1
|
Prajapati SK, Kumari N, Bhowmik D, Gupta R. Recent advancements in biomarkers, therapeutics, and associated challenges in acute myeloid leukemia. Ann Hematol 2024; 103:4375-4400. [PMID: 39198271 DOI: 10.1007/s00277-024-05963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Acute myeloid leukemia (AML) is a common type of leukemia that has a high mortality rate. The reasons for high mortality in patients with AML are therapeutic resistance, limited ability to predict duration of response, and likelihood of cancer relapse. Biomarkers, such as leukemic stem cell biomarkers, circulatory biomarkers, measurable residual disease biomarkers, and molecular biomarkers, are used for prognosis, diagnosis, and targeted killing to selectively eliminate AML cells. They also play an indispensable role in providing therapeutic resistance to patients with AML. Therefore, targeting these biomarkers will improve the outcome of AML patients. However, identifying biomarkers that can differentiate between treatment-responsive and non-responsive AML patients remains a challenge. This review discusses recent advancements in AML biomarkers, promising therapeutics, and associated challenges in the treatment of AML.
Collapse
Affiliation(s)
- Suresh Kumar Prajapati
- Research and Development Cell, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Neha Kumari
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India
| | - Doulat Bhowmik
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India
| | - Reeshu Gupta
- Research and Development Cell, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India.
- Parul Institute of Applied Sciences, Parul University, Vadodara, 380060, India.
| |
Collapse
|
2
|
Feng YD, Du J, Chen HL, Shen Y, Jia YC, Zhang PY, He A, Yang Y. Characterization of stem cell landscape and assessing the stemness degree to aid clinical therapeutics in hematologic malignancies. Sci Rep 2024; 14:23743. [PMID: 39390242 PMCID: PMC11466975 DOI: 10.1038/s41598-024-74806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Hematological malignancies are a group of cancers that affect the blood, bone marrow, and lymphatic system. Cancer stem cells (CSCs) are believed to be responsible for the initiation, progression, and relapse of hematological malignancies. However, identifying and targeting CSCs presents many challenges. We aimed to develop a stemness index (HSCsi) to identify and guide the therapy targeting CSCs in hematological malignancies. We developed a novel one-class logistic regression (OCLR) algorithm to identify transcriptomic feature sets related to stemness in hematologic malignancies. We used the HSCsi to measure the stemness degree of leukemia stem cells (LSCs) and correlate it with clinical outcomes.We analyze the correlation of HSCsi with genes and pathways involved in drug resistance and immune microenvironment of acute myeloid leukemia (AML). HSCsi revealed stemness-related biological mechanisms in hematologic malignancies and effectively identify LSCs. The index also predicted survival and relapse rates of various hematologic malignancies. We also identified potential drugs and interventions targeting cancer stem cells (CSCs) of hematologic malignancies by the index. Moreover, we found a correlation between stemness and bone marrow immune microenvironment in AML. Our study provides a novel method and tool to assess the stemness degree of hematologic malignancies and its implications for clinical outcomes and therapeutic strategies. Our HSC stemness index can facilitate the precise stratification of hematologic malignancies, suggest possible targeted and immunotherapy options, and guide the selection of patients.
Collapse
Affiliation(s)
- Yuan-Dong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Jin Du
- Department of Stomatology, The Third Affiliated Hospital of Xi'an Medical University, 277 West Youyi Road, Xi'an, 710068, China
| | - Hong-Li Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Ying Shen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Ya-Chun Jia
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Peng-Yu Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5Th Road, Xi'an, 710004, China.
| |
Collapse
|
3
|
Hou Z, Ren Y, Zhang X, Huang D, Yan F, Sun W, Zhang W, Zhang Q, Fu X, Lang Z, Chu C, Zou B, Gao B, Jin B, Kang Z, Liu Q, Yan J. EP300-ZNF384 transactivates IL3RA to promote the progression of B-cell acute lymphoblastic leukemia. Cell Commun Signal 2024; 22:211. [PMID: 38566191 PMCID: PMC10986138 DOI: 10.1186/s12964-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
The EP300-ZNF384 fusion gene is an oncogenic driver in B-cell acute lymphoblastic leukemia (B-ALL). In the present study, we demonstrated that EP300-ZNF384 substantially induces the transcription of IL3RA and the expression of IL3Rα (CD123) on B-ALL cell membranes. Interleukin 3 (IL-3) supplementation promotes the proliferation of EP300-ZNF348-positive B-ALL cells by activating STAT5. Conditional knockdown of IL3RA in EP300-ZF384-positive cells inhibited the proliferation in vitro, and induced a significant increase in overall survival of mice, which is attributed to impaired propagation ability of leukemia cells. Mechanistically, the EP300-ZNF384 fusion protein transactivates the promoter activity of IL3RA by binding to an A-rich sequence localized at -222/-234 of IL3RA. Furthermore, forced EP300-ZNF384 expression induces the expression of IL3Rα on cell membranes and the secretion of IL-3 in CD19-positive B precursor cells derived from healthy individuals. Doxorubicin displayed a selective killing of EP300-ZNF384-positive B-ALL cells in vitro and in vivo. Collectively, we identify IL3RA as a direct downstream target of EP300-ZNF384, suggesting CD123 is a potent biomarker for EP300-ZNF384-driven B-ALL. Targeting CD123 may be a novel therapeutic approach to EP300-ZNF384-positive patients, alternative or, more likely, complementary to standard chemotherapy regimen in clinical setting.
Collapse
Affiliation(s)
- Zhijie Hou
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China.
| | - Yifei Ren
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Xuehong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Huang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Fanzhi Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Wentao Sun
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Wenjuan Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Qingqing Zhang
- Department of Pathology, Dalian Medical University, Dalian, 116044, China
| | - Xihui Fu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Zhenghui Lang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Chenyang Chu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Boyang Zou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Beibei Gao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Zhijie Kang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China.
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
| |
Collapse
|
4
|
Xu Z, He L, Wu Y, Yang L, Li C, Wu H. PTEN regulates hematopoietic lineage plasticity via PU.1-dependent chromatin accessibility. Cell Rep 2023; 42:112967. [PMID: 37561626 DOI: 10.1016/j.celrep.2023.112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
PTEN loss in fetal liver hematopoietic stem cells (HSCs) leads to alterations in myeloid, T-, and B-lineage potentials and T-lineage acute lymphoblastic leukemia (T-ALL) development. To explore the mechanism underlying PTEN-regulated hematopoietic lineage choices, we carry out integrated assay for transposase-accessible chromatin using sequencing (ATAC-seq), single-cell RNA-seq, and in vitro culture analyses using in vivo-isolated mouse pre-leukemic HSCs and progenitors. We find that PTEN loss alters chromatin accessibility of key lineage transcription factor (TF) binding sites at the prepro-B stage, corresponding to increased myeloid and T-lineage potentials and reduced B-lineage potential. Importantly, we find that PU.1 is an essential TF downstream of PTEN and that altering PU.1 levels can reprogram the chromatin accessibility landscape and myeloid, T-, and B-lineage potentials in Ptennull prepro-B cells. Our study discovers prepro-B as the key developmental stage underlying PTEN-regulated hematopoietic lineage choices and suggests a critical role of PU.1 in modulating the epigenetic state and lineage plasticity of prepro-B progenitors.
Collapse
Affiliation(s)
- Zihan Xu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China
| | - Libing He
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yilin Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Yang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Cheng Li
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China.
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
5
|
Bogdanov K, Kudryavtseva E, Fomicheva Y, Churkina I, Lomaia E, Girshova L, Osipov Y, Zaritskey A. Shift of N-MYC Oncogene Expression in AML Patients Carrying the FLT3-ITD Mutation. PATHOPHYSIOLOGY 2023; 30:296-313. [PMID: 37606386 PMCID: PMC10443239 DOI: 10.3390/pathophysiology30030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023] Open
Abstract
Mutations in the FLT3 gene not only lead to abnormalities in its structure and function, but also affect the expression of other genes involved in leukemogenesis. This study evaluated the expression of genes that are more characteristic of neuroblastoma but less studied in leukemia. N-MYC oncogene expression was found to be more than 3-fold higher in primary AML patients carrying the FLT3-ITD mutation compared to carriers of other mutations as well as patients with normal karyotype (p = 0.03946). In contrast to the expression of several genes (C-MYC, SPT16, AURKA, AURKB) directly correlated to the allelic load of FLT3-ITD, the expression of the N-MYC oncogene is extremely weakly related or independent of it (p = 0.0405). Monitoring of N-MYC expression in some patients with high FLT3-ITD allelic load receiving therapy showed that a decrease in FLT3-ITD allelic load is not always accompanied by a decrease in N-MYC expression. On the contrary, N-MYC expression may remain elevated during the first three months after therapy, which is additional evidence of the emergence of resistance to therapy and progression of AML.
Collapse
Affiliation(s)
- Konstantin Bogdanov
- Almazov National Medical Research Centre, 2 Akkuratova Str., Saint Petersburg 197341, Russia; (E.K.); (Y.F.); (I.C.); (E.L.); (L.G.); (Y.O.); (A.Z.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Nairuz T, Mahmud Z, Manik RK, Kabir Y. Cancer stem cells: an insight into the development of metastatic tumors and therapy resistance. Stem Cell Rev Rep 2023:10.1007/s12015-023-10529-x. [PMID: 37129728 DOI: 10.1007/s12015-023-10529-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
The term "cancer stem cells" (CSCs) refers to cancer cells that exhibit traits parallel to normal stem cells, namely the potential to give rise to every type of cell identified in a tumor microenvironment. It has been found that CSCs usually develops from other neoplastic cells or non-cancerous somatic cells by acquiring stemness and malignant characteristics through particular genetic modifications. A trivial number of CSCs, identified in solid and liquid cancer, can give rise to an entire tumor population with aggressive anticancer drug resistance, metastasis, and invasiveness. Besides, cancer stem cells manipulate their intrinsic and extrinsic features, regulate the metabolic pattern of the cell, adjust efflux-influx efficiency, modulate different signaling pathways, block apoptotic signals, and cause genetic and epigenetic alterations to retain their pluripotency and ability of self-renewal. Notably, to keep the cancer stem cells' ability to become malignant cells, mesenchymal stem cells, tumor-associated fibroblasts, immune cells, etc., interact with one another. Furthermore, CSCs are characterized by the expression of particular molecular markers that carry significant diagnostic and prognostic significance. Because of this, scientific research on CSCs is becoming increasingly imperative, intending to understand the traits and behavior of cancer stem cells and create more potent anticancer therapeutics to fight cancer at the CSC level. In this review, we aimed to elucidate the critical role of CSCs in the onset and spread of cancer and the characteristics of CSCs that promote severe resistance to targeted therapy.
Collapse
Affiliation(s)
- Tahsin Nairuz
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rasel Khan Manik
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
7
|
Pelosi E, Castelli G, Testa U. CD123 a Therapeutic Target for Acute Myeloid Leukemia and Blastic Plasmocytoid Dendritic Neoplasm. Int J Mol Sci 2023; 24:2718. [PMID: 36769040 PMCID: PMC9917129 DOI: 10.3390/ijms24032718] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
In spite of consistent progress at the level of basic research and of clinical treatment, acute myeloid leukemia (AML) still represents an unmet clinical need for adult and pediatric patients. To improve the outcomes of these patients, it is necessary to identify new therapeutic targets. IL3RA (CD123, alpha subunit of the interleukin 3 receptor) is a cell membrane protein overexpressed in several hematologic malignancies, including AML blastic plasmocytoid dendritic cell neoplasms (BPDCN). Given the higher expression of CD123 on leukemic cells compared to normal hematopoietic cells and its low/absent expression on normal hematopoietic stem cells, it appears as a suitable and attractive target for therapy. Various drugs targeting CD123 have been developed and evaluated at clinical level: interleukin-3 conjugated with diphtheria toxin; naked neutralizing anti-CD123 antibodies; drug-antibody conjugates; bispecific antibodies targeting both CD123 and CD3; and chimeric antigen receptor (CAR) T cells engineered to target CD123. Some of these agents have shown promising results at the clinical level, including tagraxofusp (CD123 conjugated with diphtheria toxin) for the treatment of BPDCN and IMGN632 (anti-CD123 drug-conjugate), and flotetuzumab (bispecific anti-CD123 and anti-CD3 monoclonal antibody) for the treatment of AML. However, the therapeutic efficacy of CD123-targeting treatments is still unsatisfactory and must be improved through new therapeutic strategies and combined treatments with other antileukemic drugs.
Collapse
Affiliation(s)
| | | | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
8
|
Porwit A, Béné MC, Duetz C, Matarraz S, Oelschlaegel U, Westers TM, Wagner-Ballon O, Kordasti S, Valent P, Preijers F, Alhan C, Bellos F, Bettelheim P, Burbury K, Chapuis N, Cremers E, Della Porta MG, Dunlop A, Eidenschink-Brodersen L, Font P, Fontenay M, Hobo W, Ireland R, Johansson U, Loken MR, Ogata K, Orfao A, Psarra K, Saft L, Subira D, Te Marvelde J, Wells DA, van der Velden VHJ, Kern W, van de Loosdrecht AA. Multiparameter flow cytometry in the evaluation of myelodysplasia: Analytical issues: Recommendations from the European LeukemiaNet/International Myelodysplastic Syndrome Flow Cytometry Working Group. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:27-50. [PMID: 36537621 PMCID: PMC10107708 DOI: 10.1002/cyto.b.22108] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 01/18/2023]
Abstract
Multiparameter flow cytometry (MFC) is one of the essential ancillary methods in bone marrow (BM) investigation of patients with cytopenia and suspected myelodysplastic syndrome (MDS). MFC can also be applied in the follow-up of MDS patients undergoing treatment. This document summarizes recommendations from the International/European Leukemia Net Working Group for Flow Cytometry in Myelodysplastic Syndromes (ELN iMDS Flow) on the analytical issues in MFC for the diagnostic work-up of MDS. Recommendations for the analysis of several BM cell subsets such as myeloid precursors, maturing granulocytic and monocytic components and erythropoiesis are given. A core set of 17 markers identified as independently related to a cytomorphologic diagnosis of myelodysplasia is suggested as mandatory for MFC evaluation of BM in a patient with cytopenia. A myeloid precursor cell (CD34+ CD19- ) count >3% should be considered immunophenotypically indicative of myelodysplasia. However, MFC results should always be evaluated as part of an integrated hematopathology work-up. Looking forward, several machine-learning-based analytical tools of interest should be applied in parallel to conventional analytical methods to investigate their usefulness in integrated diagnostics, risk stratification, and potentially even in the evaluation of response to therapy, based on MFC data. In addition, compiling large uniform datasets is desirable, as most of the machine-learning-based methods tend to perform better with larger numbers of investigated samples, especially in such a heterogeneous disease as MDS.
Collapse
Affiliation(s)
- Anna Porwit
- Division of Oncology and Pathology, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Marie C Béné
- Hematology Biology, Nantes University Hospital, CRCINA Inserm 1232, Nantes, France
| | - Carolien Duetz
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sergio Matarraz
- Cancer Research Center (IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, University of Salamanca, Salamanca, Spain
| | - Uta Oelschlaegel
- Department of Internal Medicine, University Hospital Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Theresia M Westers
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Orianne Wagner-Ballon
- Department of Hematology and Immunology, Assistance Publique-Hôpitaux de Paris, University Hospital Henri Mondor, Créteil, France
- Inserm U955, Université Paris-Est Créteil, Créteil, France
| | | | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Frank Preijers
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Canan Alhan
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Peter Bettelheim
- Department of Hematology, Ordensklinikum Linz, Elisabethinen, Linz, Austria
| | - Kate Burbury
- Department of Haematology, Peter MacCallum Cancer Centre, & University of Melbourne, Melbourne, Australia
| | - Nicolas Chapuis
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Cochin Hospital, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR, Université de Paris, Paris, France
| | - Eline Cremers
- Division of Hematology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Matteo G Della Porta
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alan Dunlop
- Department of Haemato-Oncology, Royal Marsden Hospital, London, UK
| | | | - Patricia Font
- Department of Hematology, Hospital General Universitario Gregorio Marañon-IiSGM, Madrid, Spain
| | - Michaela Fontenay
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Cochin Hospital, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR, Université de Paris, Paris, France
| | - Willemijn Hobo
- Department of Internal Medicine I, Division of Hematology & Hemostaseology and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Robin Ireland
- Department of Haematology and SE-HMDS, King's College Hospital NHS Foundation Trust, London, UK
| | - Ulrika Johansson
- Laboratory Medicine, SI-HMDS, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Kiyoyuki Ogata
- Metropolitan Research and Treatment Centre for Blood Disorders (MRTC Japan), Tokyo, Japan
| | - Alberto Orfao
- Cancer Research Center (IBMCC-USAL/CSIC), Department of Medicine and Cytometry Service, Institute for Biomedical Research of Salamanca (IBSAL) and CIBERONC, University of Salamanca, Salamanca, Spain
| | - Katherina Psarra
- Department of Immunology - Histocompatibility, Evangelismos Hospital, Athens, Greece
| | - Leonie Saft
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital and Institute Solna, Stockholm, Sweden
| | - Dolores Subira
- Department of Hematology, Flow Cytometry Unit, Hospital Universitario de Guadalajara, Guadalajara, Spain
| | - Jeroen Te Marvelde
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Vincent H J van der Velden
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, VU University Medical Center Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Wei Y, Zheng H, Lockyer PP, Darbaniyan F, Li Z, Kanagal-Shamanna R, Soltysiak KA, Yang H, Ganan-Gomez I, Montalban-Bravo G, Chien KS, Do KA, Daver N, Garcia-Manero G. MDM2 antagonist improves therapeutic activity of azacitidine in myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Lymphoma 2022; 63:3154-3164. [PMID: 36059252 PMCID: PMC10088064 DOI: 10.1080/10428194.2022.2116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Failure of hypomethylation agent (HMA) treatments is an important issue in myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). Recent studies indicated that function of wildtype TP53 positively impacts outcome of HMA treatments. We investigated the combination of the HMA azacitidine (AZA) with DS-3032b and DS-5272, novel antagonists of the TP53 negative regulator MDM2, in cellular and animal models of MDS and CMML. In TP53 wildtype myeloid cell line, combinational effects of DS-3032b or DS-5272 with AZA were observed. In Tet2-knockout mouse model of MDS and CMML, DS-5272 and AZA combination ameliorated disease-like phenotype. RNA-Seq analysis in mouse bone marrow hematopoietic stem and progenitors indicated that DS-5272 and AZA combination caused down-regulation of leukemia stem cell marker genes and activation of pathways of TP53 function and stability. These findings demonstrate that combining an MDM2 antagonist with AZA has potential to improve AZA treatment in TP53 wildtype MDS and CMML.
Collapse
Affiliation(s)
- Yue Wei
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Zheng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Faezeh Darbaniyan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly A Soltysiak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Kelly S Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
10
|
Al-Kaabneh B, Frisch B, Aljitawi OS. The Potential Role of 3D In Vitro Acute Myeloid Leukemia Culture Models in Understanding Drug Resistance in Leukemia Stem Cells. Cancers (Basel) 2022; 14:5252. [PMID: 36358676 PMCID: PMC9656790 DOI: 10.3390/cancers14215252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/14/2023] Open
Abstract
The complexity of the bone marrow (BM) microenvironment makes studying hematological malignancies in vitro a challenging task. Three-dimensional cell cultures are being actively studied, particularly due to their ability to serve as a bridge of the gap between 2D cultures and animal models. The role of 3D in vitro models in studying the mechanisms of chemotherapeutic resistance and leukemia stem cells (LSCs) in acute myeloid leukemia (AML) is not well-reviewed. We present an overview of 3D cell models used for studying AML, emphasizing the recent advancements in microenvironment modeling, chemotherapy testing, and resistance.
Collapse
Affiliation(s)
- Basil Al-Kaabneh
- Hematology/Oncology Division, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Benjamin Frisch
- Departments of Pathology and Biomedical Engineering, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Omar S. Aljitawi
- Hematology/Oncology Division, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
11
|
Yassin MA, Soliman AT, Nashwan AJ, Alamami AA, Abdulla MAJ, Hmissi SM, Aldapt MB, Chandra P, Suliman AM, Ibrahim EA, Yassin KS, Allahverdi N, Mohamed SF. Hematological indices reference intervals for a healthy Arab population in Qatar: Effect of age, gender, and geographic location. Medicine (Baltimore) 2022; 101:e29271. [PMID: 35713431 PMCID: PMC9276203 DOI: 10.1097/md.0000000000029271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/22/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Hematologic reference intervals vary with gender, age, ethnicity, and geographic area. Therefore, local or national laboratory reference ranges are essential to enhance the accuracy when diagnosing health conditions. Still, no comprehensive list of reference ranges tailored to the Arab population living in Qatar. Accordingly, this study aims at establishing a hematology reference guide for Arabs in Qatar.This is a retrospective study where 750 healthy volunteers (18-69 years) from 2015 to 2019 were included, analyzed by an automated hematology analyzer. Arab adults were divided into African (Egypt, Libya, Tunisia, Morocco) and Asian (Syria, Lebanon, Jordon, Palestine, Qatar). The Cell-Dyn and Sysmex were used for measuring hematological parameters.The mean +/- 2SD were established for all the study groups. Arab males had significantly higher Hb, Hct, red cell distribution width, absolute neutrophil count, lymphocytes, and monocyte counts than females. Asian-Arab males had significantly higher Hb concentration and higher WBC, lymphocytes, and eosinophils than African Arabs. Asian-Arab young (>18: < 40 years) males had significantly higher Hb and lymphocytes and lower monocytes than older males (>40 years). African-Arab young males had significantly higher lymphocytes and lower monocytes than older males. Asian-Arab young females had higher WBC and absolute neutrophil count than older Asian Arabs.The findings of this study will help in establishing specific reference intervals in the Arab world. The differences in hematology reference intervals considering age, gender, and geographical location highlight the importance of establishing blood reference intervals in each country considering the ethnic diversity of each country.
Collapse
Affiliation(s)
- Mohamed A. Yassin
- Department of Medical Oncology/Hematology, National Centre for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Ashraf T. Soliman
- Department of Pediatrics, Division of Endocrinology, Hamad General Hospital (HGH), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Abdulqadir J. Nashwan
- Department of Nursing, Hazm Mebaireek General Hospital (HMGH), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Ans A. Alamami
- Department of Critical Care Medicine, Hamad General Hospital (HGH), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mohammad A. J. Abdulla
- Department of Medical Oncology/Hematology, National Centre for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Saloua M. Hmissi
- Blood Transfusion Center, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mahmood B. Aldapt
- Department of Medical Oncology/Hematology, National Centre for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Prem Chandra
- Medical Research Center, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Aasir M. Suliman
- Department of Medical Oncology/Hematology, National Centre for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Ezzeddin A. Ibrahim
- Department of Medical Oncology/Hematology, National Centre for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Khadra S. Yassin
- Department of Nursing, National Centre for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Niloofar Allahverdi
- Cancer Services, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Shehab F. Mohamed
- Department of Medical Oncology/Hematology, National Centre for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha, Qatar
| |
Collapse
|
12
|
Shin DY. Human acute myeloid leukemia stem cells: evolution of concept. Blood Res 2022; 57:67-74. [PMID: 35483929 PMCID: PMC9057671 DOI: 10.5045/br.2022.2021221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
The history of human acute myeloid leukemia stem cells (AMLSCs) began in a seminal study performed by Lapidot and Dick, proving that only CD34+CD38- human primary acute myeloid leukemia (AML) cells can repopulate in severe combined immunodeficient mice. The concept of leukemic stem cells (LSCs) has impeded a huge change in the treatment strategy against AML from killing proliferating leukemic cells to eradicating quiescent/dormant LSCs. As next-generation sequencing technologies have developed, multiple and recurrent genetic mutations have been discovered in large cohorts of patients with AML, and the updated understanding of leukemogenesis has improved the old concept of LSC to a revised version of a serial developmental model of LSC; that is, pre-LSCs are generated as seeds by the first hit on epigenetic regulators, and then, leukemia-initiating LSCs emerge from seeds by the second hits on genes involved in transcription and signaling. Dreams for universal and targetable AMLSC biomarker sparing healthy hematopoietic stem cells have weakened after the confrontation of significant heterogeneity of AMLSCs from genomic and immunophenotypic viewpoints. However, there is still hope for effective targets for AMLSCs since there is evidence that grouped gene signatures, such as 17-gene LSC score, and common epigenetic signatures, such as HOXA clusters, independent of various gene mutations, exist. Recently, the LSC niche in the bone marrow has been actively investigated and has expanded our knowledge of the physiology and vulnerability of AMLSCs. Presently, an applicable treatment that always works in AMLSCs is lacking. However, we will find a way, we always have.
Collapse
Affiliation(s)
- Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
13
|
Dupont M, Huart M, Lauvinerie C, Bidet A, Guitart AV, Villacreces A, Vigon I, Desplat V, El Habhab A, Pigneux A, Ivanovic Z, Brunet De la Grange P, Dumas PY, Pasquet JM. Autophagy Targeting and Hematological Mobilization in FLT3-ITD Acute Myeloid Leukemia Decrease Repopulating Capacity and Relapse by Inducing Apoptosis of Committed Leukemic Cells. Cancers (Basel) 2022; 14:cancers14020453. [PMID: 35053612 PMCID: PMC8796021 DOI: 10.3390/cancers14020453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/19/2022] Open
Abstract
Targeting FLT3-ITD in AML using TKI against FLT3 cannot prevent relapse even in the presence of complete remission, suggesting the resistance and/or the persistence of leukemic-initiating cells in the hematopoietic niche. By mimicking the hematopoietic niche condition with cultures at low oxygen concentrations, we demonstrate in vitro that FLT3-ITD AML cells decrease their repopulating capacity when Vps34 is inhibited. Ex vivo, AML FLT3-ITD blasts treated with Vps34 inhibitors recovered proliferation more slowly due to an increase an apoptosis. In vivo, mice engrafted with FLT3-ITD AML MV4-11 cells have the invasion of the bone marrow and blood in 2 weeks. After 4 weeks of FLT3 TKI treatment with gilteritinib, the leukemic burden had strongly decreased and deep remission was observed. When treatment was discontinued, mice relapsed rapidly. In contrast, Vps34 inhibition strongly decreased the relapse rate, and even more so in association with mobilization by G-CSF and AMD3100. These results demonstrate that remission offers the therapeutic window for a regimen using Vps34 inhibition combined with mobilization to target persistent leukemic stem cells and thus decrease the relapse rate.
Collapse
Affiliation(s)
- Marine Dupont
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Mathilde Huart
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Claire Lauvinerie
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Audrey Bidet
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Service d’Hématologie Biologique, CHU Bordeaux, 33000 Bordeaux, France
| | - Amélie Valérie Guitart
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Arnaud Villacreces
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Isabelle Vigon
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Vanessa Desplat
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Ali El Habhab
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
| | - Arnaud Pigneux
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Service d’Hématologie Clinique et Thérapie Cellulaire, CHU Bordeaux, 33000 Bordeaux, France
| | - Zoran Ivanovic
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Etablissement Français du Sang Nouvelle Aquitaine, 33035 Bordeaux, France
| | - Philippe Brunet De la Grange
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Etablissement Français du Sang Nouvelle Aquitaine, 33035 Bordeaux, France
| | - Pierre-Yves Dumas
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Service d’Hématologie Clinique et Thérapie Cellulaire, CHU Bordeaux, 33000 Bordeaux, France
| | - Jean-Max Pasquet
- Cellules Souches Hématopoïétiques Normales et Leucémiques, INSERM U1312 BRIC, Université de Bordeaux, Bat TP 4e étage, 146 rue Léo Saignat, 33076 Bordeaux, France; (M.D.); (M.H.); (C.L.); (A.B.); (A.V.G.); (A.V.); (I.V.); (V.D.); (A.E.H.); (A.P.); (Z.I.); (P.B.D.l.G.); (P.-Y.D.)
- Correspondence: ; Tel.: +33-07-85-42-59-25
| |
Collapse
|
14
|
Meriç N, Kocabaş F. The Historical Relationship Between Meis1 and Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:127-144. [DOI: 10.1007/5584_2021_705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Gorshkova O, Cappaï J, Maillot L, Sergé A. Analyzing normal and disrupted leukemic stem cell adhesion to bone marrow stromal cells by single-molecule tracking nanoscopy. J Cell Sci 2021; 134:271951. [PMID: 34435622 DOI: 10.1242/jcs.258736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/02/2021] [Indexed: 01/02/2023] Open
Abstract
Leukemic stem cells (LSCs) adhere to bone niches through adhesion molecules. These interactions, which are deeply reorganized in tumors, contribute to LSC resistance to chemotherapy and leukemia relapse. However, LSC adhesion mechanisms and potential therapeutic disruption using blocking antibodies remain largely unknown. Junctional adhesion molecule C (JAM-C, also known as JAM3) overexpression by LSCs correlates with increased leukemia severity, and thus constitutes a putative therapeutic target. Here, we took advantage of the ability of nanoscopy to detect single molecules with nanometric accuracy to characterize junctional adhesion molecule (JAM) dynamics at leuko-stromal contacts. Videonanoscopy trajectories were reconstructed using our dedicated multi-target tracing algorithm, pipelined with dual-color analyses (MTT2col). JAM-C expressed by LSCs engaged in transient interactions with JAM-B (also known as JAM2) expressed by stromal cells. JAM recruitment and colocalization at cell contacts were proportional to JAM-C level and reduced by a blocking anti-JAM-C antibody. MTT2col revealed, at single-molecule resolution, the ability of blocking antibodies to destabilize LSC binding to their niches, opening opportunities for disrupting LSC resistance mechanisms.
Collapse
Affiliation(s)
- Oksana Gorshkova
- Centre de recherche en cancérologie de Marseille (CRCM), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (Inserm), Institut Paoli-Calmettes (IPC), Aix-Marseille Université, F-13273 Marseille, France
| | - Jessica Cappaï
- Centre de recherche en cancérologie de Marseille (CRCM), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (Inserm), Institut Paoli-Calmettes (IPC), Aix-Marseille Université, F-13273 Marseille, France
| | - Loriane Maillot
- Laboratoire adhésion inflammation (LAI), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (Inserm), Aix-Marseille Université, F-13288 Marseille, France
| | - Arnauld Sergé
- Centre de recherche en cancérologie de Marseille (CRCM), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (Inserm), Institut Paoli-Calmettes (IPC), Aix-Marseille Université, F-13273 Marseille, France.,Laboratoire adhésion inflammation (LAI), Centre national de la recherche scientifique (CNRS), Institut national de la santé et de la recherche médicale (Inserm), Aix-Marseille Université, F-13288 Marseille, France
| |
Collapse
|
16
|
Multiparametric Flow Cytometry for MRD Monitoring in Hematologic Malignancies: Clinical Applications and New Challenges. Cancers (Basel) 2021; 13:cancers13184582. [PMID: 34572809 PMCID: PMC8470441 DOI: 10.3390/cancers13184582] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In hematologic cancers, Minimal Residual Disease (MRD) monitoring, using either molecular (PCR) or immunophenotypic (MFC) diagnostics, allows the identification of rare cancer cells, readily detectable either in the bone marrow or in the peripheral blood at very low levels, far below the limit of classic microscopy. In this paper, we outlined the state-of-the-art of MFC-based MRD detection in different hematologic settings, highlighting main recommendations and new challenges for using such method in patients with acute leukemias or chronic hematologic neoplasms. The combination of new molecular technologies with advanced flow cytometry is progressively allowing clinicians to design a personalized therapeutic path, proportionate to the biological aggressiveness of the disease, in particular by using novel immunotherapies, in view of a modern decision-making process, based on precision medicine. Abstract Along with the evolution of immunophenotypic and molecular diagnostics, the assessment of Minimal Residual Disease (MRD) has progressively become a keystone in the clinical management of hematologic malignancies, enabling valuable post-therapy risk stratifications and guiding risk-adapted therapeutic approaches. However, specific prognostic values of MRD in different hematological settings, as well as its appropriate clinical uses (basically, when to measure it and how to deal with different MRD levels), still need further investigations, aiming to improve standardization and harmonization of MRD monitoring protocols and MRD-driven therapeutic strategies. Currently, MRD measurement in hematological neoplasms with bone marrow involvement is based on advanced highly sensitive methods, able to detect either specific genetic abnormalities (by PCR-based techniques and next-generation sequencing) or tumor-associated immunophenotypic profiles (by multiparametric flow cytometry, MFC). In this review, we focus on the growing clinical role for MFC-MRD diagnostics in hematological malignancies—from acute myeloid and lymphoblastic leukemias (AML, B-ALL and T-ALL) to chronic lymphocytic leukemia (CLL) and multiple myeloma (MM)—providing a comparative overview on technical aspects, clinical implications, advantages and pitfalls of MFC-MRD monitoring in different clinical settings.
Collapse
|
17
|
Wang B, Yang B, Wu W, Liu X, Li H. The correlation of next-generation sequencing-based genotypic profiles with clinicopathologic characteristics in NPM1-mutated acute myeloid leukemia. BMC Cancer 2021; 21:788. [PMID: 34238278 PMCID: PMC8268444 DOI: 10.1186/s12885-021-08455-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to analyze the association between next-generation sequencing (NGS) genotypic profiles and conventional clinicopathologic characteristics in patients with acute myeloid leukemia (AML) with NPM1 mutation (NPM1mut). We selected 238 NPM1mut patients with available NGS information on 112 genes related to blood diseases using the χ2 and Mann-Whitney U tests and a multivariable logistic model to analyze the correlation between genomic alterations and clinicopathologic parameters. Compared with the NPM1mut/FLT3-ITD(−) group, the NPM1mut/FLT3-ITD(+) group presented borderline frequent M5 morphology [78/143 (54.5%) vs. 64/95 (67.4%); P = 0.048], higher CD34- and CD7-positive rates (CD34: 20.6% vs. 47.9%, P < 0.001; CD7: 29.9% vs. 61.5%, P < 0.001) and a lack of favorable−/adverse-risk karyotypes (6.4% vs. 0%; P = 0.031). In the entire NPM1mut cohort, 240 NPM1 mutants were identified, of which 10 (10/240, 4.2%) were missense types. When confining the analysis to the 205 cases with NPM1mut insertions/deletions-type and normal karyotype, multivariable logistic analysis showed that FLT3-ITD was positively correlated with CD34 and CD7 expressions (OR = 5.29 [95% CI 2.64–10.60], P < 0.001; OR = 3.47 [95% CI 1.79–6.73], P < 0.001, respectively). Ras-pathway mutations were positively correlated with HLA-DR expression (OR = 4.05 [95% CI 1.70–9.63], P = 0.002), and KRAS mutations were negatively correlated with MPO expression (OR = 0.18 [95% CI 0.05–0.62], P = 0.007). DNMT3A-R882 was positively correlated with CD7 and HLA-DR expressions (OR = 3.59 [95% CI 1.80–7.16], P < 0.001; OR = 13.41 [95% CI 4.56–39.45], P < 0.001, respectively). DNMT3A mutation was negatively correlated with MPO expression (OR = 0.35 [95% CI 1.48–8.38], P = 0.004). TET2/IDH1 mutations were negatively correlated with CD34 and CD7 expressions (OR = 0.26 [95% CI 0.11–0.62], P = 0.002; OR = 0.30 [95% CI 0.14–0.62], P = 0.001, respectively) and positively correlated with MPO expression (OR = 3.52 [95% CI 1.48–8.38], P = 0.004). In conclusion, NPM1mut coexisting mutations in signaling pathways (FLT3-ITD and Ras-signaling pathways) and methylation modifiers (DNMT3A and TET2/IDH1) are linked with the expressions of CD34, CD7, HLA-DR and MPO, thereby providing a mechanistic explanation for the immunophenotypic heterogeneity of this AML entity.
Collapse
Affiliation(s)
- Biao Wang
- Department of Hematology, Changzhou First People's Hospital (The Third Affiliated Hospital of Soochow University), Changzhou, China
| | - Bin Yang
- Department of Hematology, Changzhou First People's Hospital (The Third Affiliated Hospital of Soochow University), Changzhou, China
| | - Wei Wu
- Department of Hematology, Changzhou First People's Hospital (The Third Affiliated Hospital of Soochow University), Changzhou, China
| | - Xuan Liu
- Blood Research Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiqian Li
- Department of Hematology, Changzhou First People's Hospital (The Third Affiliated Hospital of Soochow University), Changzhou, China.
| |
Collapse
|
18
|
Michelozzi IM, Kirtsios E, Giustacchini A. Driving CAR T Stem Cell Targeting in Acute Myeloid Leukemia: The Roads to Success. Cancers (Basel) 2021; 13:2816. [PMID: 34198742 PMCID: PMC8201025 DOI: 10.3390/cancers13112816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Current treatment outcome for acute myeloid leukemia (AML) patients is unsatisfactory and characterized by high rates of relapse and poor overall survival. Increasing evidence points to a crucial role of leukemic stem cells (LSC) and the bone marrow (BM) leukemic niche, in which they reside, in AML evolution and chemoresistance. Thus, future strategies aiming at improving AML therapeutic protocols are likely to be directed against LSC and their niche. Chimeric antigen receptor (CAR) T-cells have been extremely successful in the treatment of relapsed/refractory acute lymphoblastic leukemia and B-cell non-Hodgkin lymphoma and comparable results in AML are highly desirable. At present, we are at the dawn of CAR T-cell application in AML, with several preclinical studies and few early phase clinical trials. However, the lack of leukemia-specific targets and the genetic and phenotypic heterogeneity of the disease combined with the leukemia-induced remodeling of the BM microenvironment are limiting CAR T-cell exploitation in AML. Here, we reviewed AML-LSC and AML-BM niche features in the context of their therapeutic targeting using CAR T-cells. We summarized recent progress in CAR T-cell application to the treatment of AML, and we discussed the remaining therapeutic challenges and promising novel strategies to overcome them.
Collapse
Affiliation(s)
- Ilaria M. Michelozzi
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London WC1N 1DZ, UK;
| | | | - Alice Giustacchini
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London WC1N 1DZ, UK;
| |
Collapse
|
19
|
Soare DS, Radu E, Dumitru I, Vlădăreanu AM, Bumbea H. Quantitative analyses of CD7, CD33, CD34, CD56, and CD123 within the FLT3-ITD/ NPM1-MUT myeloblastic/monocytic bulk AML blastic populations. Leuk Lymphoma 2021; 62:2716-2726. [PMID: 34034609 DOI: 10.1080/10428194.2021.1927018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The most frequent mutations in acute myeloid leukemia (AML) - FLT3-ITD and NPM1 - are associated with a specific immunophenotype. We evaluated the levels of surface antigens in an uninvestigated AML patient population according to the combination of FLT3-ITD/NPM1 mutations. Antigen levels were calculated as the geometric mean fluorescence index (MFI) ratio between myeloblasts or monoblasts/monocytes and a negative population for the specific antigen. In myeloblastic populations, FLT3-ITD cases presented CD7high MFI values (p < .001), while NPM1-MUT cases presented CD33high (p < .001), and CD34low (p < .001) MFI values. Within the monoblastic/monocytic populations, CD56high expression was observed only in the FLT3-WT/NPM1-MUT population (p=.003). The single common antigen expression between myeloblasts and monoblasts/monocytes was CD123high expression only within the FLT3-ITD/NPM1-MUT subgroup. Our results present a subtle influence of FLT3-ITD/NPM1 mutations upon antigen expression profiles in myeloblasts vs monoblasts/monocytes, and we described a novel correlation between the presence of NPM1 and CD56high values within bulk leukemic monoblasts/monocytes.
Collapse
Affiliation(s)
- Dan-Sebastian Soare
- Bone Marrow Transplant Unit, University Emergency Hospital Bucharest, Bucharest, Romania.,Cellular Biology and Histology Department, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Eugen Radu
- Microbiology Department, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Molecular Pathology Laboratory, University Emergency Hospital Bucharest, Bucharest, Romania
| | - Ion Dumitru
- Transfusion Department, University Emergency Hospital Bucharest, Bucharest, Romania
| | - Ana Maria Vlădăreanu
- Hematology Department, University Emergency Hospital Bucharest, Bucharest, Romania.,Hematology Department, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Horia Bumbea
- Bone Marrow Transplant Unit, University Emergency Hospital Bucharest, Bucharest, Romania.,Hematology Department, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
20
|
Ma XY, Wei L, Lei Z, Chen Y, Ding Z, Chen ZS. Recent progress on targeting leukemia stem cells. Drug Discov Today 2021; 26:1904-1913. [PMID: 34029689 DOI: 10.1016/j.drudis.2021.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Leukemia is a type of malignant clonal disease of hematopoietic stem cells (HSCs). A small population of leukemic stem cells (LSCs) are responsible for the initiation, drug resistance, and relapse of leukemia. LSCs have the ability to form tumors after xenotransplantation in immunodeficient mice and appear to be common in most human leukemias. Therefore, the eradication of LSCs is an approach with the potential to improve survival or even to cure leukemia. Using recent research in the field of LSCs, we summarize the targeted therapy approaches for the removal of LSCs through surface markers including immune checkpoint molecules, pathways influencing LSC survival, or the survival microenvironment of LSCs. In addition, we introduce the survival microenvironment and survival regulation of LSCs.
Collapse
Affiliation(s)
- Xiang-Yu Ma
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Zining Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yanglu Chen
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Gangxing 3rd Rd, High-Tech and Innovation Zone, Jinan, Shandong 250101, PR China
| | - Zhe-Sheng Chen
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| |
Collapse
|
21
|
Perriello VM, Gionfriddo I, Rossi R, Milano F, Mezzasoma F, Marra A, Spinelli O, Rambaldi A, Annibali O, Avvisati G, Di Raimondo F, Ascani S, Falini B, Martelli MP, Brunetti L. CD123 Is Consistently Expressed on NPM1-Mutated AML Cells. Cancers (Basel) 2021; 13:cancers13030496. [PMID: 33525388 PMCID: PMC7865228 DOI: 10.3390/cancers13030496] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary One-third of adult acute myeloid leukemia (AML) harbors NPM1 mutations. A deep knowledge of the distribution of selected antigens on the surface of NPM1-mutated AML cells may help optimizing new therapies for this frequent AML subtype. CD123 is known to be expressed on leukemic cells but also on healthy hematopoietic and endothelial cells, although at lower levels. Differences in antigen densities between AML and healthy cells may enlighten therapeutic windows, where targeting CD123 could be effective without triggering “on-target off-tumor” toxicities. Here, we perform a thorough analysis of CD123 expression demonstrating high expression of this antigen on both NPM1-mutated bulk leukemic cells and CD34+CD38− cells. Abstract NPM1-mutated (NPM1mut) acute myeloid leukemia (AML) comprises about 30% of newly diagnosed AML in adults. Despite notable advances in the treatment of this frequent AML subtype, about 50% of NPM1mut AML patients treated with conventional treatment die due to disease progression. CD123 has been identified as potential target for immunotherapy in AML, and several anti-CD123 therapeutic approaches have been developed for AML resistant to conventional therapies. As this antigen has been previously reported to be expressed by NPM1mut cells, we performed a deep flow cytometry analysis of CD123 expression in a large cohort of NPM1mut and wild-type samples, examining the whole blastic population, as well as CD34+CD38− leukemic cells. We demonstrate that CD123 is highly expressed on NPM1mut cells, with particularly high expression levels showed by CD34+CD38− leukemic cells. Additionally, CD123 expression was further enhanced by FLT3 mutations, which frequently co-occur with NPM1 mutations. Our results identify NPM1-mutated and particularly NPM1/FLT3 double-mutated AML as disease subsets that may benefit from anti-CD123 targeted therapies.
Collapse
Affiliation(s)
- Vincenzo Maria Perriello
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Ilaria Gionfriddo
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Roberta Rossi
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Francesca Milano
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Federica Mezzasoma
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Andrea Marra
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
| | - Orietta Spinelli
- Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy; (O.S.); (A.R.)
| | - Alessandro Rambaldi
- Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, 24127 Bergamo, Italy; (O.S.); (A.R.)
- Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Ombretta Annibali
- Hematology and Stem Cell Transplant Unit, Campus Biomedico University Hospital, 00128 Rome, Italy; (O.A.); (G.A.)
| | - Giuseppe Avvisati
- Hematology and Stem Cell Transplant Unit, Campus Biomedico University Hospital, 00128 Rome, Italy; (O.A.); (G.A.)
| | - Francesco Di Raimondo
- Hematology and Bone Marrow Transplant Unit, Catania University Hospital, 95125 Catania, Italy;
| | - Stefano Ascani
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
- Pathology, Santa Maria Hospital, 05100 Terni, Italy
| | - Brunangelo Falini
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
| | - Maria Paola Martelli
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
- Correspondence: (M.P.M.); (L.B.)
| | - Lorenzo Brunetti
- Department of Medicine and Surgery, University of Perugia, 06131 Perugia, Italy; (V.M.P.); (I.G.); (R.R.); (F.M.); (F.M.); (A.M.); (S.A.); (B.F.)
- Hematology and Bone Marrow Transplant Unit, Santa Maria della Misericordia Hospital, 06131 Perugia, Italy
- Correspondence: (M.P.M.); (L.B.)
| |
Collapse
|
22
|
Roussel X, Daguindau E, Berceanu A, Desbrosses Y, Warda W, Neto da Rocha M, Trad R, Deconinck E, Deschamps M, Ferrand C. Acute Myeloid Leukemia: From Biology to Clinical Practices Through Development and Pre-Clinical Therapeutics. Front Oncol 2020; 10:599933. [PMID: 33363031 PMCID: PMC7757414 DOI: 10.3389/fonc.2020.599933] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have provided several insights into acute myeloid leukemia. Studies based on molecular biology have identified eight functional mutations involved in leukemogenesis, including driver and passenger mutations. Insight into Leukemia stem cells (LSCs) and assessment of cell surface markers have enabled characterization of LSCs from hematopoietic stem and progenitor cells. Clonal evolution has been described as having an effect similar to that of microenvironment alterations. Such biological findings have enabled the development of new targeted drugs, including drug inhibitors and monoclonal antibodies with blockage functions. Some recently approved targeted drugs have resulted in new therapeutic strategies that enhance standard intensive chemotherapy regimens as well as supportive care regimens. Besides the progress made in adoptive immunotherapy, since allogenic hematopoietic stem cell transplantation enabled the development of new T-cell transfer therapies, such as chimeric antigen receptor T-cell and transgenic TCR T-cell engineering, new promising strategies that are investigated.
Collapse
Affiliation(s)
- Xavier Roussel
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Etienne Daguindau
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Ana Berceanu
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Yohan Desbrosses
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Walid Warda
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | | | - Rim Trad
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Eric Deconinck
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Marina Deschamps
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Christophe Ferrand
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
23
|
Cucchi DGJ, Groen RWJ, Janssen JJWM, Cloos J. Ex vivo cultures and drug testing of primary acute myeloid leukemia samples: Current techniques and implications for experimental design and outcome. Drug Resist Updat 2020; 53:100730. [PMID: 33096284 DOI: 10.1016/j.drup.2020.100730] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
New treatment options of acute myeloid leukemia (AML) are rapidly emerging. Pre-clinical models such as ex vivo cultures are extensively used towards the development of novel drugs and to study synergistic drug combinations, as well as to discover biomarkers for both drug response and anti-cancer drug resistance. Although these approaches empower efficient investigation of multiple drugs in a multitude of primary AML samples, their translational value and reproducibility are hampered by the lack of standardized methodologies and by culture system-specific behavior of AML cells and chemotherapeutic drugs. Moreover, distinct research questions require specific methods which rely on specific technical knowledge and skills. To address these aspects, we herein review commonly used culture techniques in light of diverse research questions. In addition, culture-dependent effects on drug resistance towards commonly used drugs in the treatment of AML are summarized including several pitfalls that may arise because of culture technique artifacts. The primary aim of the current review is to provide practical guidelines for ex vivo primary AML culture experimental design.
Collapse
Affiliation(s)
- D G J Cucchi
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - R W J Groen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - J J W M Janssen
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - J Cloos
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Travaglini S, Angelini DF, Alfonso V, Guerrera G, Lavorgna S, Divona M, Nardozza AM, Consalvo MI, Fabiani E, De Bardi M, Neri B, Forghieri F, Marchesi F, Paterno G, Cerretti R, Barragan E, Fiori V, Dominici S, Del Principe MI, Venditti A, Battistini L, Arcese W, Lo-Coco F, Voso MT, Ottone T. Characterization of FLT3-ITD mut acute myeloid leukemia: molecular profiling of leukemic precursor cells. Blood Cancer J 2020; 10:85. [PMID: 32843624 PMCID: PMC7447750 DOI: 10.1038/s41408-020-00352-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) with FLT3-ITD mutations (FLT3-ITDmut) remains a therapeutic challenge, with a still high relapse rate, despite targeted treatment with tyrosine kinase inhibitors. In this disease, the CD34/CD123/CD25/CD99+ leukemic precursor cells (LPCs) phenotype predicts for FLT3-ITD-positivity. The aim of this study was to characterize the distribution of FLT3-ITD mutation in different progenitor cell subsets to shed light on the subclonal architecture of FLT3-ITDmut AML. Using high-speed cell sorting, we sequentially purified LPCs and CD34+ progenitors in samples from patients with FLT3-ITDmut AML (n = 12). A higher FLT3-ITDmut load was observed within CD34/CD123/CD25/CD99+ LPCs, as compared to CD34+ progenitors (CD123+/-,CD25-,CD99low/-) (p = 0.0005) and mononuclear cells (MNCs) (p < 0.0001). This was associated with significantly increased CD99 mean fluorescence intensity in LPCs. Significantly higher FLT3-ITDmut burden was also observed in LPCs of AML patients with a small FLT3-ITDmut clones at diagnosis. On the contrary, the mutation burden of other myeloid genes was similar in MNCs, highly purified LPCs and/or CD34+ progenitors. Treatment with an anti-CD99 mAb was cytotoxic on LPCs in two patients, whereas there was no effect on CD34+ cells from healthy donors. Our study shows that FLT3-ITD mutations occur early in LPCs, which represent the leukemic reservoir. CD99 may represent a new therapeutic target in FLT3-ITDmut AML.
Collapse
Affiliation(s)
- Serena Travaglini
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | | | - Valentina Alfonso
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Gisella Guerrera
- Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy
| | - Serena Lavorgna
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Anna Maria Nardozza
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Maria Irno Consalvo
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Emiliano Fabiani
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Marco De Bardi
- Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy
| | - Benedetta Neri
- Ematologia, Ospedale S. Eugenio, Dipartimento di Biomedicina e Prevenzione, Rome, Italy
| | - Fabio Forghieri
- University of Modena and Reggio Emilia, Azienda Ospedaliera di Modena, Modena, Italy
| | - Francesco Marchesi
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Raffaella Cerretti
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Eva Barragan
- Hospital Universitari i Politècnic La Fe, Valencia, Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Valentina Fiori
- Diatheva srl, via Sant'Anna 131, 61030, Cartoceto, (PU), Italy
| | | | | | - Adriano Venditti
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Luca Battistini
- Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy
| | - William Arcese
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.
- Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy.
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
- Santa Lucia Foundation, I.R.C.C.S., Neuro-Oncohematology, Rome, Italy
| |
Collapse
|
25
|
Mechanisms of cancer stem cell therapy. Clin Chim Acta 2020; 510:581-592. [PMID: 32791136 DOI: 10.1016/j.cca.2020.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are responsible for carcinogenesis and tumorigenesis and are involved in drug and radiation resistance, metastasis, tumor relapse and initiation. Remarkably, they have other abilities such as inheritance of self-renewal and de-differentiation. Hence, targeting CSCs is considered a potential anti-cancer therapeutic strategy. Recent advances in the identification of biomarkers to recognize CSCs and the development of new techniques to evaluate tumorigenic and carcinogenic roles of CSCs are instrumental to this approach. Elucidation of signaling pathways that regulate CSCs colony progression and drug resistance are critical in establishing effective targeted therapies. CSCs play a central key role in immunomodulation, immune evasion and effector immunity, which alters immune system balancing. These include mTOR, SHH, NOTCH and Wnt/β-catering in cancer progression. In this review article, we discuss the importance of these CSCs pathways in cancer therapy.
Collapse
|
26
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol 2020; 11:1280. [PMID: 32849491 PMCID: PMC7426526 DOI: 10.3389/fimmu.2020.01280] [Citation(s) in RCA: 482] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ann-Kathrin Kistenmacher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Reni Kitte
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Strauß
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Uta Kossatz-Boehlert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
27
|
Shi M, Su RJ, Parmar KP, Chaudhry R, Sun K, Rao J, Chen M. CD123: A Novel Biomarker for Diagnosis and Treatment of Leukemia. Cardiovasc Hematol Disord Drug Targets 2020; 19:195-204. [PMID: 31244444 DOI: 10.2174/1871529x19666190627100613] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/20/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Leukemia is a group of progressive hematologic malignancies derived from stem cells in bone marrow which causes a large number of cancer deaths. Even with treatment such as traditional chemotherapy, targeted therapy, and allogeneic stem cell transplantation (allo-HSCT), many patients suffer from relapse/refractory disease, and the overall survival is dismal. Leukemic stem cells (LSCs) are induced by gene mutations and undergo an aberrant and poorly regulated proliferation process which is involved in the evolution, relapse, and drug-resistance of leukemia. Emerging studies demonstrate that CD123, the interleukin 3 receptor alpha (IL-3Rα), is highly expressed in LSCs, while not normal hematopoietic stem cells (HSCs), and associates with treatment response, minimal residual disease (MRD) detection and prognosis. Furthermore, CD123 is an important marker for the identification and targeting of LSCs for refractory or relapsed leukemia. Anti-CD123 target-therapies in pre-clinical studies and clinical trials confirm the utility of anti-CD123 neutralizing antibody-drugs, CD3×CD123 bispecific antibodies, dual-affinity retargeting (DART), and anti-CD123 chimeric antigen receptor-modified T-cell (CAR-T) therapies in progress. This review summarizes the most recent progress on the study of CD123 biology and the development of novel CD123-targeted therapies.
Collapse
Affiliation(s)
- Mingyue Shi
- Department of Pathology and Laboratory Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States.,Department of Hematology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Henan, China
| | - Ruijun J Su
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Ronald Reagan UCLA Medical Center, Los Angeles, CA 90095, United States
| | - Kamal-Preet Parmar
- Department of Pathology and Laboratory Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Rahman Chaudhry
- Department of Pathology and Laboratory Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Kai Sun
- Department of Hematology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Henan, China
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Ronald Reagan UCLA Medical Center, Los Angeles, CA 90095, United States
| | - Mingyi Chen
- Department of Pathology and Laboratory Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
28
|
Baroni ML, Sanchez Martinez D, Gutierrez Aguera F, Roca Ho H, Castella M, Zanetti SR, Velasco Hernandez T, Diaz de la Guardia R, Castaño J, Anguita E, Vives S, Nomdedeu J, Lapillone H, Bras AE, van der Velden VHJ, Junca J, Marin P, Bataller A, Esteve J, Vick B, Jeremias I, Lopez A, Sorigue M, Bueno C, Menendez P. 41BB-based and CD28-based CD123-redirected T-cells ablate human normal hematopoiesis in vivo. J Immunother Cancer 2020; 8:e000845. [PMID: 32527933 PMCID: PMC7292050 DOI: 10.1136/jitc-2020-000845] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematopoietic malignancy which is biologically, phenotypically and genetically very heterogeneous. Outcome of patients with AML remains dismal, highlighting the need for improved, less toxic therapies. Chimeric antigen receptor T-cell (CART) immunotherapies for patients with refractory or relapse (R/R) AML are challenging because of the absence of a universal pan-AML target antigen and the shared expression of target antigens with normal hematopoietic stem/progenitor cells (HSPCs), which may lead to life-threating on-target/off-tumor cytotoxicity. CD33-redirected and CD123-redirected CARTs for AML are in advanced preclinical and clinical development, and they exhibit robust antileukemic activity. However, preclinical and clinical controversy exists on whether such CARTs are myeloablative. METHODS We set out to comparatively characterize in vitro and in vivo the efficacy and safety of 41BB-based and CD28-based CARCD123. We analyzed 97 diagnostic and relapse AML primary samples to investigate whether CD123 is a suitable immunotherapeutic target, and we used several xenograft models and in vitro assays to assess the myeloablative potential of our second-generation CD123 CARTs. RESULTS Here, we show that CD123 represents a bona fide target for AML and show that both 41BB-based and CD28-based CD123 CARTs are very efficient in eliminating both AML cell lines and primary cells in vitro and in vivo. However, both 41BB-based and CD28-based CD123 CARTs ablate normal human hematopoiesis and prevent the establishment of de novo hematopoietic reconstitution by targeting both immature and myeloid HSPCs. CONCLUSIONS This study calls for caution when clinically implementing CD123 CARTs, encouraging its preferential use as a bridge to allo-HSCT in patients with R/R AML.
Collapse
Affiliation(s)
- Matteo Libero Baroni
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
| | - Diego Sanchez Martinez
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
| | | | - Heleia Roca Ho
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
| | - Maria Castella
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
| | - Samanta Romina Zanetti
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
| | - Talia Velasco Hernandez
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
| | | | - Julio Castaño
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
| | - Eduardo Anguita
- Hematology and Hemotherapy Department, Hospital Clinico Universitario San Carlos Instituto Cardiovascular, Madrid, Comunidad de Madrid, Spain
| | - Susana Vives
- Hematology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Catalunya, Spain
| | - Josep Nomdedeu
- Hematology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
| | - Helene Lapillone
- Centre de Recherce Saint-Antoine, Armand-Trousseau Childrens Hospital, Paris, Île-de-France, France
| | - Anne E Bras
- Immunology Department, Erasmus Medical Center, Rotterdam, Zuid-Holland, Netherlands
| | | | - Jordi Junca
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
- Hematology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Catalunya, Spain
| | - Pedro Marin
- Hematology Department, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Alex Bataller
- Hematology Department, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Jordi Esteve
- Hematology Department, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
| | - Binje Vick
- Helmholtz Center, Munich German Research Center for Environmental Health, Neuherberg, Bayern, Germany
| | - Irmela Jeremias
- Helmholtz Center, Munich German Research Center for Environmental Health, Neuherberg, Bayern, Germany
- Pediatrics Department, Munich University Hospital Dr von Hauner Children's Hospital, Munchen, Bayern, Germany
| | - Angel Lopez
- Human Immunology Department, Centre for Cancer Biology, Adelaide, South Australia, Australia
| | - Marc Sorigue
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
- Hematology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Catalunya, Spain
| | - Clara Bueno
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
- Centro de investigación en Red-Oncología, CIBERONC, Comunidad de Madrid, Madrid, Spain
| | - Pablo Menendez
- Biomedicine, Research Institute Against Leukemia Josep Carreras, Barcelona, Catalunya, Spain
- Centro de investigación en Red-Oncología, CIBERONC, Comunidad de Madrid, Madrid, Spain
- Instituciò Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Catalunya, Spain
| |
Collapse
|
29
|
Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells. Theranostics 2020; 10:7053-7069. [PMID: 32641978 PMCID: PMC7330842 DOI: 10.7150/thno.41388] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Lipids, the basic components of the cell membrane, execute fundamental roles in almost all the cell activities including cell-cell recognition, signalling transduction and energy supplies. Lipid metabolism is elementary for life sustentation that balances activity between synthesis and degradation. An accumulating amount of data has indicated abnormal lipid metabolism in cancer stem cells (CSCs), and that the alteration of lipid metabolism exerts a great impact on CSCs' properties such as the capability of self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. CSCs' formation and maintenance cannot do without the regulation of fatty acids and cholesterol. In normal cells and embryonic development, fatty acids and cholesterol metabolism are regulated by some important signalling pathways (such as Hedgehog, Notch, Wnt signalling pathways); these signalling pathways also play crucial roles in initiating and/or maintaining CSCs' properties, and such signalling is shown to be commonly modulated by the abnormal lipid metabolism in CSCs; on the other hand, the altered lipid metabolism in turn modifies the cell signalling and generates additional impacts on CSCs. Metabolic rewiring is considered as an ideal hallmark of CSCs, and metabolic alterations would be promising therapeutic targets of CSCs for aggressive tumors. In this review, we summarize the most updated findings of lipid metabolic abnormalities in CSCs and prospect the potential applications of targeting lipid metabolism for anticancer treatment.
Collapse
|
30
|
Heo SK, Noh EK, Ju LJ, Sung JY, Jeong YK, Cheon J, Koh SJ, Min YJ, Choi Y, Jo JC. CD45 dimCD34 +CD38 -CD133 + cells have the potential as leukemic stem cells in acute myeloid leukemia. BMC Cancer 2020; 20:285. [PMID: 32252668 PMCID: PMC7137473 DOI: 10.1186/s12885-020-06760-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/17/2020] [Indexed: 01/07/2023] Open
Abstract
Background Leukemia stem cells (LSCs) in play an important role in the initiation, relapse, and progression of acute myeloid leukemia (AML), and in the development of chemotherapeutic drug resistance in AML. Studies regarding the detection of LSCs and the development of novel therapies for targeting them are extensive. The identification of LSCs and targeting therapies for them has been continuously under investigation. Methods We examined the levels of CD45dimCD34+CD38−CD133+ cells in bone marrow samples from patients with hematological malignancies and healthy controls, using four-color flow cytometry. Results Interestingly, the CD45dimCD34+CD38−CD133+ cells were highly expressed in the bone marrow of patients with AML compared to that in healthy controls (HC). Moreover, the proportions of CD45dimCD34+CD38−CD133+ cells were also examined in diverse hematological malignancies, including AML, CML, DLBCL, MM, MDS, HL, ALL, and CLL. LSCs were prominently detected in the BMCs isolated from patients with AML and CML, but rarely in BMCs isolated from patients with DLBCL, MM, MDS, ALL, CLL, and HL. Additionally, the high CD45dimCD34+CD38−CD133+ cell counts in AML patients served as a significantly poor risk factor for overall and event free survival. Conclusions Therefore, our results suggest that CD45dimCD34+CD38−CD133+ cells in AML might potentially serve as LSCs. In addition, this cell population might represent a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Sook-Kyoung Heo
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, Republic of Korea
| | - Eui-Kyu Noh
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, 877 Bangeojinsunhwan-doro, Dong-gu, Ulsan, 44033, Republic of Korea
| | - Lan Jeong Ju
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, Republic of Korea
| | - Jun Young Sung
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, Republic of Korea
| | - Yoo Kyung Jeong
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, Republic of Korea
| | - Jaekyung Cheon
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, 877 Bangeojinsunhwan-doro, Dong-gu, Ulsan, 44033, Republic of Korea
| | - Su Jin Koh
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, 877 Bangeojinsunhwan-doro, Dong-gu, Ulsan, 44033, Republic of Korea
| | - Young Joo Min
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, 877 Bangeojinsunhwan-doro, Dong-gu, Ulsan, 44033, Republic of Korea
| | - Yunsuk Choi
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, Republic of Korea. .,Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, 877 Bangeojinsunhwan-doro, Dong-gu, Ulsan, 44033, Republic of Korea.
| | - Jae-Cheol Jo
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 44033, Republic of Korea. .,Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, 877 Bangeojinsunhwan-doro, Dong-gu, Ulsan, 44033, Republic of Korea.
| |
Collapse
|
31
|
The Prognostic Significance of PDE7B in Cytogenetically Normal Acute Myeloid Leukemia. Sci Rep 2019; 9:16991. [PMID: 31740742 PMCID: PMC6861270 DOI: 10.1038/s41598-019-53563-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignant hematological disease in which nearly half have normal cytogenetics. We have tried to find some significant molecular markers for this part of the cytogenetic normal AML, which hopes to provide a benefit for the diagnosis, molecular typing and prognosis prediction of AML patients. In the present study, we calculated and compared the gene expression profiles of cytogenetically normal acute myeloid leukemia (CN-AML) patients in database of The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and dataset Vizome (a total of 632 CN-AML samples), and we have demonstrated a correlation between PDE7B gene and CN-AML. Then we proceeded to a survival analysis and prognostic risk analysis between the expression levels of PDE7B gene and CN-AML patients. The result showed that the event-free survival (EFS) and overall survival (OS) were significantly shorter in CN-AML patients with high PDE7B levels in each dataset. And we detected a significantly higher expression level of PDE7B in the leukemia stem cell (LSC) positive group. The Cox proportional hazards regression model showed that PDE7B is an independent risk predictor for CN-AML. All results indicate that PDE7B is an unfavorable prognostic factor for CN-AML.
Collapse
|
32
|
CD123 as a Therapeutic Target in the Treatment of Hematological Malignancies. Cancers (Basel) 2019; 11:cancers11091358. [PMID: 31547472 PMCID: PMC6769702 DOI: 10.3390/cancers11091358] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
The interleukin-3 receptor alpha chain (IL-3Rα), more commonly referred to as CD123, is widely overexpressed in various hematological malignancies, including acute myeloid leukemia (AML), B-cell acute lymphoblastic leukemia, hairy cell leukemia, Hodgkin lymphoma and particularly, blastic plasmacytoid dendritic neoplasm (BPDCN). Importantly, CD123 is expressed at both the level of leukemic stem cells (LSCs) and more differentiated leukemic blasts, which makes CD123 an attractive therapeutic target. Various agents have been developed as drugs able to target CD123 on malignant leukemic cells and on the normal counterpart. Tagraxofusp (SL401, Stemline Therapeutics), a recombinant protein composed of a truncated diphtheria toxin payload fused to IL-3, was approved for use in patients with BPDCN in December of 2018 and showed some clinical activity in AML. Different monoclonal antibodies directed against CD123 are under evaluation as antileukemic drugs, showing promising results either for the treatment of AML minimal residual disease or of relapsing/refractory AML or BPDCN. Finally, recent studies are exploring T cell expressing CD123 chimeric antigen receptor-modified T-cells (CAR T) as a new immunotherapy for the treatment of refractory/relapsing AML and BPDCN. In December of 2018, MB-102 CD123 CAR T developed by Mustang Bio Inc. received the Orphan Drug Designation for the treatment of BPDCN. In conclusion, these recent studies strongly support CD123 as an important therapeutic target for the treatment of BPDCN, while a possible in the treatment of AML and other hematological malignancies will have to be evaluated by in the ongoing clinical studies.
Collapse
|
33
|
Acute Myeloid Leukemia Stem Cell Heterogeneity and Its Clinical Relevance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:153-169. [DOI: 10.1007/978-3-030-14366-4_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Arai N, Homma M, Abe M, Baba Y, Murai S, Watanuki M, Kawaguchi Y, Fujiwara S, Kabasawa N, Tsukamoto H, Uto Y, Ariizumi H, Yanagisawa K, Hattori N, Saito B, Shiozawa E, Harada H, Yamochi-Onizuka T, Nakamaki T, Takimoto M. Impact of CD123 expression, analyzed by immunohistochemistry, on clinical outcomes in patients with acute myeloid leukemia. Int J Hematol 2019; 109:539-544. [PMID: 30847774 DOI: 10.1007/s12185-019-02616-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022]
Abstract
Aberrant expression of the interleukin-3 receptor alpha chain (IL3RA or CD123) is frequently observed in patients with a subset of leukemic disorders, including acute myeloid leukemia (AML), particularly in leukemia stem cells. We analyzed the relationships between immunohistochemical (IHC) expression, including that of CD123, and clinical outcomes. This study involved a retrospective analysis of 48 patients diagnosed with de novo AML (M0-M5, n = 48) at our hospital between February 2008 and September 2015. Among patients with de novo AML, CD123 expression was associated with a failure to achieve complete response (CR) to initial induction chemotherapy (P = 0.044) and poor overall survival (OS) (P = 0.036). This is the first study using IHC to demonstrate that CD123 expression is associated with a poor CR rate and poor OS in de novo AML patients. These results support previous reports using flow cytometry (FCM). CD123 expression may thus be useful for assessing AML patients' prognoses. At the time of diagnosis, CD123 expression analysis using IHC may represent a clinically useful assessment for de novo AML patients.
Collapse
Affiliation(s)
- Nana Arai
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan. .,Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan.
| | - Mayumi Homma
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Maasa Abe
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Yuta Baba
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - So Murai
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Megumi Watanuki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Yukiko Kawaguchi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Shun Fujiwara
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Nobuyuki Kabasawa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Hiroyuki Tsukamoto
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Yui Uto
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Hirotsugu Ariizumi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Kouji Yanagisawa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Norimichi Hattori
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Bungo Saito
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Eisuke Shiozawa
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Hiroshi Harada
- Division of Hematology, Department of Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | | | - Tsuyoshi Nakamaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8666, Japan
| | - Masafumi Takimoto
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Leukemia Stem Cells in the Pathogenesis, Progression, and Treatment of Acute Myeloid Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:95-128. [DOI: 10.1007/978-981-13-7342-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Nimmakayala RK, Batra SK, Ponnusamy MP. Unraveling the journey of cancer stem cells from origin to metastasis. Biochim Biophys Acta Rev Cancer 2018; 1871:50-63. [PMID: 30419314 DOI: 10.1016/j.bbcan.2018.10.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
Cancer biology research over recent decades has given ample evidence for the existence of self-renewing and drug-resistant populations within heterogeneous tumors, widely recognized as cancer stem cells (CSCs). However, a lack of clear understanding about the origin, existence, maintenance, and metastatic roles of CSCs limit efforts towards the development of CSC-targeted therapy. In this review, we describe novel avenues of current CSC biology. In addition to cell fusion and horizontal gene transfer, CSCs are originated by mutations in somatic or differentiated cancer cells, resulting in de-differentiation and reprogramming. Recent studies also provided evidence for the existence of distinct or heterogeneous CSC populations within a single heterogeneous tumor. Our analysis of the literature also opens the doors for a novel hypothesis that CSC populations with specific phenotypes, metabolic profiles, and clonogenic potential metastasize to specific organs.
Collapse
Affiliation(s)
- Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
37
|
Staudt D, Murray HC, McLachlan T, Alvaro F, Enjeti AK, Verrills NM, Dun MD. Targeting Oncogenic Signaling in Mutant FLT3 Acute Myeloid Leukemia: The Path to Least Resistance. Int J Mol Sci 2018; 19:ijms19103198. [PMID: 30332834 PMCID: PMC6214138 DOI: 10.3390/ijms19103198] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
The identification of recurrent driver mutations in genes encoding tyrosine kinases has resulted in the development of molecularly-targeted treatment strategies designed to improve outcomes for patients diagnosed with acute myeloid leukemia (AML). The receptor tyrosine kinase FLT3 is the most commonly mutated gene in AML, with internal tandem duplications within the juxtamembrane domain (FLT3-ITD) or missense mutations in the tyrosine kinase domain (FLT3-TKD) present in 30–35% of AML patients at diagnosis. An established driver mutation and marker of poor prognosis, the FLT3 tyrosine kinase has emerged as an attractive therapeutic target, and thus, encouraged the development of FLT3 tyrosine kinase inhibitors (TKIs). However, the therapeutic benefit of FLT3 inhibition, particularly as a monotherapy, frequently results in the development of treatment resistance and disease relapse. Commonly, FLT3 inhibitor resistance occurs by the emergence of secondary lesions in the FLT3 gene, particularly in the second tyrosine kinase domain (TKD) at residue Asp835 (D835) to form a ‘dual mutation’ (ITD-D835). Individual FLT3-ITD and FLT3-TKD mutations influence independent signaling cascades; however, little is known about which divergent signaling pathways are controlled by each of the FLT3 specific mutations, particularly in the context of patients harboring dual ITD-D835 mutations. This review provides a comprehensive analysis of the known discrete and cooperative signaling pathways deregulated by each of the FLT3 specific mutations, as well as the therapeutic approaches that hold the most promise of more durable and personalized therapeutic approaches to improve treatments of FLT3 mutant AML.
Collapse
Affiliation(s)
- Dilana Staudt
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Heather C Murray
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Tabitha McLachlan
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Frank Alvaro
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
- John Hunter Children's Hospital, Faculty of Health and Medicine, University of Newcastle, New Lambton Heights, NSW 2305, Australia.
| | - Anoop K Enjeti
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
- Calvary Mater Hospital, Hematology Department, Waratah, NSW 2298, Australia.
- NSW Health Pathology North, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
38
|
Histone deacetylase inhibitor targets CD123/CD47-positive cells and reverse chemoresistance phenotype in acute myeloid leukemia. Leukemia 2018; 33:931-944. [PMID: 30291336 DOI: 10.1038/s41375-018-0279-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/15/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Chemoresistance may be due to the survival of leukemia stem cells (LSCs) that are quiescent and not responsive to chemotherapy or lie on the intrinsic or acquired resistance of the specific pool of AML cells. Here, we found, among well-established LSC markers, only CD123 and CD47 are correlated with AML cell chemosensitivities across cell lines and patient samples. Further study reveals that percentages of CD123+CD47+ cells significantly increased in chemoresistant lines compared to parental cell lines. However, stemness signature genes are not significantly increased in resistant cells. Instead, gene changes are enriched in cell cycle and cell survival pathways. This suggests CD123 may serve as a biomarker for chemoresistance, but not stemness of AML cells. We further investigated the role of epigenetic factors in regulating the survival of chemoresistant leukemia cells. Epigenetic drugs, especially histone deacetylase inhibitors (HDACis), effectively induced apoptosis of chemoresistant cells. Furthermore, HDACi Romidepsin largely reversed gene expression profile of resistant cells and efficiently targeted and removed chemoresistant leukemia blasts in xenograft AML mouse model. More interestingly, Romidepsin preferentially targets CD123+ cells, while chemotherapy drug Ara-C mainly targeted fast-growing, CD123- cells. Therefore, Romidepsin alone or in combination with Ara-C may be a potential treatment strategy for chemoresistant patients.
Collapse
|
39
|
Abdollahpour-Alitappeh M, Razavi-Vakhshourpour S, Abolhassani M. Development of a new anti-CD123 monoclonal antibody to target the human CD123 antigen as an acute myeloid leukemia cancer stem cell biomarker. Biotechnol Appl Biochem 2018; 65:841-847. [PMID: 29972607 DOI: 10.1002/bab.1681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 01/20/2023]
Abstract
Acute myeloid leukemia (AML) is a clonal hematologic malignancy arising from a small population of leukemic cells initiating the disease. CD123 is differentially expressed in AML blasts compared with normal hematopoietic stem and progenitor cells. The aim of this study was to develop specific monoclonal antibodies (mAbs) directed against AML. Three BALB/c mice were immunized with the human CD123 antigen, and the immune spleen cells were fused with the SP2/0 myeloma cell line. Hybridomas were screened by indirect enzyme-linked immunosorbent assay (ELISA), and the positive hybrids were cloned by limiting dilution. The mAb isotype was determined, ascitic fluids were produced, and antibodies were purified using Fast protein liquid chromatography (Sephacryl S-200). The specificity of the hybridomas was examined by ELISA, cell-based ELISA, and flow cytometry. After three rounds of cell cloning, four anti-CD123 secreting hybridomas were obtained with the IgM isotype. Among them, one stable hybrid, designated sC1, exhibited the higher ability to recognize the CD123 antigen, as compared with the other hybridomas. Our results showed that sC1 has the ability to bind specifically to the CD123 antigen (41.36%) on the cell surface. The anti-CD123 mAb produced in this study may be useful for the development of both diagnostic and therapeutic purposes for AML.
Collapse
Affiliation(s)
| | | | - Mohsen Abolhassani
- Hybridoma Lab, Immunology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
40
|
Comprehensive haematological indices reference intervals for a healthy Omani population: First comprehensive study in Gulf Cooperation Council (GCC) and Middle Eastern countries based on age, gender and ABO blood group comparison. PLoS One 2018; 13:e0194497. [PMID: 29621271 PMCID: PMC5886408 DOI: 10.1371/journal.pone.0194497] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 02/21/2018] [Indexed: 11/19/2022] Open
Abstract
Background Reference intervals for venous blood parameters differs with age, gender, geographic region, and ethnic groups. Hence local laboratory reference intervals are important to improve the diagnostic accuracy of health assessments and diseases. However, there have been no comprehensive published reference intervals established in Oman, the Gulf Cooperation Council or Middle Eastern countries. Hence, the aim of this study was to establish reference intervals for full blood count in healthy Omani adults. Methods Venous blood specimens were collected from 2202 healthy individuals aged 18 to 69 years from January 2012 to April 2017, and analysed by Sysmex XS-1000i and Cell-Dyn Sapphire automated haematology analysers. Results were statistically analysed and compared by gender, age, and ABO blood group. The lower and upper reference limits of the haematology reference intervals were established at the 2.5th and 97.5th percentiles respectively. Results Reference intervals were calculated for 17 haematology parameters which included red blood cell, white blood cell, and platelet parameters. Red blood cell (RBC), haemoglobin (HGB), haematocrit (HCT), platelet and platelet haematocrit counts of the healthy donors were significantly different between males and females at all ages (p < 0.05), with males having higher mean values of RBC, HGB and HCT than females. Other complete blood count parameters showed no significant differences between genders, age groups, instruments, or blood groups. Our study showed a lower haemoglobin limit for the normal reference interval in males and females than the currently used in Oman. Conclusions Data from this study established specific reference intervals which could be considered for general use in Oman. The differences in haematology reference intervals highlights the necessity to establish reference intervals for venous blood parameters among the healthy population in each country or at least in each region.
Collapse
|
41
|
Pilot Study on Mass Spectrometry-Based Analysis of the Proteome of CD34⁺CD123⁺ Progenitor Cells for the Identification of Potential Targets for Immunotherapy in Acute Myeloid Leukemia. Proteomes 2018; 6:proteomes6010011. [PMID: 29439554 PMCID: PMC5874770 DOI: 10.3390/proteomes6010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/03/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
Targeting of leukemic stem cells with specific immunotherapy would be an ideal approach for the treatment of myeloid malignancies, but suitable epitopes are unknown. The comparative proteome-level characterization of hematopoietic stem and progenitor cells from healthy stem cell donors and patients with acute myeloid leukemia has the potential to reveal differentially expressed proteins which can be used as surface-markers or as proxies for affected molecular pathways. We employed mass spectrometry methods to analyze the proteome of the cytosolic and the membrane fraction of CD34 and CD123 co-expressing FACS-sorted leukemic progenitors from five patients with acute myeloid leukemia. As a reference, CD34+CD123+ normal hematopoietic progenitor cells from five healthy, granulocyte-colony stimulating factor (G-CSF) mobilized stem cell donors were analyzed. In this Tandem Mass Tag (TMT) 10-plex labelling–based approach, 2070 proteins were identified with 171 proteins differentially abundant in one or both cellular compartments. This proof-of-principle-study demonstrates the potential of mass spectrometry to detect differentially expressed proteins in two compartment fractions of the entire proteome of leukemic stem cells, compared to their non-malignant counterparts. This may contribute to future immunotherapeutic target discoveries and individualized AML patient characterization.
Collapse
|
42
|
Update of ALDH as a Potential Biomarker and Therapeutic Target for AML. BIOMED RESEARCH INTERNATIONAL 2018. [PMID: 29516013 PMCID: PMC5817321 DOI: 10.1155/2018/9192104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Studies employing mouse transplantation have illustrated the role of aldehyde dehydrogenase (ALDH) defining hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs). Besides being a molecular marker, ALDH mediates drug resistance in AML, which induces poor prognosis of the patients. In AML patients, either CD34+ALDHbr population or CD34+CD38-ALDHint population was found to denote LSCs and minimal residual disease (MRD). A bunch of reagents targeting ALDH directly or indirectly have been evaluated. ATRA, disulfiram, and dimethyl ampal thiolester (DIMATE) are all shown to be potential candidates to open new perspective for AML treatment. However, inconsistent results have been shown for markers of LSCs, which makes it even more difficult to differentiate LSCs and HSCs. In this review, we elevated the role of ALDH to be a potential marker to define and distinguish HSCs and LSCs and its importance in prognosis and target therapy in AML patients. In addition to immunophenotypical markers, ALDH is also functionally active in defining and distinguishing HSCs and LSCs and offers intracellular protections against cytotoxic drugs. Targeting ALDH may be a potential strategy to improve AML treatment. Additional studies concerning specific targeting ALDH and mechanisms of its roles in LSCs are warranted.
Collapse
|
43
|
Zhang CC, Yan Z, Pascual B, Jackson-Fisher A, Huang DS, Zong Q, Elliott M, Fan C, Huser N, Lee J, Sung M, Sapra P. Gemtuzumab Ozogamicin (GO) Inclusion to Induction Chemotherapy Eliminates Leukemic Initiating Cells and Significantly Improves Survival in Mouse Models of Acute Myeloid Leukemia. Neoplasia 2017; 20:1-11. [PMID: 29172076 PMCID: PMC5702869 DOI: 10.1016/j.neo.2017.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/23/2022] Open
Abstract
Gemtuzumab ozogamicin (GO) is an anti-CD33 antibody-drug conjugate for the treatment of acute myeloid leukemia (AML). Although GO shows a narrow therapeutic window in early clinical studies, recent reports detailing a modified dosing regimen of GO can be safely combined with induction chemotherapy, and the combination provides significant survival benefits in AML patients. Here we tested whether the survival benefits seen with the combination arise from the enhanced reduction of chemoresidual disease and leukemic initiating cells (LICs). Herein, we use cell line and patient-derived xenograft (PDX) AML models to evaluate the combination of GO with daunorubicin and cytarabine (DA) induction chemotherapy on AML blast growth and animal survival. DA chemotherapy and GO as separate treatments reduced AML burden but left significant chemoresidual disease in multiple AML models. The combination of GO and DA chemotherapy eliminated nearly all AML burden and extended overall survival. In two small subsets of AML models, chemoresidual disease following DA chemotherapy displayed hallmark markers of leukemic LICs (CLL1 and CD34). In vivo, the two chemoresistant subpopulations (CLL1+/CD117− and CD34+/CD38+) showed higher ability to self-renewal than their counterpart subpopulations, respectively. CD33 was coexpressed in these functional LIC subpopulations. We demonstrate that the GO and DA induction chemotherapy combination more effectively eliminates LICs in AML PDX models than either single agent alone. These data suggest that the survival benefit seen by the combination of GO and induction chemotherapy, nonclinically and clinically, may be attributed to the enhanced reduction of LICs.
Collapse
Affiliation(s)
- Cathy C Zhang
- Pfizer Worldwide Research and Development, Oncology Research Unit, La Jolla, CA.
| | - Zhengming Yan
- Pfizer Worldwide Research and Development, Oncology Research Unit, La Jolla, CA
| | - Bernadette Pascual
- Pfizer Worldwide Research and Development, Oncology Research Unit, La Jolla, CA
| | - Amy Jackson-Fisher
- Pfizer Worldwide Research and Development, Oncology Research Unit, La Jolla, CA
| | | | - Qing Zong
- Pfizer Worldwide Research and Development, Drug Safety Research and Development Group, La Jolla, CA
| | - Mark Elliott
- Pfizer Worldwide Research and Development, Oncology Research Unit, La Jolla, CA
| | - Conglin Fan
- Pfizer Worldwide Research and Development, Oncology Research Unit, La Jolla, CA
| | - Nanni Huser
- Pfizer Worldwide Research and Development, Oncology Research Unit, La Jolla, CA
| | - Joseph Lee
- Pfizer Worldwide Research and Development, Oncology Research Unit, La Jolla, CA
| | | | | |
Collapse
|
44
|
Li F, Sutherland MK, Yu C, Walter RB, Westendorf L, Valliere-Douglass J, Pan L, Cronkite A, Sussman D, Klussman K, Ulrich M, Anderson ME, Stone IJ, Zeng W, Jonas M, Lewis TS, Goswami M, Wang SA, Senter PD, Law CL, Feldman EJ, Benjamin DR. Characterization of SGN-CD123A, A Potent CD123-Directed Antibody-Drug Conjugate for Acute Myeloid Leukemia. Mol Cancer Ther 2017; 17:554-564. [PMID: 29142066 DOI: 10.1158/1535-7163.mct-17-0742] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/19/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022]
Abstract
Treatment choices for acute myelogenous leukemia (AML) patients resistant to conventional chemotherapies are limited and novel therapeutic agents are needed. IL3 receptor alpha (IL3Rα, or CD123) is expressed on the majority of AML blasts, and there is evidence that its expression is increased on leukemic relative to normal hematopoietic stem cells, which makes it an attractive target for antibody-based therapy. Here, we report the generation and preclinical characterization of SGN-CD123A, an antibody-drug conjugate using the pyrrolobenzodiazepine dimer (PBD) linker and a humanized CD123 antibody with engineered cysteines for site-specific conjugation. Mechanistically, SGN-CD123A induces activation of DNA damage response pathways, cell-cycle changes, and apoptosis in AML cells. In vitro, SGN-CD123A-mediated potent cytotoxicity of 11/12 CD123+ AML cell lines and 20/23 primary samples from AML patients, including those with unfavorable cytogenetic profiles or FLT3 mutations. In vivo, SGN-CD123A treatment led to AML eradication in a disseminated disease model, remission in a subcutaneous xenograft model, and significant growth delay in a multidrug resistance xenograft model. Moreover, SGN-CD123A also resulted in durable complete remission of a patient-derived xenograft AML model. When combined with a FLT3 inhibitor quizartinib, SGN-CD123A enhanced the activity of quizartinib against two FLT3-mutated xenograft models. Overall, these data demonstrate that SGN-CD123A is a potent antileukemic agent, supporting an ongoing trial to evaluate its safety and efficacy in AML patients (NCT02848248). Mol Cancer Ther; 17(2); 554-64. ©2017 AACR.
Collapse
Affiliation(s)
- Fu Li
- Translational Research, Seattle Genetics, Inc. Bothell, Washington.
| | | | - Changpu Yu
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Roland B Walter
- Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Hematology and Department of Medicine, University of Washington, Seattle, Washington
| | - Lori Westendorf
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | | | - Lucy Pan
- Analytical Science, Seattle Genetics, Inc., Bothell, Washington
| | - Ashley Cronkite
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Django Sussman
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Kerry Klussman
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Michelle Ulrich
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | | | - Ivan J Stone
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Weiping Zeng
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Mechthild Jonas
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Timothy S Lewis
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Maitrayee Goswami
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter D Senter
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Che-Leung Law
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | - Eric J Feldman
- Translational Research, Seattle Genetics, Inc. Bothell, Washington
| | | |
Collapse
|
45
|
Al-Mawali A, Pinto AD, Al-Zadjali S. CD34+CD38-CD123+ Cells Are Present in Virtually All Acute Myeloid Leukaemia Blasts: A Promising Single Unique Phenotype for Minimal Residual Disease Detection. Acta Haematol 2017; 138:175-181. [PMID: 29065396 DOI: 10.1159/000480448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/19/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND/AIMS In CD34-positive acute myeloid leukaemia (AML), the leukaemia-initiating event likely takes place in the CD34+CD38- cell compartment. CD123 has been shown to be a unique marker of leukaemic stem cells within the CD34+CD38- compartment. The aim of this study was to identify the percentage of CD34+CD38-CD123+ cells in AML blasts, AML CD34+CD38- stem cells, and normal and regenerating bone marrow CD34+CD38- stem cells from non-myeloid malignancies. METHODS Thirty-eight adult de novo AML patients with intention to treat were enrolled after the application of inclusion criteria from February 2012 to February 2017. The percentage of the CD34+CD38-CD123+ phenotype in the blast population at diagnosis was determined using a CD45-gating strategy and CD34+ backgating by flow cytometry. We studied the CD34+CD38-CD123+ fraction in AML blasts at diagnosis, and its utility as a unique phenotype for minimal residual disease (MRD) of AML patients. RESULTS CD123+ cells were present in 97% of AML blasts in patients at diagnosis (median 90%; range 21-99%). CD123+ cells were also present in 97% of the CD34+CD38- compartment (median 0.8164%, range 0.0262-39.7%). Interestingly, CD123 was not present in normal and regenerating CD34+CD38- bone marrow stem cells (range 0.002- 0.067 and 0.004-0.086, respectively). CONCLUSION The CD34+CD38-CD123+ phenotype is present in virtually all AML blasts and it may be used as a unique single phenotype for MRD detection in AML patients.
Collapse
Affiliation(s)
- Adhra Al-Mawali
- Centre of Studies and Research, Ministry of Health, Muscat, Sultanate of Oman
| | | | | |
Collapse
|
46
|
Wen J, Tao W, Hao S, Zu Y. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing. J Hematol Oncol 2017; 10:119. [PMID: 28610635 PMCID: PMC5470227 DOI: 10.1186/s13045-017-0489-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/05/2017] [Indexed: 12/18/2022] Open
Abstract
Background Sickle cell disease (SCD) is a disorder of red blood cells (RBCs) expressing abnormal hemoglobin-S (HbS) due to genetic inheritance of homologous HbS gene. However, people with the sickle cell trait (SCT) carry a single allele of HbS and do not usually suffer from SCD symptoms, thus providing a rationale to treat SCD. Methods To validate gene therapy potential, hematopoietic stem cells were isolated from the SCD patient blood and treated with CRISPR/Cas9 approach. To precisely dissect genome-editing effects, erythroid progenitor cells were cloned from single colonies of CRISPR-treated cells and then expanded for simultaneous gene, protein, and cellular function studies. Results Genotyping and sequencing analysis revealed that the genome-edited erythroid progenitor colonies were converted to SCT genotype from SCD genotype. HPLC protein assays confirmed reinstallation of normal hemoglobin at a similar level with HbS in the cloned genome-edited erythroid progenitor cells. For cell function evaluation, in vitro RBC differentiation of the cloned erythroid progenitor cells was induced. As expected, cell sickling assays indicated function reinstitution of the genome-edited offspring SCD RBCs, which became more resistant to sickling under hypoxia condition. Conclusions This study is an exploration of genome editing of SCD HSPCs. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0489-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianguo Wen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wenjing Tao
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Suyang Hao
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| |
Collapse
|
47
|
Lagunas-Rangel FA, Chávez-Valencia V. FLT3–ITD and its current role in acute myeloid leukaemia. Med Oncol 2017; 34:114. [DOI: 10.1007/s12032-017-0970-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/25/2017] [Indexed: 01/20/2023]
|
48
|
Horne GA, Copland M. Approaches for targeting self-renewal pathways in cancer stem cells: implications for hematological treatments. Expert Opin Drug Discov 2017; 12:465-474. [DOI: 10.1080/17460441.2017.1303477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Biology and relevance of human acute myeloid leukemia stem cells. Blood 2017; 129:1577-1585. [PMID: 28159741 DOI: 10.1182/blood-2016-10-696054] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
Evidence of human acute myeloid leukemia stem cells (AML LSCs) was first reported nearly 2 decades ago through the identification of rare subpopulations of engrafting cells in xenotransplantation assays. These AML LSCs were shown to reside at the apex of a cellular hierarchy that initiates and maintains the disease, exhibiting properties of self-renewal, cell cycle quiescence, and chemoresistance. This cancer stem cell model offers an explanation for chemotherapy resistance and disease relapse and implies that approaches to treatment must eradicate LSCs for cure. More recently, a number of studies have both refined and expanded our understanding of LSCs and intrapatient heterogeneity in AML using improved xenotransplant models, genome-scale analyses, and experimental manipulation of primary patient cells. Here, we review these studies with a focus on the immunophenotype, biological properties, epigenetics, genetics, and clinical associations of human AML LSCs and discuss critical questions that need to be addressed in future research.
Collapse
|
50
|
Abstract
Hematopoiesis is probably the best-understood stem cell differentiation system; hematopoietic stem cell (HSC) transplantation represents the most widely used regenerative therapy. The classical view of lineage hierarchy in hematopoiesis is built on cell type definition system by a group of cell surface markers. However, the traditional model is facing increasing challenges, as many classical cell types are proved to be heterogeneous. Recently, the developments of new technologies allow genome, transcriptome, proteome, and epigenome analysis at the single-cell level. For the first time, we can study hematopoietic system at single-cell resolution on a multi-omic scale. Here, we review recent technical advances in single-cell analysis technology, as well as their current applications. We will also discuss the impact of single-cell technologies on both basic research and clinical application in hematology.
Collapse
|