1
|
Wang Y, Chen Q, Wu C, Ding Y, Yuan L, Wang Z, Chen Y, Li J, Liu Z, Xiao K, Liu W. SASH1 is a novel binding partner to disassemble Caskin1 tandem SAM homopolymer through heterogeneous SAM-SAM interaction. FEBS J 2024. [PMID: 39688081 DOI: 10.1111/febs.17354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/14/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK) interaction protein 1/2 (Caskin1/2) is essential neuronal synaptic scaffold protein in nervous system development. Knockouts of Caskin1/2 display severe deficits in novelty recognition and spatial memory. The tandem sterile alpha motif (SAM) domains of Caskin1/2, also conserved in their Drosophila homolog Ckn, are known to form homopolymers, yet their dynamic regulation mechanism remains unclear. In this study, SAM and SH3 domain-containing protein 1 (SASH1) was first identified as a novel binding partner of Caskin1/2 through yeast two-hybrid (Y2H) screening. The SAM-SAM interaction between SASH1 and Caskin1 was biochemically characterized by size-exclusion chromatography (SEC), isothermal titration calorimetry (ITC), and glutathione-S-transferase (GST) pull-down and co-immunoprecipitation (co-IP) assays. Structural insights from AlphaFold2-predicted models of the Caskin1-SAMs/SASH1-SAM1 complex, along with mutagenesis validations, revealed key residues at the end-helix (EH)/mid-loop (ML) interface for this interaction. More interestingly, the Caskin1-SAMs homopolymer can be disrupted by the SAM-SAM interaction, which was consistently verified by using sedimentation, transmission electron microscopy (TEM), and immunofluorescence (IF) staining in heterologous cell lines. In summary, our findings provide a solid biochemical basis for the Caskin1/SASH1 interaction and propose a potential mechanism for regulating Caskin1/2 homopolymerization via SAM-SAM interactions. More importantly, the principle governing SAM homopolymer depolymerization is generalized via suggesting two distinct types of heterogeneous SAM-SAM interactions, offering fresh insights into SAM domain-mediated homopolymerization and depolymerization.
Collapse
Affiliation(s)
- Yanhui Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
| | - Qiangou Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
| | - Cang Wu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuzhen Ding
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
| | - Lin Yuan
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, China
| | - Ziyi Wang
- Innovative Institute of Basic Medical Sciences of Zhejiang University, Hangzhou, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Jianchao Li
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhongmin Liu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Kang Xiao
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
- Institute of Geriatric Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
| |
Collapse
|
2
|
Fan H, Shi Y, Liu H, Zuo X, Yang Y, Yin H, Li Y, Wang X, Liu L, Wang F, Han H, Wu Q, Yang N, Tang Y, Lu G. Inhalation of H 2/O 2 (66.7 %/33.3 %) mitigates depression-like behaviors in diabetes mellitus complicated with depression mice via suppressing inflammation and preventing hippocampal damage. Biomed Pharmacother 2024; 180:117559. [PMID: 39405908 DOI: 10.1016/j.biopha.2024.117559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Diabetes mellitus complicated with depression (DD) is a prevalent psychosomatic disorder. It is characterized by severe cognitive impairment, and associated with high rates of disability and mortality. Although conventional treatment options are available, the efficacy of these regimens in managing DD remains limited. Molecular hydrogen (H2), a selective hydroxyl radical scavenger, has shown therapeutic potential in the treatment of various systemic diseases. This study aims to investigate the therapeutic effects of H2 on DD. A DD mouse model was established through intraperitoneal injection of streptozotocin (STZ, 150 mg/kg) and lipopolysaccharide (LPS, 0.5 mg/kg). Following the induction of DD, the mice were treated with H2/O2 (66.7 %/33.3 %)inhalation for 7 days. Behavioral assessments were conducted by standard behavioral tests, and the levels of inflammatory cytokines in peripheral blood serum and hippocampal tissue were measured using enzyme-linked immunosorbent assay (ELISA). Furthermore, magnetic resonance imaging (MRI) scans and immunofluorescence staining of the hippocampus were performed to evaluate hippocampal structural integrity. The results demonstrated that inhalation of H2/O2 (66.7 %/33.3 %) significantly ameliorated depressive behaviors and symptoms in DD mice, reversed hippocampal volume reduction, decreased inflammatory cytokine levels in peripheral blood serum and hippocampal tissue, and inhibited the activation of A1 astrocytes in the hippocampus. Our study suggests that H2/O2 (66.7 %/33.3 %) inhalation therapy may offer a promising treatment strategy for DD and its associated symptoms.
Collapse
Affiliation(s)
- Huaju Fan
- Medical Laboratory Animal Center, School of Psychology, Shandong Second Medical University, Weifang, Shandong 261053, China; Sichuan Second Veterans Hospital, Chengdu, Sichuan 611230, China
| | - Yanhua Shi
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Haiqiang Liu
- Weifang People's Hospital Weifang, Shandong 261000, China
| | - Xiaofei Zuo
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Yanmei Yang
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Hao Yin
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Yanyan Li
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Xianghui Wang
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Li Liu
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Fengjiao Wang
- Medical Laboratory Animal Center, School of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Huifang Han
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Qianying Wu
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Nana Yang
- Medical Laboratory Animal Center, School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong 261053, China.
| | - Yaohui Tang
- School of Biomedical Engineering and Affiliated Sixth People's Hospital, Shanghai JiaoTong University, 1954 Hua Shan Rd., Shanghai 200030, China.
| | - Guohua Lu
- Medical Laboratory Animal Center, School of Psychology, Shandong Second Medical University, Weifang, Shandong 261053, China.
| |
Collapse
|
3
|
Dai M, Li J, Hao X, Li N, Zheng M, He M, Gu Y. High Magnesium Promotes the Recovery of Binocular Vision from Amblyopia via TRPM7. Neurosci Bull 2024; 40:1245-1260. [PMID: 38833201 PMCID: PMC11365890 DOI: 10.1007/s12264-024-01242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/06/2024] [Indexed: 06/06/2024] Open
Abstract
Abnormal visual experience during the critical period can cause deficits in visual function, such as amblyopia. High magnesium (Mg2+) supplementary can restore ocular dominance (OD) plasticity, which promotes the recovery of amblyopic eye acuity in adults. However, it remains unsolved whether Mg2+ could recover binocular vision in amblyopic adults and what the molecular mechanism is for the recovery. We found that in addition to the recovery of OD plasticity, binocular integration can be restored under the treatment of high Mg2+ in amblyopic mice. Behaviorally, Mg2+-treated amblyopic mice showed better depth perception. Moreover, the effect of high Mg2+ can be suppressed with transient receptor potential melastatin-like 7 (TRPM7) knockdown. Collectively, our results demonstrate that high Mg2+ could restore binocular visual functions from amblyopia. TRPM7 is required for the restoration of plasticity in the visual cortex after high Mg2+ treatment, which can provide possible clinical applications for future research and treatment of amblyopia.
Collapse
Affiliation(s)
- Menghan Dai
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jie Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiangwen Hao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Na Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Mingfang Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Wang W, Atherton P, Kreft M, te Molder L, van der Poel S, Hoekman L, Celie P, Joosten RP, Fässler R, Perrakis A, Sonnenberg A. Caskin2 is a novel talin- and Abi1-binding protein that promotes cell motility. J Cell Sci 2024; 137:jcs262116. [PMID: 38587458 PMCID: PMC11166458 DOI: 10.1242/jcs.262116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Talin (herein referring collectively to talin 1 and 2) couples the actomyosin cytoskeleton to integrins and transmits tension to the extracellular matrix. Talin also interacts with numerous additional proteins capable of modulating the actin-integrin linkage and thus downstream mechanosignaling cascades. Here, we demonstrate that the scaffold protein Caskin2 interacts directly with the R8 domain of talin through its C-terminal LD motif. Caskin2 also associates with the WAVE regulatory complex to promote cell migration in an Abi1-dependent manner. Furthermore, we demonstrate that the Caskin2-Abi1 interaction is regulated by growth factor-induced phosphorylation of Caskin2 on serine 878. In MCF7 and UACC893 cells, which contain an amplification of CASKIN2, Caskin2 localizes in plasma membrane-associated plaques and around focal adhesions in cortical microtubule stabilization complexes. Taken together, our results identify Caskin2 as a novel talin-binding protein that might not only connect integrin-mediated adhesion to actin polymerization but could also play a role in crosstalk between integrins and microtubules.
Collapse
Affiliation(s)
- Wei Wang
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Paul Atherton
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L69 7BE, UK
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Lisa te Molder
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Sabine van der Poel
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Patrick Celie
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Robbie P. Joosten
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
5
|
Iida I, Konno K, Natsume R, Abe M, Watanabe M, Sakimura K, Terunuma M. Behavioral analysis of kainate receptor KO mice and the role of GluK3 subunit in anxiety. Sci Rep 2024; 14:4521. [PMID: 38402313 PMCID: PMC10894277 DOI: 10.1038/s41598-024-55063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
Kainate receptors (KARs) are one of the ionotropic glutamate receptors in the central nervous system (CNS) comprised of five subunits, GluK1-GluK5. There is a growing interest in the association between KARs and psychiatric disorders, and there have been several studies investigating the behavioral phenotypes of KAR deficient mice, however, the difference in the genetic background has been found to affect phenotype in multiple mouse models of human diseases. Here, we examined GluK1-5 single KO mice in a pure C57BL/6N background and identified that GluK3 KO mice specifically express anxiolytic-like behavior with an alteration in dopamine D2 receptor (D2R)-induced anxiety, and reduced D2R expression in the striatum. Biochemical studies in the mouse cortex confirmed that GluK3 subunits do not assemble with GluK4 and GluK5 subunits, that can be activated by lower concentration of agonists. Overall, we found that GluK3-containing KARs function to express anxiety, which may represent promising anti-anxiety medication targets.
Collapse
Affiliation(s)
- Izumi Iida
- Division of Oral Biochemistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514, Japan
- Research Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Rie Natsume
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.
| | - Miho Terunuma
- Division of Oral Biochemistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514, Japan.
| |
Collapse
|
6
|
Darwish M, Hattori S, Nishizono H, Miyakawa T, Yachie N, Takao K. Comprehensive behavioral analyses of mice with a glycine receptor alpha 4 deficiency. Mol Brain 2023; 16:44. [PMID: 37217969 DOI: 10.1186/s13041-023-01033-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Glycine receptors (GlyRs) are ligand-gated chloride channels comprising alpha (α1-4) and β subunits. The GlyR subunits play major roles in the mammalian central nervous system, ranging from regulating simple sensory information to modulating higher-order brain function. Unlike the other GlyR subunits, GlyR α4 receives relatively little attention because the human ortholog lacks a transmembrane domain and is thus considered a pseudogene. A recent genetic study reported that the GLRA4 pseudogene locus on the X chromosome is potentially involved in cognitive impairment, motor delay and craniofacial anomalies in humans. The physiologic roles of GlyR α4 in mammal behavior and its involvement in disease, however, are not known. Here we examined the temporal and spatial expression profile of GlyR α4 in the mouse brain and subjected Glra4 mutant mice to a comprehensive behavioral analysis to elucidate the role of GlyR α4 in behavior. The GlyR α4 subunit was mainly enriched in the hindbrain and midbrain, and had relatively lower expression in the thalamus, cerebellum, hypothalamus, and olfactory bulb. In addition, expression of the GlyR α4 subunit gradually increased during brain development. Glra4 mutant mice exhibited a decreased amplitude and delayed onset of the startle response compared with wild-type littermates, and increased social interaction in the home cage during the dark period. Glra4 mutants also had a low percentage of entries into open arms in the elevated plus-maze test. Although mice with GlyR α4 deficiency did not show motor and learning abnormalities reported to be associated in human genomics studies, they exhibited behavioral changes in startle response and social and anxiety-like behavior. Our data clarify the spatiotemporal expression pattern of the GlyR α4 subunit and suggest that glycinergic signaling modulates social, startle, and anxiety-like behaviors in mice.
Collapse
Affiliation(s)
- Mohamed Darwish
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Comprehensive Medical Science, Fujita Health University, Aichi, Toyoake, Japan
| | - Hirofumi Nishizono
- Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Comprehensive Medical Science, Fujita Health University, Aichi, Toyoake, Japan
| | - Nozomu Yachie
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Keizo Takao
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan.
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Japan.
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| |
Collapse
|
7
|
Ping Y, Ohata K, Kikushima K, Sakamoto T, Islam A, Xu L, Zhang H, Chen B, Yan J, Eto F, Nakane C, Takao K, Miyakawa T, Kabashima K, Watanabe M, Kahyo T, Yao I, Fukuda A, Ikegami K, Konishi Y, Setou M. Tubulin Polyglutamylation by TTLL1 and TTLL7 Regulate Glutamate Concentration in the Mice Brain. Biomolecules 2023; 13:biom13050784. [PMID: 37238654 DOI: 10.3390/biom13050784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
As an important neurotransmitter, glutamate acts in over 90% of excitatory synapses in the human brain. Its metabolic pathway is complicated, and the glutamate pool in neurons has not been fully elucidated. Tubulin polyglutamylation in the brain is mainly mediated by two tubulin tyrosine ligase-like (TTLL) proteins, TTLL1 and TTLL7, which have been indicated to be important for neuronal polarity. In this study, we constructed pure lines of Ttll1 and Ttll7 knockout mice. Ttll knockout mice showed several abnormal behaviors. Matrix-assisted laser desorption/ionization (MALDI) Imaging mass spectrometry (IMS) analyses of these brains showed increases in glutamate, suggesting that tubulin polyglutamylation by these TTLLs acts as a pool of glutamate in neurons and modulates some other amino acids related to glutamate.
Collapse
Affiliation(s)
- Yashuang Ping
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kenji Ohata
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Kikushima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hengsen Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Bin Chen
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Jing Yan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Fumihiro Eto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Chiho Nakane
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
- Genetic Engineering and Functional Genomics Unit, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Miyakawa
- Genetic Engineering and Functional Genomics Unit, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Institute for Comprehensive Medical Science Division of Systems Medicine, Fujita Health University, Aichi 470-1192, Japan
| | - Katsuya Kabashima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ikuko Yao
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Koji Ikegami
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima 734-8553, Japan
| | - Yoshiyuki Konishi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
8
|
Dugan MP, Ferguson LB, Hertz NT, Chalkley RJ, Burlingame AL, Shokat KM, Parker PJ, Messing RO. Chemical Genetic Identification of PKC Epsilon Substrates in Mouse Brain. Mol Cell Proteomics 2023; 22:100522. [PMID: 36863607 PMCID: PMC10105488 DOI: 10.1016/j.mcpro.2023.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/25/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
PKC epsilon (PKCε) plays important roles in behavioral responses to alcohol and in anxiety-like behavior in rodents, making it a potential drug target for reducing alcohol consumption and anxiety. Identifying signals downstream of PKCε could reveal additional targets and strategies for interfering with PKCε signaling. We used a chemical genetic screen combined with mass spectrometry to identify direct substrates of PKCε in mouse brain and validated findings for 39 of them using peptide arrays and in vitro kinase assays. Prioritizing substrates with several public databases such as LINCS-L1000, STRING, GeneFriends, and GeneMAINA predicted interactions between these putative substrates and PKCε and identified substrates associated with alcohol-related behaviors, actions of benzodiazepines, and chronic stress. The 39 substrates could be broadly classified in three functional categories: cytoskeletal regulation, morphogenesis, and synaptic function. These results provide a list of brain PKCε substrates, many of which are novel, for future investigation to determine the role of PKCε signaling in alcohol responses, anxiety, responses to stress, and other related behaviors.
Collapse
Affiliation(s)
- Michael P Dugan
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Laura B Ferguson
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Nicholas T Hertz
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute at the University of California San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute at the University of California San Francisco, San Francisco, California, USA
| | - Peter J Parker
- The Francis Crick Institute, London, United Kingdom; School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Robert O Messing
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
9
|
Shoji H, Ikeda K, Miyakawa T. Behavioral phenotype, intestinal microbiome, and brain neuronal activity of male serotonin transporter knockout mice. Mol Brain 2023; 16:32. [PMID: 36991468 PMCID: PMC10061809 DOI: 10.1186/s13041-023-01020-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
The serotonin transporter (5-HTT) plays a critical role in the regulation of serotonin neurotransmission. Mice genetically deficient in 5-HTT expression have been used to study the physiological functions of 5-HTT in the brain and have been proposed as a potential animal model for neuropsychiatric and neurodevelopmental disorders. Recent studies have provided evidence for a link between the gut-brain axis and mood disorders. However, the effects of 5-HTT deficiency on gut microbiota, brain function, and behavior remain to be fully characterized. Here we investigated the effects of 5-HTT deficiency on different types of behavior, the gut microbiome, and brain c-Fos expression as a marker of neuronal activation in response to the forced swim test for assessing depression-related behavior in male 5-HTT knockout mice. Behavioral analysis using a battery of 16 different tests showed that 5-HTT-/- mice exhibited markedly reduced locomotor activity, decreased pain sensitivity, reduced motor function, increased anxiety-like and depression-related behavior, altered social behavior in novel and familiar environments, normal working memory, enhanced spatial reference memory, and impaired fear memory compared to 5-HTT+/+ mice. 5-HTT+/- mice showed slightly reduced locomotor activity and impaired social behavior compared to 5-HTT+/+ mice. Analysis of 16S rRNA gene amplicons showed that 5-HTT-/- mice had altered gut microbiota abundances, such as a decrease in Allobaculum, Bifidobacterium, Clostridium sensu stricto, and Turicibacter, compared to 5-HTT+/+ mice. This study also showed that after exposure to the forced swim test, the number of c-Fos-positive cells was higher in the paraventricular thalamus and lateral hypothalamus and was lower in the prefrontal cortical regions, nucleus accumbens shell, dorsolateral septal nucleus, hippocampal regions, and ventromedial hypothalamus in 5-HTT-/- mice than in 5-HTT+/+ mice. These phenotypes of 5-HTT-/- mice partially recapitulate clinical observations in humans with major depressive disorder. The present findings indicate that 5-HTT-deficient mice serve as a good and valid animal model to study anxiety and depression with altered gut microbial composition and abnormal neuronal activity in the brain, highlighting the importance of 5-HTT in brain function and the mechanisms underlying the regulation of anxiety and depression.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
10
|
Qiu Z, Luo D, Yin H, Chen Y, Zhou Z, Zhang J, Zhang L, Xia J, Xie J, Sun Q, Xu W. Lactiplantibacillus plantarum N-1 improves autism-like behavior and gut microbiota in mouse. Front Microbiol 2023; 14:1134517. [PMID: 37007488 PMCID: PMC10060657 DOI: 10.3389/fmicb.2023.1134517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionThe gut-brain axis has been widely recognized in autism spectrum disorder (ASD), and probiotics are considered to potentially benefit the rescuing of autism-like behaviors. As a probiotic strain, Lactiplantibacillus plantarumN-1(LPN-1) was utilized to investigate its effects on gut microbiota and autism-like behaviors in ASD mice constructed by maternal immune activation (MIA).MethodsAdult offspring of MIA mice were given LPN-1 at the dosage of 2 × 109 CFU/g for 4 weeks before subject to the behavior and gut microbiota evaluation.ResultsThe behavioral tests showed that LPN-1 intervention was able to rescue autism-like behaviors in mice, including anxiety and depression. In which the LPN-1 treatment group increased the time spent interacting with strangers in the three-chamber test, their activity time and distance in the central area increased in the open field test, and their immobility time decreased when hanging their tails. Moreover, the supplementation of LPN-1 reversed the intestinal flora structure of ASD mice by enhancing the relative abundance of the pivotal microorganisms of Allobaculum and Oscillospira, while reducing those harmful ones like Sutterella at the genus level.DiscussionThese results suggested that LPN-1 supplementation may improve autism-like behaviors, possibly via regulating the gut microbiota.
Collapse
Affiliation(s)
- Zhongqing Qiu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Third People’s Hospital, Chengdu, China
| | - Dongmei Luo
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Heng Yin
- Chengdu Third People’s Hospital, Chengdu, China
| | - Yajun Chen
- Chengdu Third People’s Hospital, Chengdu, China
| | - Zhiwei Zhou
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu, China
| | - Linzhu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Third People’s Hospital, Chengdu, China
| | - Jinrong Xia
- Chengdu Third People’s Hospital, Chengdu, China
| | - Jiang Xie
- Chengdu Third People’s Hospital, Chengdu, China
- *Correspondence: Jiang Xie,
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Qun Sun,
| | - Wenming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu, China
- Wenming Xu,
| |
Collapse
|
11
|
Kurihara Y, Mitsunari K, Mukae N, Shoji H, Miyakawa T, Shirane M. PDZD8-deficient mice manifest behavioral abnormalities related to emotion, cognition, and adaptation due to dyslipidemia in the brain. Mol Brain 2023; 16:11. [PMID: 36658656 PMCID: PMC9854033 DOI: 10.1186/s13041-023-01002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Although dyslipidemia in the brain has been implicated in neurodegenerative disorders, the molecular mechanisms underlying its pathogenesis have been largely unclear. PDZD8 is a lipid transfer protein and mice deficient in PDZD8 (PDZD8-KO mice) manifest abnormal accumulation of cholesteryl esters (CEs) in the brain due to impaired lipophagy, the degradation system of lipid droplets. Here we show the detailed mechanism of PDZD8-dependent lipophagy. PDZD8 transports cholesterol to lipid droplets (LDs), and eventually promotes fusion of LDs and lysosomes. In addition, PDZD8-KO mice exhibit growth retardation, hyperactivity, reduced anxiety and fear, increased sensorimotor gating, and impaired cued fear conditioned memory and working memory. These results indicate that abnormal CE accumulation in the brain caused by PDZD8 deficiency affects emotion, cognition and adaptive behavior, and that PDZD8 plays an important role in the maintenance of brain function through lipid metabolism.
Collapse
Affiliation(s)
- Yuji Kurihara
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| | - Kotone Mitsunari
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| | - Nagi Mukae
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| | - Hirotaka Shoji
- grid.256115.40000 0004 1761 798XDivision of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi Japan
| | - Tsuyoshi Miyakawa
- grid.256115.40000 0004 1761 798XDivision of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi Japan
| | - Michiko Shirane
- grid.260433.00000 0001 0728 1069Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Japan
| |
Collapse
|
12
|
Wahbeh MH, Peng X, Bacharaki S, Hatzimanolis A, Dimitrakopoulos S, Wohler E, Yang X, Yovo C, Maher BJ, Sobreira N, Stefanis NC, Avramopoulos D. A Missense Variant in CASKIN1's Proline-Rich Region Segregates with Psychosis in a Three-Generation Family. Genes (Basel) 2023; 14:177. [PMID: 36672919 PMCID: PMC9859343 DOI: 10.3390/genes14010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
The polygenic nature of schizophrenia (SCZ) implicates many variants in disease development. Rare variants of high penetrance have been shown to contribute to the disease prevalence. Whole-exome sequencing of a large three-generation family with SCZ and bipolar disorder identified a single segregating novel, rare, non-synonymous variant in the gene CASKIN1. The variant D1204N is absent from all databases, and CASKIN1 has a gnomAD missense score Z = 1.79 and pLI = 1, indicating its strong intolerance to variation. We find that introducing variants in the proline-rich region where the D1204N resides results in significant cellular changes in iPSC-derived neurons, consistent with CASKIN1’s known functions. We observe significant transcriptomic changes in 368 genes (padj < 0.05) involved in neuronal differentiation and nervous system development. We also observed nominally significant changes in the frequency of action potentials during differentiation, where the speed at which the edited and unedited cells reach the same level of activity differs. Our results suggest that CASKIN1 is an excellent gene candidate for psychosis development with high penetrance in this family.
Collapse
Affiliation(s)
- Marah H. Wahbeh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Predoctoral Training Program in Human Genetics and Molecular Biology, Johns Hopkins School of Medicine, Baltimore, MD 21201, USA
| | - Xi Peng
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Sofia Bacharaki
- Department of Psychiatry, General Hospital of Syros, 84100 Cyclades, Greece
| | - Alexandros Hatzimanolis
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 15772 Athens, Greece
| | - Stefanos Dimitrakopoulos
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 15772 Athens, Greece
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Xue Yang
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Christian Yovo
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brady J. Maher
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nikos C. Stefanis
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 15772 Athens, Greece
| | - Dimitrios Avramopoulos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Hoffman GE, Ma Y, Montgomery KS, Bendl J, Jaiswal MK, Kozlenkov A, Peters MA, Dracheva S, Fullard JF, Chess A, Devlin B, Sieberts SK, Roussos P. Sex Differences in the Human Brain Transcriptome of Cases With Schizophrenia. Biol Psychiatry 2022; 91:92-101. [PMID: 34154796 PMCID: PMC8463632 DOI: 10.1016/j.biopsych.2021.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND While schizophrenia differs between males and females in the age of onset, symptomatology, and disease course, the molecular mechanisms underlying these differences remain uncharacterized. METHODS To address questions about the sex-specific effects of schizophrenia, we performed a large-scale transcriptome analysis of RNA sequencing data from 437 controls and 341 cases from two distinct cohorts from the CommonMind Consortium. RESULTS Analysis across the cohorts identified a reproducible gene expression signature of schizophrenia that was highly concordant with previous work. Differential expression across sex was reproducible across cohorts and identified X- and Y-linked genes, as well as those involved in dosage compensation. Intriguingly, the sex expression signature was also enriched for genes involved in neurexin family protein binding and synaptic organization. Differential expression analysis testing a sex-by-diagnosis interaction effect did not identify any genome-wide signature after multiple testing corrections. Gene coexpression network analysis was performed to reduce dimensionality from thousands of genes to dozens of modules and elucidate interactions among genes. We found enrichment of coexpression modules for sex-by-diagnosis differential expression signatures, which were highly reproducible across the two cohorts and involved a number of diverse pathways, including neural nucleus development, neuron projection morphogenesis, and regulation of neural precursor cell proliferation. CONCLUSIONS Overall, our results indicate that the effect size of sex differences in schizophrenia gene expression signatures is small and underscore the challenge of identifying robust sex-by-diagnosis signatures, which will require future analyses in larger cohorts.
Collapse
Affiliation(s)
- Gabriel E Hoffman
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Yixuan Ma
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Jaroslav Bendl
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Manoj Kumar Jaiswal
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| | - Alex Kozlenkov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| | | | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York
| | - John F Fullard
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew Chess
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Mental Illness Research, Education and Clinical Centers, James J. Peters VA Medical Center, Bronx, New York.
| |
Collapse
|
14
|
Leifsdottir K, Jost K, Siljehav V, Thelin EP, Lassarén P, Nilsson P, Haraldsson Á, Eksborg S, Herlenius E. The cerebrospinal fluid proteome of preterm infants predicts neurodevelopmental outcome. Front Pediatr 2022; 10:921444. [PMID: 35928685 PMCID: PMC9343678 DOI: 10.3389/fped.2022.921444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Survival rate increases for preterm infants, but long-term neurodevelopmental outcome predictors are lacking. Our primary aim was to determine whether a specific proteomic profile in cerebrospinal fluid (CSF) of preterm infants differs from that of term infants and to identify novel biomarkers of neurodevelopmental outcome in preterm infants. METHODS Twenty-seven preterm infants with median gestational age 27 w + 4 d and ten full-term infants were enrolled prospectively. Protein profiling of CSF were performed utilizing an antibody suspension bead array. The relative levels of 178 unique brain derived proteins and inflammatory mediators, selected from the Human Protein Atlas, were measured. RESULTS The CSF protein profile of preterm infants differed from that of term infants. Increased levels of brain specific proteins that are associated with neurodevelopment and neuroinflammatory pathways made up a distinct protein profile in the preterm infants. The most significant differences were seen in proteins involved in neurodevelopmental regulation and synaptic plasticity, as well as components of the innate immune system. Several proteins correlated with favorable outcome in preterm infants at 18-24 months corrected age. Among the proteins that provided strong predictors of outcome were vascular endothelial growth factor C, Neurocan core protein and seizure protein 6, all highly important in normal brain development. CONCLUSION Our data suggest a vulnerability of the preterm brain to postnatal events and that alterations in protein levels may contribute to unfavorable neurodevelopmental outcome.
Collapse
Affiliation(s)
- Kristin Leifsdottir
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,The Children's Hospital of Iceland, Reykjavik, Iceland
| | - Kerstin Jost
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Veronica Siljehav
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Eric P Thelin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Philipp Lassarén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Nilsson
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | | | - Staffan Eksborg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Herlenius
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Silencing LINC00294 Restores Mitochondrial Function and Inhibits Apoptosis of Glioma Cells under Hypoxia via the miR-21-5p/CASKIN1/cAMP Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8240015. [PMID: 34777696 PMCID: PMC8580631 DOI: 10.1155/2021/8240015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022]
Abstract
Glioma is a type of malignant intracranial tumor. Extensive research has identified the participation of long noncoding RNAs (lncRNAs) in glioma progression. This study investigated the mechanism of LINC00294 in mitochondrial function and glioma cell apoptosis. Glioma miRNA and mRNA microarray datasets were obtained, and differentially expressed lncRNAs in glioma were screened through various databases. The LINC00294 expression in glioma patients and glioma cells was detected. Glioma cells were treated under hypoxic conditions and transfected with LINC00294 silencing. The apoptosis and mitochondrial function of glioma cells were measured. The expressions of and relations among miR-21-5p, CASKIN1, and cAMP in glioma cells were analyzed. Under hypoxic conditions and LINC00294 silencing, the apoptosis and mitochondrial function of glioma cells were detected after inhibiting miR-21-5p or overexpressing CASKIN1. Our results indicated that LINC00294 was downregulated in glioma. LINC00294 silencing inhibited glioma cell apoptosis under hypoxia. LINC00294 silencing reversed the inhibition of hypoxia on mitochondrial function under hypoxia. LINC00294 promoted the CASKIN1 expression by sponging miR-21-5p and activated the cAMP pathway. Inhibition of miR-21-5p or overexpression of CASKIN1 annulled the effects of LINC00294 silencing on mitochondrial function and glioma cell apoptosis under hypoxia. In conclusion, LINC00294 elevated the CASKIN1 expression by sponging miR-21-5p and activating the cAMP signaling pathway, thus inhibiting mitochondrial function and facilitating glioma cell apoptosis.
Collapse
|
16
|
Novel Roles of SH2 and SH3 Domains in Lipid Binding. Cells 2021; 10:cells10051191. [PMID: 34068055 PMCID: PMC8152464 DOI: 10.3390/cells10051191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/07/2023] Open
Abstract
Signal transduction, the ability of cells to perceive information from the surroundings and alter behavior in response, is an essential property of life. Studies on tyrosine kinase action fundamentally changed our concept of cellular regulation. The induced assembly of subcellular hubs via the recognition of local protein or lipid modifications by modular protein interactions is now a central paradigm in signaling. Such molecular interactions are mediated by specific protein interaction domains. The first such domain identified was the SH2 domain, which was postulated to be a reader capable of finding and binding protein partners displaying phosphorylated tyrosine side chains. The SH3 domain was found to be involved in the formation of stable protein sub-complexes by constitutively attaching to proline-rich surfaces on its binding partners. The SH2 and SH3 domains have thus served as the prototypes for a diverse collection of interaction domains that recognize not only proteins but also lipids, nucleic acids, and small molecules. It has also been found that particular SH2 and SH3 domains themselves might also bind to and rely on lipids to modulate complex assembly. Some lipid-binding properties of SH2 and SH3 domains are reviewed here.
Collapse
|
17
|
Iida I, Konno K, Natsume R, Abe M, Watanabe M, Sakimura K, Terunuma M. A comparative analysis of kainate receptor GluK2 and GluK5 knockout mice in a pure genetic background. Behav Brain Res 2021; 405:113194. [PMID: 33631192 DOI: 10.1016/j.bbr.2021.113194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/21/2021] [Accepted: 02/15/2021] [Indexed: 11/21/2022]
Abstract
Kainate receptors (KARs) are members of the glutamate receptor family that regulate synaptic function in the brain. Although they are known to be associated with psychiatric disorders, how they are involved in these disorders remains unclear. KARs are tetrameric channels assembled from a combination of GluK1-5 subunits. Among these, GluK2 and GluK5 subunits are the major heteromeric subunits in the brain. To determine the functional similarities and differences between GluK2 and GluK5 subunits, we generated GluK2 KO and GluK5 KO mice on a C57BL/6N background, a well-characterized inbred strain, and compared their behavioral phenotypes. We found that GluK2 KO and GluK5 KO mice exhibited the same phenotypes in many tests, such as reduced locomotor activity, impaired motor function, and enhanced depressive-like behavior. No change was observed in motor learning, anxiety-like behavior, or sociability. Additionally, we identified subunit-specific phenotypes, such as reduced motivation toward their environment in GluK2 KO mice and an enhancement in the contextual memory in GluK5 KO mice. These results revealed that GluK2 and GluK5 subunits not only function in a coordinated manner but also have a subunit-specific role in regulating behavior. To summarize, we demonstrated subunit-specific and common behavioral effects of GluK2 and GluK5 subunits for the first time. Moreover, to the best of our knowledge, this is the first evidence of the involvement of the GluK5 subunit in the expression of depressive-like behavior and contextual memory, which strongly indicates its role in psychiatric disorders.
Collapse
Affiliation(s)
- Izumi Iida
- Division of Oral Biochemistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; Research Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Rie Natsume
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| | - Miho Terunuma
- Division of Oral Biochemistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan.
| |
Collapse
|
18
|
Karamani C, Antoniadou IT, Dimou A, Andreou E, Kostakis G, Sideri A, Vitsos A, Gkavanozi A, Sfiniadakis I, Skaltsa H, Papaioannou GT, Rallis MC, Maibach H. Optimization of psoriasis mouse models. J Pharmacol Toxicol Methods 2021; 108:107054. [PMID: 33775808 DOI: 10.1016/j.vascn.2021.107054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Psoriasis, is a common, chronic, autoimmune, inflammatory, relapsing disease, which would benefit from reliable and human-relevant animal models to test drugs pre-clinically and to understand their mechanism of action. Because of its ease of use, convenience and low cost, the imiquimod (IMQ)-induced psoriasis-like model is widely utilized; however, it is not known whether all mouse strains are equivalent and if the hairless mouse is appropriate, so that the imiquimod model can be further optimized. METHODS Under similar experimental conditions, common mouse strains (BALB/c, C57BL/6J, and ApoE) and a new hairless strain (ApoE/SKH-hr2) as well as several inducers (IMQ, IMQ + acetic acid (AcOH) topical and IMQ + AcOH systemic) were compared by clinical, histopathological, biophysical and locomotor activity assessments. RESULTS AND DISCUSSION The BALB/c mice yielded an optimal psoriasis-like phenotype with IMQ + AcOH topical treatment, and the corresponding phenotypes for the other mouse strains were C57BL/6J moderate and ApoE mild. In contrast, the ApoE/SKH-hr2 mice, as a result of the absence of a Munro abscess in the histopathology analysis, left doubt about the psoriasis-like acquisition. Locomotor activity of BALB/c mice treated with IMQ, IMQ + AcOH topically and IMQ + AcOH systemically showed decreased distance and rearing coverage and increased immobility with all treatments. Hence, the BALB/c mouse strain appears to be an optimal psoriasis-like model when utilizing IMQ + AcOH topical application.
Collapse
Affiliation(s)
- Christina Karamani
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Ivi Theodosia Antoniadou
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Aikaterini Dimou
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Evgenia Andreou
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Georgios Kostakis
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Asimina Sideri
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Andreas Vitsos
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Athena Gkavanozi
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | | | - Helen Skaltsa
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmacognosy and Chemistry of Natural Products, Panepistimiopolis, 15784 Athens, Greece
| | - Georgios Theodoros Papaioannou
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece
| | - Michail Christou Rallis
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Section of Pharmaceutical Technology, Panepistimiopolis, 15784 Athens, Greece.
| | - Howard Maibach
- Department of Dermatology, University of California, San Francisco, 2340 Sutter Street, San Francisco, CA 94115, USA
| |
Collapse
|
19
|
Phasuk S, Pairojana T, Suresh P, Yang CH, Roytrakul S, Huang SP, Chen CC, Pakaprot N, Chompoopong S, Nudmamud-Thanoi S, Liu IY. Enhanced contextual fear memory in peroxiredoxin 6 knockout mice is associated with hyperactivation of MAPK signaling pathway. Mol Brain 2021; 14:42. [PMID: 33632301 PMCID: PMC7908735 DOI: 10.1186/s13041-021-00754-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Fear dysregulation is one of the symptoms found in post-traumatic stress disorder (PTSD) patients. The functional abnormality of the hippocampus is known to be implicated in the development of such pathology. Peroxiredoxin 6 (PRDX6) belongs to the peroxiredoxin family. This antioxidant enzyme is expressed throughout the brain, including the hippocampus. Recent evidence reveals that PRDX6 plays an important role in redox regulation and the modulation of several signaling molecules involved in fear regulation. Thus, we hypothesized that PRDX6 plays a role in the regulation of fear memory. We subjected a systemic Prdx6 knockout (Prdx6-/-) mice to trace fear conditioning and observed enhanced fear response after training. Intraventricular injection of lentivirus-carried mouse Prdx6 into the 3rd ventricle reduced the enhanced fear response in these knockout mice. Proteomic analysis followed by validation of western blot analysis revealed that several proteins in the MAPK pathway, such as NTRK2, AKT, and phospho-ERK1/2, cPLA2 were significantly upregulated in the hippocampus of Prdx6-/- mice during the retrieval stage of contextual fear memory. The distribution of PRDX6 found in the astrocytes was also observed throughout the hippocampus. This study identifies PRDX6 as a participant in the regulation of fear response. It suggests that PRDX6 and related molecules may have important implications for understanding fear-dysregulation associated disorders like PTSD.
Collapse
Affiliation(s)
- Sarayut Phasuk
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tanita Pairojana
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Pavithra Suresh
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supin Chompoopong
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Ingrid Y. Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
20
|
Shoji H, Miyakawa T. Effects of test experience, closed-arm wall color, and illumination level on behavior and plasma corticosterone response in an elevated plus maze in male C57BL/6J mice: a challenge against conventional interpretation of the test. Mol Brain 2021; 14:34. [PMID: 33588907 PMCID: PMC7885464 DOI: 10.1186/s13041-020-00721-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/26/2020] [Indexed: 01/04/2023] Open
Abstract
The elevated plus maze test is a widely used test for assessing anxiety-like behavior and screening novel therapeutic agents in rodents. Previous studies have shown that a variety of internal factors and procedural variables can influence elevated plus maze behavior. Although some studies have suggested a link between behavior and plasma corticosterone levels, the relationships between them remain unclear. In this study, we investigated the effects of experience with a battery of behavioral tests, the wall color of the closed arms, and illumination level on the behavior and plasma corticosterone responses in the elevated plus maze in male C57BL/6J mice. Mice were either subjected to a series of behavioral tests, including assessments of general health and neurological function, a light/dark transition test, and an open field test, or left undisturbed until the start of the elevated plus maze test. The mice with and without test battery experience were allowed to freely explore the elevated plus maze. The other two independent groups of naïve mice were tested in mazes with closed arms with different wall colors (clear, transparent blue, white, and black) or different illumination levels (5, 100, and 800 lx). Immediately after the test, blood was collected to measure plasma corticosterone concentrations. Mice with test battery experience showed a lower percentage of open arm time and entries and, somewhat paradoxically, had lower plasma corticosterone levels than the mice with no test battery experience. Mice tested in the maze with closed arms with clear walls exhibited higher open arm exploration than mice tested in the maze with closed arms with black walls, while there were no significant differences in plasma corticosterone levels between the different wall color conditions. Illumination levels had no significant effects on any measure. Our results indicate that experience with other behavioral tests and different physical features of the maze affect elevated plus maze behaviors. Increased open arm time and entries are conventionally interpreted as decreased anxiety-like behavior, while other possible interpretations are considered: open arm exploration may reflect heightened anxiety and panic-like reaction to a novel situation under certain conditions. With the possibility of different interpretations, the present findings highlight the need to carefully consider the test conditions in designing experiments and drawing conclusions from the behavioral outcomes in the elevated plus maze test in C57BL/6J mice.
Collapse
Affiliation(s)
- Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| |
Collapse
|
21
|
Solution NMR Structure of the SH3 Domain of Human Caskin1 Validates the Lack of a Typical Peptide Binding Groove and Supports a Role in Lipid Mediator Binding. Cells 2021; 10:cells10010173. [PMID: 33467043 PMCID: PMC7830187 DOI: 10.3390/cells10010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
SH3 domains constitute an important class of protein modules involved in a variety of cellular functions. They participate in protein-protein interactions via their canonical ligand binding interfaces composed of several evolutionarily conserved aromatic residues forming binding grooves for typical (PxxP) and atypical (PxxxPR, RxxK, RKxxY) binding motifs. The calcium/calmodulin-dependent serine protein kinase (CASK)-interacting protein 1, or Caskin1, a multidomain scaffold protein regulating the cortical actin filaments, is enriched in neural synapses in mammals. Based on its known interaction partners and knock-out animal studies, Caskin1 may play various roles in neural function and it is thought to participate in several pathological processes of the brain. Caskin1 has a single, atypical SH3 domain in which key aromatic residues are missing from the canonical binding groove. No protein interacting partner for this SH3 domain has been identified yet. Nevertheless, we have recently demonstrated the specific binding of this SH3 domain to the signaling lipid mediator lysophospatidic acid (LPA) in vitro. Here we report the solution NMR structure of the human Caskin1 SH3 domain and analyze its structural features in comparison with other SH3 domains exemplifying different strategies in target selectivity. The key differences revealed by our structural study show that the canonical binding groove found in typical SH3 domains accommodating proline-rich motifs is missing in Caskin1 SH3, most likely excluding a bona fide protein target for the domain. The LPA binding site is distinct from the altered protein binding groove. We conclude that the SH3 domain of Caskin1 might mediate the association of Caskin1 with membrane surfaces with locally elevated LPA content.
Collapse
|
22
|
Kim HY, Um JW, Ko J. Proper synaptic adhesion signaling in the control of neural circuit architecture and brain function. Prog Neurobiol 2021; 200:101983. [PMID: 33422662 DOI: 10.1016/j.pneurobio.2020.101983] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Trans-synaptic cell-adhesion molecules are critical for governing various stages of synapse development and specifying neural circuit properties via the formation of multifarious signaling pathways. Recent studies have pinpointed the putative roles of trans-synaptic cell-adhesion molecules in mediating various cognitive functions. Here, we review the literature on the roles of a diverse group of central synaptic organizers, including neurexins (Nrxns), leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs), and their associated binding proteins, in regulating properties of specific type of synapses and neural circuits. In addition, we highlight the findings that aberrant synaptic adhesion signaling leads to alterations in the structures, transmission, and plasticity of specific synapses across diverse brain areas. These results seem to suggest that proper trans-synaptic signaling pathways by Nrxns, LAR-RPTPs, and their interacting network is likely to constitute central molecular complexes that form the basis for cognitive functions, and that these complexes are heterogeneously and complexly disrupted in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea; Core Protein Resources Center, DGIST, Daegu, 42988, South Korea.
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea.
| |
Collapse
|
23
|
Shirane M, Shoji H, Hashimoto Y, Katagiri H, Kobayashi S, Manabe T, Miyakawa T, Nakayama KI. Protrudin-deficient mice manifest depression-like behavior with abnormalities in activity, attention, and cued fear-conditioning. Mol Brain 2020; 13:146. [PMID: 33172474 PMCID: PMC7654181 DOI: 10.1186/s13041-020-00693-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Protrudin is a protein that resides in the membrane of the endoplasmic reticulum and is highly expressed in the nervous system. Although mutations in the human protrudin gene (ZFYVE27, also known as SPG33) give rise to hereditary spastic paraplegia (HSP), the physiological role of the encoded protein has been largely unclear. We therefore generated mice deficient in protrudin and subjected them to a battery of behavioral tests designed to examine their intermediate phenotypes. The protrudin-deficient mice were found to have a reduced body size and to manifest pleiotropic behavioral abnormalities, including hyperactivity, depression-like behavior, and deficits in attention and fear-conditioning memory. They exhibited no signs of HSP, however, consistent with the notion that HSP-associated mutations of protrudin may elicit neural degeneration, not as a result of a loss of function, but rather as a result of a gain of toxic function. Overall, our results suggest that protrudin might play an indispensable role in normal neuronal development and behavior.
Collapse
Affiliation(s)
- Michiko Shirane
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Yutaka Hashimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Hiroyuki Katagiri
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shizuka Kobayashi
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan.
| |
Collapse
|
24
|
Le TT, Fu W, Moore JH. Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics 2020; 36:250-256. [PMID: 31165141 PMCID: PMC6956793 DOI: 10.1093/bioinformatics/btz470] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/17/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022] Open
Abstract
Motivation Automated machine learning (AutoML) systems are helpful data science assistants designed to scan data for novel features, select appropriate supervised learning models and optimize their parameters. For this purpose, Tree-based Pipeline Optimization Tool (TPOT) was developed using strongly typed genetic programing (GP) to recommend an optimized analysis pipeline for the data scientist’s prediction problem. However, like other AutoML systems, TPOT may reach computational resource limits when working on big data such as whole-genome expression data. Results We introduce two new features implemented in TPOT that helps increase the system’s scalability: Feature Set Selector (FSS) and Template. FSS provides the option to specify subsets of the features as separate datasets, assuming the signals come from one or more of these specific data subsets. FSS increases TPOT’s efficiency in application on big data by slicing the entire dataset into smaller sets of features and allowing GP to select the best subset in the final pipeline. Template enforces type constraints with strongly typed GP and enables the incorporation of FSS at the beginning of each pipeline. Consequently, FSS and Template help reduce TPOT computation time and may provide more interpretable results. Our simulations show TPOT-FSS significantly outperforms a tuned XGBoost model and standard TPOT implementation. We apply TPOT-FSS to real RNA-Seq data from a study of major depressive disorder. Independent of the previous study that identified significant association with depression severity of two modules, TPOT-FSS corroborates that one of the modules is largely predictive of the clinical diagnosis of each individual. Availability and implementation Detailed simulation and analysis code needed to reproduce the results in this study is available at https://github.com/lelaboratoire/tpot-fss. Implementation of the new TPOT operators is available at https://github.com/EpistasisLab/tpot. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Trang T Le
- Department of Biostatistics, Epidemiology and Informatics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weixuan Fu
- Department of Biostatistics, Epidemiology and Informatics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason H Moore
- Department of Biostatistics, Epidemiology and Informatics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Huang J, Wang X, Xie L, Wu M, Zhao W, Zhang Y, Wang Q, Yao L, Li W. Extract of Danggui-Shaoyao-San ameliorates cognition deficits by regulating DHA metabolism in APP/PS1 mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112673. [PMID: 32084555 DOI: 10.1016/j.jep.2020.112673] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine formula Danggui-Shaoyao-San (DSS) has been reported to show therapeutic effect on alleviating the symptoms of Alzheimer's disease (AD). AIM OF THE STUDY The present study aims to investigate the relation between DSS treatment of AD and DHA metabolism and evaluates its neuroprotective effect on cognitive in APP/PS1 mice. MATERIAL AND METHODS DSS (1.6, 3.2, 6.4 g/kg/day) or Aricept (3 mg/kg/day) was orally administered (i.g.) to APP/PS1 mice, and saline was orally administered to Wild-type (WT) male mice as control group. Then, the Morris water maze (MWM) test, Y-maze spontaneous alternation test, open filed test and fear conditioning test were conducted for evaluation of learning and memory abilities. The DHA content was assessed by HPLC-MS/MS. Physiological indices were determined, including triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), ROS level, activity of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), PEG2, TXB2 and LTB4. The expressions of COX-1, COX-2, cPLA2, iPLA2, 15-LOX, and were assessed by Western blot. RESULTS APP/PS1 mice showed serious cognitive impairment in behavioral tests. However, treatment of DSS extract significantly ameliorated the cognitive deficits of APP/PS1 mice. Biochemical measurements showed the increases in TG, TC, LDL-c and the decrease in HDL-c in APP/PS1 mice compared with WT mice, and DSS extract significantly retarded these changes. Low content of DHA, low expression of iPLA2 and 15-LOX were observed both in hippocampus and cortex of APP/PS1 mice, while DSS extract significantly restored these changes. Additionally, the abnormal activity of SOD and ROS level, the decreased levels of MDA and GSH were observed in APP/PS1 mice, while DSS extract prominently lessened these changes. Moreover, DSS extract decreased the level of PEG2, TXB2 and LTB4 and also attenuated the expression of cPLA2, COX-1 and COX-2 in hippocampus as well as cortex of APP/PS1 mice. CONCLUSIONS Based on these results, we suggest that DSS play a positive effective role in increasing DHA content by up-regulating iPLA2 and 15-LOX, resulting in ameliorating oxidative stress and inflammation and finally ameliorating cognition deficits in APP/PS1 mice.
Collapse
Affiliation(s)
- Jiawen Huang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Xiangyu Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Liyuan Xie
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Mingan Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Wei Zhao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Yongbin Zhang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| | - Limei Yao
- School of Traditional Chinese Medicine Healthcare, Guangdong Food and Drug Vocational College, 321 Longdong North Road, Tianhe District, Guangzhou, 510520, China
| | - Weirong Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405, China.
| |
Collapse
|
26
|
Nakamoto C, Kawamura M, Nakatsukasa E, Natsume R, Takao K, Watanabe M, Abe M, Takeuchi T, Sakimura K. GluD1 knockout mice with a pure C57BL/6N background show impaired fear memory, social interaction, and enhanced depressive-like behavior. PLoS One 2020; 15:e0229288. [PMID: 32078638 PMCID: PMC7032715 DOI: 10.1371/journal.pone.0229288] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/03/2020] [Indexed: 01/07/2023] Open
Abstract
The GluD1 gene is associated with susceptibility for schizophrenia, autism, depression, and bipolar disorder. However, the function of GluD1 and how it is involved in these conditions remain elusive. In this study, we generated a Grid1 gene-knockout (GluD1-KO) mouse line with a pure C57BL/6N genetic background and performed several behavioral analyses. Compared to a control group, GluD1-KO mice showed no significant anxiety-related behavioral differences, evaluated using behavior in an open field, elevated plus maze, a light-dark transition test, the resident-intruder test of aggression and sensorimotor gating evaluated by the prepulse inhibition test. However, GluD1-KO mice showed (1) higher locomotor activity in the open field, (2) decreased sociability and social novelty preference in the three-chambered social interaction test, (3) impaired memory in contextual, but not cued fear conditioning tests, and (4) enhanced depressive-like behavior in a forced swim test. Pharmacological studies revealed that enhanced depressive-like behavior in GluD1-KO mice was restored by the serotonin reuptake inhibitors imipramine and fluoxetine, but not the norepinephrine transporter inhibitor desipramine. In addition, biochemical analysis revealed no significant difference in protein expression levels, such as other glutamate receptors in the synaptosome and postsynaptic densities prepared from the frontal cortex and the hippocampus. These results suggest that GluD1 plays critical roles in fear memory, sociability, and depressive-like behavior.
Collapse
Affiliation(s)
- Chihiro Nakamoto
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience–DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Meiko Kawamura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ena Nakatsukasa
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Rie Natsume
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Keizo Takao
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
- * E-mail: (TT); (MA)
| | - Tomonori Takeuchi
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience–DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- * E-mail: (TT); (MA)
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
27
|
Bencsik N, Pusztai S, Borbély S, Fekete A, Dülk M, Kis V, Pesti S, Vas V, Szűcs A, Buday L, Schlett K. Dendritic spine morphology and memory formation depend on postsynaptic Caskin proteins. Sci Rep 2019; 9:16843. [PMID: 31727973 PMCID: PMC6856520 DOI: 10.1038/s41598-019-53317-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
CASK-interactive proteins, Caskin1 and Caskin2, are multidomain neuronal scaffold proteins. Recent data from Caskin1 knockout animals indicated only a mild role of Caskin1 in anxiety and pain perception. In this work, we show that deletion of both Caskins leads to severe deficits in novelty recognition and spatial memory. Ultrastructural analyses revealed a reduction in synaptic profiles and dendritic spine areas of CA1 hippocampal pyramidal neurons of double knockout mice. Loss of Caskin proteins impaired LTP induction in hippocampal slices, while miniature EPSCs in dissociated hippocampal cultures appeared to be unaffected. In cultured Caskin knockout hippocampal neurons, overexpressed Caskin1 was enriched in dendritic spine heads and increased the amount of mushroom-shaped dendritic spines. Chemically induced LTP (cLTP) mediated enlargement of spine heads was augmented in the knockout mice and was not influenced by Caskin1. Immunocytochemistry and immunoprecipitation confirmed that Shank2, a master scaffold of the postsynaptic density, and Caskin1 co-localized within the same complex. Phosphorylation of AMPA receptors was specifically altered by Caskin deficiency and was not elevated by cLTP treatment further. Taken together, our results prove a previously unnoticed postsynaptic role of Caskin scaffold proteins and indicate that Caskins influence learning abilities via regulating spine morphology and AMPA receptor localisation.
Collapse
Affiliation(s)
- Norbert Bencsik
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Pusztai
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Sándor Borbély
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Fekete
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Metta Dülk
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Viktor Kis
- Department Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Szabolcs Pesti
- Department Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Virág Vas
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Szűcs
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
28
|
Multidimensional informatic deconvolution defines gender-specific roles of hypothalamic GIT2 in aging trajectories. Mech Ageing Dev 2019; 184:111150. [PMID: 31574270 DOI: 10.1016/j.mad.2019.111150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/20/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
In most species, females live longer than males. An understanding of this female longevity advantage will likely uncover novel anti-aging therapeutic targets. Here we investigated the transcriptomic responses in the hypothalamus - a key organ for somatic aging control - to the introduction of a simple aging-related molecular perturbation, i.e. GIT2 heterozygosity. Our previous work has demonstrated that GIT2 acts as a network controller of aging. A similar number of both total (1079-female, 1006-male) and gender-unique (577-female, 527-male) transcripts were significantly altered in response to GIT2 heterozygosity in early life-stage (2 month-old) mice. Despite a similar volume of transcriptomic disruption in females and males, a considerably stronger dataset coherency and functional annotation representation was observed for females. It was also evident that female mice possessed a greater resilience to pro-aging signaling pathways compared to males. Using a highly data-dependent natural language processing informatics pipeline, we identified novel functional data clusters that were connected by a coherent group of multifunctional transcripts. From these it was clear that females prioritized metabolic activity preservation compared to males to mitigate this pro-aging perturbation. These findings were corroborated by somatic metabolism analyses of living animals, demonstrating the efficacy of our new informatics pipeline.
Collapse
|
29
|
Nakajima R, Takao K, Hattori S, Shoji H, Komiyama NH, Grant SGN, Miyakawa T. Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice. Neuropsychopharmacol Rep 2019; 39:223-237. [PMID: 31323176 PMCID: PMC7292322 DOI: 10.1002/npr2.12073] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/23/2022] Open
Abstract
AIMS Synaptic Ras GTPase-activating protein 1 (SYNGAP1) regulates synaptic plasticity through AMPA receptor trafficking. SYNGAP1 mutations have been found in human patients with intellectual disability (ID) and autism spectrum disorder (ASD). Almost every individual with SYNGAP1-related ID develops epilepsy, and approximately 50% have ASD. SYNGAP1-related ID is estimated to account for at least 1% of ID cases. In mouse models with Syngap1 mutations, strong cognitive and affective dysfunctions have been reported, yet some findings are inconsistent across studies. To further understand the behavioral significance of the SYNGAP1 gene, we assessed various domains of behavior in Syngap1 heterozygous mutant mice using a behavioral test battery. METHODS Male mice with a heterozygous mutation in the Syngap1 gene (Syngap1-/+ mice) created by Seth Grant's group were subjected to a battery of comprehensive behavioral tests, which examined general health, and neurological screens, rotarod, hot plate, open field, light/dark transition, elevated plus maze, social interaction, prepulse inhibition, Porsolt forced swim, tail suspension, gait analysis, T-maze, Y-maze, Barnes maze, contextual and cued fear conditioning, and home cage locomotor activity. To control for type I errors due to multiple-hypothesis testing, P-values below the false discovery rate calculated by the Benjamini-Hochberg method were considered as study-wide statistically significant. RESULTS Syngap1-/+ mice showed increased locomotor activity, decreased prepulse inhibition, and impaired working and reference spatial memory, consistent with preceding studies. Impairment of context fear memory and increased startle reflex in Syngap1 mutant mice could not be reproduced. Significant decreases in sensitivity to painful stimuli and impaired motor function were observed in Syngap1-/+ mice. Decreased anxiety-like behavior and depression-like behavior were noted, although increased locomotor activity is a potential confounding factor of these phenotypes. Increased home cage locomotor activity indicated hyperlocomotor activity not only in specific behavioral test conditions but also in familiar environments. CONCLUSION In Syngap1-/+ mice, we could reproduce most of the previously reported cognitive and emotional deficits. The decreased sensitivity to painful stimuli and impaired motor function that we found in Syngap1-/+ mice are consistent with the common characteristics of patients with SYNGAP-related ID. We further confirmed that the Syngap1 heterozygote mouse recapitulates the symptoms of ID and ASD patients.
Collapse
Affiliation(s)
- Ryuichi Nakajima
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Keizo Takao
- Division of Animal Resources and Development, Life Science Research CenterUniversity of ToyamaToyamaJapan
- Section of Behavior Patterns, Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiJapan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
| | - Noboru H. Komiyama
- Centre for Clinical Brain Sciences, The Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual DisabilitiesThe University of EdinburghEdinburghUK
| | - Seth G. N. Grant
- Genes to Cognition Program, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical ScienceFujita Health UniversityToyoakeJapan
- Section of Behavior Patterns, Center for Genetic Analysis of BehaviorNational Institute for Physiological SciencesOkazakiJapan
| |
Collapse
|