying Adult Foraging Behavior That Is Essential for Survival of Drosophila melanogaster. Genome Biol Evol 2018; 9:1357-1369. [PMID: 28472322 PMCID: PMC5452641 DOI: 10.1093/gbe/evx089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 01/04/2023] Open
Abstract
Foraging behavior is critical for the fitness of individuals. However, the genetic basis of variation in foraging behavior and the evolutionary forces underlying such natural variation have rarely been investigated. We developed a systematic approach to assay the variation in survival rate in a foraging environment for adult flies derived from a wild Drosophila melanogaster population. Despite being such an essential trait, there is substantial variation of foraging behavior among D. melanogaster strains. Importantly, we provided the first evaluation of the potential caveats of using inbred Drosophila strains to perform genome-wide association studies on life-history traits, and concluded that inbreeding depression is unlikely a major contributor for the observed large variation in adult foraging behavior. We found that adult foraging behavior has a strong genetic component and, unlike larval foraging behavior, depends on multiple loci. Identified candidate genes are enriched in those with high expression in adult heads and, demonstrated by expression knock down assay, are involved in maintaining normal functions of the nervous system. Our study not only identified candidate genes for foraging behavior that is relevant to individual fitness, but also shed light on the initial stage underlying the evolution of the behavior.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL.,Present address: Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory; Department of Molecular Biology and Cell Biology, University of California, Berkeley
| | - Qian Yang
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Wanhao Chi
- Department of Neurobiology, The University of Chicago, Chicago, IL.,Present address: Committee on Genetics, Genomics & Systems Biology, The University of Chicago, Chicago, IL
| | - Susie A Turkson
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Wei A Du
- Department of Biology, Wayne State University, Detroit, MI
| | - Claus Kemkemer
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL
| | - Zhao-Bang Zeng
- Department of Statistical Genetics and Bioinformatics, North Carolina State University, Raleigh, NC
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL
| | - Xiaoxi Zhuang
- Department of Neurobiology, The University of Chicago, Chicago, IL
| |
Collapse
|
29
|
Alzheimer's Disease Model System Using Drosophila. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:25-40. [PMID: 29951813 DOI: 10.1007/978-981-13-0529-0_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most epidemic neuronal dysfunctions among elderly people. It is accompanied by neuronal disorders along with learning and memory defects, as well as massive neurodegeneration phenotype. The presence of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques, called senile plaques (SPs), and brain atrophy are typically observed in the brains of AD patients. It has been over 20 years since the discovery that small peptide, called beta-amyloid (Aβ), has pivotal role for the disease formation. Since then, a variety of drugs have been developed to cure AD; however, there is currently no effective drug for the disorder. This therapeutic void reflects lacks of ideal model system, which can evaluate the progression of AD in a short period. Recently, large numbers of AD model system have been established using Drosophila melanogaster by overproducing Aβ molecules in the brain. These systems successfully reflect some of the symptoms along with AD. In this review, we would like to point out "pros and cons" of Drosophila AD models.
Collapse
|
30
|
The Role of the Gustatory System in the Coordination of Feeding. eNeuro 2017; 4:eN-REV-0324-17. [PMID: 29159281 PMCID: PMC5694965 DOI: 10.1523/eneuro.0324-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022] Open
Abstract
To survive, all animals must find, inspect, and ingest food. Behavioral coordination and control of feeding is therefore a challenge that animals must face. Here, we focus on how the gustatory system guides the precise execution of behavioral sequences that promote ingestion and suppresses competing behaviors. We summarize principles learnt from Drosophila, where underlying sensory neuronal mechanisms are illustrated in great detail. Moreover, we compare these principles with findings in other animals, where such coordination plays prominent roles. These examples suggest that the use of gustatory information for feeding coordination has an ancient origin and is prevalent throughout the animal kingdom.
Collapse
|
31
|
Raj A, Shah P, Agrawal N. Sedentary behavior and altered metabolic activity by AgNPs ingestion in Drosophila melanogaster. Sci Rep 2017; 7:15617. [PMID: 29142316 PMCID: PMC5688153 DOI: 10.1038/s41598-017-15645-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/30/2017] [Indexed: 11/09/2022] Open
Abstract
Among several nanoparticles, silver nanoparticles (AgNPs) are extensively used in a wide variety of consumer products due to its unique antimicrobial property. However, dosage effect of AgNPs on behavior and metabolic activity in an in vivo condition is not well studied. Therefore, to elucidate the impact of AgNPs on behavior and metabolism, systematic and detailed dosages study of AgNPs was performed by rearing Drosophila melanogaster on food without and with AgNPs. We found that dietary intake of AgNPs at early larval stage leads to behavioral abnormalities such as poor crawling and climbing ability of larvae and adults respectively. Interestingly, intake of higher dosage of AgNPs at larval stage significantly altered metabolic activity that includes lipid, carbohydrate and protein levels in adult flies. Further, detailed analysis revealed that AgNPs causes remarkable reduction in the number of lipid droplets (LDs) which are lipid storage organelles in Drosophila. We also observed an increased production of reactive oxygen species (ROS) in AgNPs ingested larval tissues. These results strongly imply that higher dosage of AgNPs ingestion from early larval stage of Drosophila is inimical and thereby draws concern towards the usage of AgNPs in consumer goods.
Collapse
Affiliation(s)
- Akanksha Raj
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Prasanna Shah
- Acropolis Institute of Technology and Research, Indore, 453771, India
| | - Namita Agrawal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
32
|
Joseph RM, Sun JS, Tam E, Carlson JR. A receptor and neuron that activate a circuit limiting sucrose consumption. eLife 2017; 6. [PMID: 28332980 PMCID: PMC5388533 DOI: 10.7554/elife.24992] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/19/2017] [Indexed: 11/23/2022] Open
Abstract
The neural control of sugar consumption is critical for normal metabolism. In contrast to sugar-sensing taste neurons that promote consumption, we identify a taste neuron that limits sucrose consumption in Drosophila. Silencing of the neuron increases sucrose feeding; optogenetic activation decreases it. The feeding inhibition depends on the IR60b receptor, as shown by behavioral analysis and Ca2+ imaging of an IR60b mutant. The IR60b phenotype shows a high degree of chemical specificity when tested with a broad panel of tastants. An automated analysis of feeding behavior in freely moving flies shows that IR60b limits the duration of individual feeding bouts. This receptor and neuron provide the molecular and cellular underpinnings of a new element in the circuit logic of feeding regulation. We propose a dynamic model in which sucrose acts via IR60b to activate a circuit that inhibits feeding and prevents overconsumption. DOI:http://dx.doi.org/10.7554/eLife.24992.001 All animals – from the fruit fly to mammals like humans – must control their dietary intake of nutrients to survive and stay healthy. Taste receptors that sense high-calorie sugars are essential to this process. Typically, when food tastes sweet, it signals that the food contains nutrients and promotes consumption. However, eating too much sugar can be detrimental because the animal wastes time and energy eating food that it does not need, and could eventually lead to obesity and other metabolic diseases. This raised the question: are there any taste receptors that, once they detect sugars, cause animals to eat less? Joseph et al. worked with the fruit fly Drosophila melanogaster and identified one such taste receptor called IR60b. The experiments showed that this taste receptor responds selectively to sucrose (a high-calorie sugar), and that it activates nerve cells that cause fruit flies to eat less food, rather than more. When the receptor was experimentally inactivated, the fruit flies ate for longer and ate too much sucrose. This indicates that the flies need this receptor to control their sugar intake. A next step will be to see if mammals similarly use sweet-sensing taste receptors to limit the amount of food they eat. A better insight into how mammals can control what they eat could provide a deeper understanding of how to tackle major health issues, such as obesity, in humans. DOI:http://dx.doi.org/10.7554/eLife.24992.002
Collapse
Affiliation(s)
- Ryan M Joseph
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Edric Tam
- Department of Biomedical Engineering, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
33
|
Diegelmann S, Jansen A, Jois S, Kastenholz K, Velo Escarcena L, Strudthoff N, Scholz H. The CApillary FEeder Assay Measures Food Intake in Drosophila melanogaster. J Vis Exp 2017. [PMID: 28362419 DOI: 10.3791/55024] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
For most animals, feeding is an essential behavior for securing survival, and it influences development, locomotion, health and reproduction. Ingestion of the right type and quantity of food therefore has a major influence on quality of life. Research on feeding behavior focuses on the underlying processes that ensure actual feeding and unravels the role of factors regulating internal energy homeostasis and the neuronal bases of decision-making. The model organism Drosophila melanogaster, with its great variety of genetically traceable tools for labeling and manipulating single neurons, allows mapping of neuronal networks and identification of molecular signaling cascades involved in the regulation of food intake. This report demonstrates the CApillary FEeder assay (CAFE) and shows how to measure food intake in a group of flies for time spans ranging from hours to days. This easy-to-use assay consists of glass capillaries filled with liquid food that flies can freely access and feed on. Food consumption in the assay is accurately determined using simple measurement tools. Herein we describe step-by-step the method from setup to successful execution of the CAFE assay, and provide practical examples to analyze the food intake of a group of flies under controlled conditions. The reader is guided through possible limitations of the assay, and advantages and disadvantages of the method compared to other feeding assays in D. melanogaster are evaluated.
Collapse
Affiliation(s)
| | - Annika Jansen
- Institute of Zoology, Albertus-Magnus University of Cologne
| | - Shreyas Jois
- Institute of Zoology, Albertus-Magnus University of Cologne; Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan
| | | | | | | | - Henrike Scholz
- Institute of Zoology, Albertus-Magnus University of Cologne;
| |
Collapse
|
34
|
Yu Y, Huang R, Ye J, Zhang V, Wu C, Cheng G, Jia J, Wang L. Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. eLife 2016; 5. [PMID: 27612383 PMCID: PMC5042652 DOI: 10.7554/elife.15693] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023] Open
Abstract
Starvation induces sustained increase in locomotion, which facilitates food localization and acquisition and hence composes an important aspect of food-seeking behavior. We investigated how nutritional states modulated starvation-induced hyperactivity in adult Drosophila. The receptor of the adipokinetic hormone (AKHR), the insect analog of glucagon, was required for starvation-induced hyperactivity. AKHR was expressed in a small group of octopaminergic neurons in the brain. Silencing AKHR+ neurons and blocking octopamine signaling in these neurons eliminated starvation-induced hyperactivity, whereas activation of these neurons accelerated the onset of hyperactivity upon starvation. Neither AKHR nor AKHR+ neurons were involved in increased food consumption upon starvation, suggesting that starvation-induced hyperactivity and food consumption are independently regulated. Single cell analysis of AKHR+ neurons identified the co-expression of Drosophila insulin-like receptor (dInR), which imposed suppressive effect on starvation-induced hyperactivity. Therefore, insulin and glucagon signaling exert opposite effects on starvation-induced hyperactivity via a common neural target in Drosophila. DOI:http://dx.doi.org/10.7554/eLife.15693.001 Animals can be thought of as tightly controlled eating machines. An animal’s brain senses if it is hungry via signals from the nervous system or hormones, and then alters the animal’s behavior to obtain a supply of food. These behaviors include looking for food and eating it; and regulating both food seeking and food consumption behaviors is crucial for the animal’s chances of survival and reproduction. Studies that used fruit flies as a model have previously shown that flies walk more when they are hungry. This activity helped the flies to locate and occupy food sources, but it was not clear how this food seeking behavior was regulated. Now, Yu, Huang et al. find that a small group of neurons in the fly brain controls food seeking in starving flies. The neurons achieve this by sensing two groups of hormones with opposing activity. These hormones are the fly’s equivalents of glucagon and insulin, which are found in humans and other mammals. In humans, glucagon is released when blood sugar levels are low and stimulates hunger, while insulin is released when blood sugar is high and acts to suppress feelings of hunger. Therefore, food seeking in the flies is under the precise control of signals of hunger and satiety. Further experiments show that these fly neurons use a chemical messenger called octopamine to convey the hormone-based signals to other circuits of neurons. Notably, these downstream neurons are not involved in regulating the consumption of food. Therefore, food seeking and eating appear to be independently regulated in fruit flies. Further studies are now needed to dissect the downstream circuits of neurons that actually control the food seeking behavior. It will also be important to explore how this behavior is suppressed when a food source is detected. DOI:http://dx.doi.org/10.7554/eLife.15693.002
Collapse
Affiliation(s)
- Yue Yu
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Rui Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Jie Ye
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Vivian Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Chao Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Guo Cheng
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Junling Jia
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Liming Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Abstract
Following considerable progress on the molecular and cellular basis of taste perception in fly sensory neurons, the time is now ripe to explore how taste information, integrated with hunger and satiety, undergo a sensorimotor transformation to lead to the motor actions of feeding behavior. I examine what is known of feeding circuitry in adult flies from more than 250 years of work in larger flies and from newer work in Drosophila. I review the anatomy of the proboscis, its muscles and their functions (where known), its motor neurons, interneurons known to receive taste inputs, interneurons that diverge from taste circuitry to provide information to other circuits, interneurons from other circuits that converge on feeding circuits, proprioceptors that influence the motor control of feeding, and sites of integration of hunger and satiety on feeding circuits. In spite of the several neuron types now known, a connected pathway from taste inputs to feeding motor outputs has yet to be found. We are on the threshold of an era where these individual components will be assembled into circuits, revealing how nervous system architecture leads to the control of behavior.
Collapse
|
36
|
Yapici N, Cohn R, Schusterreiter C, Ruta V, Vosshall LB. A Taste Circuit that Regulates Ingestion by Integrating Food and Hunger Signals. Cell 2016; 165:715-29. [PMID: 27040496 PMCID: PMC5544016 DOI: 10.1016/j.cell.2016.02.061] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/24/2016] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
Abstract
Ingestion is a highly regulated behavior that integrates taste and hunger cues to balance food intake with metabolic needs. To study the dynamics of ingestion in the vinegar fly Drosophila melanogaster, we developed Expresso, an automated feeding assay that measures individual meal-bouts with high temporal resolution at nanoliter scale. Flies showed discrete, temporally precise ingestion that was regulated by hunger state and sucrose concentration. We identify 12 cholinergic local interneurons (IN1, for "ingestion neurons") necessary for this behavior. Sucrose ingestion caused a rapid and persistent increase in IN1 interneuron activity in fasted flies that decreased proportionally in response to subsequent feeding bouts. Sucrose responses of IN1 interneurons in fed flies were significantly smaller and lacked persistent activity. We propose that IN1 neurons monitor ingestion by connecting sugar-sensitive taste neurons in the pharynx to neural circuits that control the drive to ingest. Similar mechanisms for monitoring and regulating ingestion may exist in vertebrates.
Collapse
Affiliation(s)
- Nilay Yapici
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Raphael Cohn
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Christian Schusterreiter
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK; Ticomo Research GmbH, 6300 Zug, Switzerland
| | - Vanessa Ruta
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|