1
|
Lv H, Lv M, Guo X, Zhu X, Chao Y, Li D. Lipopolysaccharide-binding protein (LBP): a prognostic biomarker for gastric cancer linked to immune infiltration. BMC Gastroenterol 2025; 25:205. [PMID: 40155834 PMCID: PMC11951659 DOI: 10.1186/s12876-025-03794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Gastric cancer, characterized by rising global incidence and mortality, faces significant challenges due to the lack of effective early detection methods, delaying timely interventions and underscoring the need for novel biomarkers. Lipopolysaccharide-binding protein (LBP), implicated in cancers such as lung, colon, and cervical cancer, has emerged as a promising candidate. However, its specific roles and mechanisms in gastric cancer remain unclear, necessitating further investigation. METHODS This study utilized data from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and the Human Protein Atlas (HPA) to assess LBP mRNA and protein expression levels in gastric cancer patients and explore their associations with clinical outcomes. Analytical techniques included volcano plots, protein-protein interaction networks, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), and immune infiltration assessments. Furthermore, lentiviral vectors containing interference sequences targeting LBP were used to manipulate its expression in AGS and HGC-27 gastric cancer cell lines, enabling the analysis of gene knockdown effects on malignant behaviors. Western blotting (WB) was performed to validate the impact of LBP knockdown on the expression of key signaling pathway proteins. RESULTS Our pan-cancer comparative analysis across 33 cancer types revealed significant upregulation of LBP in gastric cancer, with diagnostic ROC curve analysis yielding an AUC of 0.765. Univariate and multivariate Cox regression analyses revealed that high LBP expression was inversely related to patient survival. Additionally, immune infiltration and functional enrichment analyses revealed the involvement of LBP in pathways crucial to cancer development, such as immune response modulation and lipid metabolism. LBP knockdown in gastric cancer cell lines reduced proliferation, migration, and invasion. WB confirmed decreased expression of P65, P-P65, STAT3, and P-STAT3 upon LBP knockdown. CONCLUSION LBP is intricately linked to gastric cancer pathogenesis; it influences cell proliferation, migration, and invasion, thereby representing a valuable prognostic and diagnostic biomarker. This study not only highlights the potential of LBP as a therapeutic target but also provides the groundwork for future investigations into its mechanistic pathways in gastric cancer. CLINICAL TRIAL NUMBER Not applicable. I would like to clarify that our research does not fall under clinical studies and therefore does not involve ethical concerns related to human or animal subjects. The cells used in this study are established cell lines purchased from a certified biotechnology company. All experimental procedures comply with standard research protocols and guidelines for cell line studies.
Collapse
Affiliation(s)
- Hao Lv
- Department of Gastroenterology Medicine (Endoscopy Center), China-Japan, Union Hospital of Jilin University, Changchun, Jilin, 130033, PR China
- Department of Gastroenterology, University of Health and Rehabilitation Sciences Affiliated, Qingdao Municipal Hospital Jiaozhou Road 1#, Qingdao, 266071, PR China
| | - Mei Lv
- Department of Gastroenterology, University of Health and Rehabilitation Sciences Affiliated, Qingdao Municipal Hospital Jiaozhou Road 1#, Qingdao, 266071, PR China
| | - Xuyang Guo
- Department of Gastroenterology Medicine (Endoscopy Center), China-Japan, Union Hospital of Jilin University, Changchun, Jilin, 130033, PR China
| | - Xiaoman Zhu
- Department of Gastroenterology Medicine (Endoscopy Center), China-Japan, Union Hospital of Jilin University, Changchun, Jilin, 130033, PR China
| | - Yue Chao
- Department of Gastroenterology Medicine (Endoscopy Center), China-Japan, Union Hospital of Jilin University, Changchun, Jilin, 130033, PR China
| | - Dandan Li
- Department of Gastroenterology Medicine (Endoscopy Center), China-Japan, Union Hospital of Jilin University, Changchun, Jilin, 130033, PR China.
| |
Collapse
|
2
|
Wang Y, Yang Z, Shi X, Han H, Li AN, Zhang B, Yuan W, Sun YH, Li XM, Lian H, Li MD. Investigating the effect of Arvcf reveals an essential role on regulating the mesolimbic dopamine signaling-mediated nicotine reward. Commun Biol 2025; 8:429. [PMID: 40082601 PMCID: PMC11906728 DOI: 10.1038/s42003-025-07837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
The mesolimbic dopamine system is crucial for drug reinforcement and reward learning, leading to addiction. We previously demonstrated that Arvcf was associated significantly with nicotine and alcohol addiction through genome-wide association studies. However, the role and mechanisms of Arvcf in dopamine-mediated drug reward processes were largely unknown. In this study, we first showed that Arvcf mediates nicotine-induced reward behavior by using conditioned place preference (CPP) model on Arvcf-knockout (Arvcf-KO) animal model. Then, we revealed that Arvcf was mainly expressed in VTA dopaminergic neurons whose expression could be upregulated by nicotine treatment. Subsequently, our SnRNA-seq analysis revealed that Arvcf was directly involved in dopamine biosynthesis in VTA dopaminergic neurons. Furthermore, we found that Arvcf-KO led to a significant reduction in both the dopamine synthesis and release in the nucleus accumbens (NAc) on nicotine stimulation. Specifically, we demonstrated that inhibition of Arvcf in VTA dopaminergic neurons decreased dopamine release within VTA-NAc circuit and suppressed nicotine reward-related behavior, while overexpression of Arvcf led to the opposite results. Taken together, these findings highlight the role of Arvcf in regulating dopamine signaling and reward learning, and its enhancement of dopamine release in the VTA-NAc circuit as a novel mechanism for nicotine reward.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Andria N Li
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hui Sun
- Department of Neurology and Department of Psychiatry of the Second Afiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Ming Li
- Department of Neurology and Department of Psychiatry of the Second Afiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Lian
- Nanhu Brain-computer Interface Institute, Hangzhou, China.
- Department of Neurology and Department of Psychiatry of the Second Afiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
He Y, Zhang X, Zhang X, Fu B, Xing J, Fu R, Lv J, Guo M, Huo X, Liu X, Lu J, Cao L, Du X, Ge Z, Chen Z, Lu X, Li C. Hypoxia exacerbates the malignant transformation of gastric epithelial cells induced by long-term H. pylori infection. Microbiol Spectr 2024; 12:e0031124. [PMID: 38916312 PMCID: PMC11302036 DOI: 10.1128/spectrum.00311-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/14/2024] [Indexed: 06/26/2024] Open
Abstract
Helicobacter pylori is a microaerophilic Gram-negative bacterium that resides in the human stomach and is classified as a class I carcinogen for gastric cancer. Numerous studies have demonstrated that H. pylori infection plays a role in regulating the function of host cells, thereby contributing to the malignant transformation of these cells. However, H. pylori infection is a chronic process, and short-term cellular experiments may not provide a comprehensive understanding of the in vivo situation, especially when considering the lower oxygen levels in the human stomach. In this study, we aimed to investigate the mechanisms underlying gastric cell dysfunction after prolonged exposure to H. pylori under hypoxic conditions. We conducted a co-culture experiment using the gastric cell line GES-1 and H. pylori for 30 generations under intermittent hypoxic conditions. By closely monitoring cell proliferation, migration, invasion, autophagy, and apoptosis, we revealed that sustained H. pylori stimulation under hypoxic conditions significantly influences the function of GES-1 cells. This stimulation induces epithelial-mesenchymal transition and contributes to the propensity for malignant transformation of gastric cells. To confirm the in vitro results, we conducted an experiment involving Mongolian gerbils infected with H. pylori for 85 weeks. All the results strongly suggest that the Nod1 receptor signaling pathway plays a crucial role in H. pylori-related apoptosis and autophagy. In summary, continuous stimulation by H. pylori affects the functioning of gastric cells through the Nod1 receptor signaling pathway, increasing the likelihood of cell carcinogenesis. The presence of hypoxic conditions further exacerbates this process.IMPORTANCEDeciphering the collaborative effects of Helicobacter pylori infection on gastric epithelial cell function is key to unraveling the development mechanisms of gastric cancer. Prior research has solely examined the outcomes of short-term H. pylori stimulation on gastric epithelial cells under aerobic conditions, neglecting the bacterium's nature as a microaerophilic organism that leads to cancer following prolonged stomach colonization. This study mimics a more genuine in vivo infection scenario by repeatedly exposing gastric epithelial cells to H. pylori under hypoxic conditions for up to 30 generations. The results show that chronic exposure to H. pylori in hypoxia substantially increases cell migration, invasion, and epithelial-mesenchymal transition, while suppressing autophagy and apoptosis. This highlights the significance of hypoxic conditions in intensifying the carcinogenic impact of H. pylori infection. By accurately replicating the in vivo gastric environment, this study enhances our comprehension of H. pylori's pathogenic mechanisms in gastric cancer.
Collapse
Affiliation(s)
- Yang He
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- School of Nursing, Dalian Medical University, Dalian, China
| | - Xiulin Zhang
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolu Zhang
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Bo Fu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jin Xing
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Rui Fu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyi Lv
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Meng Guo
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xueyun Huo
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xin Liu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jing Lu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Lixue Cao
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xiaoyan Du
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zhenwen Chen
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xuancheng Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changlong Li
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Yang Z, Chen J, Han H, Wang Y, Shi X, Zhang B, Mao Y, Li AN, Yuan W, Yao J, Li MD. Single nucleotide polymorphisms rs148582811 regulates its host gene ARVCF expression to affect nicotine-associated hippocampus-dependent memory. iScience 2023; 26:108335. [PMID: 38025780 PMCID: PMC10679859 DOI: 10.1016/j.isci.2023.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Although numerous susceptibility loci are nominated for nicotine dependence (ND), no report showed any association of ARVCF with ND. Through genome-wide sequencing analysis, we first identified genetic variants associated nominally with ND and then replicated them in an independent sample. Of the six replicated variants, rs148582811 in ARVCF located in the enhancer-associated marker peak is attractive. The effective-median-based Mendelian randomization analysis indicated that ARVCF is a causal gene for ND. RNA-seq analysis detected decreased ARVCF expression in smokers compared to nonsmokers. Luciferase reporter assays indicated that rs148582811 and its located DNA fragment allele-specifically regulated ARVCF expression. Immunoprecipitation analysis revealed that transcription factor X-ray repair cross-complementing protein 5 (XRCC5) bound to the DNA fragment containing rs148582811 and allele-specifically regulated ARVCF expression at the mRNA and protein levels. With the Arvcf knockout mouse model, we showed that Arvcf deletion not only impairs hippocampus-dependent learning and memory, but also alleviated nicotine-induced memory deficits.
Collapse
Affiliation(s)
- Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Joint Institute of Smoking and Health, Kunming, Yunnan 650024, China
| | - Jiali Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haijun Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Bin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Andria N. Li
- Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jianhua Yao
- Joint Institute of Smoking and Health, Kunming, Yunnan 650024, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Liu Q, Peng Q, Zhang B, Tan Y. X-ray cross-complementing family: the bridge linking DNA damage repair and cancer. J Transl Med 2023; 21:602. [PMID: 37679817 PMCID: PMC10483876 DOI: 10.1186/s12967-023-04447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Genomic instability is a common hallmark of human tumours. As a carrier of genetic information, DNA is constantly threatened by various damaging factors that, if not repaired in time, can affect the transmission of genetic information and lead to cellular carcinogenesis. In response to these threats, cells have evolved a range of DNA damage response mechanisms, including DNA damage repair, to maintain genomic stability. The X-ray repair cross-complementary gene family (XRCC) comprises an important class of DNA damage repair genes that encode proteins that play important roles in DNA single-strand breakage and DNA base damage repair. The dysfunction of the XRCC gene family is associated with the development of various tumours. In the context of tumours, mutations in XRCC and its aberrant expression, result in abnormal DNA damage repair, thus contributing to the malignant progression of tumour cells. In this review, we summarise the significant roles played by XRCC in diverse tumour types. In addition, we discuss the correlation between the XRCC family members and tumour therapeutic sensitivity.
Collapse
Affiliation(s)
- Qiang Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410078, Hunan, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, Hunan, China
| | - Qiu Peng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bin Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Yueqiu Tan
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, 410078, Hunan, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Olatunji I, Cui F. Multimodal AI for prediction of distant metastasis in carcinoma patients. FRONTIERS IN BIOINFORMATICS 2023; 3:1131021. [PMID: 37228671 PMCID: PMC10203594 DOI: 10.3389/fbinf.2023.1131021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Metastasis of cancer is directly related to death in almost all cases, however a lot is yet to be understood about this process. Despite advancements in the available radiological investigation techniques, not all cases of Distant Metastasis (DM) are diagnosed at initial clinical presentation. Also, there are currently no standard biomarkers of metastasis. Early, accurate diagnosis of DM is however crucial for clinical decision making, and planning of appropriate management strategies. Previous works have achieved little success in attempts to predict DM from either clinical, genomic, radiology, or histopathology data. In this work we attempt a multimodal approach to predict the presence of DM in cancer patients by combining gene expression data, clinical data and histopathology images. We tested a novel combination of Random Forest (RF) algorithm with an optimization technique for gene selection, and investigated if gene expression pattern in the primary tissues of three cancer types (Bladder Carcinoma, Pancreatic Adenocarcinoma, and Head and Neck Squamous Carcinoma) with DM are similar or different. Gene expression biomarkers of DM identified by our proposed method outperformed Differentially Expressed Genes (DEGs) identified by the DESeq2 software package in the task of predicting presence or absence of DM. Genes involved in DM tend to be more cancer type specific rather than general across all cancers. Our results also indicate that multimodal data is more predictive of metastasis than either of the three unimodal data tested, and genomic data provides the highest contribution by a wide margin. The results re-emphasize the importance for availability of sufficient image data when a weakly supervised training technique is used. Code is made available at: https://github.com/rit-cui-lab/Multimodal-AI-for-Prediction-of-Distant-Metastasis-in-Carcinoma-Patients.
Collapse
Affiliation(s)
| | - Feng Cui
- Thomas H. Gosnell School of Life Science, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
7
|
Tan LM, Chen P, Nie ZY, Liu XF, Wang B. Circular RNA XRCC5 aggravates glioma progression by activating CLC3/SGK1 axis via recruiting IGF2BP2. Neurochem Int 2023; 166:105534. [PMID: 37061192 DOI: 10.1016/j.neuint.2023.105534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Increasing evidences have reported the critical roles of circular RNA (circRNA) in gliomas. Whereas, the role of circXRCC5 in glioma and its underlying molecular mechanism has not been reported. METHODS The RNA transcripts and protein levels were detected using qRT-PCR, immunohistochemistry (IHC) and in situ hybridization (ISH) assays. Cell proliferation was characterized by CCK-8 and clone formation assays. The formation of NLRP3-inflammasomes was identified using immunofluorescence (IF) and Western blot assays. The cytokines were determined using immunosorbent assay (ELISA) and Western blot assays. The molecular interactions were validated using RIP and pull-down assays. RESULTS circXRCC5 was over-expressed in glioma and positively related to the shorter survival rate, advanced TNM stage and larger tumor volume. circXRCC5 knockdown inhibited cell proliferation and NLRP3-mediated inflammasome activation of glioma cells. Subsequently, we found that circXRCC5 maintained mRNA stability of CLC3 by binding to IGF2BP2. Furthermore, CLC3 accelerated SGK1 expression via PI3K/PDK1/AKT pathway. The rescue experiments showed that both overexpression of CLC3 or SGK1 dramatically alleviated circXRCC5 knockdown-induced inhibition of cell proliferation and NLRP3-mediated inflammasome activation of glioma cells. In vivo, our study proved that circXRCC5 accelerated glioma growth by regulating CLC3/SGK1 axis. CONCLUSION Our data concluded that circXRCC5 formed a complex with IGF2BP2 to regulate inflammasome activation and tumor growth via CLC3/SGK1 axis.
Collapse
Affiliation(s)
- Li-Ming Tan
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Ping Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Zhen-Yu Nie
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Xiao-Fei Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China
| | - Bing Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, PR China.
| |
Collapse
|
8
|
circXRCC5 foster gastric cancer growth and metastasis by the HNRNPC/circXRCC5/miR-655-3p/RREB1/UBA2 positive feedback loop. Cancer Gene Ther 2022; 29:1648-1661. [PMID: 35661832 DOI: 10.1038/s41417-022-00482-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies, leading to millions of deaths each year. Here, we investigated the molecular mechanisms of GC, with a focus on circXRCC5/miR-655-3p/RREB1/UBA2 axis. circXRCC5 was identified in 62 paired cancer specimens and adjacent normal tissues by genome-wide bioinformatics analysis and verified by qRT-PCR and Sanger sequencing. Knockdown or exogenous expression of circXRCC5 was performed to validate the functional significance of circXRCC5 using both in vitro and in vivo assays, including CCK-8, colony formation, EdU incorporation, transwell system, as well as animal experiments. RNA immunoprecipitation, biotinylated RNA pull-down, ChIP, and dual-luciferase assays were employed to validate the regulatory network of circXRCC5/miR-655-3p/RREB1/UBA2. Frequently elevated circXRCC5 in GC tissues and cell lines was associated with poor prognosis of GC patients. Functionally, circXRCC5 overexpression facilitated GC cell proliferation, migration, and invasion, as well as promoted tumor growth and metastasis in vivo. Mechanistically, circXRCC5 served as a sponge of miR-655-3p to induce upregulation of RREB1. RREB1 was identified as a transcriptional activator of UBA2, thus contributing to GC tumorigenesis. Moreover, RNA binding protein (RBP) HNRNPC was proved to interact with circXRCC5 to promote circXRCC5 biogenesis. Collectively, circXRCC5 facilitates GC progression through the HNRNPC/circXRCC5/miR-655-3p/RREB1/UBA2 axis, which might bring novel therapeutic strategies for GC treatment.
Collapse
|
9
|
Kim B, Jung M, Moon KC, Han D, Kim K, Kim H, Yang S, Lee D, Jun H, Lee K, Lee CH, Nikas IP, Yang S, Lee H, Ryu HS. Quantitative proteomics identifies
TUBB6
as a biomarker of muscle‐invasion and poor prognosis in bladder cancer. Int J Cancer 2022; 152:320-330. [DOI: 10.1002/ijc.34265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Bohyun Kim
- Department of Pathology, Konkuk University Medical Center Konkuk University School of Medicine Seoul Korea
| | - Minsun Jung
- Department of Pathology, Severance Hospital Yonsei University College of Medicine Seoul Republic of Korea
| | - Kyung Chul Moon
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
- Kidney Research Institute, Medical Research Center Seoul National University College of Medicine Seoul Republic of Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine & Advanced Technology Seoul National University Hospital Seoul South Korea
- Proteomics Core Facility, Biomedical Research Institute Seoul National University Hospital Seoul South Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine & Advanced Technology Seoul National University Hospital Seoul South Korea
| | - Hyeyoon Kim
- Transdisciplinary Department of Medicine & Advanced Technology Seoul National University Hospital Seoul South Korea
- Proteomics Core Facility, Biomedical Research Institute Seoul National University Hospital Seoul South Korea
| | - Sunah Yang
- Transdisciplinary Department of Medicine & Advanced Technology Seoul National University Hospital Seoul South Korea
| | - Dongjoo Lee
- Interdisciplinary Program in Bioengineering Seoul National University Seoul Korea
| | - Hyeji Jun
- Center for Medical Innovation, Biomedical Research Institute Seoul National University Hospital Seoul South Korea
| | - Kyung‐Min Lee
- Center for Medical Innovation, Biomedical Research Institute Seoul National University Hospital Seoul South Korea
| | - Cheng Hyun Lee
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
| | - Ilias P. Nikas
- School of Medicine, European University Cyprus Nicosia Cyprus
| | - Sohyeon Yang
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
| | - Hyebin Lee
- Department of Radiation Oncology, Kangbuk Samsung Hospital Sungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Han Suk Ryu
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
- Center for Medical Innovation, Biomedical Research Institute Seoul National University Hospital Seoul South Korea
| |
Collapse
|
10
|
Chen P, Nie ZY, Liu XF, Zhou M, Liu XX, Wang B. CircXRCC5, as a potential novel biomarker, promotes glioma progression via the miR-490-3p/XRCC5/CLC3 ceRNA network. Neuroscience 2022; 494:104-118. [DOI: 10.1016/j.neuroscience.2021.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 10/18/2022]
|
11
|
Abegg D, Tomanik M, Qiu N, Pechalrieu D, Shuster A, Commare B, Togni A, Herzon SB, Adibekian A. Chemoproteomic Profiling by Cysteine Fluoroalkylation Reveals Myrocin G as an Inhibitor of the Nonhomologous End Joining DNA Repair Pathway. J Am Chem Soc 2021; 143:20332-20342. [PMID: 34817176 DOI: 10.1021/jacs.1c09724] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemoproteomic profiling of cysteines has emerged as a powerful method for screening the proteome-wide targets of cysteine-reactive fragments, drugs, and natural products. Herein, we report the development and an in-depth evaluation of a tetrafluoroalkyl benziodoxole (TFBX) as a cysteine-selective chemoproteomic probe. We show that this probe features numerous key improvements compared to the traditionally used cysteine-reactive probes, including a superior target occupancy, faster labeling kinetics, and broader proteomic coverage, thus enabling profiling of cysteines directly in live cells. In addition, the fluorine "signature" of probe 7 constitutes an additional advantage resulting in a more confident adduct-amino acid site assignment in mass-spectrometry-based identification workflows. We demonstrate the utility of our new probe for proteome-wide target profiling by identifying the cellular targets of (-)-myrocin G, an antiproliferative fungal natural product with a to-date unknown mechanism of action. We show that this natural product and a simplified analogue target the X-ray repair cross-complementing protein 5 (XRCC5), an ATP-dependent DNA helicase that primes DNA repair machinery for nonhomologous end joining (NHEJ) upon DNA double-strand breaks, making them the first reported inhibitors of this biomedically highly important protein. We further demonstrate that myrocins disrupt the interaction of XRCC5 with DNA leading to sensitization of cancer cells to the chemotherapeutic agent etoposide as well as UV-light-induced DNA damage. Altogether, our next-generation cysteine-reactive probe enables broader and deeper profiling of the cysteinome, rendering it a highly attractive tool for elucidation of targets of electrophilic small molecules.
Collapse
Affiliation(s)
- Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Martin Tomanik
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Nan Qiu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Dany Pechalrieu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Anton Shuster
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Bruno Commare
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
12
|
Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases. Cell Mol Life Sci 2021; 78:8109-8125. [PMID: 34778915 PMCID: PMC8629801 DOI: 10.1007/s00018-021-04011-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/10/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022]
Abstract
The incidence of gastrointestinal (GI) mucosal diseases, including various types of gastritis, ulcers, inflammatory bowel disease and GI cancer, is increasing. Therefore, it is necessary to identify new therapeutic targets. Ion channels/transporters are located on cell membranes, and tight junctions (TJs) affect acid–base balance, the mucus layer, permeability, the microbiota and mucosal blood flow, which are essential for maintaining GI mucosal integrity. As ion channel/transporter dysfunction results in various GI mucosal diseases, this review focuses on understanding the contribution of ion channels/transporters to protecting the GI mucosal barrier and the relationship between GI mucosal disease and ion channels/transporters, including Cl−/HCO3− exchangers, Cl− channels, aquaporins, Na+/H+ exchangers, and K+ channels. Here, we provide novel prospects for the treatment of GI mucosal diseases.
Collapse
|
13
|
Yu M, Wei Y, Zheng Y, Yang L, Meng L, Lin J, Xu P, Mahdy SANA, Zhu L, Peng S, Chen L, Wang L. 17β-Estradiol activates Cl - channels via the estrogen receptor α pathway in human thyroid cells. Channels (Austin) 2021; 15:516-527. [PMID: 34414859 PMCID: PMC8381838 DOI: 10.1080/19336950.2021.1957627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Estradiol regulates thyroid function, and chloride channels are involved in the regulation of thyroid function. However, little is known about the role of chloride channels in the regulation of thyroid functions by estrogen. In this study, the effects of estrogen on chloride channel activities in human thyroid Nthy-ori3-1 cells were therefore investigated using the whole cell patch-clamp technique. The results showed that the extracellular application of 17β-estradiol (E2) activated Cl− currents, which reversed at a potential close to Cl− equilibrium potential and showed remarkable outward rectification and an anion permeability of I− > Br− > Cl− > gluconate. The Cl− currents were inhibited by the chloride channel blockers, NPPB and tamoxifen. Quantitative Real-time PCR results demonstrated that ClC-3 expression was highest in ClC family member in Nthy-ori3-1 cells. The down-regulation of ClC-3 expression by ClC-3 siRNA inhibited E2-induced Cl− current. The Cl− current was blocked by the estrogen receptor antagonist, ICI 182780 (fulvestrant). Estrogen receptor alpha (ERα) and not estrogen receptor beta was the protein expressed in Nthy-ori3-1 cells, and the knockdown of ERα expression with ERα siRNA abolished E2-induced Cl− currents. Estradiol can promote the accumulation of ClC-3 in cell membrane. ERα and ClC-3 proteins were partially co-localized in the cell membrane of Nthy-ori3-1 cells after estrogen exposure. The results suggest that estrogen activates chloride channels via ERα in normal human thyroid cells, and ClC-3 proteins play a pivotal role in the activation of E2-induced Cl− current.
Collapse
Affiliation(s)
- Meisheng Yu
- Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Yuan Wei
- Center for Scientific Research and Institute of Exercise and Health, Guangzhou Sports University, Guangzhou, China
| | - Yanfang Zheng
- Department of Physiology, Medical College, The Zhuhai Campus of the Zunyi Medical University, Zhuhai, China
| | - Lili Yang
- Academic Affairs Office, Guangzhou Medical University, Guangzhou, China
| | - Long Meng
- Department of Obstetrics, Shiyan Maternal and Child Health Hospital, Hubei, Shiyan, China
| | - Jiawei Lin
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Peisheng Xu
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | | | - Linyan Zhu
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Shuang Peng
- Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Lixin Chen
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Liwei Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Xue S, Ma M, Bei S, Li F, Wu C, Li H, Hu Y, Zhang X, Qian Y, Qin Z, Jiang J, Feng L. Identification and Validation of the Immune Regulator CXCR4 as a Novel Promising Target for Gastric Cancer. Front Immunol 2021; 12:702615. [PMID: 34322132 PMCID: PMC8311657 DOI: 10.3389/fimmu.2021.702615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint blockade has attracted a lot of attention in the treatment of human malignant tumors. We are trying to establish a prognostic model of gastric cancer (GC) based on the expression profile of immunoregulatory factor-related genes. Based on the TCGA database, we identified 234 differentially expressed immunoregulatory factors. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) conducted enrichment analysis to clarify the biological functions of differential expression of immunoregulatory factors. STRING database predicted the interaction network between 234 differently expressed immune regulatory factors. The expression of 11 immunoregulatory factors was significantly related to the overall survival of gastric cancer patients. Univariate Cox regression analysis, Kaplan–Meier analysis and multivariate Cox regression analysis found that immunomodulatory factors were involved in the progression of gastric cancer and promising biomarkers for predicting prognosis. Among them, CXCR4 was related to the low survival of GC patients and a key immunomodulatory factor in GC. Based on TCGA data, the high expression of CXCR4 in GC was positively correlated with the advanced stage and grade of gastric cancer and related to poor prognosis. Univariate analysis and multivariate analysis indicated that CXCR4 was an independent prognostic indicator for TCGA gastric cancer patients. In vitro functional studies had shown that CXCR4 promoted the proliferation, migration, and invasion of gastric cancer cells. In summary, this study has determined the prognostic value of 11 immunomodulatory factors in gastric cancer. CXCR4 is an independent prognostic indicator for gastric cancer patients, which may help to improve the individualized prognostic prediction of GC and provide candidates for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Shuai Xue
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Ming Ma
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
| | - Songhua Bei
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Fan Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Chenqu Wu
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Huanqing Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Yanling Hu
- Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaohong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - YanQing Qian
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhe Qin
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Jun Jiang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Gong C, Yang H, Wang S, Liu J, Li Z, Hu Y, Chen Y, Huang Y, Luo Q, Wu Y, Liu E, Xiao Y. hTERT Promotes CRC Proliferation and Migration by Recruiting YBX1 to Increase NRF2 Expression. Front Cell Dev Biol 2021; 9:658101. [PMID: 34079797 PMCID: PMC8165255 DOI: 10.3389/fcell.2021.658101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
High human telomerase reverse transcriptase (hTERT) expression is related to severe Colorectal Cancer (CRC) progression and negatively related to CRC patient survival. Previous studies have revealed that hTERT can reduce cancer cellular reactive oxygen species (ROS) levels and accelerate cancer progression; however, the mechanism remains poorly understood. NFE2-related factor 2 (NRF2) is a molecule that plays a significant role in regulating cellular ROS homeostasis, but whether there is a correlation between hTERT and NRF2 remains unclear. Here, we showed that hTERT increases CRC proliferation and migration by inducing NRF2 upregulation. We further found that hTERT increases NRF2 expression at both the mRNA and protein levels. Our data also revealed that hTERT primarily upregulates NRF2 by increasing NRF2 promoter activity rather than by regulating NRF2 mRNA or protein stability. Using DNA pull-down/MS analysis, we found that hTERT can recruit YBX1 to upregulate NRF2 promoter activity. We also found that hTERT/YBX1 may localize to the P2 region of the NRF2 promoter. Taken together, our results demonstrate that hTERT facilitates CRC proliferation and migration by upregulating NRF2 expression through the recruitment of the transcription factor YBX1 to activate the NRF2 promoter. These results provide a new theoretical basis for CRC treatment.
Collapse
Affiliation(s)
- Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiao Liu
- Department of Endoscope, General Hospital of Shenyang Military Region, Shenyang, China
| | - Zhibin Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuyun Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - En Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
16
|
Feng J, Peng Z, Gao L, Yang X, Sun Z, Hou X, Li E, Zhu L, Yang H. ClC-3 promotes paclitaxel resistance via modulating tubulins polymerization in ovarian cancer cells. Biomed Pharmacother 2021; 138:111407. [PMID: 33765585 DOI: 10.1016/j.biopha.2021.111407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Epithelial ovarian cancers (EOC) present as malignant tumors with high mortality in the female reproductive system diseases. Acquired resistance to paclitaxel (PTX), one of the first-line treatment of EOC, remains a therapeutic challenge. ClC-3, a member of the voltage-gated Cl- channels, plays an essential role in a variety of cellular activities, including chemotherapeutic resistance. Here, we demonstrated that the protein expression and channel function of ClC-3 was upregulated in PTX resistance A2780/PTX cells compared with its parental A2780 cells. The silence of ClC-3 expression by siRNA in A2780/PTX cells partly recovered the PTX sensitivity through restored the G2/M arrest and resumed the chloride channel blocked. ClC-3 siRNA both inhibited the expression of ClC-3 and β-tubulin, whereas the β-tubulin siRNA reduced the expression of itself only, without affecting the expression of ClC-3. Moreover, treatment of ClC-3 siRNA in A2780/PTX cells increased the polymerization ratio of β-tubulin, and the possibility of proteins interaction between ClC-3 and β-tubulin was existing. Take together, the over-expression of ClC-3 protein in PTX-resistance ovarian cancer cells promotes the combination of ClC-3 and β-tubulin, which in turn increase the ration of free form and decrease the quota of the polymeric form of β-tubulin, and finally reduce the sensitivity to PTX. Our findings elucidated a novel function of ClC-3 in regulating PTX resistance and ClC-3 could serve as a potential target to overcome the PTX resistance ovarian cancer.
Collapse
Affiliation(s)
- Jiezhu Feng
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Zihan Peng
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Lvfen Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiurou Yang
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Zele Sun
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xiuying Hou
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Enze Li
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Linyan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China; Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Haifeng Yang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China.
| |
Collapse
|
17
|
Wang L, Huang Y, Liu C, Guo M, Ma Z, He J, Wang A, Sun X, Liu Z. Deltex3 inhibits Epithelial Mesenchymal Transition in Papillary Thyroid Carcinoma via promoting ubiquitination of XRCC5 to regulate the AKT signal pathway. J Cancer 2021; 12:860-873. [PMID: 33403043 PMCID: PMC7778541 DOI: 10.7150/jca.48141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/02/2020] [Indexed: 01/23/2023] Open
Abstract
Background: Papillary thyroid carcinoma (PTC) is one of the most common endocrine malignant tumors. Poor prognoses such as high recurrence rate always appear in PTC patients with cervical lymph node metastasis. The process of ubiquitination plays important roles in PTC. As ubiquitin E3 ligases, Deltex (DTX) family proteins were reported to associate with multiple cancers. However, functions and mechanisms of DTX3 in PTC are currently unknown. Methods: In this study, DTX3 expressions were examined in 114 PTC and paired paracancerous normal tissues through quantitative real-time polymerase chain reaction and western blot. The clinical significances of DTX3 expressions in PTC patients were also investigated. After stable transfection with either short hairpin RNA to knock down DTX3 expression or full-length complementary DNA to upregulate DTX3 expression, changes of malignant phenotypes in two PTC cell lines K1 and TPC-1 were observed using cell viability, flow cytometry, wound healing and transwell assays. Afterwards, altered expressions of epithelial-mesenchymal transition (EMT) and AKT signal pathway related proteins were measured by western blot. Immunoprecipitation and mass spectrometry (IP-MS), immunofluorescence and Co-IP were utilized to identify the possible DTX3 interacting proteins. Results: Both mRNA and protein expressions of DTX3 were lower in PTC tissues and correlated with the presence of cervical lymph node metastasis (P<0.05). DTX3 overexpression inhibited migration and invasion of PTC cells, decreased Vimentin and phosphorylated AKT expressions, but promoted E-cadherin expression (P<0.05). Moreover, knockdown of DTX3 led to opposite changes (P<0.05). Total 46 probable DTX3 interacting proteins were identified by IP-MS. Among them, X-ray repair cross-complementing protein 5 (XRCC5) and NADH: Ubiquinone Oxidoreductase Complex Assembly Factor 5 (NDUFAF5) were verified to be associated with DTX3. Moreover, DTX3 was proved to be co-localized with XRCC5 in nucleus and promote ubiquitination of XRCC5. Conclusions: DTX3 suppresses EMT by partially facilitating ubiquitination of XRCC5 to inhibit AKT signal pathway in PTC.
Collapse
Affiliation(s)
- Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yonglian Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chenxi Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingyue Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhennan Ma
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ailian Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Sun
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Qi Z, Yan F, Chen D, Xing W, Li Q, Zeng W, Bi B, Xie J. Identification of prognostic biomarkers and correlations with immune infiltrates among cGAS-STING in hepatocellular carcinoma. Biosci Rep 2020; 40:BSR20202603. [PMID: 33006365 PMCID: PMC7569205 DOI: 10.1042/bsr20202603] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/13/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway induces innate immunity by activating the production of inflammatory cytokines and type I interferons. Recently, studies revealed that self-DNA from by-products of chromosome instability and tumors could activate the cGAS-STING pathway, and subsequently promote or inhibit tumor development. However, the prognostic value and correlations with immune infiltrates of the cGAS-STING pathway in hepatocellular carcinoma (HCC) have not been clarified. In the present study, we used the Molecular Signatures Database, Oncomine, UALCAN, Human Protein Atlas, Kaplan-Meier plotter, LinkedOmics, and Tumor Immune Estimation Resource databases. Overexpression of XRCC5, IRF3, TRIM21, STAT6, DDX41, TBK1, XRCC6, TREX1, PRKDC, and TMEM173 was markedly correlated with clinical stages and pathological grades in HCC. Moreover, higher mRNA expression of XRCC5, XRCC6, and PRKDC was significantly related with shorter overall survival. However, higher mRNA expression of IFI16, STAT6, NLRC3, and TMEM173 was associated with favorable overall survival. Our results suggested that the kinase targets of the cGAS-STING pathway included the SRC family of tyrosine kinases (LCK and LYN), phosphoinositide 3-kinase-related protein kinase (PIKK) family kinases (ATM and ATR), and mitogen-activated protein kinase 1 (MAPK1). Furthermore, we identified significant correlations among the expression of cGAS-STING pathway and infiltration of B cells, CD4+T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells in HCC. The expression of the cGAS-STING pathway also exhibited strong relationships with diverse immune marker sets in HCC. These findings suggest that cGAS-STING pathway members may be used as prognostic biomarkers and immunotherapeutic targets HCC patients.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Datasets as Topic
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Kaplan-Meier Estimate
- Liver/immunology
- Liver/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Membrane Proteins/metabolism
- Nucleotidyltransferases/metabolism
- Oligonucleotide Array Sequence Analysis
- Prognosis
- RNA-Seq
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Zhenhua Qi
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Fang Yan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Dongtai Chen
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Wei Xing
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Qiang Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Bingtian Bi
- Department of Clinical Trial Center, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510060, China
| |
Collapse
|
19
|
He Y, Wang C, Zhang X, Lu X, Xing J, Lv J, Guo M, Huo X, Liu X, Lu J, Du X, Li C, Chen Z. Sustained Exposure to Helicobacter pylori Lysate Inhibits Apoptosis and Autophagy of Gastric Epithelial Cells. Front Oncol 2020; 10:581364. [PMID: 33194715 PMCID: PMC7658535 DOI: 10.3389/fonc.2020.581364] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is designated as a class I carcinogen of human gastric cancer following long-term infection. During this process, H. pylori bacteria persist in proliferation and death, and release bacterial components that come into contact with gastric epithelial cells and regulate host cell function. However, the impact of long-term exposure to H. pylori lysate on the pathological changes of gastric cells is not clear. In this study, we aimed to investigate the regulation and mechanisms involved in gastric cell dysfunction following continuous exposure to H. pylori lysate. We co-cultured gastric cell lines GES-1 and MKN-45 with H. pylori lysate for 30 generations, and we found that sustained exposure to H. pylori lysate inhibited GES-1 cell invasion, migration, autophagy, and apoptosis, while it did not inhibit MKN-45 cell invasion or migration. Furthermore, Mongolian gerbils infected with H. pylori ATCC 43504 strains for 90 weeks confirmed the in vitro results. The clinical and in vitro data indicated that sustained exposure to H. pylori lysate inhibited cell apoptosis and autophagy through the Nod1-NF-κB/MAPK-ERK/FOXO4 signaling pathway. In conclusion, sustained exposure to H. pylori lysate promoted proliferation of gastric epithelial cells and inhibited autophagy and apoptosis via Nod1-NF-κB/MAPK-ERK/FOXO4 signaling pathway. In the process of H. pylori-induced gastric lesions, H. pylori lysate plays as an “accomplice” to carcinogenesis.
Collapse
Affiliation(s)
- Yang He
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Cunlong Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Xiulin Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Xuancheng Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin Xing
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyi Lv
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Meng Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Xin Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Jing Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| |
Collapse
|
20
|
Gu Z, Wang L, Yao X, Long Q, Lee K, Li J, Yue D, Yang S, Liu Y, Li N, Li Y. ClC-3/SGK1 regulatory axis enhances the olaparib-induced antitumor effect in human stomach adenocarcinoma. Cell Death Dis 2020; 11:898. [PMID: 33093458 PMCID: PMC7583252 DOI: 10.1038/s41419-020-03107-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Currently, only a few available targeted drugs are considered to be effective in stomach adenocarcinoma (STAD) treatment. The PARP inhibitor olaparib is a molecularly targeted drug that continues to be investigated in BRCA-mutated tumors. However, in tumors without BRCA gene mutations, particularly in STAD, the effect and molecular mechanism of olaparib are unclear, which largely restricts the use of olaparib in STAD treatment. In this study, the in vitro results showed that olaparib specifically inhibited cell growth and migration, exerting antitumor effect in STAD cell lines. In addition, a ClC-3/SGK1 regulatory axis was identified and validated in STAD cells. We then found that the down-regulation of ClC-3/SGK1 axis attenuated olaparib-induced cell growth and migration inhibition. On the contrary, the up-regulation of ClC-3/SGK1 axis enhanced olaparib-induced cell growth and migration inhibition, and the enhancement effect could be attenuated by SGK1 knockdown. Consistently, the whole-cell recorded chloride current activated by olaparib presented the same variation trend. Next, the clinical data showed that ClC-3 and SGK1 were highly expressed in human STAD tissues and positively correlated (r = 0.276, P = 0.009). Furthermore, high protein expression of both ClC-3 (P = 0.030) and SGK1 (P = 0.006) was associated with poor survival rate in STAD patients, and positive correlations between ClC-3/SGK1 and their downstream molecules in STAD tissues were demonstrated via the GEPIA datasets. Finally, our results suggested that olaparib inhibited the PI3K/AKT pathway in STAD cells, and up-regulation of ClC-3/SGK1 axis enhanced olaparib-induced PI3K/AKT pathway inhibition. The animal experiments indicated that olaparib also exerted antitumor effect in vivo. Altogether, our findings illustrate that olaparib exerts antitumor effect in human STAD, and ClC-3/SGK1 regulatory axis enhances the olaparib-induced antitumor effect. Up-regulation of the ClC-3/SGK1 axis may provide promising therapeutic potential for the clinical application of olaparib in STAD treatment.
Collapse
Affiliation(s)
- Zhuoyu Gu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Liping Wang
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaohan Yao
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Kaping Lee
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jieyao Li
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Dongli Yue
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuangning Yang
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yanfen Liu
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Na Li
- Department of Cardiovascular Medicine, Qingdao No. 9 People's Hospital, Shandong, China
| | - Yixin Li
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
21
|
Sun Y, Zheng X, Yuan H, Chen G, Ouyang J, Liu J, Liu X, Xing X, Zhao B. Proteomic analyses reveal divergent ubiquitylation patterns in hepatocellula carcinoma cell lines with different metastasis potential. J Proteomics 2020; 225:103834. [PMID: 32454254 DOI: 10.1016/j.jprot.2020.103834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumours, metastasis and recurrence remain the primary reasons for poor prognosis. Ubiquitination serves as a degradation mechanism of proteins, but it is involved in additional cellular processes including metastasis. Here, by using label-free quantification, double-glycine (di-Gly) antibody affinity purification and high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS), we investigated quantitative proteome, ubiquitylome, and the crosstalk between the two datasets in HCC cell lines with different metastasis potential to identify biomarkers associated with HCC metastasis. In total, 83 ubiquitinated proteins significantly and steadily changed their abundance according to their metastatic potential, and the participated biological processes of these ubiquitinated proteins were tightly associated with tumour metastasis. Further signaling pathway analysis revealed that the ribosome and proteasome were significantly over-activated in the highly metastatic cells. Furthermore, we analyzed the crosstalk between the whole proteome and the ubiquitylome, and further discussed the mechanism that how ubiquitination events affect HCC metastasis. Eventually, the ubiquitination of Ku80 was validated to be significantly down-regulated in the high-metastatic cells comparing with the low-metastatic cells. We believe that these findings will help us better understand the underlying molecular mechanisms of the metastasis of HCC. SIGNIFICANCE: In this manuscript, we used label free based proteomics combined with diglycine antibody (di-Gly) affinity purification approach to identify biomarkers associated with HCC recurrence/metastasis in in a serial HCC cell lines with increasing invasion and metastasis potential. And then, we analyzed the crosstalk between the whole proteome and the ubiquitylome. Eventually, the ubiquitination of Ku80 was confirm to be closely associated with invasion and migration of HCC cells. As far as we know, this is the first time to use quantitative proteomic approach to study the ubiquitylomics in HCC cell lines with increasing metastasis ability.
Collapse
Affiliation(s)
- Ying Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Xiaoyuan Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Hui Yuan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Jiahe Ouyang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, People's Republic of China.
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China.
| |
Collapse
|
22
|
Li C, Zheng Y, Pu K, Zhao D, Wang Y, Guan Q, Zhou Y. A four-DNA methylation signature as a novel prognostic biomarker for survival of patients with gastric cancer. Cancer Cell Int 2020; 20:88. [PMID: 32206039 PMCID: PMC7085204 DOI: 10.1186/s12935-020-1156-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/26/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is the fifth most frequently diagnosed cancer and the third leading cause of cancer-related mortality. Lack of prognostic indicators for patient survival hinders GC treatment and survival. Methods and results Methylation profile data of patients with GC obtained from The Cancer Genome Atlas (TCGA) database were analyzed to identify methylation sites as biomarkers for GC prognosis. The cohort was divided into training and validation sets. Univariate Cox, LASSO regression,and multivariate Cox analyses revealed a close correlation of a four-DNA methylation signature as a risk score model with the overall survival of patients with GC. The survival between high-risk and low-risk score patients with GC was significantly different. Analyses of receiver operating characteristics revealed a high prognostic accuracy of the four-DNA methylation signature in patients with GC. The subgroup analysis indicated that the accuracy included that for anatomical region, histologic grade, TNM stage, pathological stage, and sex. The GC prognosis based on the four-DNA methylation signature was more precise than that based on known biomarkers. Conclusions The four-DNA methylation signature could serve as a novel independent prognostic factor that could be an important tool to predict the prognostic outcome of GC patients. This potential must be verified in a large-scale population cohort study and through basic research studies.
Collapse
Affiliation(s)
- Chunmei Li
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,2Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ya Zheng
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,3Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ke Pu
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,3Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Da Zhao
- 2Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,3Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Quanlin Guan
- 4Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,3Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Evaluation of X-Ray Repair Cross-Complementing Family Members as Potential Biomarkers for Predicting Progression and Prognosis in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5751939. [PMID: 32258128 PMCID: PMC7103035 DOI: 10.1155/2020/5751939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/24/2020] [Indexed: 12/28/2022]
Abstract
The X-ray repair cross-complementing (XRCC) gene family has been revealed to participate in the carcinogenesis and development of numerous cancers. However, the expression profiles and prognostic values of XRCCs (XRCC1-6) in hepatocellular carcinoma (HCC) have not been explored up to now. The transcriptional levels of XRCCs in primary HCC tissues were analyzed by UALCAN and GEPIA. The relationship between XRCCs expression and HCC clinical characteristics was evaluated using UALCAN. Moreover, the prognostic values of XRCCs expression and mutations in HCC patients were investigated via the GEPIA and cBioPortal, respectively. Last but not least, the functions and pathways of XRCCs in HCC were also predicted by cBioPortal and DVAID. The transcriptional levels of all XRCCs in HCC tissues were notably elevated compared with normal liver tissues. Meanwhile, upregulated XRCCs expression was positively associated with clinical stages and tumor grades of HCC patients. Survival analysis using the GEPIA database revealed that high transcription levels of XRCC2/3/4/5/6 were associated with lower overall survival (OS) and high transcription levels of XRCC1/2/3/6 were correlated with poor disease-free survival (DFS) in HCC patients. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated the possible mechanisms of XRCCs and their associated genes participating in the oncogenesis of HCC. Our findings systematically elucidate the expression profiles and distinct prognostic values of XRCCs in HCC, which might provide promising therapeutic targets and novel prognostic biomarkers for HCC patients.
Collapse
|
24
|
Ma Q, Kai J, Liu Y, Tong Y, Xie S, Zheng H, Wang Y, Guo L, Lu R. Targeting Ku86 enhances X-ray-induced radiotherapy sensitivity in serous ovarian cancer cells. Int J Biochem Cell Biol 2020; 121:105705. [PMID: 32027982 DOI: 10.1016/j.biocel.2020.105705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 11/26/2022]
Abstract
Drug resistance and recurrence are significant contributors to the poor prognosis of serous ovarian cancer (SOC). Radiotherapy is primarily used for the treatment of cancer recurrence; however, it is rarely applied in cases of SOC. Ku86, also known as XRCC5(X-ray repair cross complementing 5), has rarely been reported in the radiotherapy of SOC. Therefore, this study aimed to investigate the role of Ku86 in the development of SOC and in radiotherapy sensitivity induced by X-ray. In vitro experiments and database analysis showed significantly elevated expression of Ku86 in SOC. Further, after down-regulating Ku86 using RNAi technology, cell proliferation was inhibited. Further, the cell cycle was blocked in the G2 phase, and G2/G1 was increased since X-ray irradiation led to an increase in γ-H2AX. Down-regulation of Ku86 in the case of X-ray irradiation will promote the above biological effects, with more γ-H2AX and higher G2/G1. Here, we further deduce that Ku86 promotes the X-ray induced effect is most likely to activate the ATR pathway to block the cell cycle while inhibiting the NHEJ pathway to inhibit DNA damage response(DDR). Together these findings suggest that the down-regulation of Ku86 can improve X-ray-induced radiotherapy by affecting ATR and NHEJ pathways, and provide a new strategy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Qian Ma
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinyan Kai
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yixuan Liu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Tong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Qi F, Wang L, Huang P, Zhao Z, Yang B, Xia J. Time-series clustering of cytokine expression after transarterial chemoembolization in patients with hepatocellular carcinoma. Oncol Lett 2019; 19:1175-1186. [PMID: 31966047 PMCID: PMC6955652 DOI: 10.3892/ol.2019.11209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Cytokines play an important role in the development of tumors. The purpose of the present study was to evaluate the mechanisms and cytokine level changes after transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC). The Short Time-series Expression Miner (STEM) program was utilized to cluster cytokine expression profiles from the day before TACE to day 21 post-TACE. Based on the identified significant signatures, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed. Cytokines were serially monitored in 60 evaluable patients to identify the results of the STEM program. Examination of the significant signatures identified 6 significant time-varied expression patterns for 507 cytokines (profiles 16, 18, 28, 41, 42 and 43). GO analysis was enriched in 'cytokine receptor-binding' and 'cytokine receptor activity', and the identified signaling pathways included 'cytokine-cytokine receptor interaction' and the 'JAK-STAT signaling pathway'. Ciliary neurotrophic factor (CNTF) level was increased early after TACE, reaching a peak on day 7 before finally decreasing from day 14 onwards, and was significantly positively correlated with aminotransferase level. Serum levels of pre-TACE IL-10 predicted the local tumor response and overall survival (OS) of the patients, while serum levels of post-TACE IL-1β only indicated the local tumor response of the patient. Overall, the present study identified cytokine time-series expression profiles of patients with HCC undergoing TACE. Early phase increases in CNTF after TACE were associated with post-treatment hepatic injury. IL-1β may reflect an objective response after TACE, while IL-10 may represent a biomarker for OS and the objective response pre-TACE, which may help patients with HCC to benefit from TACE.
Collapse
Affiliation(s)
- Feng Qi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Lingxiao Wang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Peixin Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhiying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
26
|
Xu Z, Yu Z, Tan Q, Wei C, Tang Q, Wang L, Hong Y. MiR-876-5p regulates gastric cancer cell proliferation, apoptosis and migration through targeting WNT5A and MITF. Biosci Rep 2019; 39:BSR20190066. [PMID: 31171711 PMCID: PMC6597843 DOI: 10.1042/bsr20190066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are reported to play critical roles in various cancers. Recently, mounting miRNAs are found to exert oncogenic or tumor inhibitory role in gastric cancer (GC), however, their potential molecular mechanism in GC remains ill-defined. Currently, we aimed to elucidate the functional and mechanistic impacts of a novel miRNA on GC cellular process. The significant down-regulation of miR-876-5p in GC cells attracted our attention. In function, we performed gain-of-function assays and found that miR-876-5p overexpression repressed proliferative, anti-apoptotic and migratory abilities and epithelial-mesenchymal transition (EMT) of GC cells. By applying bioinformatics prediction and mechanism experiments, we verified that miR-876-5p could double-bind to the 3' untranslated regions (3'UTRs) of Wnt family member 5A (WNT5A) and melanogenesis associated transcription factor (MITF), thus regulating their mRNA and protein levels. Both WNT5A and MITF were highly expressed in GC cells. Additionally, we conducted loss-of-function assays and confirmed the oncogenic roles of WNT5A and MITF in GC. Finally, rescue assay uncovered a fact that miR-876-5p suppressed GC cell viability and migration, but induced cell apoptosis via targeting WNT5A and MITF. Taken together, we might offer a valuable evidence for miR-876-5p role in GC development.
Collapse
Affiliation(s)
- Zhenglei Xu
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Zhichao Yu
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Qinghong Tan
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Cheng Wei
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Qi Tang
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Lisheng Wang
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Yingcai Hong
- Department of Thoracic Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| |
Collapse
|
27
|
Wu X, Liu X. Analysis of the expression of D-dimer, CD147 and miR203 and their correlation in gastric cancer. Pak J Med Sci 2019; 35:443-447. [PMID: 31086530 PMCID: PMC6500820 DOI: 10.12669/pjms.35.2.718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objectives: To evaluate the relationship of D-dimer, CD147 and miR-203, and detect the influence of these biomarkers on the pathological characteristics in patients with gastric cancer. Methods: The patients with gastric cancer treated using radical gastrectomy between May 2013 and October 2017 were reviewed retrospectively. The expression of D-dimer, miR203 and CD147 was measured for all the patients, and the clinical data including age, gender, tumor size, tumor differentiation, invasion depth, lymphatic metastasis, TMN stage, and pathological type were retrieved and analyzed. The study was carried out in affiliated Yidu Central Hospital of Weifang Medical College, Qingzhou, China. Results: Two hundred sixty patients with gastric cancer were included. The patients with tumor metastasis, larger tumor diameter, lower differentiation, lymphatic metastasis, deeper invasion, and higher TMN stage presented with a significantly higher D-dimer and CD 147 expression, but the level of the two biomarkers didn’t show a significant difference in patients with different pathological type, gender and age. Compared with CD147 and D-dimer, miR203 presented with different characteristics of expression. In addition, the expression of miR203 was negatively correlated with CD147 and D-dimer, and there was a positive correlation between CD147 and D-dimer in patients with gastric cancer. Conclusion: In this study, a close correlation of D-dimer, miR203 and CD147 was found, and these three biomarkers should be screened in gastric cancer patients.
Collapse
Affiliation(s)
- Xiguo Wu
- Xiguo Wu, Department of Laboratory, Affiliated Yidu Central Hospital of Weifang Medical College, Qingzhou, 262500, China
| | - Xiuzhen Liu
- Xiuzhen Liu, Department of Functional Inspection, Affiliated Yidu Central Hospital of Weifang Medical College, Qingzhou, 262500, China
| |
Collapse
|
28
|
Starvation-induced autophagy is up-regulated via ROS-mediated ClC-3 chloride channel activation in the nasopharyngeal carcinoma cell line CNE-2Z. Biochem J 2019; 476:1323-1333. [DOI: 10.1042/bcj20180979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 01/15/2023]
Abstract
Abstract
Nutrient deficiency develops frequently in nasopharyngeal carcinoma cell (CNE-2Z) due to the characteristics of aggregation and uncontrolled proliferation. Therefore, starvation can induce autophagy in these cells. Chloride channel 3 (ClC-3), a member of the chloride channel family, is involved in various biological processes. However, whether ClC-3 plays an important role in starvation-induced autophagy is unclear. In this study, Earle's balanced salt solution (EBSS) was used to induce autophagy in CNE-2Z cells. We found that autophagy and the chloride current induced by EBSS were inhibited by chloride channel blockers. ClC-3 knockdown inhibited the degradation of LC3-II and P62. Furthermore, when reactive oxygen species (ROS) generation was suppressed by antioxidant N-acetyl-l-cysteine (L-NAC) pretreatment, EBSS-induced autophagy was inhibited, and the chloride current was unable to be activated. Nevertheless, ClC-3 knockdown had little effect on ROS levels, indicating that ROS acted upstream of ClC-3 and that both ROS and ClC-3 participated in EBSS-induced autophagy regulation in CNE-2Z.
Collapse
|
29
|
Chang WH, Lai AG. Transcriptional landscape of DNA repair genes underpins a pan-cancer prognostic signature associated with cell cycle dysregulation and tumor hypoxia. DNA Repair (Amst) 2019; 78:142-153. [PMID: 31054516 DOI: 10.1016/j.dnarep.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
Overactive DNA repair contributes to therapeutic resistance in cancer. However, pan-cancer comparative studies investigating the contribution of all DNA repair genes in cancer progression employing an integrated approach have remained limited. We performed a multi-cohort retrospective analysis to determine the prognostic significance of 138 DNA repair genes in 16 cancer types (n = 16,225). Cox proportional hazards analyses revealed a significant variation in the number of prognostic genes between cancers; 81 genes were prognostic in clear cell renal cell carcinoma while only two genes were prognostic in glioblastoma. We reasoned that genes that were commonly prognostic in highly correlated cancers revealed by Spearman's correlation analysis could be harnessed as a molecular signature for risk assessment. A 10-gene signature, uniting prognostic genes that were common in highly correlated cancers, was significantly associated with overall survival in patients with clear cell renal cell (P < 0.0001), papillary renal cell (P = 0.0007), liver (P = 0.002), lung (P = 0.028), pancreas (P = 0.00013) or endometrial (P = 0.00063) cancers. Receiver operating characteristic analyses revealed that a combined model of the 10-gene signature and tumor staging outperformed either classifier when considered alone. Multivariate Cox regression models incorporating additional clinicopathological features showed that the signature was an independent predictor of overall survival. Tumor hypoxia is associated with adverse outcomes. Consistent across all six cancers, patients with high 10-gene and high hypoxia scores had significantly higher mortality rates compared to those with low 10-gene and low hypoxia scores. Functional enrichment analyses revealed that high mortality rates in patients with high 10-gene scores were attributable to an overproliferation phenotype. Death risk in these patients was further exacerbated by concurrent mutations of a cell cycle checkpoint protein, TP53. The 10-gene signature identified tumors with heightened DNA repair ability. This information has the potential to radically change prognosis through the use of adjuvant DNA repair inhibitors with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Wai Hoong Chang
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ, United Kingdom
| | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ, United Kingdom.
| |
Collapse
|