1
|
Zha C, Song J, Wan M, Lin X, He X, Wu M, Huang R. Recent advances in CAR-T therapy for the treatment of acute myeloid leukemia. Ther Adv Hematol 2024; 15:20406207241263489. [PMID: 39050113 PMCID: PMC11268017 DOI: 10.1177/20406207241263489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy, which has demonstrated notable efficacy against B-cell malignancies and is approved by the US Food and Drug Administration for clinical use in this context, represents a significant milestone in cancer immunotherapy. However, the efficacy of CAR-T therapy for the treatment of acute myeloid leukemia (AML) is poor. The challenges associated with the application of CAR-T therapy for the clinical treatment of AML include, but are not limited to, nonspecific distribution of AML therapeutic targets, difficulties in the production of CAR-T cells, AML blast cell heterogeneity, the immunosuppressive microenvironment in AML, and treatment-related adverse events. In this review, we summarize the recent findings regarding various therapeutic targets for AML (CD33, CD123, CLL1, CD7, etc.) and the results of the latest clinical studies on these targets. Thereafter, we also discuss the challenges related to CAR-T therapy for AML and some promising strategies for overcoming these challenges, including novel approaches such as gene editing and advances in CAR design.
Collapse
Affiliation(s)
- Chenyu Zha
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jialu Song
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Ming Wan
- Department of Hematology, Zhujiang Hospital of Southern Medical University, No. 253 Gongyedadaozhong Road, Guangzhou, Guangdong 510282, China
| | - Xiao Lin
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaolin He
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Ming Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Hematology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital of Southern Medical University, No. 253 Gongyedadaozhong Road, Guangzhou, Guangdong 510282, China
| |
Collapse
|
2
|
Mosna F. The Immunotherapy of Acute Myeloid Leukemia: A Clinical Point of View. Cancers (Basel) 2024; 16:2359. [PMID: 39001421 PMCID: PMC11240611 DOI: 10.3390/cancers16132359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The potential of the immune system to eradicate leukemic cells has been consistently demonstrated by the Graft vs. Leukemia effect occurring after allo-HSCT and in the context of donor leukocyte infusions. Various immunotherapeutic approaches, ranging from the use of antibodies, antibody-drug conjugates, bispecific T-cell engagers, chimeric antigen receptor (CAR) T-cells, and therapeutic infusions of NK cells, are thus currently being tested with promising, yet conflicting, results. This review will concentrate on various types of immunotherapies in preclinical and clinical development, from the point of view of a clinical hematologist. The most promising therapies for clinical translation are the use of bispecific T-cell engagers and CAR-T cells aimed at lineage-restricted antigens, where overall responses (ORR) ranging from 20 to 40% can be achieved in a small series of heavily pretreated patients affected by refractory or relapsing leukemia. Toxicity consists mainly in the occurrence of cytokine-release syndrome, which is mostly manageable with step-up dosing, the early use of cytokine-blocking agents and corticosteroids, and myelosuppression. Various cytokine-enhanced natural killer products are also being tested, mainly as allogeneic off-the-shelf therapies, with a good tolerability profile and promising results (ORR: 20-37.5% in small trials). The in vivo activation of T lymphocytes and NK cells via the inhibition of their immune checkpoints also yielded interesting, yet limited, results (ORR: 33-59%) but with an increased risk of severe Graft vs. Host disease in transplanted patients. Therefore, there are still several hurdles to overcome before the widespread clinical use of these novel compounds.
Collapse
Affiliation(s)
- Federico Mosna
- Hematology and Bone Marrow Transplantation Unit (BMTU), Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of Paracelsus Medical University (PMU), 39100 Bolzano, Italy
| |
Collapse
|
3
|
Shao W, Yao Y, Yang L, Li X, Ge T, Zheng Y, Zhu Q, Ge S, Gu X, Jia R, Song X, Zhuang A. Novel insights into TCR-T cell therapy in solid neoplasms: optimizing adoptive immunotherapy. Exp Hematol Oncol 2024; 13:37. [PMID: 38570883 PMCID: PMC10988985 DOI: 10.1186/s40164-024-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Adoptive immunotherapy in the T cell landscape exhibits efficacy in cancer treatment. Over the past few decades, genetically modified T cells, particularly chimeric antigen receptor T cells, have enabled remarkable strides in the treatment of hematological malignancies. Besides, extensive exploration of multiple antigens for the treatment of solid tumors has led to clinical interest in the potential of T cells expressing the engineered T cell receptor (TCR). TCR-T cells possess the capacity to recognize intracellular antigen families and maintain the intrinsic properties of TCRs in terms of affinity to target epitopes and signal transduction. Recent research has provided critical insight into their capability and therapeutic targets for multiple refractory solid tumors, but also exposes some challenges for durable efficacy. In this review, we describe the screening and identification of available tumor antigens, and the acquisition and optimization of TCRs for TCR-T cell therapy. Furthermore, we summarize the complete flow from laboratory to clinical applications of TCR-T cells. Last, we emerge future prospects for improving therapeutic efficacy in cancer world with combination therapies or TCR-T derived products. In conclusion, this review depicts our current understanding of TCR-T cell therapy in solid neoplasms, and provides new perspectives for expanding its clinical applications and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Weihuan Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiaoran Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Qiuyi Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
4
|
Wang XY, Bian MR, Lin GQ, Yu L, Zhang YM, Wu DP. Tandem bispecific CD123/CLL-1 CAR-T cells exhibit specific cytolytic effector functions against human acute myeloid leukaemia. Eur J Haematol 2024; 112:83-93. [PMID: 37712633 DOI: 10.1111/ejh.14104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVES The treatment of refractory and recurrent acute myeloid leukaemia (AML) is still a challenge with poor response rates and short survival times. In an attempt to solve this problem, we constructed a tandem bispecific chimeric antigen receptor (CAR) targeting CD123 and C-type lectin-like molecule 1 (CLL-1), two different AML antigens, and verified its cytotoxic effects in vitro. METHODS We established and cultured K562 cell lines expressing both CD123 and CLL1 antigens. Single-target CAR-T cells specific to CD123 and CLL1 were engineered, alongside tandem CD123/CLL1 bispecific CAR-T cells. Flow cytometry was used to determine cell phenotypes, transfection efficiencies, cytokine release, and CAR-T-cell proliferation, and an lactate dehydrogenase assay was used to detect the cytotoxicity of CD123/CLL-1 bispecific tandem CAR-T cells in vitro. RESULTS Two types of tandem CAR-T cells exhibited significant killing effects on CLL-1 + CD123+ leukaemia cell lines and primary AML tumour cells. The killing efficiency of tandem CAR-T cells in the case of single antigen expression is comparable to that of single target CAR-T cells. When faced with dual target tumour cells, dual target CAR-T cells significantly surpass single target CAR-T cells. CD123/CLL-1 CAR-T cells in tandem targeted and killed CD123- and CLL-1-positive leukaemia cell lines and released a large number of cytokines. CONCLUSIONS CD123/CLL-1 CAR-T cells in tandem can simultaneously target CD123 and CLL-1 on AML cells, demonstrating a significant ability to kill single antigens and multi-target tumour cells. This suggests that CD123/CLL-1 CAR-T cells exhibit significant advantages in the expression of multiple antigens in a wide range of target cells, which may help overcome the challenges posed by tumour heterogeneity and evasion mechanisms.
Collapse
MESH Headings
- Humans
- Cell Line, Tumor
- Cytokines/metabolism
- Immunotherapy, Adoptive
- Interleukin-3 Receptor alpha Subunit/genetics
- Interleukin-3 Receptor alpha Subunit/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/metabolism
- Neoplasm Recurrence, Local
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes
Collapse
Affiliation(s)
- Xiang-Yu Wang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, China
| | - Mei-Ru Bian
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, China
| | - Guo-Qiang Lin
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China
| | - Lei Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, Institute of Biomedical Engineering and Technology, East China Normal University, Shanghai, China
- Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai, China
| | - Yan-Ming Zhang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, China
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Fetsch V, Zeiser R. Chimeric antigen receptor T cells for acute myeloid leukemia. Eur J Haematol 2024; 112:28-35. [PMID: 37455578 DOI: 10.1111/ejh.14047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The use of T cells expressing chimeric antigen receptors (CARs) that can target and eliminate cancer cells has revolutionized the treatment of B-cell malignancies. In contrast, CAR T cells have not yet become a routine treatment for myeloid malignancies such as acute myeloid leukemia (AML) or myeloproliferative neoplasms (MPNs). For these disease entities, allogeneic hematopoietic cell transplantation (allo-HCT) relying on polyclonal allo-reactive T cells is still the major cellular immunotherapy used in clinical routine. Here, we discuss major hurdles of CAR T-cell therapy for myeloid malignancies and novel approaches to enhance their efficacy and reduce toxicity. Heterogeneity of the malignant myeloid clone, CAR T-cell induced toxicity against normal hematopoietic cells, lack of long-term CAR T-cell persistence, and loss or downregulation of targetable antigens on myeloid cells are obstacles for successful CAR T cells therapy against AML and MPNs. Strategies to overcome these hurdles include pharmacological interventions, for example, demethylating therapy to increase target antigen expression, multi-targeted CAR T cells, and gene-therapy based approaches that delete the CAR target antigen in the hematopoietic cells of the recipient to protect them from CAR-induced myelotoxicity. Most of these approaches are still in preclinical testing but may reach the clinic in the coming years. In summary, we report on barriers to CAR T-cell use against AML and novel therapeutic strategies to overcome these challenges, with the goal of clinical treatment of myeloid malignancies with CAR T cells.
Collapse
Affiliation(s)
- Viktor Fetsch
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Deng X, Zhou J, Cao Y. Generating universal chimeric antigen receptor expressing cell products from induced pluripotent stem cells: beyond the autologous CAR-T cells. Chin Med J (Engl) 2023; 136:127-137. [PMID: 36806264 PMCID: PMC10106131 DOI: 10.1097/cm9.0000000000002513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 02/23/2023] Open
Abstract
ABSTRACT Adoptive therapeutic immune cells, such as chimeric antigen receptor (CAR)-T cells and natural killer cells, have established a new generation of precision medicine based on which dramatic breakthroughs have been achieved in intractable lymphoma treatments. Currently, well-explored approaches focus on autologous cells due to their low immunogenicity, but they are highly restricted by the high costs, time consumption of processing, and the insufficiency of primary cells in some patients. Induced pluripotent stem cells (iPSCs) are cell sources that can theoretically produce indefinite well-differentiated immune cells. Based on the above facts, it may be reasonable to combine the iPSC technology and the CAR design to produce a series of highly controllable and economical "live" drugs. Manufacturing hypoimmunogenic iPSCs by inactivation or over-expression at the genetic level and then arming the derived cells with CAR have emerged as a form of "off-the-shelf" strategy to eliminate tumor cells efficiently and safely in a broader range of patients. This review describes the reasonability, feasibility, superiority, and drawbacks of such approaches, summarizes the current practices and relevant research progress, and provides insights into the possible new paths for personalized cell-based therapies.
Collapse
Affiliation(s)
- Xinyue Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Scientific Research Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Scientific Research Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Scientific Research Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
7
|
Nikoo M, Rudiansyah M, Bokov DO, Jainakbaev N, Suksatan W, Ansari MJ, Thangavelu L, Chupradit S, Zamani A, Adili A, Shomali N, Akbari M. Potential of chimeric antigen receptor (CAR)-redirected immune cells in breast cancer therapies: Recent advances. J Cell Mol Med 2022; 26:4137-4156. [PMID: 35762299 PMCID: PMC9344815 DOI: 10.1111/jcmm.17465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/16/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022] Open
Abstract
Despite substantial developments in conventional treatments such as surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular-targeted therapy, breast cancer remains the leading cause of cancer mortality in women. Currently, chimeric antigen receptor (CAR)-redirected immune cell therapy has emerged as an innovative immunotherapeutic approach to ameliorate survival rates of breast cancer patients by eliciting cytotoxic activity against cognate tumour-associated antigens expressing tumour cells. As a crucial component of adaptive immunity, T cells and NK cells, as the central innate immune cells, are two types of pivotal candidates for CAR engineering in treating solid malignancies. However, the biological distinctions between NK cells- and T cells lead to differences in cancer immunotherapy outcomes. Likewise, optimal breast cancer removal via CAR-redirected immune cells requires detecting safe target antigens, improving CAR structure for ideal immune cell functions, promoting CAR-redirected immune cells filtration to the tumour microenvironment (TME), and increasing the ability of these engineered cells to persist and retain within the immunosuppressive TME. This review provides a concise overview of breast cancer pathogenesis and its hostile TME. We focus on the CAR-T and CAR-NK cells and discuss their significant differences. Finally, we deliver a summary based on recent advancements in the therapeutic capability of CAR-T and CAR-NK cells in treating breast cancer.
Collapse
Affiliation(s)
- Marzieh Nikoo
- Department of Immunology, School of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of MedicineUniversitas Lambung Mangkurat / Ulin HospitalBanjarmasinIndonesia
| | - Dmitry Olegovich Bokov
- Institute of PharmacySechenov First Moscow State Medical UniversityMoscowRussian Federation
- Laboratory of Food ChemistryFederal Research Center of Nutrition, Biotechnology and Food SafetyMoscowRussian Federation
| | | | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical ScienceChulabhorn Royal AcademyBangkokThailand
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐kharjSaudi Arabia
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical ScienceSaveetha UniversityChennaiIndia
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical SciencesChiang Mai UniversityChiang MaiThailand
| | - Amir Zamani
- Shiraz Transplant Center, Abu Ali Sina HospitalShiraz University of Medical SciencesShirazIran
| | - Ali Adili
- Department of OncologyTabriz University of Medical SciencesTabrizIran
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South FloridaTampaFloridaUSA
| | - Navid Shomali
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Morteza Akbari
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
8
|
Kreidieh F, Abou Dalle I, Moukalled N, El-Cheikh J, Brissot E, Mohty M, Bazarbachi A. Relapse after allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia: an overview of prevention and treatment. Int J Hematol 2022; 116:330-340. [PMID: 35841458 DOI: 10.1007/s12185-022-03416-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/17/2022]
Abstract
Despite therapeutic progress in acute myeloid leukemia (AML), relapse post-allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains a major challenge. Here, we aim to provide an overview of prevention and treatment of relapse in this population, including cell-based and pharmacologic options. Post-transplant maintenance therapy is used in patients who have undetectable measurable residual disease (MRD), while pre-emptive treatment is administered upon detection of MRD. Prompt transfusion of prophylactic donor lymphocyte infusion (DLI) was found to be effective in preventing relapse and overcoming the negative impact of detectable MRD. In addition, patients with persistent targetable mutations can benefit from targeted post-transplant pharmacological interventions. IDH inhibitors have shown promising results in relapsed/refractory AML. Hypomethylating agents, such as decitabine and azacitidine, have been studied in the post-allo-HSCT setting, both as pre-emptive and prophylactic. Venetoclax has been shown effective in combination with hypomethylating agents or low-dose cytarabine in patients with newly diagnosed AML, especially those unfit for intensive chemotherapy. FLT3 inhibitors, the topic of another section in this review series, have significantly improved survival in FLT-3-ITD mutant AML. The role of other cell-based therapies, including CAR-T cells, in AML is currently being investigated.
Collapse
Affiliation(s)
- Firas Kreidieh
- Department of Internal Medicine, Medical Center, Bone Marrow Transplant Program, American University of Beirut, Beirut, Lebanon
| | - Iman Abou Dalle
- Department of Internal Medicine, Medical Center, Bone Marrow Transplant Program, American University of Beirut, Beirut, Lebanon
| | - Nour Moukalled
- Department of Internal Medicine, Medical Center, Bone Marrow Transplant Program, American University of Beirut, Beirut, Lebanon
| | - Jean El-Cheikh
- Department of Internal Medicine, Medical Center, Bone Marrow Transplant Program, American University of Beirut, Beirut, Lebanon
| | - Eolia Brissot
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, INSERM UMR 938 and Sorbonne University, Paris, France
| | - Mohamed Mohty
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, INSERM UMR 938 and Sorbonne University, Paris, France
| | - Ali Bazarbachi
- Department of Internal Medicine, Medical Center, Bone Marrow Transplant Program, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
9
|
Wu W, Liang X, Li H, Huang X, Wan C, Xie Q, Liu Z. Landscape of T Cells in NK-AML(M4/M5) Revealed by Single-Cell Sequencing. J Leukoc Biol 2022; 112:745-758. [PMID: 35258858 DOI: 10.1002/jlb.5a0721-396rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Normal karyotype acute myeloid leukemia (NK-AML) is a highly heterogeneous malignancy that resides within a complex immune microenvironment, complicating efforts to reveal the interaction between leukemia cells and immune cells. Understanding tumor-infiltrating T cells is crucial to the advancement of immune therapies and the improvement of the prognosis for NK-AML patients. We performed single-cell RNA sequencing on bone marrow cells from 5 NK-AML (M4/M5) patients and 1 normal donor and paired single-cell T cell receptor (TCR) sequencing on single T cells. As a result, we identified 8 T cell clusters based on the gene expression characteristics of each subset in NK-AML and described their developmental trajectories. In NK-AML patients, specific clusters, such as mucosal-associated invariant T cells (MAITs), were preferentially enriched and potentially clonally expanded. These transcriptome and TCR data analyses provide valuable insights and rich resources for understanding the immune environment of NK-AML.
Collapse
Affiliation(s)
- Wenqi Wu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Liang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huiqun Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoke Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chengyao Wan
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiongni Xie
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhenfang Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
10
|
Combinatorial antigen targeting strategies for acute leukemia: application in myeloid malignancy. Cytotherapy 2022; 24:282-290. [PMID: 34955406 PMCID: PMC8950815 DOI: 10.1016/j.jcyt.2021.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND AIMS Efforts to safely and effectively treat acute myeloid leukemia (AML) by targeting a single leukemia-associated antigen with chimeric antigen receptor (CAR) T cells have met with limited success, due in part to heterogeneous expression of myeloid antigens. The authors hypothesized that T cells expressing CARs directed toward two different AML-associated antigens would eradicate tumors and prevent relapse. METHODS For co-transduction with the authors' previously optimized CLL-1 CAR currently in clinical study (NCT04219163), the authors generated two CARs targeting either CD123 or CD33. The authors then tested the anti-tumor activity of T cells expressing each of the three CARs either alone or after co-transduction. The authors analyzed CAR T-cell phenotype, expansion and transduction efficacy and assessed function by in vitro and in vivo activity against AML cell lines expressing high (MOLM-13: CD123 high, CD33 high, CLL-1 intermediate), intermediate (HL-60: CD123 low, CD33 intermediate, CLL-1 intermediate/high) or low (KG-1a: CD123 low, CD33 low, CLL-1 low) levels of the target antigens. RESULTS The in vitro benefit of dual expression was most evident when the target cell line expressed low antigen levels (KG-1a). Mechanistically, dual expression was associated with higher pCD3z levels in T cells compared with single CAR T cells on exposure to KG-1a (P < 0.0001). In vivo, combinatorial targeting with CD123 or CD33 and CLL-1 CAR T cells improved tumor control and animal survival for all lines (KG-1a, MOLM-13 and HL-60); no antigen escape was detected in residual tumors. CONCLUSIONS Overall, these findings demonstrate that combinatorial targeting of CD33 or CD123 and CLL-1 with CAR T cells can control growth of heterogeneous AML tumors.
Collapse
|
11
|
Sockel K, Stölzel F, Hönl F, Baldauf H, Röllig C, Wermke M, von Bonin M, Teipel R, Link-Rachner C, Brandt K, Kroschinsky F, Hänel M, Morgner A, Klesse C, Ehninger G, Platzbecker U, Bornhäuser M, Schetelig J, Middeke JM. Allogeneic Stem Cell Transplantation with Sequential Melphalan-Based Conditioning in AML: Residual Morphological Blast Count Determines the Risk of Relapse. Cancer Manag Res 2022; 14:547-559. [PMID: 35210852 PMCID: PMC8857952 DOI: 10.2147/cmar.s339846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction Allogeneic hematopoietic cell transplantation (HCT) during chemotherapy-induced aplasia may offer long-term survival in acute myeloid leukemia (AML) with otherwise poor prognosis including ELN adverse risk, relapsed or refractory disease. However, the value of residual morphologic disease prior HCT in this context has not been conclusively settled until yet. Therefore, we aimed to investigate variables predicting outcome in this unique setting of sequential conditioning therapy, with a focus on pretreatment morphologic blast count. In contrast to the most popular FLAMSA-RIC protocol, we used a melphalan-based conditioning regimen during aplasia. Methods We retrospectively analyzed data from 173 AML patients who underwent a sequential melphalan-based conditioning therapy between 2003 and 2015 at our centre. All patients participated either in the prospective Phase 2 BRIDGE trial (NCT01295307), the Phase 3 AML2003 study (NCT00180102) or were treated according to this protocol and underwent allogeneic HCT after melphalan-based conditioning in treatment-induced aplasia. Results Median bone marrow blast count prior to conditioning was 10% (range, 0–96%). Four year probabilities of EFS and OS were 34% (95% CI, 28–43%) and 43% (95% CI, 36–52%), respectively. In multivariate analysis, blast count >20% was associated with worse EFS (HR = 1.93; p = 0.009) and OS (HR = 1.80; p = 0.026). This effect was not significant anymore for HCT during 1st line therapy. Conclusion Allogeneic HCT in aplasia with a melphalan-based conditioning regimen has the potential to cure a subset of adverse risk AML patients, even with persistent morphological disease prior HCT. However, a high pre-transplant blast count still indicates patients with a dismal prognosis, especially in the relapsed patient group, for whom post-transplant strategies should be considered to further optimize post HCT outcome.
Collapse
Affiliation(s)
- Katja Sockel
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
| | - Friedrich Stölzel
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
| | - Franziska Hönl
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
| | | | - Christoph Röllig
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
| | - Martin Wermke
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
| | - Malte von Bonin
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
| | - Raphael Teipel
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
| | - Cornelia Link-Rachner
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
| | - Kalina Brandt
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
| | - Frank Kroschinsky
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
| | - Mathias Hänel
- Department of Medicine III, Chemnitz Hospital, Chemnitz, Germany
| | - Anke Morgner
- Department of Medicine III, Chemnitz Hospital, Chemnitz, Germany
| | | | - Gerhard Ehninger
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Martin Bornhäuser
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
| | - Johannes Schetelig
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
- Clinical Trials Unit, DKMS, Dresden, Germany
| | - Jan Moritz Middeke
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Dresden, Germany
- Correspondence: Jan Moritz Middeke, Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus and Medical Faculty of the TU Dresden, Fetscherstr. 74, Dresden, 01307, Germany, Tel +49-0351-458-15603, Fax +49-0351-458-4373, Email
| |
Collapse
|
12
|
Liu Y, Yan X, Zhang F, Zhang X, Tang F, Han Z, Li Y. TCR-T Immunotherapy: The Challenges and Solutions. Front Oncol 2022; 11:794183. [PMID: 35145905 PMCID: PMC8822241 DOI: 10.3389/fonc.2021.794183] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/28/2021] [Indexed: 12/31/2022] Open
Abstract
T cell receptor-engineered T cell (TCR-T) therapy is free from the limit of surface antigen expression of the target cells, which is a potential cellular immunotherapy for cancer treatment. Significant advances in the treatment of hematologic malignancies with cellular immunotherapy have aroused the interest of researchers in the treatment of solid tumors. Nevertheless, the overall efficacy of TCR-T cell immunotherapy in solid tumors was not significantly high when compared with hematological malignancies. In this article, we pay attention to the barriers of TCR-T cell immunotherapy for solid tumors, as well as the strategies affecting the efficacy of TCR-T cell immunotherapy. To provide some reference for researchers to better overcome the impact of TCR-T cell efficiency in solid tumors.
Collapse
Affiliation(s)
- Yating Liu
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Yan
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Fan Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaoxia Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhijian Han
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Yumin Li,
| |
Collapse
|
13
|
Khawar MB, Sun H. CAR-NK Cells: From Natural Basis to Design for Kill. Front Immunol 2022; 12:707542. [PMID: 34970253 PMCID: PMC8712563 DOI: 10.3389/fimmu.2021.707542] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptors (CARs) are fusion proteins with an extracellular antigen recognition domain and numerous intracellular signaling domains that have been genetically modified. CAR-engineered T lymphocyte-based therapies have shown great success against blood cancers; however, potential fatal toxicity, such as in cytokine release syndrome, and high costs are some shortcomings that limit the clinical application of CAR-engineered T lymphocytes and remain to overcome. Natural killer (NK) cells are the focal point of current immunological research owing to their receptors that prove to be promising immunotherapeutic candidates for treating cancer. However, to date, manipulation of NK cells to treat malignancies has been moderately successful. Recent progress in the biology of NK cell receptors has greatly transformed our understanding of how NK cells recognize and kill tumor and infected cells. CAR-NK cells may serve as an alternative candidate for retargeting cancer because of their unique recognition mechanisms, powerful cytotoxic effects especially on cancer cells in both CAR-dependent and CAR-independent manners and clinical safety. Moreover, NK cells can serve as an ‘off-the-shelf product’ because NK cells from allogeneic sources can also be used in immunotherapies owing to their reduced risk of alloreactivity. Although ongoing fundamental research is in the beginning stages, this review provides an overview of recent developments implemented to design CAR constructs to stimulate NK activation and manipulate NK receptors for improving the efficiency of immunotherapy against cancer, summarizes the preclinical and clinical advances of CAR-NK cells against both hematological malignancies and solid tumors and confronts current challenges and obstacles of their applications. In addition, this review provides insights into prospective novel approaches that further enhance the efficiency of CAR-NK therapies and highlights potential questions that require to be addressed in the future.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou, Yangzhou, China.,Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan.,Laboratory of Molecular Biology & Genomics, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research Yangzhou, Yangzhou, China
| |
Collapse
|
14
|
Jhita N, Raikar SS. Allogeneic gamma delta T cells as adoptive cellular therapy for hematologic malignancies. EXPLORATION OF IMMUNOLOGY 2022; 2:334-350. [PMID: 35783107 PMCID: PMC9249101 DOI: 10.37349/ei.2022.00054] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/28/2022] [Indexed: 05/22/2023]
Abstract
Cancer immunotherapy, especially T-cell driven targeting, has significantly evolved and improved over the past decade, paving the way to treat previously refractory cancers. Hematologic malignancies, given their direct tumor accessibility and less immunosuppressive microenvironment compared to solid tumors, are better suited to be targeted by cellular immunotherapies. Gamma delta (γδ) T cells, with their unique attributes spanning the entirety of the immune system, make a tantalizing therapeutic platform for cancer immunotherapy. Their inherent anti-tumor properties, ability to act like antigen-presenting cells, and the advantage of having no major histocompatibility complex (MHC) restrictions, allow for greater flexibility in their utility to target tumors, compared to their αβ T cell counterpart. Their MHC-independent anti-tumor activity, coupled with their ability to be easily expanded from peripheral blood, enhance their potential to be used as an allogeneic product. In this review, the potential of utilizing γδ T cells to target hematologic malignancies is described, with a specific focus on their applicability as an allogeneic adoptive cellular therapy product.
Collapse
Affiliation(s)
| | - Sunil S. Raikar
- Correspondence: Sunil S. Raikar, Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA.
| |
Collapse
|
15
|
Deng B, Pan J, Liu Z, Liu S, Chen Y, Qu X, Zhang Y, Lin Y, Zhang Y, Yu X, Zhang Z, Niu X, Luan R, Ma M, Li X, Liu T, Wu X, Niu H, Chang AH, Tong C. Peripheral leukemia burden at time of apheresis negatively affects the clinical efficacy of CART19 in refractory or relapsed B-ALL. Mol Ther Methods Clin Dev 2021; 23:633-643. [PMID: 34901308 PMCID: PMC8640733 DOI: 10.1016/j.omtm.2021.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022]
Abstract
Our previous clinical study achieved complete remission (CR) rates of >90% following chimeric antigen receptor T cells targeting CD19 (CART19) treatment of refractory/relapsed B cell acute lymphoblastic leukemia (r/r B-ALL); however, the influence of the leukemia burden in peripheral blood (PB) blasts remains unclear. Here, we retrospectively analyzed 143 patients treated with CART19 (including 36 patients with PB blasts) to evaluate the effect of peripheral leukemia burden at the time of apheresis. One hundred seventeen patients with high disease burdens achieved 91.5% CR or incomplete count recovery CR and 86.3% minimal residual disease-negative CR, and 26 patients with low disease burdens obtained 96.2% MRD− CR. Collectively, 9 of 36 (25%) patients with PB blasts and 2 of 107 (1.87%) patients without PB blasts did not respond to CART19 therapy. The leukemia burden in PB negatively influenced ex vivo cell characteristics, including the transduction efficiency of CD3+ T cells and their fold expansion, and in vivo cell dynamics, including peak CART19 proportion and absolute count, fold expansion, and persistence duration. Further studies showed that these patients had higher programmed death-1 expression in CART19 products. Our data imply that PB blasts negatively affected CART19 production and the clinical efficacy of CART19 therapy in patients with r/r B-ALL.
Collapse
Affiliation(s)
- Biping Deng
- Cytology Laboratory, Beijing Boren Hospital, Beijing 100070, China
| | - Jing Pan
- Department of Hematology, Beijing Boren Hospital, Beijing 100070, China
| | - Zhaoli Liu
- Cytology Laboratory, Beijing Boren Hospital, Beijing 100070, China
| | - Shuangyou Liu
- Department of Hematology, Beijing Boren Hospital, Beijing 100070, China
| | - Yunlong Chen
- Cytology Laboratory, Beijing Boren Hospital, Beijing 100070, China
| | - Xiaomin Qu
- Cytology Laboratory, Beijing Boren Hospital, Beijing 100070, China
| | - Yu'e Zhang
- Cytology Laboratory, Beijing Boren Hospital, Beijing 100070, China
| | - Yuehui Lin
- Department of Hematology, Beijing Boren Hospital, Beijing 100070, China
| | - Yanlei Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xinjian Yu
- Medical Laboratory, Beijing Boren Hospital, Beijing 100070, China
| | - Zhongxin Zhang
- Cytology Laboratory, Beijing Boren Hospital, Beijing 100070, China
| | - Xuansha Niu
- Cytology Laboratory, Beijing Boren Hospital, Beijing 100070, China
| | - Rong Luan
- Cytology Laboratory, Beijing Boren Hospital, Beijing 100070, China
| | - Ming Ma
- Cytology Laboratory, Beijing Boren Hospital, Beijing 100070, China
| | - Xiaomei Li
- Cytology Laboratory, Beijing Boren Hospital, Beijing 100070, China
| | - Tingting Liu
- Cytology Laboratory, Beijing Boren Hospital, Beijing 100070, China
| | - Xi'ai Wu
- Cytology Laboratory, Beijing Boren Hospital, Beijing 100070, China
| | - Huan Niu
- Cytology Laboratory, Beijing Boren Hospital, Beijing 100070, China
| | - Alex H. Chang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Corresponding author: Alex H. Chang, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Chunrong Tong
- Department of Hematology, Beijing Boren Hospital, Beijing 100070, China
- Corresponding author: Chunrong Tong, Department of Hematology, Beijing Boren Hospital, No. 6, South Zhengwangfen, Fengtai District, Beijing 100070, China.
| |
Collapse
|
16
|
El Khawanky N, Hughes A, Yu W, Myburgh R, Matschulla T, Taromi S, Aumann K, Clarson J, Vinnakota JM, Shoumariyeh K, Miething C, Lopez AF, Brown MP, Duyster J, Hein L, Manz MG, Hughes TP, White DL, Yong ASM, Zeiser R. Demethylating therapy increases anti-CD123 CAR T cell cytotoxicity against acute myeloid leukemia. Nat Commun 2021; 12:6436. [PMID: 34750374 PMCID: PMC8575966 DOI: 10.1038/s41467-021-26683-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
Successful treatment of acute myeloid leukemia (AML) with chimeric antigen receptor (CAR) T cells is hampered by toxicity on normal hematopoietic progenitor cells and low CAR T cell persistence. Here, we develop third-generation anti-CD123 CAR T cells with a humanized CSL362-based ScFv and a CD28-OX40-CD3ζ intracellular signaling domain. This CAR demonstrates anti-AML activity without affecting the healthy hematopoietic system, or causing epithelial tissue damage in a xenograft model. CD123 expression on leukemia cells increases upon 5'-Azacitidine (AZA) treatment. AZA treatment of leukemia-bearing mice causes an increase in CTLA-4negative anti-CD123 CAR T cell numbers following infusion. Functionally, the CTLA-4negative anti-CD123 CAR T cells exhibit superior cytotoxicity against AML cells, accompanied by higher TNFα production and enhanced downstream phosphorylation of key T cell activation molecules. Our findings indicate that AZA increases the immunogenicity of AML cells, enhancing recognition and elimination of malignant cells by highly efficient CTLA-4negative anti-CD123 CAR T cells.
Collapse
MESH Headings
- Acute Disease
- Animals
- Azacitidine/administration & dosage
- Cell Line, Tumor
- Cells, Cultured
- Cytotoxicity, Immunologic
- DNA Methylation/drug effects
- Enzyme Inhibitors/administration & dosage
- HEK293 Cells
- HL-60 Cells
- Humans
- Immunotherapy, Adoptive/methods
- Interleukin-3 Receptor alpha Subunit/immunology
- Interleukin-3 Receptor alpha Subunit/metabolism
- Kaplan-Meier Estimate
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/therapy
- Mice, Knockout
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Single-Chain Antibodies/immunology
- Xenograft Model Antitumor Assays/methods
- Mice
Collapse
Affiliation(s)
- Nadia El Khawanky
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Amy Hughes
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Wenbo Yu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Tony Matschulla
- Institute of Experimental and Clinical Pharmacology and Toxicology, Division II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sanaz Taromi
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Medical and Life Sciences, University Furtwangen, Villingen-Schwenningen, Germany
| | - Konrad Aumann
- Department of Pathology, Institute for Clinical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Jade Clarson
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Janaki Manoja Vinnakota
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius Miething
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Angel F Lopez
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Michael P Brown
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Department of Medical Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Division II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Timothy P Hughes
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Deborah L White
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Science, University of Adelaide, Adelaide, SA, Australia
| | - Agnes S M Yong
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
- Department of Haematology, Royal Perth Hospital, Perth, WA, Australia.
- School of Medicine, The University of Western Australia, Perth, WA, Australia.
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Signaling Research Centres BIOSS and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
17
|
Nian Z, Zheng X, Dou Y, Du X, Zhou L, Fu B, Sun R, Tian Z, Wei H. Rapamycin Pretreatment Rescues the Bone Marrow AML Cell Elimination Capacity of CAR-T Cells. Clin Cancer Res 2021; 27:6026-6038. [PMID: 34233960 PMCID: PMC9401534 DOI: 10.1158/1078-0432.ccr-21-0452] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Ongoing clinical trials show limited efficacy for Chimeric antigen receptor (CAR) T treatment for acute myeloid leukemia (AML). The aim of this study was to identify potential causes of the reported limited efficacy from CAR-T therapies against AML. EXPERIMENTAL DESIGN We generated CAR-T cells targeting Epithelial cell adhesion molecule (EpCAM) and evaluated their killing activity against AML cells. We examined the impacts of modulating mTORC1 and mTORC2 signaling in CAR-T cells in terms of CXCR4 levels. We examined the effects of a rapamycin pretreatment of EpCAM CAR-T cells (during ex vivo expansion) and assessed the in vivo antitumor efficacy of rapamycin-pretreated EpCAM CAR-T cells (including CXCR4 knockdown cells) and CD33 CAR-T cells in leukemia xenograft mouse models. RESULTS EpCAM CAR-T exhibited killing activity against AML cells but failed to eliminate AML cells in bone marrow. Subsequent investigations revealed that aberrantly activated mTORC1 signaling in CAR-T cells results in decreased bone marrow infiltration and decreased the levels of the rapamycin target CXCR4. Attenuating mTORC1 activity with the rapamycin pretreatment increased the capacity of CAR-T cells to infiltrate bone marrow and enhanced the extent of bone marrow AML cell elimination in leukemia xenograft mouse models. CXCR4 knockdown experiments showed that CXCR4 contributes to the enhanced bone marrow infiltration capacity of EpCAM CAR-T cells and the observed reduction in bone marrow AML cells. CONCLUSIONS Our study reveals a potential cause for the limited efficacy of CAR-T reported from current AML clinical trials and illustrates an easy-to-implement pretreatment strategy, which enhances the anti-AML efficacy of CAR-T cells.See related commentary by Maiti and Daver, p. 5739.
Collapse
Affiliation(s)
- Zhigang Nian
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xiaohu Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China.,Corresponding Authors: Haiming Wei, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui 230027, China. Phone: 0551-6360-7379; E-mail: ; and Xiaohu Zheng, E-mail:
| | - Yingchao Dou
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xianghui Du
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Li Zhou
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China.,Corresponding Authors: Haiming Wei, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui 230027, China. Phone: 0551-6360-7379; E-mail: ; and Xiaohu Zheng, E-mail:
| |
Collapse
|
18
|
Song HW, Lee HS, Kim SJ, Kim HY, Choi YH, Kang B, Kim CS, Park JO, Choi E. Sonazoid-Conjugated Natural Killer Cells for Tumor Therapy and Real-Time Visualization by Ultrasound Imaging. Pharmaceutics 2021; 13:pharmaceutics13101689. [PMID: 34683982 PMCID: PMC8537855 DOI: 10.3390/pharmaceutics13101689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Various cell therapy strategies, including chimeric antigen receptor-expressing T or natural killer (NK) cells and cell-mediated drug delivery, have been developed for tumor eradication. However, the efficiency of these strategies against solid tumors remains unclear. We hypothesized that real-time control and visualization of therapeutic cells, such as NK cells, would improve their therapeutic efficacy against solid tumors. In this study, we engineered Sonazoid microbubble-conjugated NK (NK_Sona) cells and demonstrated that they were detectable by ultrasound imaging in real-time and maintained their functions. The Sonazoid microbubbles on the cell membrane did not affect the cytotoxicity and viability of the NK cells in vitro. Additionally, the NK_Sona cells could be visualized by ultrasound imaging and inhibited tumor growth in vivo. Taken together, our findings demonstrate the feasibility of this new approach in the use of therapeutic cells, such as NK cells, against solid tumors.
Collapse
Affiliation(s)
- Hyeong-Woo Song
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - Han-Sol Lee
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Seok-Jae Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Ho Yong Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - You Hee Choi
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- College of AI Convergence, Chonnam National University, Gwangju 61186, Korea
| | - Chang-Sei Kim
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
- Correspondence: (J.-O.P.); (E.C.)
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics, Gwangju 61011, Korea; (H.-W.S.); (H.-S.L.); (S.-J.K.); (H.Y.K.); (Y.H.C.); (B.K.); (C.-S.K.)
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, Korea
- Correspondence: (J.-O.P.); (E.C.)
| |
Collapse
|
19
|
Limongello R, Marra A, Mancusi A, Bonato S, Hoxha E, Ruggeri L, Hui S, Velardi A, Pierini A. Novel Immune Cell-Based Therapies to Eradicate High-Risk Acute Myeloid Leukemia. Front Immunol 2021; 12:695051. [PMID: 34413848 PMCID: PMC8368440 DOI: 10.3389/fimmu.2021.695051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022] Open
Abstract
Adverse genetic risk acute myeloid leukemia (AML) includes a wide range of clinical-pathological entities with extremely poor outcomes; thus, novel therapeutic approaches are needed. Promising results achieved by engineered chimeric antigen receptor (CAR) T cells in other blood neoplasms have paved the way for the development of immune cell-based therapies for adverse genetic risk AML. Among these, adoptive cell immunotherapies with single/multiple CAR-T cells, CAR-natural killer (NK) cells, cytokine-induced killer cells (CIK), and NK cells are subjects of ongoing clinical trials. On the other hand, allogeneic hematopoietic stem cell transplantation (allo-HSCT) still represents the only curative option for adverse genetic risk AML patients. Unfortunately, high relapse rates (above 50%) and associated dismal outcomes (reported survival ~10–20%) even question the role of current allo-HSCT protocols and emphasize the urgency of adopting novel effective transplant strategies. We have recently demonstrated that haploidentical allo-HSCT combined with regulatory and conventional T cells adoptive immunotherapy (Treg-Tcon haplo-HSCT) is able to overcome disease-intrinsic chemoresistance, prevent leukemia-relapse, and improve survival of adverse genetic risk AML patients. In this Perspective, we briefly review the recent advancements with immune cell-based strategies against adverse genetic risk AML and discuss how such approaches could favorably impact on patients’ outcomes.
Collapse
Affiliation(s)
- Roberto Limongello
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Andrea Marra
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Antonella Mancusi
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Samanta Bonato
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Eni Hoxha
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Loredana Ruggeri
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Susanta Hui
- Department of Radiation Oncology, City of Hope Medical Center, Duarte, CA, United States.,Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Andrea Velardi
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| | - Antonio Pierini
- Institute of Hematology and Centre of Haemato-Oncology Research (CREO), University and Hospital of Perugia, Perugia, Italy
| |
Collapse
|
20
|
Marofi F, Saleh MM, Rahman HS, Suksatan W, Al-Gazally ME, Abdelbasset WK, Thangavelu L, Yumashev AV, Hassanzadeh A, Yazdanifar M, Motavalli R, Pathak Y, Naimi A, Baradaran B, Nikoo M, Khiavi FM. CAR-engineered NK cells; a promising therapeutic option for treatment of hematological malignancies. Stem Cell Res Ther 2021; 12:374. [PMID: 34215336 PMCID: PMC8252313 DOI: 10.1186/s13287-021-02462-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Adoptive cell therapy has received a great deal of interest in the treatment of advanced cancers that are resistant to traditional therapy. The tremendous success of chimeric antigen receptor (CAR)-engineered T (CAR-T) cells in the treatment of cancer, especially hematological cancers, has exposed CAR's potential. However, the toxicity and significant limitations of CAR-T cell immunotherapy prompted research into other immune cells as potential candidates for CAR engineering. NK cells are a major component of the innate immune system, especially for tumor immunosurveillance. They have a higher propensity for immunotherapy in hematologic malignancies because they can detect and eliminate cancerous cells more effectively. In comparison to CAR-T cells, CAR-NK cells can be prepared from allogeneic donors and are safer with a lower chance of cytokine release syndrome and graft-versus-host disease, as well as being a more efficient antitumor activity with high efficiency for off-the-shelf production. Moreover, CAR-NK cells may be modified to target various antigens while also increasing their expansion and survival in vivo. Extensive preclinical research has shown that NK cells can be effectively engineered to express CARs with substantial cytotoxic activity against both hematological and solid tumors, establishing evidence for potential clinical trials of CAR-NK cells. In this review, we discuss recent advances in CAR-NK cell engineering in a variety of hematological malignancies, as well as the main challenges that influence the outcomes of CAR-NK cell-based tumor immunotherapies.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Science, University of Anbar, Ramadi, Iraq
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaise, Sulaimaniyah, Iraq
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA USA
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL USA
- Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Behzad Baradaran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marzieh Nikoo
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
21
|
Daver N, Alotaibi AS, Bücklein V, Subklewe M. T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments. Leukemia 2021; 35:1843-1863. [PMID: 33953290 PMCID: PMC8257483 DOI: 10.1038/s41375-021-01253-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease linked to a broad spectrum of molecular alterations, and as such, long-term disease control requires multiple therapeutic approaches. Driven largely by an improved understanding and targeting of these molecular aberrations, AML treatment has rapidly evolved over the last 3-5 years. The stellar successes of immunotherapies that harness the power of T cells to treat solid tumors and an improved understanding of the immune systems of patients with hematologic malignancies have led to major efforts to develop immunotherapies for the treatment of patients with AML. Several immunotherapies that harness T cells against AML are in various stages of preclinical and clinical development. These include bispecific and dual antigen receptor-targeting antibodies (targeted to CD33, CD123, CLL-1, and others), chimeric antigen receptor (CAR) T-cell therapies, and T-cell immune checkpoint inhibitors (including those targeting PD-1, PD-L1, CTLA-4, and newer targets such as TIM3 and STING). The current and future directions of these T-cell-based immunotherapies in the treatment landscape of AML are discussed in this review.
Collapse
Affiliation(s)
- Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ahmad S Alotaibi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Veit Bücklein
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
22
|
Park CH. Making Potent CAR T Cells Using Genetic Engineering and Synergistic Agents. Cancers (Basel) 2021; 13:cancers13133236. [PMID: 34209505 PMCID: PMC8269169 DOI: 10.3390/cancers13133236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Immunotherapies are emerging as powerful weapons for the treatment of malignancies. Chimeric antigen receptor (CAR)-engineered T cells have shown dramatic clinical results in patients with hematological malignancies. However, it is still challenging for CAR T cell therapy to be successful in several types of blood cancer and most solid tumors. Many attempts have been made to enhance the efficacy of CAR T cell therapy by modifying the CAR construct using combination agents, such as compounds, antibodies, or radiation. At present, technology to improve CAR T cell therapy is rapidly developing. In this review, we particularly emphasize the most recent studies utilizing genetic engineering and synergistic agents to improve CAR T cell therapy.
Collapse
Affiliation(s)
- Chi Hoon Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Korea; ; Tel.: +82-42-860-7416; Fax: +82-42-861-4246
- Medicinal & Pharmaceutical Chemistry, Korea University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
23
|
Hasegawa A, Saito S, Narimatsu S, Nakano S, Nagai M, Ohnota H, Inada Y, Morokawa H, Nakashima I, Morita D, Ide Y, Matsuda K, Tashiro H, Yagyu S, Tanaka M, Nakazawa Y. Mutated GM-CSF-based CAR-T cells targeting CD116/CD131 complexes exhibit enhanced anti-tumor effects against acute myeloid leukaemia. Clin Transl Immunology 2021; 10:e1282. [PMID: 33976880 PMCID: PMC8102137 DOI: 10.1002/cti2.1282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/28/2021] [Accepted: 03/21/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives As the prognosis of relapsed/refractory (R/R) acute myeloid leukaemia (AML) remains poor, novel treatment strategies are urgently needed. Clinical trials have shown that chimeric antigen receptor (CAR)‐T cells for AML are more challenging than those targeting CD19 in B‐cell malignancies. We recently developed piggyBac‐modified ligand‐based CAR‐T cells that target CD116/CD131 complexes, also known as the GM‐CSF receptor (GMR), for the treatment of juvenile myelomonocytic leukaemia. This study therefore aimed to develop a novel therapeutic method for R/R AML using GMR CAR‐T cells. Methods To further improve the efficacy of the original GMR CAR‐T cells, we have developed novel GMR CAR vectors incorporating a mutated GM‐CSF for the antigen‐binding domain and G4S spacer. All GMR CAR‐T cells were generated using a piggyBac‐based gene transfer system. The anti‐tumor effect of GMR CAR‐T cells was tested in mouse AML xenograft models. Results Nearly 80% of the AML cells predominant in myelomonocytic leukaemia were found to express CD116. GMR CAR‐T cells exhibited potent cytotoxic activities against CD116+ AML cells in vitro. Furthermore, GMR CAR‐T cells incorporating a G4S spacer significantly improved long‐term in vitro and in vivo anti‐tumor effects. By employing a mutated GM‐CSF at residue 21 (E21K), the anti‐tumor effects of GMR CAR‐T cells were also improved especially in long‐term in vitro settings. Although GMR CAR‐T cells exerted cytotoxic effects on normal monocytes, their lethality on normal neutrophils, T cells, B cells and NK cells was minimal. Conclusions GMR CAR‐T cell therapy represents a promising strategy for CD116+ R/R AML.
Collapse
Affiliation(s)
- Aiko Hasegawa
- Department of Pediatrics Shinshu University School of Medicine Matsumoto Japan
| | - Shoji Saito
- Department of Pediatrics Shinshu University School of Medicine Matsumoto Japan.,Center for Advanced Research of Gene and Cell Therapy Shinshu University Matsumoto Japan
| | - Shogo Narimatsu
- Department of Drug Discovery Science Shinshu University Matsumoto Japan.,Frontier Technology Research Laboratory Kissei Pharmaceutical Co., Ltd Azumino Japan
| | - Shigeru Nakano
- Department of Drug Discovery Science Shinshu University Matsumoto Japan.,Frontier Technology Research Laboratory Kissei Pharmaceutical Co., Ltd Azumino Japan
| | - Mika Nagai
- Department of Pediatrics Shinshu University School of Medicine Matsumoto Japan
| | - Hideki Ohnota
- Department of Drug Discovery Science Shinshu University Matsumoto Japan
| | - Yoichi Inada
- Department of Pediatrics Shinshu University School of Medicine Matsumoto Japan.,Department of Drug Discovery Science Shinshu University Matsumoto Japan
| | - Hirokazu Morokawa
- Department of Pediatrics Shinshu University School of Medicine Matsumoto Japan
| | - Ikumi Nakashima
- Department of Pediatrics Shinshu University School of Medicine Matsumoto Japan
| | - Daisuke Morita
- Department of Pediatrics Shinshu University School of Medicine Matsumoto Japan.,Institute for Biomedical Sciences Interdisciplinary Cluster for Cutting Edge Research Shinshu University Matsumoto Japan
| | - Yuichiro Ide
- Department of Laboratory Medicine Shinshu University Hospital Matsumoto Japan
| | - Kazuyuki Matsuda
- Department of Health and Medical Sciences Graduate School of Medicine Shinshu University Matsumoto Japan
| | - Haruko Tashiro
- Department of Hematology/Oncology Teikyo University School of Medicine Itabashi Japan
| | - Shigeki Yagyu
- Center for Advanced Research of Gene and Cell Therapy Shinshu University Matsumoto Japan.,Department of Pediatrics Kyoto Prefectural Medical University Kyoto Japan
| | - Miyuki Tanaka
- Department of Pediatrics Shinshu University School of Medicine Matsumoto Japan.,Center for Advanced Research of Gene and Cell Therapy Shinshu University Matsumoto Japan
| | - Yozo Nakazawa
- Department of Pediatrics Shinshu University School of Medicine Matsumoto Japan.,Center for Advanced Research of Gene and Cell Therapy Shinshu University Matsumoto Japan.,Institute for Biomedical Sciences Interdisciplinary Cluster for Cutting Edge Research Shinshu University Matsumoto Japan
| |
Collapse
|
24
|
Zhou JE, Yu J, Wang Y, Wang H, Wang J, Wang Y, Yu L, Yan Z. ShRNA-mediated silencing of PD-1 augments the efficacy of chimeric antigen receptor T cells on subcutaneous prostate and leukemia xenograft. Biomed Pharmacother 2021; 137:111339. [PMID: 33550044 DOI: 10.1016/j.biopha.2021.111339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Chimeric antigen receptor T cells (CAR-T) immunotherapy has shown promising clinical results in the treatment of leukemia and lymphoma, but the effectiveness is limited for solid tumors. The PD-1/PD-L1 pathway is a key immunosuppressive mechanism for cancer cells to avoid eradication by CAR-T cells. In this study, the shRNA (short hair RNA) gene-silencing technique was used to construct the third-generation of CAR-T cells with PD-1 silencing which targeted CD19 antigen (CD19/△PD-1 CAR-T) and prostate stem cell antigen (PSCA/△PD-1 CAR-T), thereby blocking the PD-1/PD-L1 pathway in treatment of lymphoma and prostate subcutaneous xenograft and enhancing the anti-tumor effect of CAR-T cells. The cell experiments showed that PD-1 silencing in CAR-T cells effectively blocked the PD-1 / PD-L1 pathway. When the ratio of effector to target cell is 8:1, △PD-1 CAR-T cells exhibited higher killing ability and cytokine releasing ability than normal CAR-T cells did. The subcutaneous tumor models were constructed using human chronic myelogenous leukemia cells expressing CD19 (K562-CD19) and human prostate cancer cells expressing PSCA (PC3-PSCA), and treated with CD19/△PD-1 CAR-T and PSCA/△PD-1 CAR-T cells, respectively. The tumor volumes significantly reduced within one week, indicating the good tumor growth inhibitory effect of △PD-1 CAR-T cells. Mice injected with △PD-1 CAR-T cells showed a significantly prolonged survival time compared to those with normal CAR-T cells. This study proved that shRNA-mediated PD-1 silencing technology is an effective strategy for blocking the PD-1/PD-L1 immunosuppression pathway and enhancing the therapeutic effect of CAR-T cells on subcutaneous xenograft. SUMMARY: The effect of CAR-T in treating solid tumors has not been as successful as that in hematological malignancies. The key immunosuppressive mechanism is the expression of PD-1/PD-L1. We used gene silencing technique mediated by shRNA (short hair RNA) to block the PD-1/PD-L1 pathway in lymphoma and prostate tumors, thus enhancing the anti-tumor effect of CAR-T cells on subcutaneous xenograft.
Collapse
Affiliation(s)
- Jing-E Zhou
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Jing Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Yeying Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Hao Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Jing Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Yiting Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| | - Zhiqiang Yan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
25
|
Xie X, Hu Y, Ye T, Chen Y, Zhou L, Li F, Xi X, Wang S, He Y, Gao X, Wei W, Ma G, Li Y. Therapeutic vaccination against leukaemia via the sustained release of co-encapsulated anti-PD-1 and a leukaemia-associated antigen. Nat Biomed Eng 2021; 5:414-428. [PMID: 33046865 DOI: 10.1038/s41551-020-00624-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
Therapeutic leukaemia vaccines have shown modest potency. Here, we show that the co-encapsulation of a leukaemia-associated epitope peptide highly expressed in leukaemia patients and of the immune checkpoint inhibitor anti-programmed-cell-death-protein-1 (anti-PD-1) in degradable poly(lactic acid) microcapsules resulted in the sustained release of the peptide and of the antibody, which led to the recruitment of activated antigen-presenting cells to the injection site, their uptake of the peptide and the transportation of the anti-PD-1 antibody to lymph nodes, enhancing the expansion of epitope-specific T cells and the activation of cytotoxic T cells. After single subcutaneous injections of vaccine formulations with different epitope peptides, mice bearing leukaemia xenografts derived from humanized cell lines or from primary cells from patients showed better therapeutic outcomes than mice receiving repeated injections of free antigen, antibody and a commercial adjuvant. The sustained release of a tumour-associated peptide and of anti-PD-1 may represent a generalizable strategy for boosting antitumour immune responses to leukaemia.
Collapse
Affiliation(s)
- Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China.,University of Chinese Academy of Sciences, Beijing, P R China
| | - Yiran Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Lijuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China.,University of Chinese Academy of Sciences, Beijing, P R China
| | - Xiaobo Xi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China.,University of Chinese Academy of Sciences, Beijing, P R China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Xiaoyong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China. .,University of Chinese Academy of Sciences, Beijing, P R China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China. .,University of Chinese Academy of Sciences, Beijing, P R China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, P R China.
| |
Collapse
|
26
|
Lee JB, Vasic D, Kang H, Fang KKL, Zhang L. State-of-Art of Cellular Therapy for Acute Leukemia. Int J Mol Sci 2021; 22:ijms22094590. [PMID: 33925571 PMCID: PMC8123829 DOI: 10.3390/ijms22094590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022] Open
Abstract
With recent clinical breakthroughs, immunotherapy has become the fourth pillar of cancer treatment. Particularly, immune cell-based therapies have been envisioned as a promising treatment option with curative potential for leukemia patients. Hence, an increasing number of preclinical and clinical studies focus on various approaches of immune cell-based therapy for treatment of acute leukemia (AL). However, the use of different immune cell lineages and subsets against different types of leukemia and patient disease statuses challenge the interpretation of the clinical applicability and outcome of immune cell-based therapies. This review aims to provide an overview on recent approaches using various immune cell-based therapies against acute B-, T-, and myeloid leukemias. Further, the apparent limitations observed and potential approaches to overcome these limitations are discussed.
Collapse
MESH Headings
- Acute Disease
- Cell- and Tissue-Based Therapy
- Humans
- Immunotherapy
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, T-Cell/metabolism
- Leukemia, T-Cell/therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Jong-Bok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
| | - Daniel Vasic
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyeonjeong Kang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Karen Kai-Lin Fang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (J.-B.L.); (D.V.); (H.K.); (K.K.-L.F.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
27
|
Lin G, Zhang Y, Yu L, Wu D. Cytotoxic effect of CLL‑1 CAR‑T cell immunotherapy with PD‑1 silencing on relapsed/refractory acute myeloid leukemia. Mol Med Rep 2021; 23:208. [PMID: 33495835 PMCID: PMC7830996 DOI: 10.3892/mmr.2021.11847] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/04/2020] [Indexed: 01/29/2023] Open
Abstract
The activation of chimeric antigen receptor (CAR)-T cells can lead to persistently high levels of programmed cell death 1 (PD-1) antigen and eventually causes the exhaustion of T cells. The effectiveness of CAR-T cells targeting C-type lectin-like molecule-1 (CLL-1) combined with PD-1 silencing therapy for acute myeloid leukemia (AML) was evaluated in the present study. CLL-1 levels in primary AML bone marrow samples was examined using flow cytometric analysis. We designed a CLL-1 CAR-T, containing CLL-1-specific single-chain variable fragment, CD28, OX40, CD8 hinge and TM and CD3-ζ signaling domains. CLL-1 CAR-T with PD-1 silencing was constructed. It was confirmed that CLL-1 is expressed on the surface of AML cells. CLL-1 CAR-T showed specific lysing activity against CLL-1+ AML cells. PD-1 silencing enhanced the killing ability of CLL-1 CAR-T. Furthermore, it was found that CAR-T derived from healthy donor T cells was more effective in killing THP-1 cells (a human acute monocytic leukemia cell line) than those from patient-derived T cells. These results indicated that CLL-1 CAR-T and PD-1 knockdown CLL-1 CAR-T could be used as a potential immunotherapy to treat relapsed or refractory AML.
Collapse
Affiliation(s)
- Guoqiang Lin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yanming Zhang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical College, Huai'an Second People's Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200065, P.R. China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
28
|
Yilmaz A, Cui H, Caligiuri MA, Yu J. Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J Hematol Oncol 2020; 13:168. [PMID: 33287875 PMCID: PMC7720606 DOI: 10.1186/s13045-020-00998-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are a critical component of the innate immune system. Chimeric antigen receptors (CARs) re-direct NK cells toward tumor cells carrying corresponding antigens, creating major opportunities in the fight against cancer. CAR NK cells have the potential for use as universal CAR cells without the need for human leukocyte antigen matching or prior exposure to tumor-associated antigens. Exciting data from recent clinical trials have renewed interest in the field of cancer immunotherapy due to the potential of CAR NK cells in the production of "off-the-shelf" anti-cancer immunotherapeutic products. Here, we provide an up-to-date comprehensive overview of the recent advancements in key areas of CAR NK cell research and identify under-investigated research areas. We summarize improvements in CAR design and structure, advantages and disadvantages of using CAR NK cells as an alternative to CAR T cell therapy, and list sources to obtain NK cells. In addition, we provide a list of tumor-associated antigens targeted by CAR NK cells and detail challenges in expanding and transducing NK cells for CAR production. We additionally discuss barriers to effective treatment and suggest solutions to improve CAR NK cell function, proliferation, persistence, therapeutic effectiveness, and safety in solid and liquid tumors.
Collapse
Affiliation(s)
- Ahmet Yilmaz
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hanwei Cui
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Road, KCRB, Bldg. 158, 3rd Floor, Room 3017, Los Angeles, CA, 91010, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Department of Immuno-Oncology, City of Hope Beckman Research Institute, Los Angeles, CA, 91010, USA
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, Los Angeles, CA, 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E. Duarte Road, KCRB, Bldg. 158, 3rd Floor, Room 3017, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Department of Immuno-Oncology, City of Hope Beckman Research Institute, Los Angeles, CA, 91010, USA.
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, Los Angeles, CA, 91010, USA.
| |
Collapse
|
29
|
Story JY, Zoine JT, Burnham RE, Hamilton JAG, Spencer HT, Doering CB, Raikar SS. Bortezomib enhances cytotoxicity of ex vivo-expanded gamma delta T cells against acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Cytotherapy 2020; 23:12-24. [PMID: 33168453 DOI: 10.1016/j.jcyt.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023]
Abstract
Engagement between the natural killer group 2, member D (NKG2D) receptor and its ligands is one of the main mechanisms used by immune cells to target stressed cells for cell death. NKG2D ligands are known markers of cellular stress and are often upregulated on tumor cells. Certain drugs can further increase NKG2D ligand levels, thereby making tumor cells more susceptible to immune cell detection and destruction. However, the effectiveness of this approach appears to be limited with drug treatment alone, possibly due to immune dysregulation in the setting of malignancies. We hypothesized that a more effective approach would be a combination of NKG2D ligand-inducing drugs, such as the proteasome inhibitor bortezomib, and ex vivo-expanded peripheral blood γδ T cells (i.e., Vγ9Vδ2 T cells). Acute myeloid leukemia (AML) is a high-risk hematologic malignancy, and treatment has shown limited benefit with the addition of bortezomib to standard chemotherapy regimens. Two AML cells lines, Nomo-1 and Kasumi-1, were treated with increasing concentrations of bortezomib, and changes in NKG2D ligand expression were measured. Bortezomib treatment significantly increased expression of the NKG2D ligand UL16 binding protein (ULBP) 2/5/6 in both cell lines. Vγ9Vδ2 T cells were expanded and isolated from peripheral blood of healthy donors to generate a final cellular product with a mean of 96% CD3+/γδ T-cell receptor-positive cells. Combination treatment of the AML cell lines with γδ T cells and bortezomib resulted in significantly greater cytotoxicity than γδ T cells alone, even at lower effector-to-target ratios. Based on the positive results against AML and the generalizable mechanism of this combination approach, it was also tested against T-cell acute lymphoblastic leukemia (T-ALL), another high-risk leukemia. Similarly, bortezomib increased ULBP 2/5/6 expression in T-ALL cell lines, Jurkat and MOLT-4 and improved the cytotoxicity of γδ T cells against each line. Collectively, these results show that bortezomib enhances γδ T-cell-mediated killing of both AML and T-ALL cells in part through increased NKG2D ligand-receptor interaction. Furthermore, proof-of-concept for the combination of ex vivo-expanded γδ T cells with stress ligand-inducing drugs as a therapeutic platform for high-risk leukemias is demonstrated.
Collapse
Affiliation(s)
- Jamie Y Story
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jaquelyn T Zoine
- Cancer Biology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Rebecca E Burnham
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jamie A G Hamilton
- Cancer Biology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - H Trent Spencer
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA; Cancer Biology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Christopher B Doering
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| | - Sunil S Raikar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
30
|
Valent P, Bauer K, Sadovnik I, Smiljkovic D, Ivanov D, Herrmann H, Filik Y, Eisenwort G, Sperr WR, Rabitsch W. Cell-based and antibody-mediated immunotherapies directed against leukemic stem cells in acute myeloid leukemia: Perspectives and open issues. Stem Cells Transl Med 2020; 9:1331-1343. [PMID: 32657052 PMCID: PMC7581453 DOI: 10.1002/sctm.20-0147] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Despite new insights in molecular features of leukemic cells and the availability of novel treatment approaches and drugs, acute myeloid leukemia (AML) remains a major clinical challenge. In fact, many patients with AML relapse after standard therapy and eventually die from progressive disease. The basic concept of leukemic stem cells (LSC) has been coined with the goal to decipher clonal architectures in various leukemia-models and to develop curative drug therapies by eliminating LSC. Indeed, during the past few years, various immunotherapies have been tested in AML, and several of these therapies follow the strategy to eliminate relevant leukemic subclones by introducing LSC-targeting antibodies or LSC-targeting immune cells. These therapies include, among others, new generations of LSC-eliminating antibody-constructs, checkpoint-targeting antibodies, bi-specific antibodies, and CAR-T or CAR-NK cell-based strategies. However, responses are often limited and/or transient which may be due to LSC resistance. Indeed, AML LSC exhibit multiple forms of resistance against various drugs and immunotherapies. An additional problems are treatment-induced myelotoxicity and other side effects. The current article provides a short overview of immunological targets expressed on LSC in AML. Moreover, cell-based therapies and immunotherapies tested in AML are discussed. Finally, the article provides an overview about LSC resistance and strategies to overcome resistance.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
| | - Karin Bauer
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
| | - Dubravka Smiljkovic
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Daniel Ivanov
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Harald Herrmann
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
- Department of Radiation OncologyMedical University of ViennaViennaAustria
| | - Yüksel Filik
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
| | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
| | - Werner Rabitsch
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
- Department of Internal Medicine I, Stem Cell Transplantation UnitMedical University of ViennaViennaAustria
| |
Collapse
|
31
|
Cornet-Masana JM, Banús-Mulet A, Cuesta-Casanovas L, Carbó JM, Guijarro F, Torrente MÁ, Esteve J, Risueño RM. Histamine receptor 1 is expressed in leukaemic cells and affects differentiation sensitivity. J Cell Mol Med 2020; 24:13536-13541. [PMID: 33080103 PMCID: PMC7701509 DOI: 10.1111/jcmm.15930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 11/28/2022] Open
Abstract
Despite the success of immunotherapy in several haematological neoplasms, the effectiveness in acute myeloid leukaemia (AML) is still controversial, partially due to the lack of knowledge regarding immune-related processes in this disease and similar neoplasias. In this study, we analysed the role and expression of histamine receptor 1 (HRH1) in haematological malignancies. Although the histamine receptor type 1 was widely expressed in healthy and malignant haematopoiesis, especially along the myeloid lineage, HRH1 lacked a relevant role in survival/proliferation and chemoresistance of AML cells, as analysed by HRH1 knockdown (KD) and pharmacological modulation. However, HRH1-mediated signalling was critical for the activation of the differentiation process induced by several agents including all-trans retinoic acid, establishing a role for HRH1 in myeloid differentiation. Pharmacological activation of Erk was able to partially restore differentiation capacity in HRH1 KD AML cells, suggesting that HRH1 signalling acts upstream MAPK-Erk pathway. As an indirect consequence of our results, treatment-related histamine release is not expected to confer a proliferative advantage in leukaemic cells.
Collapse
Affiliation(s)
- Josep M Cornet-Masana
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Antònia Banús-Mulet
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Laia Cuesta-Casanovas
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Faculty of Biosciences, Autonomous University of Barcelona, Barcelona, Spain
| | - José M Carbó
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Francesca Guijarro
- Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Hematology, Hospital Clínic, Barcelona, Spain
| | - Miguel Ángel Torrente
- Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Esteve
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.,Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Hematology, Hospital Clínic, Barcelona, Spain
| | - Ruth M Risueño
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| |
Collapse
|
32
|
Lin GQ, Zhang YM, Kang LQ, Yu L, Wu DP. [Research on the effect of PD-L1 overexpression on CLL-1 CAR-T anti-acute myeloid leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:829-835. [PMID: 33190440 PMCID: PMC7656066 DOI: 10.3760/cma.j.issn.0253-2727.2020.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 11/17/2022]
Abstract
Objective: To investigate the effects of programmed death receptor ligand 1(PD-L1)on CLL-1 CAR-T against acute myeloid leukemia(AML). Methods: In this experiment, the PD-L1 expression vector was constructed, and then the lentivirus vector was packaged by three-plasmid packaging system. THP-1 monoclonal cell lines stably expressing PD-L1 were set up. The CLL-1 CAR-T was developed by our team, as the effector cell for co-culture with the THP-1 or THP1-PDL1 cell lines, respectively. Then, the LDH was tested using the kit, the supernatant cytokine was detected by CBA, and the CLL-1 CAR-T cell proliferation was demonstrated by flow cytometry(FCM)with CSFE labeled. Results: ①The PD-L1 lentivirus vector was successfully constructed, and monoclonal cell lines of THP-1 with stable PD-L1 was set up and verified by FCM and PCR. ②The overexpression of PD-L1 inhibited CLL-1 CAR-T's ability to lyse THP-1 cells(E∶F ratio 10∶1); the killing efficiency of CLL-1 CAR-T on THP1-PDL1 cells was lower than that of THP-1 cells[(15.70±9.90)% vs(51.95 ± 2.52)%, P<0.05]. ③The overexpression of PD-L1 decrease the release of cytokine[THP1-PDL1 group vs THP-1 group: IFN-γ(115.66±3.13)pg/ml vs(1708.16 ± 26.76)pg/ml, P<0.05; IL-6(17.37±0.72)pg/ml vs(124.92±4.26)pg/ml, P<0.05; IL-10(5.69±0.13)pg/ml vs(124.12±3.02)pg/ml, P<0.05]. Additionally, the proliferation of CLL-1 CAR-T was also inhibited. Conclusion: Monoclonal cell lines of THP-1 with stable PD-L1 expression were successfully constructed, and the adverse effect of PD-L1 overexpression on CLL-1 CAR-T anti-AML was confirmed, which provided a theoretical basis for the regulation of CLL-1CAR-T through the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- G Q Lin
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou 215006, China; Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an 223002, China
| | - Y M Zhang
- Department of Hematology, Huai'an Hospital Affiliated to Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an 223002, China
| | - L Q Kang
- Shanghai Unicar-Therapy Biomed-Phamaceutical Technology Co.Ltd, Shanghai 201203, China
| | - L Yu
- Shanghai Unicar-Therapy Biomed-Phamaceutical Technology Co.Ltd, Shanghai 201203, China
| | - D P Wu
- The First Affiliated Hospital of Soochow University, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou 215006, China
| |
Collapse
|
33
|
Przespolewski AC, Griffiths EA. BITES and CARS and checkpoints, oh my! Updates regarding immunotherapy for myeloid malignancies from the 2018 annual ASH meeting. Blood Rev 2020; 43:100654. [PMID: 32029263 PMCID: PMC7371541 DOI: 10.1016/j.blre.2020.100654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 02/03/2023]
Abstract
It is without question that immune checkpoint inhibitors and adoptive cellular therapies have revolutionized the treatment of solid and hematologic malignancies. Investigators are now developing novel strategies to integrate these groundbreaking modalities into the care of patients with acute myeloid leukemia (AML) and other myeloid malignancies. Here we provide an overview of the most recent developments in immunotherapy for myeloid cancers presented at the 2018 American Society of Hematology annual meeting. Topics discussed include adoptive cellular therapies (CAR-T, NK cell, and vaccines), checkpoint inhibitors, and bispecific T-cell engager (BITE) antibodies. Despite reservations regarding low antigenicity and having long been considered a "cold" tumor, immunotherapy remains a highly promising strategy for patients with aggressive myeloid cancers like myelodysplasia (MDS) and AML.
Collapse
Affiliation(s)
- Amanda C Przespolewski
- Leukemia Section, Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Elizabeth A Griffiths
- Leukemia Section, Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
34
|
Li LL, Yuan HL, Yang YQ, Wang L, Zou RC. A brief review concerning Chimeric Antigen Receptors T cell therapy. J Cancer 2020; 11:5424-5431. [PMID: 32742489 PMCID: PMC7391193 DOI: 10.7150/jca.46308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
The understanding concerning the function of immune system in cancer has achieved considerable advance with time passes by. Manipulating genetically engineered immune cells were investigated as a novel strategy for treating cancer. Chimeric antigen receptors (CARs) are recombinant protein molecules by merging the exquisite targeting the potent cytotoxicity of T cells and specificity of monoclonal antibodies and, which could trigger serial cascades of signal transduction and thereby activate T cells to directly destroy the tumor cells. Manufacturing CAR-modified T lymphocytes were successfully implemented in treating cancer derived from they could specifically retarget tumor-associated antigens, causing effective elimination of tumor cells, which spurred the optimization and development of new CAR-T cell technology. The advancement of synthetic biology methodologies of cell therapy in CAR-T would ultimately provide us with a much safer, reliable and efficient modality to against cancer. This review primarily described the emergence, development and application of cell therapy in CAR-T, then discuss the side effects and the potential factors of tumor reccurrence caused by CAR-T cell therapy, in addition to the corresponding countermeasure concerning complications.
Collapse
Affiliation(s)
- Ling-Lin Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China.,Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.,Department of Nephrology, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Hong-Ling Yuan
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Yu-Qiong Yang
- Department of Nephrology, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Lin Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Ren-Chao Zou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| |
Collapse
|
35
|
Shi M, Su RJ, Parmar KP, Chaudhry R, Sun K, Rao J, Chen M. CD123: A Novel Biomarker for Diagnosis and Treatment of Leukemia. Cardiovasc Hematol Disord Drug Targets 2020; 19:195-204. [PMID: 31244444 DOI: 10.2174/1871529x19666190627100613] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/20/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Leukemia is a group of progressive hematologic malignancies derived from stem cells in bone marrow which causes a large number of cancer deaths. Even with treatment such as traditional chemotherapy, targeted therapy, and allogeneic stem cell transplantation (allo-HSCT), many patients suffer from relapse/refractory disease, and the overall survival is dismal. Leukemic stem cells (LSCs) are induced by gene mutations and undergo an aberrant and poorly regulated proliferation process which is involved in the evolution, relapse, and drug-resistance of leukemia. Emerging studies demonstrate that CD123, the interleukin 3 receptor alpha (IL-3Rα), is highly expressed in LSCs, while not normal hematopoietic stem cells (HSCs), and associates with treatment response, minimal residual disease (MRD) detection and prognosis. Furthermore, CD123 is an important marker for the identification and targeting of LSCs for refractory or relapsed leukemia. Anti-CD123 target-therapies in pre-clinical studies and clinical trials confirm the utility of anti-CD123 neutralizing antibody-drugs, CD3×CD123 bispecific antibodies, dual-affinity retargeting (DART), and anti-CD123 chimeric antigen receptor-modified T-cell (CAR-T) therapies in progress. This review summarizes the most recent progress on the study of CD123 biology and the development of novel CD123-targeted therapies.
Collapse
Affiliation(s)
- Mingyue Shi
- Department of Pathology and Laboratory Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States.,Department of Hematology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Henan, China
| | - Ruijun J Su
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Ronald Reagan UCLA Medical Center, Los Angeles, CA 90095, United States
| | - Kamal-Preet Parmar
- Department of Pathology and Laboratory Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Rahman Chaudhry
- Department of Pathology and Laboratory Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Kai Sun
- Department of Hematology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Henan, China
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Ronald Reagan UCLA Medical Center, Los Angeles, CA 90095, United States
| | - Mingyi Chen
- Department of Pathology and Laboratory Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
36
|
Goebeler ME, Bargou RC. T cell-engaging therapies - BiTEs and beyond. Nat Rev Clin Oncol 2020; 17:418-434. [PMID: 32242094 DOI: 10.1038/s41571-020-0347-5] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 12/17/2022]
Abstract
Immuno-oncology approaches have entered clinical practice, with tremendous progress particularly in the field of T cell-engaging therapies over the past decade. Herein, we provide an overview of the current status of bispecific T cell engager (BiTE) therapy, considering the unprecedented new indication for such therapy in combating minimal (or measurable) residual disease in patients with acute lymphoblastic leukaemia, and the development of novel approaches based on this concept. Key aspects that we discuss include the current clinical data, challenges relating to treatment administration and patient monitoring, toxicities and resistance to treatment, and novel strategies to overcome these hurdles as well as to broaden the indications for BiTE therapy, particularly to common solid cancers. Elucidation of mechanisms of resistance and immune escape and new technologies used in drug development pave the way for new and more-effective therapies and rational combinatorial approaches. In particular, we highlight novel therapeutic agents, such as bifunctional checkpoint-inhibitory T cell engagers (CiTEs), simultaneous multiple interaction T cell engagers (SMITEs), trispecific killer engagers (TriKEs) and BiTE-expressing chimeric antigen receptor (CAR) T cells (CART.BiTE cells), designed to integrate various immune functions into one molecule or a single cellular vector and thereby enhance efficacy without compromising safety. We also discuss the targeting of intracellular tumour-associated epitopes using bispecific constructs with T cell receptor (TCR)-derived, rather than an antibody-based, antigen-recognition domains, termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs), which might broaden the armamentarium of T cell-engaging therapies.
Collapse
Affiliation(s)
- Maria-Elisabeth Goebeler
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| | - Ralf C Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
37
|
Shin MH, Kim J, Lim SA, Kim J, Kim SJ, Lee KM. NK Cell-Based Immunotherapies in Cancer. Immune Netw 2020; 20:e14. [PMID: 32395366 PMCID: PMC7192832 DOI: 10.4110/in.2020.20.e14] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/01/2020] [Accepted: 03/01/2020] [Indexed: 12/11/2022] Open
Abstract
With the development of technologies that can transform immune cells into therapeutic modalities, immunotherapy has remarkably changed the current paradigm of cancer treatment in recent years. NK cells are components of the innate immune system that act as key regulators and exhibit a potent tumor cytolytic function. Unlike T cells, NK cells exhibit tumor cytotoxicity by recognizing non-self, without deliberate immunization or activation. Currently, researchers have developed various approaches to improve the number and anti-tumor function of NK cells. These approaches include the use of cytokines and Abs to stimulate the efficacy of NK cell function, adoptive transfer of autologous or allogeneic ex vivo expanded NK cells, establishment of homogeneous NK cell lines using the NK cells of patients with cancer or healthy donors, derivation of NK cells from induced pluripotent stem cells (iPSCs), and modification of NK cells with cutting-edge genetic engineering technologies to generate chimeric Ag receptor (CAR)-NK cells. Such NK cell-based immunotherapies are currently reported as being promising anti-tumor strategies that have shown enhanced functional specificity in several clinical trials investigating malignant tumors. Here, we summarize the recent advances in NK cell-based cancer immunotherapies that have focused on providing improved function through the use of the latest genetic engineering technologies. We also discuss the different types of NK cells developed for cancer immunotherapy and present the clinical trials being conducted to test their safety and efficacy.
Collapse
Affiliation(s)
- Min Hwa Shin
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Junghee Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Siyoung A Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jungwon Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
38
|
Abstract
SummaryThe treatment options for newly diagnosed and relapsed/refractory acute myeloid leukemia (AML) have substantially improved over the last 5 years. However, even though novel targeted agents (e.g. venetoclax, IDH1/2 and novel FLT-3 inhibitors; cytosolic isocitrate dehydrogenase 1/2 and fms-like tyrosine kinase 3 inhibitor) and improved chemotherapeutics (e.g. CPX-351; liposomale Daunorubicin/Cytarabine) are entering clinics, physicians are still confronted with high relapse and treatment failure rates. Thus, novel new strategies are required to improve AML therapy. Application of genetically engineered T cells (i.e. chimeric antigen receptor T cells, CAR-T cells) has proven to be highly effective in B cell-derived neoplasia and early data suggest also a high potential in the treatment of AML. This short review highlights the current approaches but also limitations of CAR-T cell therapy in AML precluding their current routine clinical use. Among a plethora of problems to be overcome, a critical issue will be to find relatively selective actionable targets in AML.
Collapse
|
39
|
Short NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD, Daver N. Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Cancer Discov 2020; 10:506-525. [DOI: 10.1158/2159-8290.cd-19-1011] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/23/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
|
40
|
Van Schandevyl S, Kerre T. Chimeric antigen receptor T-cell therapy: design improvements and therapeutic strategies in cancer treatment. Acta Clin Belg 2020; 75:26-32. [PMID: 30422748 DOI: 10.1080/17843286.2018.1545373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Objectives: To summarize important findings from research on chimeric antigen receptor (CAR) T-cell immunotherapy in cancer. We discuss CAR design, cell products, toxicity management, heterogenous solid tumors and allogeneic transfer.Methods: A review of literature was conducted. The available literature was selected on original research, state-of-the art design, relevance to the objective and journal impact factor.Results: First-generation CARs provide patient T cells with tumor-specific antigen recognition. Second- and third-generation CARs incorporate costimulatory domains for enhanced T-cell persistence and antitumor activity. Fourth-generation CAR T cells (TRUCKs) include a cytokine production cassette, and hold promise in the treatment of heterogenous solid tumors. Transduced cell phenotype and subset composition are important factors. Suicide genes and safety switches are designed to decrease potential toxicity. Multi-specific CAR T cells can address heterogenous tumors. Allogeneic, off-the-shelf CAR T cells might reduce the production delay.Conclusion: CAR T cells have revolutionized the immunotherapeutic treatment of cancer: exciting results in refractory and relapsed B-cell malignancies have been published. Neurologic complications, solid tumor management and allogeneic constructs require further research. In conclusion, further design adjustments will enable CAR T cells to decisively reshape the field of cancer immunotherapy.
Collapse
Affiliation(s)
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
- CRIG (Cancer Research Institute Ghent), Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
41
|
Yao S, Jianlin C, Yarong L, Botao L, Qinghan W, Hongliang F, Lu Z, Hongmei N, Pin W, Hu C, Liangding H, Bin Z. Donor-Derived CD123-Targeted CAR T Cell Serves as a RIC Regimen for Haploidentical Transplantation in a Patient With FUS-ERG+ AML. Front Oncol 2019; 9:1358. [PMID: 31850234 PMCID: PMC6901822 DOI: 10.3389/fonc.2019.01358] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/18/2019] [Indexed: 01/16/2023] Open
Abstract
Background: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) following chemotherapy is part of standard treatment protocol for patients with acute myeloid leukemia (AML). FUS-ERG+ AML is rare but has an extremely poor prognosis even with allo-HSCT in remission, possibly due to its a leukemia stem cell (LSC)-driven disease resulting in chemotherapy resistance and a novel therapy is urgently required. It has been reported that FUS-ERG-positive AML expresses CD123, a marker of LSC, in some cases. CD123-targeted CAR T cell (CART123) is promising immunotherapy, but how to improve the complete remission (CR) rate and rescue potential hematopoietic toxicity still need to explore. Case Presentation: We used donor-derived CART123 as part of conditioning regimen for haploidentical HSCT (haplo-HSCT) in a patient with FUS-ERG+ AML who relapsed after allogeneic transplantation within 3 months, resists to multi-agent chemotherapy and donor lymphocyte infusion (DLI) and remained non-remission, aiming to reduce these chemotherapy-resistant blasts and rescue potential hematopoietic toxicity. The blasts in BM were reduced within 2 weeks and coincided with CAR copies expansion after CART123 infusion. The patient achieved full donor chimerism, CR with incomplete blood count recovery, and myeloid implantation. Conclusion: Our results hints that CART123 reduces the chemotherapy-resistant AML blasts for FUS-ERG+ AML without affecting the full donor chimerism and myeloid implantation.
Collapse
Affiliation(s)
- Sun Yao
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Chen Jianlin
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Liu Yarong
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China
| | - Li Botao
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Wang Qinghan
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Fang Hongliang
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China
| | - Zhang Lu
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China
| | - Ning Hongmei
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Wang Pin
- R&D Department, HRAIN Biotechnology Co., Ltd., Shanghai, China.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States.,Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States.,Department of Pharmaceutical Sciences and Pharmacology, University of Southern California, Los Angeles, CA, United States
| | - Chen Hu
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research, Department of Hematopoietic Stem Cell Transplantation, The Cell and Gene Therapy Center, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Hu Liangding
- Department of Hematopoietic Stem Cell Transplantation, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| | - Zhang Bin
- Beijing Key Laboratory of Hematopoietic Stem Cell Therapy and Transformation Research, Department of Hematopoietic Stem Cell Transplantation, The Cell and Gene Therapy Center, The Fifth Medical Center of Chinese PLA General Hospital (Former 307th Hospital of PLA), The Research Institute of Hematopoietic Stem Cell of the People's Liberation Army, Beijing, China
| |
Collapse
|
42
|
Zhang J, Hu X, Wang J, Sahu AD, Cohen D, Song L, Ouyang Z, Fan J, Wang B, Fu J, Gu S, Sade-Feldman M, Hacohen N, Li W, Ying X, Li B, Liu XS. Immune receptor repertoires in pediatric and adult acute myeloid leukemia. Genome Med 2019; 11:73. [PMID: 31771646 PMCID: PMC6880565 DOI: 10.1186/s13073-019-0681-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023] Open
Abstract
Background Acute myeloid leukemia (AML), caused by the abnormal proliferation of immature myeloid cells in the blood or bone marrow, is one of the most common hematologic malignancies. Currently, the interactions between malignant myeloid cells and the immune microenvironment, especially T cells and B cells, remain poorly characterized. Methods In this study, we systematically analyzed the T cell receptor and B cell receptor (TCR and BCR) repertoires from the RNA-seq data of 145 pediatric and 151 adult AML samples as well as 73 non-tumor peripheral blood samples. Results We inferred over 225,000 complementarity-determining region 3 (CDR3) sequences in TCR α, β, γ, and δ chains and 1,210,000 CDR3 sequences in B cell immunoglobulin (Ig) heavy and light chains. We found higher clonal expansion of both T cells and B cells in the AML microenvironment and observed many differences between pediatric and adult AML. Most notably, adult AML samples have significantly higher level of B cell activation and more secondary Ig class switch events than pediatric AML or non-tumor samples. Furthermore, adult AML with highly expanded IgA2 B cells, which might represent an immunosuppressive microenvironment, are associated with regulatory T cells and worse overall survival. Conclusions Our comprehensive characterization of the AML immune receptor repertoires improved our understanding of T cell and B cell immunity in AML, which may provide insights into immunotherapies in hematological malignancies.
Collapse
Affiliation(s)
- Jian Zhang
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xihao Hu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jin Wang
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Avinash Das Sahu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David Cohen
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Li Song
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhangyi Ouyang
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jingyu Fan
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Binbin Wang
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingxin Fu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shengqing Gu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Moshe Sade-Feldman
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.,Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA, USA
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Harvard Medical School (HMS), Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.,Department of Medicine, Massachusetts General Hospital, HMS, Boston, MA, USA
| | - Wuju Li
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaomin Ying
- Center for Computational Biology, Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
| | - X Shirley Liu
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
43
|
Lin Y, Lin J, Huang J, Chen Y, Tan J, Li Y, Chen S. Lower T cell inhibitory receptor level in mononuclear cells from cord blood compared with peripheral blood. Stem Cell Investig 2019; 6:35. [PMID: 31728384 DOI: 10.21037/sci.2019.09.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
T cell inhibitory receptors play important role in maintaining T cell homeostasis. The feature of such negative costimulator signal transduction pathway in cord blood (CB) T cells remains unclear. In this study, the expression levels of T cell inhibitory receptors including programmed death-1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), T cell immunoglobulin mucin-3 (Tim-3), lymphocyte activation gene-3 (LAG-3) and B and T lymphocyte attenuator (BTLA) were characterized in CB and compared with peripheral blood (PB). Significant lower expression of PD-1, CTLA-4, LAG-3 and BTLA was found in CB, while similar expression level of Tim-3 was showed between CB and PB. Together, different expression pattern of such T cell inhibitory receptor in CB is worthy to further discuss their role on immune response when CB is used in cord blood stem cell transplantation as well as allogeneic chimeric antigen receptor T-cell producing.
Collapse
Affiliation(s)
- Ying Lin
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinrong Lin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Jingying Huang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Youchun Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Jiaxiong Tan
- Department of Hematology, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, China.,Department of Hematology, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Shaohua Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
44
|
Yu B, Liu D. Gemtuzumab ozogamicin and novel antibody-drug conjugates in clinical trials for acute myeloid leukemia. Biomark Res 2019; 7:24. [PMID: 31695916 PMCID: PMC6824118 DOI: 10.1186/s40364-019-0175-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023] Open
Abstract
Targeted agents are increasingly used for the therapy of acute myeloid leukemia (AML). Gemtuzumab ozogamicin (GO) is the first antibody-drug conjugate (ADC) approved for induction therapy of AML. When used in fractionated doses, GO combined with the conventional cytarabine/anthracycline-based induction chemotherapy significantly improves the outcome of previously untreated AML patients. Single-agent GO is effective and safe for AML patient ineligible for intensive chemotherapy. Multiple combination regimens incorporating GO have also been recommended as potential alternative options. In addition, several novel ADCs targeting CD33, CD123 and CLL-1 are currently undergoing preclinical or early clinical investigations. In this review, we summarized the efficacy and limitations of GO as well as novel ADCs for adult AML patients.
Collapse
Affiliation(s)
- Bo Yu
- Department of Medicine, Lincoln Medical Center, Bronx, NY USA
| | - Delong Liu
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY USA
- Department of Oncology, The First affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Fernández L, Fernández A, Mirones I, Escudero A, Cardoso L, Vela M, Lanzarot D, de Paz R, Leivas A, Gallardo M, Marcos A, Romero AB, Martínez-López J, Pérez-Martínez A. GMP-Compliant Manufacturing of NKG2D CAR Memory T Cells Using CliniMACS Prodigy. Front Immunol 2019; 10:2361. [PMID: 31649672 PMCID: PMC6795760 DOI: 10.3389/fimmu.2019.02361] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
Natural killer group 2D (NKG2D) is a natural killer (NK) cell-activating receptor that recognizes different stress-induced ligands that are overexpressed in a variety of childhood and adult tumors. NKG2D chimeric antigen receptor (CAR) T cells have shown potent anticancer effects against different cancer types. A second-generation NKG2D CAR was generated by fusing full-length human NKG2D to 4-1BB costimulatory molecule and CD3ζ signaling domain. Patient-derived CAR T cells show limitations including inability to manufacture CAR T cells from the patients' own T cells, disease progression, and death prior to return of engineered cells. The use of allogeneic T cells for CAR therapy could be an attractive alternative, although undesirable graft vs. host reactions may occur. To avoid such adverse effects, we used CD45RA− memory T cells, a T-cell subset with less alloreactivity, as effector cells to express NKG2D CAR. In this study, we developed a protocol to obtain large-scale NKG2D CAR memory T cells for clinical use by using CliniMACS Prodigy, an automated closed system compliant with Good Manufacturing Practice (GMP) guidelines. CD45RA+ fraction was depleted from healthy donors' non-mobilized apheresis using CliniMACS CD45RA Reagent and CliniMACS Plus device. A total of 108 CD45RA− cells were cultured in TexMACS media supplemented with 100 IU/mL IL-2 and activated at day 0 with T Cell TransAct. Then, we used NKG2D-CD8TM-4-1BB-CD3ζ lentiviral vector for cell transduction (MOI = 2). NKG2D CAR T cells expanded between 10 and 13 days. Final cell products were analyzed to comply with the specifications derived from the quality and complementary controls carried out in accordance with the instructions of the Spanish Regulatory Agency of Medicines and Medical Devices (AEMPS) for the manufacture of investigational advanced therapy medicinal products (ATMPs). We performed four validations. The manufacturing protocol here described achieved large numbers of viable NKG2D CAR memory T cells with elevated levels of NKG2D CAR expression and highly cytotoxic against Jurkat and 531MII tumor target cells. CAR T cell final products met release criteria, except for one showing myc overexpression and another with viral copy number higher than five. Manufacturing of clinical-grade NKG2D CAR memory T cells using CliniMACS Prodigy is feasible and reproducible, widening clinical application of CAR T cell therapies.
Collapse
Affiliation(s)
- Lucía Fernández
- Hematological Malignancies H12O, Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Adrián Fernández
- Hematological Malignancies H12O, Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Isabel Mirones
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Adela Escudero
- Pediatric Molecular Hemato-Oncology Department, Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Leila Cardoso
- Pediatric Molecular Hemato-Oncology Department, Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - María Vela
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Diego Lanzarot
- Applications Department, Miltenyi Biotec S.L., Madrid, Spain
| | - Raquel de Paz
- Hematology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Alejandra Leivas
- Hematological Malignancies H12O, Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Hematology Department, Hospital Universitario12 de Octubre, Madrid, Spain
| | - Miguel Gallardo
- Hematological Malignancies H12O, Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Hematology Department, Hospital Universitario12 de Octubre, Madrid, Spain
| | - Antonio Marcos
- Hematology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Ana Belén Romero
- Hematology Department, Hospital Universitario La Paz, Madrid, Spain
| | - Joaquín Martínez-López
- Hematological Malignancies H12O, Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Hematology Department, Hospital Universitario12 de Octubre, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, Madrid, Spain.,Pediatric Hemato-Oncology Department, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
46
|
Current status and hurdles for CAR-T cell immune therapy. BLOOD SCIENCE 2019; 1:148-155. [PMID: 35402809 PMCID: PMC8974909 DOI: 10.1097/bs9.0000000000000025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells have emerged as novel and promising immune therapies for the treatment of multiple types of cancer in patients with hematological malignancies. There are several key components critical for development and application of CAR-T therapy. First, the design of CAR vectors can considerably affect several aspects of the physiological functions of these T cells. Moreover, despite the wide use of γ-retrovirus and lentivirus in mediating gene transfer into T cells, optimal CAR delivery systems are also being developed and evaluated. In addition, several classes of mouse models have been used to evaluate the efficacies of CAR-T cells; however, each model has its own limitations. Clinically, although surprising complete remission (CR) rates were observed in acute lymphoblastic leukemia (ALL), lymphoma, and multiple myeloma (MM), there is still a lack of specific targets for acute myeloid leukemia (AML). Leukemia relapse remains a major challenge, and its mechanism is presently under investigation. Cytokine release syndrome (CRS) and neurotoxicity are life-threatening adverse effects that need to be carefully treated. Several factors that compromise the activities of anti-solid cancer CAR-T cells have been recognized, and further improvements targeting these factors are the focus of the development of novel CAR-T cells. Overcoming the current hurdles will lead to optimal responses of CAR-T cells, thus paving the way for their wide clinical application.
Collapse
|
47
|
Zhong Q, Li BH, Zhu QQ, Zhang ZM, Zou ZH, Jin YH. The Top 100 Highly Cited Original Articles on Immunotherapy for Childhood Leukemia. Front Pharmacol 2019; 10:1100. [PMID: 31611792 PMCID: PMC6769078 DOI: 10.3389/fphar.2019.01100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/26/2019] [Indexed: 01/11/2023] Open
Abstract
Background: Childhood leukemia is one of the most common cancers in children. As a potential treatment for leukemia, immunotherapy has become a new research hotspot. This research aimed at exploring the status and trends of current researches on immunotherapy for childhood leukemia through bibliometric analysis. Methods: The Institute for Scientific Information Web of Science core collection database was searched for articles on immunotherapy and childhood leukemia using a computer. Time period for retrieval was from the beginning of the database to June 15, 2019. The top 100 highly cited articles were selected to extract their information on publication year, authors, title, publication journal, number of citations, author’s affiliations, country, and so on. These general information and bibliometric data were collected for analysis. VOSviewer software was used to generate a figure for keywords’ co-occurrence network and a figure for researcher’s coauthorship network that visualized reference and cooperation patterns for different terms in the 100 articles. Results: The number of citations in the top 100 articles ranged from 17 to 471. These articles were published in 52 different publications. The top four journals in terms of the number of our selected articles were Leukemia (11 articles), Blood (10 articles), Bone Marrow Transplantation (6 articles), and Clinical Cancer Research. The most frequently nominated author was T. Klingebiel from Goethe University Frankfurt, and of the top 100 articles, 12 listed his name. These top 100 articles were published after the year 2000. Most of these articles were original (67%). The United States and Germany were the major countries researching immunotherapy for childhood leukemia and made significant contributions to the combat against the disease. Adoptive immunotherapy and stem cell transplantation appeared more frequently in keywords. Conclusions: This study analyzed the top 100 highly cited articles on immunotherapy for childhood leukemia and provided insights into the features and research hotspots of the articles on this issue.
Collapse
Affiliation(s)
- Qing Zhong
- Department of Pediatrics, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Bing-Hui Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Center for Evidence-Based Medicine, Institute of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, China
| | - Qi-Qi Zhu
- Department of Pediatrics, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Zhi-Min Zhang
- Department of Pediatrics, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Zhi-Hao Zou
- Department of Pediatrics, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Ying-Hui Jin
- Department of Pediatrics, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China.,Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Hansrivijit P, Gale RP, Barrett J, Ciurea SO. Cellular therapy for acute myeloid Leukemia – Current status and future prospects. Blood Rev 2019; 37:100578. [DOI: 10.1016/j.blre.2019.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
|
49
|
Valent P, Sadovnik I, Eisenwort G, Bauer K, Herrmann H, Gleixner KV, Schulenburg A, Rabitsch W, Sperr WR, Wolf D. Immunotherapy-Based Targeting and Elimination of Leukemic Stem Cells in AML and CML. Int J Mol Sci 2019; 20:E4233. [PMID: 31470642 PMCID: PMC6747233 DOI: 10.3390/ijms20174233] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
The concept of leukemic stem cells (LSC) has been developed with the idea to explain the clonal hierarchies and architectures in leukemia, and the more or less curative anti-neoplastic effects of various targeted drugs. It is now widely accepted that curative therapies must have the potential to eliminate or completely suppress LSC, as only these cells can restore and propagate the malignancy for unlimited time periods. Since LSC represent a minor cell fraction in the leukemic clone, little is known about their properties and target expression profiles. Over the past few years, several cell-specific immunotherapy concepts have been developed, including new generations of cell-targeting antibodies, antibody-toxin conjugates, bispecific antibodies, and CAR-T cell-based strategies. Whereas such concepts have been translated and may improve outcomes of therapy in certain lymphoid neoplasms and a few other malignancies, only little is known about immunological targets that are clinically relevant and can be employed to establish such therapies in myeloid neoplasms. In the current article, we provide an overview of the immunologically relevant molecular targets expressed on LSC in patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). In addition, we discuss the current status of antibody-based therapies in these malignancies, their mode of action, and successful examples from the field.
Collapse
MESH Headings
- Acute Disease
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- Humans
- Immunologic Factors/therapeutic use
- Immunotherapy/methods
- Immunotherapy/trends
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/therapy
- Molecular Targeted Therapy/methods
- Molecular Targeted Therapy/trends
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Bauer
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald Herrmann
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Radiotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Karoline V Gleixner
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Axel Schulenburg
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Blood and Bone Marrow Transplantation, Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Werner Rabitsch
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Blood and Bone Marrow Transplantation, Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, 1090 Innsbruck, Austria
- Medical Clinic 3, Oncology, Hematology, Immunoncology & Rheumatology, University Clinic Bonn (UKB), 53127 Bonn, Germany
| |
Collapse
|
50
|
New Anticancer Immunotherapies: Implications for Physical Therapy. REHABILITATION ONCOLOGY 2019. [DOI: 10.1097/01.reo.0000000000000144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|