1
|
Hashemi M, Khosroshahi EM, Daneii P, Hassanpoor A, Eslami M, Koohpar ZK, Asadi S, Zabihi A, Jamali B, Ghorbani A, Nabavi N, Memarkashani MR, Salimimoghadam S, Taheriazam A, Tan SC, Entezari M, Farahani N, Hushmandi K. Emerging roles of CircRNA-miRNA networks in cancer development and therapeutic response. Noncoding RNA Res 2025; 10:98-115. [PMID: 39351450 PMCID: PMC11440256 DOI: 10.1016/j.ncrna.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The complex interplay of epigenetic factors is essential in regulating the hallmarks of cancer and orchestrating intricate molecular interactions during tumor progression. Circular RNAs (circRNAs), known for their covalently closed loop structures, are non-coding RNA molecules exceptionally resistant to enzymatic degradation, which enhances their stability and regulatory functions in cancer. Similarly, microRNAs (miRNAs) are endogenous non-coding RNAs with linear structures that regulate cellular biological processes akin to circRNAs. Both miRNAs and circRNAs exhibit aberrant expressions in various cancers. Notably, circRNAs can function as sponges for miRNAs, influencing their activity. The circRNA/miRNA interaction plays a pivotal role in the regulation of cancer progression, including in brain, gastrointestinal, gynecological, and urological cancers, influencing key processes such as proliferation, apoptosis, invasion, autophagy, epithelial-mesenchymal transition (EMT), and more. Additionally, this interaction impacts the response of tumor cells to radiotherapy and chemotherapy and contributes to immune evasion, a significant challenge in cancer therapy. Both circRNAs and miRNAs hold potential as biomarkers for cancer prognosis and diagnosis. In this review, we delve into the circRNA-miRNA circuit within human cancers, emphasizing their role in regulating cancer hallmarks and treatment responses. This discussion aims to provide insights for future research to better understand their functions and potentially guide targeted treatments for cancer patients using circRNA/miRNA-based strategies.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpoor
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Zabihi
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Han RY, Gan LJ, Lang MR, Ren SH, Liu DM, Li GT, Liu YY, Tian XD, Zhu KW, Sun LY, Chen L, Song TQ. Lenvatinib, sintilimab combined interventional treatment vs bevacizumab, sintilimab combined interventional treatment for intermediate-advanced unresectable hepatocellular carcinoma. World J Gastroenterol 2024; 30:4620-4635. [DOI: 10.3748/wjg.v30.i43.4620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/21/2024] [Accepted: 10/21/2024] [Indexed: 10/31/2024] Open
Abstract
BACKGROUND Bevacizumab and sintilimab combined interventional treatment (BeSiIT) and L envatinib and sintilimab combined interventional treatment (LeSiIT) are two commonly used therapeutic regimens for intermediate-advanced hepatocellular carcinoma (HCC) in clinical practice.
AIM To compare the clinical efficacy and safety of BeSiIT and LeSiIT for the treatment of intermediate and advanced HCC.
METHODS Patients diagnosed with intermediate-advanced HCC and initially treated with BeSiIT or LeSiIT in the Tianjin Medical University Cancer Institute and Hospital between February 2020 and July 2021 were included. The primary endpoint was progression-free survival (PFS), and the secondary endpoints were overall survival (OS), objective response rate (ORR), disease control rate (DCR), conversion rate, and treatment-related adverse events.
RESULTS Total 127 patients met the inclusion criteria and were divided into BeSiIT and LeSiIT groups. Twenty-eight and fifty patients in the BeSiIT and LeSiIT groups, respectively, were assessed after 1:2 propensity score matching. PFS and OS rates were not significantly different between the two groups. No significant variations were noted in ORRs or DCRs according to the Response Evaluation Criteria in Solid Tumors (RECIST), and modified RECIST. BeSiIT group showed a better conversion rate than the LeSiIT group (P = 0.043). Both groups showed manageable toxicity profiles. Multivariate analysis showed that the independent factors associated with PFS were alpha-fetoprotein levels and carcinoembryonic antigen score.
CONCLUSION In intermediate-to-advanced HCC, the BeSiIT and LeSiIT groups exhibited acceptable toxicities and comparable PFS, OS, and ORR.
Collapse
Affiliation(s)
- Ru-Yu Han
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Lei-Juan Gan
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Meng-Ran Lang
- Department of Hepatobiliary Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shao-Hua Ren
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Dong-Ming Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Guang-Tao Li
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Ya-Yue Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Xin-Di Tian
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Kang-Wei Zhu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Li-Yu Sun
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Lu Chen
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| | - Tian-Qiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin 300060, China
| |
Collapse
|
3
|
Zhang H, Ji M, Wang Y, Jiang M, Lv Z, Li G, Wang L, Zheng Z. Intrinsic PD-L1 Degradation Induced by a Novel Self-Assembling Hexapeptide for Enhanced Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410145. [PMID: 39530653 DOI: 10.1002/advs.202410145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Programmed death-ligand 1 (PD-L1) is a critical immune checkpoint protein that facilitates tumor immune evasion. While antibody-based PD-1/PD-L1 inhibitors have shown promise, their limitations necessitate the development of alternative therapeutic strategies. This work addresses these challenges by developing a hexapeptide, KFM (Lys-Phe-Met-Phe-Met-Lys), capable of both directly downregulating PD-L1 and self-assembling into a ROS-responsive supramolecular hydrogel. This dual functionality allows Gel KFM to function as a localized drug delivery system and a PD-L1 inhibitor. Loading the hydrogel with mitoxantrone (MTX) and metformin (MET) further enhances the therapeutic effect by combining chemotherapy with PD-L1 downregulation. In vitro and in vivo studies demonstrate significant tumor growth inhibition, increased CD8+ T cell infiltration, and reduced intratumoral PD-L1 expression following peritumoral administration. Mechanistically, KFM promotes PD-L1 degradation via a ubiquitin-dependent pathway. This "carrier-free" delivery system expands the role of supramolecular hydrogels beyond passive carriers to active immunotherapeutic agents, offering a promising new strategy for cancer therapy.
Collapse
Affiliation(s)
- Hongxia Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Ming Ji
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yamei Wang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mengmeng Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Zongyu Lv
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lulu Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Zhen Zheng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
4
|
Vij M, Raju LP, Jothimani D, Subbiah K, Simon E, Gowrishankar G, Rajalingam R, Kaliamoorthy I, Rammohan A, Rela M. Clinicopathological Characteristics of Neutrophil-Rich Hepatocellular Carcinoma: An Uncommon Subtype of Primary Liver Cancer. Int J Surg Pathol 2024:10668969241291882. [PMID: 39533751 DOI: 10.1177/10668969241291882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Introduction. Neutrophil-rich hepatocellular carcinoma (HCC) is an extremely uncommon subtype of HCC with an overall incidence of <1%. Neutrophil-rich HCC shows poor cellular differentiation and sarcomatoid transformation in most patients. There is prominent neutrophilic inflammatory cell infiltration in the tumor. These tumors are associated with poor prognosis, high rate of recurrence, and metastasis. Methods. Herein, we investigated 4 patients with neutrophil-rich HCC reported at our center. Clinical, radiological, and pathological findings were reviewed. Immunophenotypic characterization of the tumors were done. Granulocyte colony-stimulating factor (G-CSF), programmed cell death ligand 1 (PD-L1), and mismatch repair immunostains were performed in all 4 tumors. Results. We report 4 neutrophil-rich HCCs in 3 male patients and one female patient with an age range of 43 to 64 years. Three underwent living donor liver transplantation and one underwent right hepatectomy. Tumor measured 0.5 cm to 12 cm in maximum dimension. Histologically, tumors demonstrated moderate to marked cellular pleomorphism. Spindle cell transformation was noted in 3 tumors. Three tumors showed vascular invasion, and one tumor showed bile duct invasion. Immunopositivity for Hep Par-1, arginase-1, and glypican-3 was present in all tumors. Tumors also expressed stemness markers including KRT19 and EpCAM. Cytoplasmic positivity for G-CSF and immunoexpression of PD-L1 was demonstrated. We also report proficient mismatch repair by immunohistochemistry in all tumors. Conclusion. Neutrophil-rich HCC is an aggressive primary liver cancer which demonstrates stemness-related features. Programmed cell death ligand 1 expression in tumor cells suggests distinct immunogenic features and potential role of anti-PD-L1 therapies in inoperable disease.
Collapse
Affiliation(s)
- Mukul Vij
- Department of Pathology, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Lexmi Priya Raju
- Department of Pathology, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Dinesh Jothimani
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Komalavalli Subbiah
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Evangeline Simon
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | | | - Rajesh Rajalingam
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Ilankumaran Kaliamoorthy
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Mohamed Rela
- The Institute of Liver Disease & Transplantation, Dr Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Ye Z, Li G, Lei J. Influencing immunity: role of extracellular vesicles in tumor immune checkpoint dynamics. Exp Mol Med 2024:10.1038/s12276-024-01340-w. [PMID: 39528800 DOI: 10.1038/s12276-024-01340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 11/16/2024] Open
Abstract
Immune checkpoint proteins (ICPs) serve as critical regulators of the immune system, ensuring protection against damage due to overly activated immune responses. However, within the tumor environment, excessive ICP activation weakens antitumor immunity. Despite the development of numerous immune checkpoint blockade (ICB) drugs in recent years, their broad application has been inhibited by uncertainties about their clinical efficacy. A thorough understanding of ICP regulation in the tumor microenvironment is essential for advancing the development of more effective and safer ICB therapies. Extracellular vesicles (EVs), which are pivotal mediators of cell-cell communication, have been extensively studied and found to play key roles in the functionality of ICPs. Nonetheless, a comprehensive review summarizing the current knowledge about the crosstalk between EVs and ICPs in the tumor environment is lacking. In this review, we summarize the interactions between EVs and several widely studied ICPs as well as their potential clinical implications, providing a theoretical basis for further investigation of EV-related ICB therapeutic approaches.
Collapse
Affiliation(s)
- Ziyang Ye
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Yang B, Gomes DEB, Liu Z, Santos MS, Li J, Bernardi RC, Nash MA. Engineering the Mechanical Stability of a Therapeutic Complex between Affibody and Programmed Death-Ligand 1 by Anchor Point Selection. ACS NANO 2024. [PMID: 39514863 DOI: 10.1021/acsnano.4c09220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Protein-protein complexes can vary in mechanical stability depending on the direction from which force is applied. Here, we investigated the mechanical stability of a complex between a binding scaffold called Affibody and an immune checkpoint protein Programmed Death-Ligand 1 (PD-L1). We used AFM single-molecule force spectroscopy with bioorthogonal clickable peptide handles, shear stress bead adhesion assays, molecular modeling, and steered molecular dynamics (SMD) to understand the pulling point dependency of the mechanostability of the Affibody:(PD-L1) complex. We observed a wide range of rupture forces depending on the anchor point. Pulling from residue #22 on Affibody generated an intermediate state attributed to partially unfolded PD-L1, while pulling from Affibody's N-terminus generated a force-activated catch bond. Pulling from residue #22 or #47 on Affibody generated high rupture forces, with the complex breaking at up to ∼190 pN under loading rates of ∼104-105 pN/s, representing a ∼4-fold increase as compared with low-force N-terminal pulling. SMD simulations showed relative tendencies in rupture forces that were consistent with experiments and, through visualization of force propagation networks, provided mechanistic insights. These results demonstrate how the mechanical properties of protein-protein interfaces can be controlled by informed choice of site-specific bioconjugation points within molecules, with implications for optimal bioconjugation strategies in drug delivery vehicles.
Collapse
Affiliation(s)
- Byeongseon Yang
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Diego E B Gomes
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Zhaowei Liu
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Mariana Sá Santos
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Jiajun Li
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Rafael C Bernardi
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Michael A Nash
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Li N, Xia J, Gao X, Zhou J, Hong Y, Cui D, Zhao X, Wu T, Guo Y, Wang J, Luo S. First-line benmelstobart plus anlotinib and chemotherapy in advanced or metastatic/recurrent esophageal squamous cell carcinoma: a multi-center phase 2 study. Signal Transduct Target Ther 2024; 9:303. [PMID: 39511164 PMCID: PMC11544088 DOI: 10.1038/s41392-024-02008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/10/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Although first-line immunochemotherapy has improved prognosis for patients with advanced esophageal squamous cell carcinoma (ESCC), more effective strategies still require further investigation. This multi-center, phase II study (ClinicalTrials.gov NCT05013697) assessed the feasibility of benmelstobart (a novel PD-L1 inhibitor) plus anlotinib (multitargeted TKI) and chemotherapy in advanced or metastatic/recurrent ESCC. Eligible patients received 4-6 cycles (21-day) of benmelstobart (1200 mg), anlotinib (10 mg) plus paclitaxel (135 mg/m2)/cisplatin (60-75 mg/m2), then maintained with benmelstobart and anlotinib. Primary endpoint was progression-free survival (PFS) assessed according to RECIST v1.1. Secondary endpoints were tumor response, overall survival (OS), and safety assessed by adverse events (AEs). From September 2021 to November 2023, 50 patients were enrolled and received study treatment. With median follow-up of 23.7 months as of April 1, 2024, median PFS was 14.9 months (95% CI, 11.4-not estimable [NE]) and the 1-year PFS was 58.5% (95% CI, 41.9%-71.9%). Among 50 patients, confirmed objective response rate was 72.0% and disease control rate was 84.0%. Median duration of response of 36 responders was 16.2 months (95% CI, 10.2-NE). At the cutoff date, 31 patients remained alive; median OS was not reached (95% CI, 13.2 months-NE) with 1-year OS of 74.8% (95% CI, 59.8%-84.8%). Forty-six (92.0%) patients reported treatment-related AEs, with 37 (74.0%) were grade ≥3. Overall, benmelstobart plus anlotinib and chemotherapy showed promising efficacy and acceptable toxicity in advanced or metastatic/recurrent ESCC.
Collapse
Affiliation(s)
- Ning Li
- Department of Gastrointestinal Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jin Xia
- Department of Medical Oncology, Anyang Tumor Hospital & The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, Henan, China
| | - Xiaohui Gao
- Department of Respiratory Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Jianwei Zhou
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yonggui Hong
- Department of Medical Oncology, Anyang Tumor Hospital & The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, Henan, China
| | - Donghai Cui
- Department of Medical Oncology, Anyang Tumor Hospital & The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, Henan, China
| | - Xuesong Zhao
- Department of Tumor Radiotherapy, The People's Hospital of Anyang City, Anyang, Henan, China
| | - Tao Wu
- Department of Medical Oncology, Anyang Tumor Hospital & The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, Henan, China
| | - Yanzhen Guo
- Department of Respiratory Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China.
| | - Junsheng Wang
- Department of Medical Oncology, Anyang Tumor Hospital & The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, Henan, China.
| | - Suxia Luo
- Department of Gastrointestinal Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
8
|
Dhall A, Patiyal S, Raghava GPS. A hybrid method for discovering interferon-gamma inducing peptides in human and mouse. Sci Rep 2024; 14:26859. [PMID: 39501025 PMCID: PMC11538504 DOI: 10.1038/s41598-024-77957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Interferon-gamma (IFN-γ) is a versatile pleiotropic cytokine essential for both innate and adaptive immune responses. It exhibits both pro-inflammatory and anti-inflammatory properties, making it a promising therapeutic candidate for treating various infectious diseases and cancers. We present IFNepitope2, a host-specific technique to annotate IFN-γ inducing peptides, it is an updated version of IFNepitope introduced by Dhanda et al. In this study, dataset used for developing prediction method contain experimentally validated 25,492 and 7983 IFN-γ inducing peptides in human and mouse host, respectively. In initial phase, machine learning techniques have been exploited to develop classification model using wide range of peptide features. Further, to improve machine learning based models or alignment free models, we explore potential of similarity-based technique BLAST. Finally, a hybrid model has been developed that combine best machine learning based model with BLAST. In most of the case, models based on extra tree perform better than other machine learning techniques. In case of peptide features, compositional feature particularly dipeptide composition performs better than one-hot encoding or binary profile. Our best machine learning based models achieved AUROC 0.89 and 0.83 for human and mouse host, respectively. The hybrid model achieved the AUROC 0.90 and 0.85 for human and mouse host, respectively. All models have been evaluated on an independent/validation dataset not used for training or testing these models. Newly developed method performs better than existing method on independent dataset. The major objective of this study is to predict, design and scan IFN-γ inducing peptides, thus server/software have been developed ( https://webs.iiitd.edu.in/raghava/ifnepitope2/ ). This method is also available as standalone at https://github.com/raghavagps/ifnepitope2 and python package index at https://pypi.org/project/ifnepitope2/ .
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India.
| |
Collapse
|
9
|
Jangid AK, Kim K. Phenylboronic acid-functionalized biomaterials for improved cancer immunotherapy via sialic acid targeting. Adv Colloid Interface Sci 2024; 333:103301. [PMID: 39260104 DOI: 10.1016/j.cis.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Phenylboronic acid (PBA) is recognized as one of the most promising cancer cell binding modules attributed to its potential to form reversible and dynamic boronic ester covalent bonds. Exploring the advanced chemical versatility of PBA is crucial for developing new anticancer therapeutics. The presence of a specific Lewis acidic boron atom-based functional group and a Π-ring-connected ring has garnered increasing interest in the field of cancer immunotherapy. PBA-derivatized functional biomaterials can form reversible bonds with diols containing cell surface markers and proteins. This review primarily focuses on the following topics: (1) the importance and versatility of PBA, (2) different PBA derivatives with pKa values, (3) specific key features of PBA-mediated biomaterials, and (4) cell surface activity for cancer immunotherapy applications. Specific key features of PBA-mediated materials, including sensing, bioadhesion, and gelation, along with important synthesis strategies, are highlighted. The utilization of PBA-mediated biomaterials for cancer immunotherapy, especially the role of PBA-based nanoparticles and PBA-mediated cell-based therapeutics, is also discussed. Finally, a perspective on future research based on PBA-biomaterials for immunotherapy applications is presented.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
10
|
Moon S, Jung M, Go S, Hong J, Sohn HS, Kim C, Kang M, Lee BJ, Kim J, Lim J, Kim BS. Engineered Nanoparticles for Enhanced Antitumoral Synergy Between Macrophages and T Cells in the Tumor Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410340. [PMID: 39252658 DOI: 10.1002/adma.202410340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Indexed: 09/11/2024]
Abstract
T cells and macrophages have the potential to collaborate to eliminate tumor cells efficiently. Macrophages can eliminate tumor cells through phagocytosis and subsequently activate T cells by presenting tumor antigens. The activated T cells, in turn, can kill tumor cells and redirect tumor-associated macrophages toward an antitumoral M1 phenotype. However, checkpoint molecules expressed on tumor cells impede the collaborative action of these immune cells. Meanwhile, monotherapy with a single immune checkpoint inhibitor (ICI) for either macrophages or T cells yields suboptimal efficacy in cancer patients. To address this challenge, here a nanoparticle capable of efficiently delivering dual ICIs to tumors for both macrophages and T cells is developed. These programmed cell death protein 1 (PD-1)-transfected macrophage membrane-derived nanoparticles (PMMNPs) can target tumors and provide signal-regulatory protein alpha and PD-1 to block CD47 and programmed cell death-ligand 1 (PD-L1), respectively, on tumor cells. PMMNPs enhance macrophage-mediated cancer cell phagocytosis and antigen presentation, promote T cell activation, and induce the reprogramming of macrophages toward an antitumoral phenotype. In syngeneic tumor-bearing mice, PMMNPs demonstrate superior therapeutic efficacy compared to nanoparticles delivering single ICIs and non-targeted delivery of anti-CD47 and anti-PD-L1 antibodies. PMMNPs capable of augmenting the antitumoral interplay between macrophages and T cells may offer a promising avenue for cancer immunotherapy.
Collapse
Affiliation(s)
- Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mikyung Kang
- School of Health and Environmental Science, Korea University, Seoul, 02841, Republic of Korea
| | - Byung Joon Lee
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungwoo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinwoong Lim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Institute of Chemical Processes, and BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
11
|
Yazdanpanah-Samani M, Ramezani A, Sheikhi A, Mostafavi-Pour Z, Erfani N. Anti-PD-L1 chimeric antigen receptor natural killer cell: Characterization and functional analysis. APMIS 2024. [PMID: 39467012 DOI: 10.1111/apm.13471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 09/10/2024] [Indexed: 10/30/2024]
Abstract
Like their natural counterparts, chimeric antigen receptor-engineered cells are prone to suppression by inhibitory signals, such as PD-L1, expressed by tumors or suppressor cells in the tumor microenvironment. Consequently, they become impaired, resulting in immune cell exhaustion, tumor progression, and resistance to other therapies. In this study, we developed an anti-PD-L1-CAR NK cell with efficient activity and a notable PD-L1-specific response toward tumor cell lines. The degranulation assay demonstrated that CD107a frequencies between the PD-L1med and PD-L1high groups and between Herceptin-treated and non-treated groups were not statistically different. Further investigation into NK cell characterization, considering different markers such as CD57, KIR2D, and CD25, revealed that the majority of the population are activated expanding NK cells. At the same time, immune checkpoint inhibitors, including PD-1, PD-L1, and LAG-3, showed increased levels following activation and expansion. Regarding the efficient functional activity of PD-L1-CAR NK cells and the instinctive receptor balance-based response of NK cells, this observation could point to the inhibition of NK cell overactivation or even higher cytotoxicity and cytokine production rather than exhaustion, especially in the case of healthy NK cells. These findings can contribute to a better understanding of the potential and challenges of using primary NK cells for CAR-NK cell therapy.
Collapse
Affiliation(s)
- Mahsa Yazdanpanah-Samani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkarim Sheikhi
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Bazzazan MA, Fattollazadeh P, Keshavarz Shahbaz S, Rezaei N. Polymeric nanoparticles as a promising platform for treating triple-negative breast cancer: Current status and future perspectives. Int J Pharm 2024; 664:124639. [PMID: 39187034 DOI: 10.1016/j.ijpharm.2024.124639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks expression of estrogen, progesterone, and HER2 receptor targets for therapy. Polymeric nanoparticles help address the challenges in treating TNBC by enabling tailored and targeted drug delivery. Biocompatible polymeric nanoparticles leverage enhanced tumor permeability for site-specific accumulation and ligand-mediated active targeting to boost specificity. Controlled, sustained intratumorally release of encapsulated chemotherapies, such as paclitaxel and curcumin, improves antitumor efficacy as demonstrated through preclinical TNBC models. However, the practical application of these nanomedicines still has room for improvement. Advancing personalized nanoparticle platforms that align treatments to TNBC's expanding molecular subtypes shows promise. Expanding the polymer range through novel copolymers or drug conjugates may improve tumor penetration, stability, and drug encapsulation. Incorporating gene therapies, imaging agents, or triggering stimuli responsiveness into polymeric nanoparticles can also overcome innate and acquired drug resistance in TNBC while monitoring outcomes. This article reviews the different types of nanoparticles used to treat TNBC and the different mechanisms of nanoparticles that can deliver drugs to tumor cells. Collaboration across different disciplines aimed at developing combination therapies, immuno-oncology, tumor-targeting ligands, and translating preclinical safety/efficacy via scalable manufacturing practices is essential. Well-designed polymeric nanoparticles offer immense potential for patient-centric TNBC treatment, but continued optimization across bench to bedside efforts is critical for clinical realization and transforming patient outcomes.
Collapse
Affiliation(s)
- Mohammad Amin Bazzazan
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Pouriya Fattollazadeh
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Sanaz Keshavarz Shahbaz
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran; Cellular and Molecular Research Center, Research Institute for Prevention of Noncommunicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
13
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
14
|
Naji O, Ghouzlani A, Rafii S, Sadiqi RU, Kone AS, Harmak Z, Choukri K, Kandoussi S, Karkouri M, Badou A. Investigating tumor immunogenicity in breast cancer: deciphering the tumor immune response to enhance therapeutic approaches. Front Immunol 2024; 15:1399754. [PMID: 39507526 PMCID: PMC11538072 DOI: 10.3389/fimmu.2024.1399754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/18/2024] [Indexed: 11/08/2024] Open
Abstract
The interplay between immune cells and malignant cells represents an essential chapter in the eradication of breast cancer. This widely distributed and diverse form of cancer represents a major threat to women worldwide. The incidence of breast cancer is related to several risk factors, notably genetic predisposition and family antecedents. Despite progress in treatment modalities varying from surgery and chemotherapy to radiotherapy and targeted therapies, persistently high rates of recurrence, metastasis, and treatment resistance underscore the urgent need for new therapeutic approaches. Immunotherapy has gained considerable ground in the treatment of breast cancer, as it takes advantage of the complex interactions within the tumor microenvironment. This dynamic interplay between immune and tumor cells has become a key point of focus in immunological research. This study investigates the role of various cancer markers, such as neoantigens and immune regulatory genes, in the diagnosis and treatment of breast tumors. Moreover, it explores the future potential of immune checkpoint inhibitors as therapeutically effective agents, as well as the challenges that prevent their efficacy, in particular tumor-induced immunosuppression and the difficulty of achieving tumor specificity.
Collapse
Affiliation(s)
- Oumayma Naji
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Soumaya Rafii
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Rizwan ullah Sadiqi
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Abdou-samad Kone
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Zakia Harmak
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Khalil Choukri
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mehdi Karkouri
- Department of Pathological Anatomy, University Hospital Center (CHU) Ibn Rochd and Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathologies Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat and Mohammed VI University for Sciences and Health, Casablanca, Morocco
| |
Collapse
|
15
|
Palmer JW, Villavicencio KM, Idris M, Baranyk IJ, Polycarp N, Dawson AD, Weddle D, Pavan WJ, Filipp FV, Harris ML. Quiescence and aging of melanocyte stem cells and a novel association with programmed death-ligand 1. iScience 2024; 27:110908. [PMID: 39351197 PMCID: PMC11440800 DOI: 10.1016/j.isci.2024.110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Cellular quiescence is a reversible and tightly regulated stem cell function essential for healthy aging. However, the elements that control quiescence during aging remain poorly defined. Using melanocyte stem cells (McSCs), we find that stem cell quiescence is neither passive nor static. For example, gene expression profiling of the transition from proliferating melanoblasts to quiescent melanocyte stem cells reveals tissue-specific regulation of the immune checkpoint protein PD-L1. In vitro, quiescence assays demonstrate that PD-L1 expression is a physiological attribute of quiescence in this cell lineage and reinforces this cell state. In vivo, a subset of quiescent McSCs is marked by PD-L1. While the overall number of McSCs decreases with age, PD-L1+ McSCs appear resistant to depletion. This phenomenon coincides with an aged McSC pool that exhibits a deeper transcriptomic quiescence. We predict that quiescent PD-L1+ stem cells retained with age may serve as cellular targets for reactivation.
Collapse
Affiliation(s)
- Joseph W Palmer
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Misgana Idris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ian J Baranyk
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nunaya Polycarp
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alex D Dawson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dominique Weddle
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fabian V Filipp
- Cancer Systems Biology, Institute of Diabetes and Cancer, Helmholtz Zentrum München, Ingolstädter Landstraβe 1, 85764 München, Germany
- School of Life Sciences Weihenstephan, Technical University München, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
- Institute for Advanced Study, Technical University München, Lichtenbergstraße 2a, 85748 München, Germany
- Metaflux, San Diego, CA, USA
| | - Melissa L Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
Abouali H, Przedborski M, Kohandel M, Poudineh M. Investigating nano-sized tumor-derived extracellular vesicles in enhancing anti-PD-1 immunotherapy. NANOSCALE 2024; 16:19062-19073. [PMID: 39319505 DOI: 10.1039/d4nr00729h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Anti-PD1 immune checkpoint blockade (ICB) has shown promising results for treating several aggressive cancers, enhancing patient survival rates. The variability in clinical response to anti-PD1 ICB is thought to be driven by patient-specific biology and heterogeneity within the tumor microenvironment. Tumor-derived extracellular vesicles (TDEVs), nano-sized particles released from tumor cells, can modulate the tumor microenvironment, leading to immunosuppression and tumor progression. Hence, TDEVs may contribute to the variability in treatment response and play a crucial role in the failure of anti-PD1 immunotherapy. In this study, we develop a systems biology approach to interrogate the role of TDEVs on the response dynamics for anti-PD1 blockade. Our results suggest that the detection and profiling of TDEVs can help screen patients for anti-PD-1 immunotherapy. Moreover, the results in this study suggest that TDEVs and IL-12 can potentially be liquid biopsy biomarkers to profile patient response to anti-PD1 ICB and tailor patient-specific treatment protocols. Importantly, the methodology is generalizable to other types of cancer immunotherapies. Therefore, the collection of patient-specific liquid biopsy data, and the implementation of those data into the systems biology framework, may offer the opportunity to discover new biomarkers for patient drug screening and enable the continuous monitoring of patient response to treatment and adaptation of patient-specific immunotherapy treatment protocols to overcome therapeutic resistance.
Collapse
Affiliation(s)
- Hesam Abouali
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| | - Michelle Przedborski
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
17
|
Chernyak N, Bhagwat B, Naravula S, Chen Y, Solban N, Zhang F, Kofman E, Raoufi F, Dang X, Bao J, Tomazela D, Baily M, Geierstanger B, Flygare JA, Han JH, Willingham A, Seganish WM. Discovery and Evaluation of TLR-Targeted Immune Agonists. J Med Chem 2024; 67:16222-16234. [PMID: 39235949 DOI: 10.1021/acs.jmedchem.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Toll-like receptor (TLR) activation converts immunologically inactive tumors into immunologically active tumors by activating tumor residing antigen-presenting cells and recruitment of cytotoxic T lymphocytes. Targeted immune agonists (TIAs) are antibody drug conjugates with small-molecule TLR agonist payloads. The mechanism of action of TIAs involves tumor antigen recognition, Fcγ-receptor-dependent phagocytosis, and TLR-mediated activation to drive tumor killing by myeloid cells. Several new low DAR anti-HER2 TIAs conjugated with novel TLR7 or dual-TLR7/8 agonists with cleavable and noncleavable linkers were synthesized and profiled. In vitro studies demonstrated that these TIAs activate myeloid cells only in the presence of antigen-expressing cancer cells. Evaluation in ELISpot-based assays confirmed the low immunogenicity of these constructs. Systemic administration of the novel TIAs in tumor-bearing mice resulted in tumor reduction at low doses. These results provide a strong rationale for further development of the TIAs as a novel class of immunotherapeutics.
Collapse
Affiliation(s)
- Natalia Chernyak
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Bhagyashree Bhagwat
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Saraswathi Naravula
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Ying Chen
- Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Nicolas Solban
- Quantitative Biosciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Fan Zhang
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Esther Kofman
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Fahimeh Raoufi
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Xibei Dang
- Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Jianming Bao
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Daniela Tomazela
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Marc Baily
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Bernhard Geierstanger
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - John A Flygare
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Jin-Hwan Han
- Discovery Oncology, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Aarron Willingham
- Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - W Michael Seganish
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
18
|
Li Y, Bi Y, Li W, Piao Y, Piao J, Wang T, Ren X. Research progress on ferroptosis in colorectal cancer. Front Immunol 2024; 15:1462505. [PMID: 39359721 PMCID: PMC11444962 DOI: 10.3389/fimmu.2024.1462505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Ferroptosis is a new form of cell death that differs from traditional forms of death. It is ferroptosis-dependent lipid peroxidation death. Colorectal cancer(CRC) is the most common tumor in the gastrointestinal tract with a long occultation period and a poor five-year prognosis. Exploring effective systemic treatments for CRC remains a great challenge worldwide. Numerous studies have demonstrated that ferroptosis can participate in the biological malignant process of various tumor, including CRC, so understanding the role and regulatory mechanisms of ferroptosis in CRC plays a crucial role in the treatment of CRC. In this paper, we reviews the mechanisms of ferroptosis in CRC, the associated regulatory factors and their interactions with various immune cells in the immune microenvironment. In addition, targeting ferroptosis has emerged as an encouraging strategy for CRC treatment. Finally, to inform subsequent research and clinical diagnosis and treatment, we review therapeutic approaches to CRC radiotherapy, immunotherapy, and herbal therapy targeting ferroptosis.
Collapse
Affiliation(s)
- Yuan Li
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
| | - Yao Bi
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
| | - Wenjing Li
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
- Department of Anesthesia, Yanbian University Hospital, Yanji, China
| | - Yingshi Piao
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Junjie Piao
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Tong Wang
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
| | - Xiangshan Ren
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
19
|
Gong X, Wang Z, You J, Gao J, Chen K, Chu J, Sui X, Dang J, Liu X. Pyroptosis-associated genes and tumor immune response in endometrial cancer. Discov Oncol 2024; 15:433. [PMID: 39264524 PMCID: PMC11393226 DOI: 10.1007/s12672-024-01315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
The occurrence and progression of tumors are linked to the process of pyroptosis. However, the precise involvement of pyroptosis-associated genes (PRGs) in endometrial cancer (EC) remains uncertain. 29 PRGs were identified as being either up-regulated or down-regulated in EC. PRGs subgroup analysis demonstrated distinct survival outcomes and diverse responses to chemotherapy and immune checkpoint blockade therapy. A higher expression of GPX4 and NOD2, coupled with lower levels of CASP6, PRKACA, and NLRP2, were found to be significantly associated with higher overall survival (OS) rates (p < 0.05). Conversely, lower expression of NOD2 was linked to lower progression-free survival (p = 0.021) and advanced tumor stage(p = 0.0024). NOD2, NLRP2, and TNM stages were identified as independent prognostic factors (p < 0.001). The LASSO prognostic model exhibited a notable decrease in OS among EC patients in the high-risk score group (ROC-AUC10-years: 0.799, p = 0.00644). Furthermore, NOD2 displayed a positive correlation with the infiltration of immune cells and the expression of immune checkpoints (p < 0.001). GPX4 and CASP6 are significantly associated with TMB and MSI (RTMB = 0.39; RMSI = 0.23). Additionally, a substantial upregulation of NOD2 was confirmed in both EC cells and tissue, indicating a positive relationship between advanced TNM stage (p < 0.0001) and infiltration of M1 phenotype macrophages. Nonetheless, its impact on patient OS did not reach statistical significance (p = 0.141). Our findings have contributed to the advancement of a prognostic model for EC patients. NOD2 receptor-mediated pyroptosis mechanism potentially regulates tumor immunity and promotes the transformation of macrophages from the M2 phenotype to the M1 phenotype, which significantly impacts the progression of EC.
Collapse
Affiliation(s)
- Xiaodi Gong
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zhifeng Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jiahao You
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jinghai Gao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Kun Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jing Chu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiaoxin Sui
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jianhong Dang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Xiaojun Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
20
|
Yin D, Yang L, Feng X, Zhai X, Hua M, Liu J, Chen Y. Circ_0007422 Knockdown Inhibits Tumor Property and Immune Escape of Colorectal Cancer by Decreasing PDL1 Expression in a miR-1256-Dependent Manner. Mol Biotechnol 2024; 66:2606-2619. [PMID: 38253900 DOI: 10.1007/s12033-023-01040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
Circular RNAs (circRNAs) are a group of important molecules involved in the progression of various cancers, including colorectal cancer (CRC). Here, we aim to investigate the role and molecular mechanism of circ_0007422 in regulating CRC malignant progression. The expression levels of circ_0007422, miR-1256, and PDL1 were detected by qRT-PCR. Cell viability, proliferation, apoptosis, invasion, and self-replication ability were analyzed by CCK-8, EdU, flow cytometry, transwell, and spheroid formation experiments, respectively. Protein levels were determined by western blotting assay. CRC cells were co-cultured with CD8 + T cells, phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs), or cytokine-induced killer (CIK) cells in vitro, and CD8 + T-cell apoptosis, IFN-γ and TNF-α levels, and survival rate of CRC cells were analyzed to reveal the role of circ_0007422 in antitumor immunity. The relationship between miR-1256 and circ_0007422 or PDL1 was identified by a dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. A xenograft tumor model was established to verify the function of circ_0007422 in tumor growth in vivo. Immunohistochemistry (IHC) assay was used to detect positive expression rates of Ki67, E-cadherin, N-cadherin, and PDL1 expression in primary tumors from CRC cells. Circ_0007422 was upregulated in CRC tissues and cells and its knockdown inhibited proliferation, invasion, self-replication ability, and immune escape and promoted apoptosis of CRC cells. Additionally, circ_0007422 bound to miR-1256, which was identified to target PDL1. MiR-1256 inhibition reversed the effects of circ_0007422 knockdown on the tumor properties and immune escape of CRC cells. Moreover, miR-1256 introduction interacted with PDL1 to suppress proliferation, invasion, self-replication ability, and immune escape and promote apoptosis of CRC cells. Further, circ_0007422 knockdown hampered tumorigenesis of CRC cells in vivo. Circ_0007422 knockdown inhibited tumor property and immune escape of colorectal cancer through the miR-1256/PDL1 pathway, providing a potential novel therapeutic target for CRC.
Collapse
Affiliation(s)
- Dian Yin
- Department of Oncology, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong City, 226000, Jiangsu, China
| | - Li Yang
- Department of Oncology, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong City, 226000, Jiangsu, China
| | - Xiu Feng
- Department of Oncology, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong City, 226000, Jiangsu, China
| | - Xiaolu Zhai
- Department of Oncology, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong City, 226000, Jiangsu, China
| | - Mei Hua
- Department of Oncology, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong City, 226000, Jiangsu, China
| | - Jing Liu
- Department of Oncology, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong City, 226000, Jiangsu, China
| | - Ying Chen
- Department of Oncology, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong City, 226000, Jiangsu, China.
| |
Collapse
|
21
|
Wang Z, Li Y, Yang J, Sun Y, He Y, Wang Y, Liang Y, Chen X, Chen T, Han D, Zhang N, Chen B, Zhao W, Wang L, Luo D, Yang Q. CircCFL1 Promotes TNBC Stemness and Immunoescape via Deacetylation-Mediated c-Myc Deubiquitylation to Facilitate Mutant TP53 Transcription. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404628. [PMID: 38981022 PMCID: PMC11425638 DOI: 10.1002/advs.202404628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. TP53, which has a mutation rate of ≈70%-80% in TNBC patients, plays oncogenic roles when mutated. However, whether circRNAs can exert their effects on TNBC through regulating mutant TP53 has not been well evaluated. In this study, circCFL1, which is highly expressed in TNBC cells and tissues and has prognostic potential is identified. Functionally, circCFL1 promoted the proliferation, metastasis and stemness of TNBC cells. Mechanistically, circCFL1 acted as a scaffold to enhance the interaction between HDAC1 and c-Myc, further promoting the stability of c-Myc via deacetylation-mediated inhibition of K48-linked ubiquitylation. Stably expressed c-Myc further enhanced the expression of mutp53 in TNBC cells with TP53 mutations by directly binding to the promoter of TP53, which promoted the stemness of TNBC cells via activation of the p-AKT/WIP/YAP/TAZ pathway. Moreover, circCFL1 can facilitate the immune escape of TNBC cells by promoting the expression of PD-L1 and suppressing the antitumor immunity of CD8+ T cells. In conclusion, the results revealed that circCFL1 plays an oncogenic role by promoting the HDAC1/c-Myc/mutp53 axis, which can serve as a potential diagnostic biomarker and therapeutic target for TNBC patients with TP53 mutations.
Collapse
Affiliation(s)
- Zekun Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Yaming Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Jingwen Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Yuhan Sun
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Yinqiao He
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Yuping Wang
- School of Basic Medicine, Jining Medical College, Jining, Shandong, 272067, P. R. China
| | - Yiran Liang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Xi Chen
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Tong Chen
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Dianwen Han
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Dan Luo
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P. R. China
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, 250012, P. R. China
| |
Collapse
|
22
|
Li W, Mei W, Jiang H, Wang J, Li X, Quan L, Diao Y, Ma Y, Fan S, Xie Z, Gong M, Zhu H, Bi D, Zhang F, Ma L, Zhang J, Gao Y, Paschalidis A, Lin H, Liu F, Liu K, Ye M, Zhao Z, Duan Y, Chen Z, Xu Y, Xiao W, Tao S, Zhu L, Li H. Blocking the PD-1 signal transduction by occupying the phosphorylated ITSM recognition site of SHP-2. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2706-2. [PMID: 39235560 DOI: 10.1007/s11427-024-2706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Targeting the PD-1/PD-L1 axis with small-molecular inhibitors is a promising approach for immunotherapy. Here, we identify a natural pentacyclic triterpenoid, Pygenic Acid A (PA), as a PD-1 signaling inhibitor. PA exerts anti-tumor activity in hPD-1 knock-in C57BL/6 mice and enhances effector functions of T cells to promote immune responses by disrupting the PD-1 signaling transduction. Furthermore, we identify SHP-2 as the direct molecular target of PA for inhibiting the PD-1 signaling transduction. Subsequently, mechanistic studies suggest that PA binds to a new druggable site in the phosphorylated PD-1 ITSM recognition site of SHP-2, inhibiting the recruitment of SHP-2 by PD-1. Taken together, our findings demonstrate that PA has a potential application in cancer immunotherapy and occupying the phosphorylated ITSM recognition site of SHP-2 may serve as an alternative strategy to develop PD-1 signaling inhibitors. In addition, our success in target recognition provides a paradigm of target identification and confirmation for natural products.
Collapse
Affiliation(s)
- Wenjie Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Wenyi Mei
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Hewei Jiang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Jie Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Lina Quan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yanyan Diao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yanni Ma
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sisi Fan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhuwei Xie
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Mengdie Gong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Huan Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Dewen Bi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Feng Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Jian Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Aris Paschalidis
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Fangfang Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yufang Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China.
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China.
- Lingang Laboratory, Shanghai, 200031, China.
| |
Collapse
|
23
|
Lukin R, Ciner A. Fulminant immune-related colitis after dual checkpoint inhibitor therapy: case report. Immunotherapy 2024; 16:943-948. [PMID: 39155794 PMCID: PMC11485820 DOI: 10.1080/1750743x.2024.2386234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024] Open
Abstract
Aim: Immune-related (IR) colitis is a potentially life-threatening complication of checkpoint inhibitors. Its presentation often includes diarrhea, abdominal pain and rectal bleeding and the median time to onset is 6-10 weeks post initiation of immunotherapy.Case study: We report an unusual case of fulminant IR-colitis beginning 3 days after the first dose of dual checkpoint blockade. IR-colitis was refractory to high-dose corticosteroids and was further complicated by sigmoid diverticulum perforation.Conclusion: Early-onset IR-colitis can occur, particularly in the context of combined anti-PD1 and anti-CTLA4 blockade, and clinicians should maintain a high-index of suspicion even when timing of symptom onset is atypical. Further research is needed to elucidate risk factors for early-onset IR-colitis.
Collapse
Affiliation(s)
- Robert Lukin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201, USA
| | - Aaron Ciner
- Department of Medicine, Division of Hematology/Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
24
|
Qiang M, Liu H, Yang L, Wang H, Guo R. Immunotherapy for small cell lung cancer: the current state and future trajectories. Discov Oncol 2024; 15:355. [PMID: 39152301 PMCID: PMC11329494 DOI: 10.1007/s12672-024-01119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/21/2024] [Indexed: 08/19/2024] Open
Abstract
Small cell lung cancer (SCLC) constitutes approximately 10% to 15% of all lung cancer diagnoses and represents a pressing global public health challenge due to its high mortality rates. The efficacy of conventional treatments for SCLC is suboptimal, characterized by limited anti-tumoral effects and frequent relapses. In this context, emerging research has pivoted towards immunotherapy combined with chemotherapy, a rapidly advancing field that has shown promise in ameliorating the clinical outcomes of SCLC patients. Through originally developed for non-small cell lung cancer (NSCLC), these therapies have extended new treatment avenues for SCLC. Currently, a nexus of emerging hot-spot treatments has demonstrated significant therapeutic efficacy. Based on the amalgamation of chemotherapy and immunotherapy, and the development of new immunotherapy agents, the treatment of SCLC has seen the hoping future. Progress has been achieved in enhancing the tumor immune microenvironment through the concomitant use of chemotherapy, immunotherapy, and tyrosine kinase inhibitors (TKI), as evinced by emerging clinical trial data. Moreover, a tripartite approach involving immunotherapy, targeted therapy, and chemotherapy appears auspicious for future clinical applications. Overcoming resistance to post-immunotherapy regimens remains an urgent area of exploration. Finally, bispecific antibodies, adoptive cell transfer (ACT), oncolytic virus, monotherapy, including Delta-like ligand 3 (DLL3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), as well as precision medicine, may present a prospective route towards achieving curative outcomes in SCLC. This review aims to synthesize extant literature and highlight future directions in SCLC treatment, acknowledging the persistent challenges in the field. Furthermore, the continual development of novel therapeutic agents and technologies renders the future of SCLC treatment increasingly optimistic.
Collapse
Affiliation(s)
- Min Qiang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hongyang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
25
|
Kumar V, Bahuguna A, Kim M. Molecular insights into binding of bioactive compounds from essential oil of Trachyspermum ammi with human programmed cell death protein 1. J Biomol Struct Dyn 2024; 42:6871-6881. [PMID: 37477253 DOI: 10.1080/07391102.2023.2236709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
The human programmed cell death protein 1 (PD-1) is expressed on the surface of T cells and contributes significantly to tumor immunity. Herein, six major compounds (carvacrol, thymol, β-phellandrene, α-terpinene, myrcene D, and α-pinene) from Trachyspermum ammi were studied for their intermolecular interactions and stability against PD-1. All tested compounds displayed docking energy (-4.2 to -3.7 kcal/mol) with PD-1. The highest docking scores of -4.2 and -4.1 kcal/mol were recorded for carvacrol and thymol, respectively. Also, a 100 ns molecular dynamics simulation predicted the stability of carvacrol- and thymol-docked PD-1 complex. Maximum of < 30 Å and < 12 Å root-mean-square deviation were observed for carvacrol and thymol at the end of the 100 ns simulation with respect to protein (Cα atoms), indicating retention and displacement of carvacrol and thymol from the initial binding pocket, respectively. Moreover, the endpoint binding free energies support the higher binding affinity of carvacrol (-22.87 ± 5.52 kcal/mol) than thymol (-16.83 ± 1.30 kcal/mol). The equicrural states of the respective ligands were supported by the respective root mean square fluctuation, where no significant deviations in the atoms of the ligands were observed. These findings suggest that carvacrol and thymol inhibit the PD-1/PD-L1 axis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
- Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Republic of Korea
| |
Collapse
|
26
|
Oh JH, Seo KI, Kim HK, Choi GS. Successful desensitization to atezolizumab-induced near-fatal anaphylaxis in patients with hepatocellular carcinoma: A case report and literature review. Asia Pac Allergy 2024; 14:139-142. [PMID: 39220574 PMCID: PMC11365681 DOI: 10.5415/apallergy.0000000000000138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/14/2024] [Indexed: 09/04/2024] Open
Abstract
Atezolizumab, a humanized antiprogrammed death ligand 1 monoclonal immunoglobulin G1 antibody, is a targeted therapeutic drug known as an immune checkpoint inhibitor. It is currently used to treat various types of cancer, including unresectable hepatocellular carcinoma (HCC), nonsmall cell lung cancer, urothelial cancer, and breast cancer, and is becoming a therapeutic option in the forefront of oncology treatment. However, it may sometimes lead to undesirable adverse reactions owing to the activation of immune responses in various organs. Cutaneous adverse reactions to atezolizumab are well known; however, cases of anaphylaxis are very rare. In this report, we present the first case of HCC who experienced near-fatal anaphylaxis to atezolizumab in South Korea.
Collapse
Affiliation(s)
- Ji Hyun Oh
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| | - Kwang Il Seo
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| | - Hee-Kyoo Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| | - Gil-Soon Choi
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
27
|
Hua S, Gu X, Jin H, Zhang X, Liu Q, Yang J. Tumor-infiltrating T lymphocytes: A promising immunotherapeutic target for preventing immune escape in cholangiocarcinoma. Biomed Pharmacother 2024; 177:117080. [PMID: 38972151 DOI: 10.1016/j.biopha.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
Cholangiocarcinoma (CCA) is becoming more common and deadly worldwide. Tumor-infiltrating T cell subtypes make distinct contributions to the immune system; collectively, they constitute a significant portion of the tumor microenvironment (TME) in CCA. By secreting cytokines and other chemicals, regulatory T cells (Tregs) decrease activated T cell responses, acting as immunosuppressors. Reduced CD8+ T cell activation results in stimulating programmed death-1 (PD-1), which undermines the immunological homeostasis of T lymphocytes. On the other hand, cancer cells are eliminated by activated cytotoxic T lymphocyte (CTL) through the perforin-granzyme or Fas-FasL pathways. Th1 and CTL immune cell infiltration into the malignant tumor is also facilitated by γδ T cells. A higher prognosis is typically implied by CD8+ T cell infiltration, and survival is inversely associated with Treg cell density. Immune checkpoint inhibitors, either singly or in combination, provide novel therapeutic strategies for CCA immunotherapy. Furthermore, it is anticipated that immunotherapeutic strategies-such as the identification of new immune targets, combination treatments involving several immune checkpoint inhibitors, and chimeric antigen receptor-T therapies (CAR-T)-will optimize the effectiveness of anti-CCA treatments while reducing adverse effects.
Collapse
Affiliation(s)
- Sijia Hua
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China.
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China.
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang 310003, China.
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Jianfeng Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, China; Department of Gastroenterology, Affiliated Hangzhou First People's Hospital. School of Medicine, Westlake University, Hangzhou, Zhejiang, China; Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
28
|
Parra-Medina R, Castañeda-González JP, Montoya L, Gómez-Gómez MP, Clavijo Cabezas D, Plazas Vargas M. PD-L1 expression in non-small cell lung carcinoma in Latin America: a systematic review and meta-analysis. Transl Lung Cancer Res 2024; 13:1660-1671. [PMID: 39118886 PMCID: PMC11304153 DOI: 10.21037/tlcr-24-223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/27/2024] [Indexed: 08/10/2024]
Abstract
Background Programmed cell death ligand 1 (PD-L1) expression in non-small cell lung carcinoma (NSCLC) is a crucial factor in predicting responses to immunotherapy. This systematic review and meta-analysis focuses on the prevalence of PD-L1 expression and clinicopathological features among Hispanic/Latino (H/L) populations. Methods Embase, LILACS, Medline, and Virtual Health Library were searched for studies that evaluated the prevalence of PD-L1 in H/L patients. The protocol was submitted to PROSPERO with ID CRD42023488547. We employed the Joanna Briggs Institute Checklist for Systematic Reviews and Research Syntheses to assess the methodological quality and applicability of the included studies. Meta-analyses were done to determine the prevalence using a random effects model. Results The meta-analysis, encompassing 21 articles with 16,486, revealed that 80.2% of patients had PD-L1 expression data available (n=13,222). The prevalence calculated of PD-L1 expression in Latino NSCLC patients was 55% [95% confidence interval (CI): 0.54-0.55], with 31% (95% CI: 0.27-0.36) showing a tumoral proportion score (TPS) of 1-49%, and 23% (95% CI: 0.16-0.30) registering a TPS ≥50%. Higher expression was observed in male gender, smoking, adenocarcinoma subtypes, poor tumor differentiation, and advanced stages. PD-L1 expression was most frequent in EGFR wild-type status (82.5%) with a odds ratio (OR) 1.54 (95% CI: 1.24-1.92) and PD-L1 expression was associated with ALK positive (OR =1.54; 95% CI: 1.24-1.92). Conclusions This meta-analysis provides a comprehensive overview of PD-L1 expression in NSCLC in the H/L population. The findings underscore the significant prevalence of PD-L1 expression and emphasize the relevance of immunotherapy in this population. Understanding the clinicopathological features associated with PD-L1 expression can contribute to tailored treatment strategies for NSCLC in Latin America.
Collapse
Affiliation(s)
- Rafael Parra-Medina
- Research Institute, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
- Department of Pathology, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Juan Pablo Castañeda-González
- Research Institute, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
- Department of Pathology, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Luisa Montoya
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - María Paula Gómez-Gómez
- Department of Pathology, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Daniel Clavijo Cabezas
- Department of Pathology, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| | - Merideidy Plazas Vargas
- Department of Epidemiology, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia
| |
Collapse
|
29
|
Ding X, Zhang L, Fan M, Li L. TME-NET: an interpretable deep neural network for predicting pan-cancer immune checkpoint inhibitor responses. Brief Bioinform 2024; 25:bbae410. [PMID: 39167797 PMCID: PMC11337220 DOI: 10.1093/bib/bbae410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Immunotherapy with immune checkpoint inhibitors (ICIs) is increasingly used to treat various tumor types. Determining patient responses to ICIs presents a significant clinical challenge. Although components of the tumor microenvironment (TME) are used to predict patient outcomes, comprehensive assessments of the TME are frequently overlooked. Using a top-down approach, the TME was divided into five layers-outcome, immune role, cell, cellular component, and gene. Using this structure, a neural network called TME-NET was developed to predict responses to ICIs. Model parameter weights and cell ablation studies were used to investigate the influence of TME components. The model was developed and evaluated using a pan-cancer cohort of 948 patients across four cancer types, with Area Under the Curve (AUC) and accuracy as performance metrics. Results show that TME-NET surpasses established models such as support vector machine and k-nearest neighbors in AUC and accuracy. Visualization of model parameter weights showed that at the cellular layer, Th1 cells enhance immune responses, whereas myeloid-derived suppressor cells and M2 macrophages show strong immunosuppressive effects. Cell ablation studies further confirmed the impact of these cells. At the gene layer, the transcription factors STAT4 in Th1 cells and IRF4 in M2 macrophages significantly affect TME dynamics. Additionally, the cytokine-encoding genes IFNG from Th1 cells and ARG1 from M2 macrophages are crucial for modulating immune responses within the TME. Survival data from immunotherapy cohorts confirmed the prognostic ability of these markers, with p-values <0.01. In summary, TME-NET performs well in predicting immunotherapy responses and offers interpretable insights into the immunotherapy process. It can be customized at https://immbal.shinyapps.io/TME-NET.
Collapse
Affiliation(s)
- Xiaobao Ding
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
- Institute of Big Data and Artificial Intelligence in Medicine, School of Electronics and Information Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lin Zhang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
30
|
Tang M, Xu M, Wang J, Liu Y, Liang K, Jin Y, Duan W, Xia S, Li G, Chu H, Liu W, Wang Q. Brain Metastasis from EGFR-Mutated Non-Small Cell Lung Cancer: Secretion of IL11 from Astrocytes Up-Regulates PDL1 and Promotes Immune Escape. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306348. [PMID: 38696655 PMCID: PMC11234401 DOI: 10.1002/advs.202306348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/24/2024] [Indexed: 05/04/2024]
Abstract
Patients who have non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations are more prone to brain metastasis (BM) and poor prognosis. Previous studies showed that the tumor microenvironment of BM in these patients is immunosuppressed, as indicated by reduced T-cell abundance and activity, although the mechanism of this immunosuppression requires further study. This study shows that reactive astrocytes play a critical role in promoting the immune escape of BM from EGFR-mutated NSCLC by increasing the apoptosis of CD8+ T lymphocytes. The increased secretion of interleukin 11(IL11) by astrocytes promotes the expression of PDL1 in BM, and this is responsible for the increased apoptosis of T lymphocytes. IL11 functions as a ligand of EGFR, and this binding activates EGFR and downstream signaling to increase the expression of PDL1, culminating in the immune escape of tumor cells. IL11 also promotes immune escape by binding to its intrinsic receptor (IL11Rα/glycoprotein 130 [gp130]). Additional in vivo studies show that the targeted inhibition of gp130 and EGFR suppresses the growth of BM and prolongs the survival time of mice. These results suggest a novel therapeutic strategy for treatment of NSCLC patients with EGFR mutations.
Collapse
Affiliation(s)
- Mengyi Tang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Mingxin Xu
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Jian Wang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Ye Liu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Kun Liang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Yinuo Jin
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Wenzhe Duan
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Shengkai Xia
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenwen Liu
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian, Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Qi Wang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| |
Collapse
|
31
|
Buendia‐Roldan I, Martínez‐Espinosa K, Aguirre M, Aguilar‐Duran H, Palma‐Lopez A, Palacios Y, Ruiz A, Ramón‐Luing LA, Ocaña‐Guzmán R, Pérez‐Rubio G, Falfán‐Valencia R, Selman M, Chavez‐Galan L. Persistence of lung structural and functional alterations at one year post-COVID-19 is associated with increased serum PD-L2 levels and altered CD4/CD8 ratio. Immun Inflamm Dis 2024; 12:e1305. [PMID: 39031504 PMCID: PMC11259001 DOI: 10.1002/iid3.1305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND Persistent respiratory symptoms and lung abnormalities post-COVID-19 are public health problems. This study evaluated biomarkers to stratify high-risk patients to the development or persistence of post-COVID-19 interstitial lung disease. METHODS One hundred eighteen patients discharged with residual lung abnormalities compatible with interstitial lung disease (COVID-ILD patients) after a severe COVID-19 were followed for 1 year (post-COVID-ILD patients). Physical examination, pulmonary function tests, and chest high-resolution computed tomography (HRCT) were performed. Soluble forms (s) of PD-L1, PD-L2, TIM-3, and GAL-9 were evaluated in serum and cell culture supernatant, as well as T-cells subsets and the transmembrane expression of PD-L1 and PD-L2 on the cell surface. RESULTS Eighty percent of the post-COVID-ILD patients normalized their lung function at 1-year follow-up, 8% presented COVID-independent ILD, and 12% still showed functional and HRCT alterations. PD-L2 levels were heterogeneous during acute COVID-19 (aCOVID); patients who increased (at least 30%) their sPD-L2 levels at 1 year post-COVID-19 and exhibited altered CD4/CD8 ratio showed persistence of chest tomographic and functional alterations. By contrast, patients who decreased sPD-L2 displayed a complete lung recovery. sPD-L1, sTIM-3, and sGAL-9 increased significantly during aCOVID and decreased in all patients after 1-year follow-up. CONCLUSION Increased sPD-L2 and an altered CD4/CD8 ratio after 12 months of aCOVID are associated with the persistence of lung lesions, suggesting that they may contribute to lung damage post-COVID-19.
Collapse
Affiliation(s)
- Ivette Buendia‐Roldan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | | | - Maria‐Jose Aguirre
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Hiram Aguilar‐Duran
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Alexia Palma‐Lopez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Yadira Palacios
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Andy Ruiz
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Lucero A. Ramón‐Luing
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Ranferi Ocaña‐Guzmán
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Gloria Pérez‐Rubio
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | | | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| | - Leslie Chavez‐Galan
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasMexico CityMexico
| |
Collapse
|
32
|
Shilo K, Shen T, Hammond S, Parwani AV, Li Z, Dayal S, Chiweshe J, Lian F. Performance Analysis of Leica Biosystems Monoclonal Antibody Programmed Cell Death Ligand 1 Clone 73-10 on Breast, Colorectal, and Hepatocellular Carcinomas. Appl Immunohistochem Mol Morphol 2024; 32:255-263. [PMID: 38725126 PMCID: PMC11227302 DOI: 10.1097/pai.0000000000001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/03/2024] [Indexed: 07/08/2024]
Abstract
Programmed cell death receptor 1/Programmed cell death ligand 1 (PD-L1) checkpoint pathway is responsible for the control of immune cell responses. Immunotherapy using checkpoint inhibitors, such as anti-PD-L1 therapy, aids disease management and potentiates clinical outcomes. This study aimed to analyze the performance of the Leica Biosystems (LBS) USA FDA class I in vitro diagnostic monoclonal antibody (clone 73-10) to detect PD-L1 expression in breast, colorectal, and hepatocellular carcinomas compared with the class III FDA-approved PD-L1 detecting antibodies [SP263 (Ventana), 22C3 (Dako), and 28-8 (Dako)] using 208 unique tissue microarray-based cases for each tumor type. The interassay concordances between LBS 73-10 clone and other PD-L1 antibodies ranged from 0.59 to 0.95 Cohen kappa coefficient (K) and from 0.66 to 0.90 (K) for cutoff values of 1% and 50% tumor proportion score (TPS), respectively. The 73-10 clones showed inter-pathologist agreements ranging from 0.53 to 1.0 (K) and 0.34 to 0.94 (K) for cutoff values of 1% and 50% TPS, respectively. For the immune cell proportion score (IPS) using a cutoff of 1%, the Kappa coefficient of interassay concordances and inter-pathologist agreements ranged from 0.34 to 0.94. The 73-10 clone assay's sensitivity ranged from 78.3% to 100% (TPS ≥1%), 100% (TPS ≥50%), and 77.4% to 93.5% (IPS ≥1%), while its specificity was 97.9% to 100% (TPS ≥1%), 99.5% to 99.8% (TPS ≥50%), and 97.9% to 100% (IPS ≥1%). This exploratory evaluation of LBS 73-10 monoclonal antibody on a large set of breast, colorectal, and hepatocellular carcinomas showed the assay's technical performance is comparable to the FDA-approved companion/complementary diagnostics PD-L1 detection assays.
Collapse
Affiliation(s)
- Konstantin Shilo
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - Tiansheng Shen
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - Scott Hammond
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - Anil V. Parwani
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - Zaibo Li
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH
| | - Shubham Dayal
- Medical and Scientific Affairs, Leica Biosystems Richmond Inc., Deer Park, IL
| | - Joseph Chiweshe
- Medical and Scientific Affairs, Leica Biosystems Richmond Inc., Deer Park, IL
| | - Fangru Lian
- Medical and Scientific Affairs, Leica Biosystems Richmond Inc., Deer Park, IL
| |
Collapse
|
33
|
Camilli M, Viscovo M, Maggio L, Bonanni A, Torre I, Pellegrino C, Lamendola P, Tinti L, Teofili L, Hohaus S, Lanza GA, Ferdinandy P, Varga Z, Crea F, Lombardo A, Minotti G. Sodium-glucose cotransporter 2 inhibitors and the cancer patient: from diabetes to cardioprotection and beyond. Basic Res Cardiol 2024:10.1007/s00395-024-01059-9. [PMID: 38935171 DOI: 10.1007/s00395-024-01059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new drug class initially designed and approved for treatment of diabetes mellitus, have been shown to exert pleiotropic metabolic and direct cardioprotective and nephroprotective effects that extend beyond their glucose-lowering action. These properties prompted their use in two frequently intertwined conditions, heart failure and chronic kidney disease. Their unique mechanism of action makes SGLT2i an attractive option also to lower the rate of cardiac events and improve overall survival of oncological patients with preexisting cardiovascular risk and/or candidate to receive cardiotoxic therapies. This review will cover biological foundations and clinical evidence for SGLT2i modulating myocardial function and metabolism, with a focus on their possible use as cardioprotective agents in the cardio-oncology settings. Furthermore, we will explore recently emerged SGLT2i effects on hematopoiesis and immune system, carrying the potential of attenuating tumor growth and chemotherapy-induced cytopenias.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy.
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy.
| | - Marcello Viscovo
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Maggio
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Alice Bonanni
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Ilaria Torre
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Claudio Pellegrino
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Priscilla Lamendola
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Lorenzo Tinti
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Luciana Teofili
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Stefan Hohaus
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gaetano Antonio Lanza
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltan Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Center of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Rome, Italy
| | - Antonella Lombardo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli, 1, 00168, Rome, Italy
| | | |
Collapse
|
34
|
Gu Y, Benavente CA. Landscape and Treatment Options of Shapeshifting Small Cell Lung Cancer. J Clin Med 2024; 13:3120. [PMID: 38892831 PMCID: PMC11173155 DOI: 10.3390/jcm13113120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Small cell lung cancer (SCLC) is a deadly neuroendocrine malignancy, notorious for its rapid tumor growth, early metastasis, and relatively "cold" immune environment. Only standard chemotherapies and a few immune checkpoint inhibitors have been approved for SCLC treatment, revealing an urgent need for novel therapeutic approaches. Moreover, SCLC has been recently recognized as a malignancy with high intratumoral and intertumoral heterogeneity, which explains the modest response rate in some patients and the early relapse. Molecular subtypes defined by the expression of lineage-specific transcription factors (ASCL1, NEUROD1, POU2F3, and, in some studies, YAP1) or immune-related genes display different degrees of neuroendocrine differentiation, immune cell infiltration, and response to treatment. Despite the complexity of this malignancy, a few biomarkers and targets have been identified and many promising drugs are currently undergoing clinical trials. In this review, we integrate the current progress on the genomic landscape of this shapeshifting malignancy, the characteristics and treatment vulnerabilities of each subtype, and promising drugs in clinical phases.
Collapse
Affiliation(s)
- Yijun Gu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA;
| | - Claudia A. Benavente
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA;
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
35
|
Yang B, Gomes DEB, Liu Z, Santos MS, Li J, Bernardi RC, Nash MA. Engineering the Mechanical Stability of a Therapeutic Affibody/PD-L1 Complex by Anchor Point Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595133. [PMID: 38826272 PMCID: PMC11142103 DOI: 10.1101/2024.05.21.595133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Protein-protein complexes can vary in mechanical stability depending on the direction from which force is applied. Here we investigated the anisotropic mechanical stability of a molecular complex between a therapeutic non-immunoglobulin scaffold called Affibody and the extracellular domain of the immune checkpoint protein PD-L1. We used a combination of single-molecule AFM force spectroscopy (AFM-SMFS) with bioorthogonal clickable peptide handles, shear stress bead adhesion assays, molecular modeling, and steered molecular dynamics (SMD) simulations to understand the pulling point dependency of mechanostability of the Affibody:(PD-L1) complex. We observed diverse mechanical responses depending on the anchor point. For example, pulling from residue #22 on Affibody generated an intermediate unfolding event attributed to partial unfolding of PD-L1, while pulling from Affibody's N-terminus generated force-activated catch bond behavior. We found that pulling from residue #22 or #47 on Affibody generated the highest rupture forces, with the complex breaking at up to ~ 190 pN under loading rates of ~104-105 pN/sec, representing a ~4-fold increase in mechanostability as compared with low force N-terminal pulling. SMD simulations provided consistent tendencies in rupture forces, and through visualization of force propagation networks provided mechanistic insights. These results demonstrate how mechanostability of therapeutic protein-protein interfaces can be controlled by informed selection of anchor points within molecules, with implications for optimal bioconjugation strategies in drug delivery vehicles.
Collapse
Affiliation(s)
- Byeongseon Yang
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Diego E. B. Gomes
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Zhaowei Liu
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
- Present address: Department of Bionanoscience, Delft University of Technology, 2629HZ Delft, the Netherlands
| | - Mariana Sá Santos
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Jiajun Li
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| | - Rafael C. Bernardi
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Michael A. Nash
- Institute for Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland
| |
Collapse
|
36
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Li Z, Xiong W, Liang Z, Wang J, Zeng Z, Kołat D, Li X, Zhou D, Xu X, Zhao L. Critical role of the gut microbiota in immune responses and cancer immunotherapy. J Hematol Oncol 2024; 17:33. [PMID: 38745196 PMCID: PMC11094969 DOI: 10.1186/s13045-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immunotherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current challenges and provide a general outlook on future directions in this field.
Collapse
Affiliation(s)
- Zehua Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Liang
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
- Target Discovery Institute, Center for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Jinyu Wang
- Departments of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ziyi Zeng
- Department of Neonatology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linyong Zhao
- Department of General Surgery and Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Zhang K, Qu C, Zhou P, Yang Z, Wu X. Integrative analysis of the cuproptosis-related gene ATP7B in the prognosis and immune infiltration of IDH1 wild-type glioma. Gene 2024; 905:148220. [PMID: 38286269 DOI: 10.1016/j.gene.2024.148220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Glioma is the most common malignant tumor in the brain and the central nervous system with a poor prognosis, and wild-type isocitrate dehydrogenase (IDH) glioma indicates a worse prognosis. Cuproptosis is a recently discovered form of cell death regulated by copper-dependent mitochondrial respiration. However, the effect of cuproptosis on tumor prognosis and immune infiltration is not clear. In this research, we analyzed of public databases to show the correlation between cuproptosis-related genes and the prognosis of IDH1 wild-type glioma. Nine out of 12 genes were upregulated in IDH1 wild-type glioma patients, and 6 genes were significantly associated with overall survival (OS), while 5 genes were associated with progression-free survival (PFS). Then, we constructed a prognostic cuproptosis-related gene signature for IDH1 wild-type glioma patients. ATP7B was considered an independent prognostic indicator, and a low expression level of ATP7B was related to a shorter period of OS and PFS. Moreover, downregulation of ATP7B was correlated not only with the infiltration of activated NK cells, CD8 + T cells and M2 macrophages; but also with high expression of immune checkpoint genes and tumor mutation burden (TMB). In the IDH1 wild-type glioma tissues we collected, our data also confirmed that high tumor grade was accompanied by low expression of ATP7B and high expression of PD-L1, which was associated with increasing infiltration of CD8 + immune cells. In conclusion, our research constructed a prognostic cuproptosis-related gene signature model to predict the prognosis of IDH1 wild-type glioma. ATP7B is deemed to be a potential prognostic indicator and novel immunotherapy biomarker for IDH1 wild-type glioma patients.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunhui Qu
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Peijun Zhou
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Zezi Yang
- School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Human Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, 410011, China.
| |
Collapse
|
39
|
Garon EB, Cho BC, Luft A, Alatorre-Alexander J, Geater SL, Trukhin D, Kim SW, Ursol G, Hussein M, Lim FL, Yang CT, Araujo LH, Saito H, Reinmuth N, Kohlmann M, Lowery C, Mann H, Peters S, Mok TS, Johnson ML. A Brief Report of Durvalumab With or Without Tremelimumab in Combination With Chemotherapy as First-Line Therapy for Metastatic Non-Small-Cell Lung Cancer: Outcomes by Tumor PD-L1 Expression in the Phase 3 POSEIDON Study. Clin Lung Cancer 2024; 25:266-273.e5. [PMID: 38584069 DOI: 10.1016/j.cllc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Edward B Garon
- David Geffen School of Medicine at UCLA, Los Angeles, CA.
| | - Byoung Chul Cho
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Alexander Luft
- Leningrad Regional Clinical Hospital, St Petersburg, Russia
| | | | | | | | - Sang-We Kim
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Maen Hussein
- Florida Cancer Specialists - Sarah Cannon Research Institute, Leesburg, FL
| | | | | | | | | | - Niels Reinmuth
- Asklepios Lung Clinic, Member of the German Center for Lung Research (DZL), Munich-Gauting, Germany
| | | | | | | | - Solange Peters
- Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland
| | - Tony S Mok
- Chinese University of Hong Kong, Hong Kong, China
| | - Melissa L Johnson
- Sarah Cannon Research Institute, Tennessee Oncology, PLLC, Nashville, TN
| |
Collapse
|
40
|
Bae MK, Ko YU, Seung BJ, Sur JH, Choe NH. PD-L1 mRNA and protein expression in canine mammary carcinomas: Correlation with histopathological grade and molecular markers. Vet Pathol 2024; 61:402-409. [PMID: 38281145 DOI: 10.1177/03009858241226621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Programmed death ligand 1 (PD-L1) is an immune checkpoint molecule that plays a crucial role in regulating antitumor immune responses. Canine mammary carcinomas (CMCs) are common tumors of dogs. Despite extensive studies on the heterogeneity of CMCs, there is still a lack of effective precision therapies for the treatment of CMCs. In this study, we aimed to investigate the correlation between PD-L1 mRNA and protein expression in CMCs and explore its association with histopathological grade and molecular markers, including the estrogen receptor, epidermal growth factor receptor 2, and cytokeratin 5/6 (CK5/6). Formalin-fixed paraffin-embedded samples were evaluated for PD-L1 mRNA expression using RNA in situ hybridization and PD-L1 protein expression using immunohistochemistry. We observed no substantial correlation between PD-L1 mRNA and protein expression in CMCs; however, PD-L1 mRNA levels were significantly higher in grade 3 than in grade 1 tumors (P = .001). In addition, we observed a positive correlation between PD-L1 protein expression and CK5/6 expression in CMCs (P = .032). These findings suggest that PD-L1 expression in CMCs is heterogeneous and may be regulated post-transcriptionally. Further studies are needed to explore the prognostic and therapeutic implications of PD-L1 expression in different molecular subtypes of CMCs and their potential as predictive biomarkers for immunotherapy.
Collapse
Affiliation(s)
| | | | - Byung-Joon Seung
- Konkuk University, Seoul, Korea
- University of Illinois Urbana-Champaign, Urbana, IL
| | - Jung-Hyang Sur
- Konkuk University, Seoul, Korea
- Komipharm International Co., Ltd., Siheung-si, Korea
| | | |
Collapse
|
41
|
Andreoletti M, Haller L, Vayena E, Blasimme A. Mapping the ethical landscape of digital biomarkers: A scoping review. PLOS DIGITAL HEALTH 2024; 3:e0000519. [PMID: 38753605 PMCID: PMC11098308 DOI: 10.1371/journal.pdig.0000519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
In the evolving landscape of digital medicine, digital biomarkers have emerged as a transformative source of health data, positioning them as an indispensable element for the future of the discipline. This necessitates a comprehensive exploration of the ethical complexities and challenges intrinsic to this cutting-edge technology. To address this imperative, we conducted a scoping review, seeking to distill the scientific literature exploring the ethical dimensions of the use of digital biomarkers. By closely scrutinizing the literature, this review aims to bring to light the underlying ethical issues associated with the development and integration of digital biomarkers into medical practice.
Collapse
Affiliation(s)
- Mattia Andreoletti
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Luana Haller
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Effy Vayena
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Alessandro Blasimme
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Chauhan S, Jaiswal S, Jakhmola V, Singh B, Bhattacharya S, Garg M, Sengupta S. Potential role of p53 deregulation in modulating immune responses in human malignancies: A paradigm to develop immunotherapy. Cancer Lett 2024; 588:216766. [PMID: 38408603 PMCID: PMC7615729 DOI: 10.1016/j.canlet.2024.216766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
The crucial role played by the oncogenic expression of TP53, stemming from mutation or amyloid formation, in various human malignancies has been extensively studied over the past two decades. Interestingly, the potential role of TP53 as a crucial player in modulating immune responses has provided new insight into the field of cancer biology. The loss of p53's transcriptional functions and/or the acquisition of tumorigenic properties can efficiently modulate the recruitment and functions of myeloid and lymphoid cells, ultimately leading to the evasion of immune responses in human tumors. Consequently, the oncogenic nature of the tumor suppressor p53 can dynamically alter the function of immune cells, providing support for tumor progression and metastasis. This review comprehensively explores the dual role of p53 as both the guardian of the genome and an oncogenic driver, especially in the context of regulation of autophagy, apoptosis, the tumor microenvironment, immune cells, innate immunity, and adaptive immune responses. Additionally, the focus of this review centers on how p53 status in the immune response can be harnessed for the development of tailored therapeutic strategies and their potential application in immunotherapy against human malignancies.
Collapse
Affiliation(s)
- Shivi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Shivani Jaiswal
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Vibhuti Jakhmola
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Bhavana Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| |
Collapse
|
43
|
Lu MM, Yang Y. Exosomal PD-L1 in cancer and other fields: recent advances and perspectives. Front Immunol 2024; 15:1395332. [PMID: 38726017 PMCID: PMC11079227 DOI: 10.3389/fimmu.2024.1395332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
PD-1/PD-L1 signaling is a key factor of local immunosuppression in the tumor microenvironment. Immune checkpoint inhibitors targeting PD-1/PD-L1 signaling have achieved tremendous success in clinic. However, several types of cancer are particularly refractory to the anti-PD-1/PD-L1 treatment. Recently, a series of studies reported that IFN-γ can stimulate cancer cells to release exosomal PD-L1 (exoPD-L1), which possesses the ability to suppress anticancer immune responses and is associated with anti-PD-1 response. In this review, we introduce the PD-1/PD-L1 signaling, including the so-called 'reverse signaling'. Furthermore, we summarize the immune treatments of cancers and pay more attention to immune checkpoint inhibitors targeting PD-1/PD-L1 signaling. Additionally, we review the action mechanisms and regulation of exoPD-L1. We also introduce the function of exoPD-L1 as biomarkers. Finally, we review the methods for analyzing and quantifying exoPD-L1, the therapeutic strategies targeting exoPD-L1 to enhance immunotherapy and the roles of exoPD-L1 beyond cancer. This comprehensive review delves into recent advances of exoPD-L1 and all these findings suggest that exoPD-L1 plays an important role in both cancer and other fields.
Collapse
Affiliation(s)
- Man-Man Lu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
44
|
Balar PC, Apostolopoulos V, Chavda VP. A new era of immune therapeutics for pancreatic cancer: Monoclonal antibodies paving the way. Eur J Pharmacol 2024; 969:176451. [PMID: 38408598 DOI: 10.1016/j.ejphar.2024.176451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma, remains a devastating disease with a dismal prognosis and limited survival rates. Despite various drug treatments and regimens showing promise in managing the disease, the clinical outcomes have not significantly improved. Immunotherapy however, has become a forefront area in pancreatic cancer treatment. This approach comprises a range of agents, including small molecule drugs, antibodies, combination therapies, and vaccines. In the last 5-8 years, there has been an upsurge of research into the use of monoclonal antibodies to block receptors on cancer or immune cells, revolutionising cancer treatment and management. Several targets have been identified and studied, with the most encouraging noted in relation to checkpoint markers, namely, antibodies targeting anti-programmed cell death 1 (PD-1) and its receptor PD-L1. Herein, we present the clinical developments in immunotherapy in the last 5 years especially those which have been tested in humans against pancreatic cancer.
Collapse
Affiliation(s)
- Pankti C Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Werribee Campus, Melbourne, VIC, 3030, Australia
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India.
| |
Collapse
|
45
|
Wickenberg M, Mercier R, Yap M, Walker J, Baker K, LaPointe P. Hsp90 inhibition leads to an increase in surface expression of multiple immunological receptors in cancer cells. Front Mol Biosci 2024; 11:1334876. [PMID: 38645275 PMCID: PMC11027010 DOI: 10.3389/fmolb.2024.1334876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone important for maintaining protein homeostasis (proteostasis) in the cell. Hsp90 inhibitors are being explored as cancer therapeutics because of their ability to disrupt proteostasis. Inhibiting Hsp90 increases surface density of the immunological receptor Major Histocompatibility Complex 1 (MHC1). Here we show that this increase occurs across multiple cancer cell lines and with both cytosol-specific and pan-Hsp90 inhibitors. We demonstrate that Hsp90 inhibition also alters surface expression of both IFNGR and PD-L1, two additional immunological receptors that play a significant role in anti-tumour or anti-immune activity in the tumour microenvironment. Hsp90 also negatively regulates IFN-γ activity in cancer cells, suggesting it has a unique role in mediating the immune system's response to cancer. Our data suggests a strong link between Hsp90 activity and the pathways that govern anti-tumour immunity. This highlights the potential for the use of an Hsp90 inhibitor in combination with another currently available cancer treatment, immune checkpoint blockade therapy, which works to prevent immune evasion of cancer cells. Combination checkpoint inhibitor therapy and the use of an Hsp90 inhibitor may potentiate the therapeutic benefits of both treatments and improve prognosis for cancer patients.
Collapse
Affiliation(s)
- Madison Wickenberg
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Megan Yap
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - John Walker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kristi Baker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
46
|
Li S, Zhang H, Bao Y, Zhang H, Wang J, Liu M, Yan R, Wang Z, Wu X, Jin Y. Immunoantitumor Activity and Oxygenation Effect Based on Iron-Copper-Doped Folic Acid Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16653-16668. [PMID: 38520338 DOI: 10.1021/acsami.3c18331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Cancer metastasis and recurrence are closely associated with immunosuppression and a hypoxic tumor microenvironment. Chemodynamic therapy (CDT) and photothermodynamic therapy (PTT) have been shown to induce immunogenic cell death (ICD), effectively inhibiting cancer metastasis and recurrence when combined with immune adjuvants. However, the limited efficacy of Fenton's reaction and suboptimal photothermal effect present significant challenges for successfully inducing ICD through CDT and PTT. This paper described the synthesis and immunoantitumor activity of the novel iron-copper-doped folic acid carbon dots (CFCFB). Copper-doped folic acid carbon dots (Cu-FACDs) were initially synthesized via a hydrothermal method, using folic acid and copper gluconate as precursors. Subsequently, the nanoparticles CFCFB were obtained through cross-linking and self-assembly of Cu-FACDs with ferrocene dicarboxylic acid (FeDA) and 3-bromopyruvic acid (3BP). The catalytic effect of carbon dots in CFCFB enhanced the activity of the Fenton reaction, thereby promoting CDT-induced ICD and increasing the intracellular oxygen concentration. Additionally, 3BP inhibited cellular respiration, further amplifying the oxygen concentration. The photothermal conversion efficiency of CFCFB reached 55.8%, which significantly enhanced its antitumor efficacy through photothermal therapy. Immunofluorescence assay revealed that treatment with CFCFB led to an increased expression of ICD markers, including calreticulin (CRT) and ATP, as well as extracellular release of HMGB-1, indicating the induction of ICD by CFCFB. Moreover, the observed downregulation of ARG1 expression indicates a transition in the tumor microenvironment from an immunosuppressive state to an antitumor state following treatment with CFCFB. The upregulation of IL-2 and CD8 expression facilitated the differentiation of effector T cells, resulting in an augmented population of CD8+ T cells, thereby indicating the activation of systemic immune response.
Collapse
Affiliation(s)
- Siqi Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Hui Zhang
- College of Public Health, Mudanjiang Medical University, Mudanjiang 157011, China
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yujun Bao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Huanli Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jingchun Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar 161006, China
| | - Mingyang Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
47
|
Xu X, Luo S, Zhao X, Tang B, Zhang E, Liu J, Duan L. Computational analysis of PD-L1 dimerization mechanism induced by small molecules and potential dynamical properties. Int J Biol Macromol 2024; 265:130921. [PMID: 38492688 DOI: 10.1016/j.ijbiomac.2024.130921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The design of small molecule inhibitors that target the programmed death ligand-1 (PD-L1) is a forefront issue in immune checkpoint blocking therapy. Small-molecule inhibitors have been shown to exert therapeutic effects by inducing dimerization of the PD-L1 protein, however, the specific mechanisms underlying this dimerization process remain largely unexplored. Furthermore, there is a notable lack of comparative studies examining the binding modes of structurally diverse inhibitors. In view of the research gaps, this work employed molecular dynamics simulations to meticulously examine the interactions between two distinct types of inhibitors and PD-L1 in both monomeric and dimeric forms, and predicted the dimerization mechanism. The results revealed that inhibitors initially bind to a PD-L1 monomer, subsequently attracting another monomer to form a dimer. Notably, symmetric inhibitors observed superior binding efficiency compared to other inhibitors. Key residues, including Ile54, Tyr56, Met115 and Tyr123 played a leading role in binding. Structurally, symmetric inhibitors were capable of thoroughly engaging the binding pocket, promoting a more symmetrical formation of PD-L1 dimers. Furthermore, symmetric inhibitors formed more extensive hydrophobic interactions with protein residues. The insights garnered from this research are expected to significantly contribute to the rational design and optimization of small molecule inhibitors targeting PD-L1.
Collapse
Affiliation(s)
- Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Bolin Tang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Enhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jinxin Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
48
|
Cheng Y, Ouyang W, Liu L, Tang L, Zhang Z, Yue X, Liang L, Hu J, Luo T. Molecular recognition of ITIM/ITSM domains with SHP2 and their allosteric effect. Phys Chem Chem Phys 2024; 26:9155-9169. [PMID: 38165855 DOI: 10.1039/d3cp03923d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Src homology 2-domain-containing tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase that is widely expressed in a variety of cells and regulates the immune response of T cells through the PD-1 pathway. However, the activation mechanism and allosteric effects of SHP2 remain unclear, hindering the development of small molecule inhibitors. For the first time, in this study, the complex structure formed by the intact PD-1 tail and SHP2 was modeled. The molecular recognition and conformational changes of inactive/active SHP2 versus ITIM/ITSM were compared based on prolonged MD simulations. The relative flexibility of the two SH2 domains during MD simulations contributes to the recruitment of ITIM/ITSM and supports the subsequent conformational change of SHP2. The binding free energy calculation shows that inactive SHP2 has a higher affinity for ITIM/ITSM than active SHP2, mainly because the former's N-SH2 refers to the α-state. In addition, a significant decrease in the contribution to the binding energy of certain residues (e.g., R32, S34, K35, T42, and K55) of conformationally transformed SHP2 contributes to the above result. These detailed changes during conformational transition will provide theoretical guidance for the molecular design of subsequent novel anticancer drugs.
Collapse
Affiliation(s)
- Yan Cheng
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China.
- Multi-omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, China
| | - Weiwei Ouyang
- Department of Thoracic Oncology, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, China
| | - Ling Liu
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Lingkai Tang
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zhigang Zhang
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xinru Yue
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ting Luo
- Breast Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China.
- Multi-omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, China
| |
Collapse
|
49
|
Yang W, Hong SA, Kim JM, Jeong HB, Nam TK, Choi HH, Kim SM, Park KY, Kim HR. The immunologic phenotype of thrombi is associated with future vascular events after cerebral infarction. J Neurointerv Surg 2024; 16:352-358. [PMID: 37197936 DOI: 10.1136/jnis-2023-020155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Thrombi retrieved from patients with acute ischemic stroke may contain prognostic information. OBJECTIVE To investigate the relationship between the immunologic phenotype of thrombi and future vascular events in patients with a stroke. METHODS This study included patients with acute ischemic stroke who underwent endovascular thrombectomy at Chung-Ang University Hospital in Seoul, Korea, between February 2017 and January 2020. Laboratory and histological variables were compared between patients with and without recurrent vascular events (RVEs). Kaplan-Meier analysis followed by the Cox proportional hazards model was used to identify factors related to RVE. Receiver operating characteristic (ROC) analysis was conducted to evaluate the performance of the immunologic score by combining immunohistochemical phenotypes to predict RVE. RESULTS A total of 46 patients were included in the study with 13 RVEs (mean±SD age, 72.8±11.3 years; 26 (56.5%) men). Thrombi with a lower percentage of programmed death ligand-1 expression (HR=11.64; 95% CI 1.60 to 84.82) and a higher number of citrullinated histone H3 positive cells (HR=4.19; 95% CI 0.81 to 21.75) were associated with RVE. The presence of high-mobility group box 1 positive cell was associated with reduced risk of RVE, but the association was lost after adjustment for stroke severity. The immunologic score, which consists of the three immunohistochemical phenotypes, showed good performance in predicting RVE (area under the ROC curve, 0.858; 95% CI 0.758 to 0.958). CONCLUSIONS The immunological phenotype of thrombi could provide prognostic information after stroke.
Collapse
Affiliation(s)
- Wookjin Yang
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Soon Auck Hong
- Department of Pathology, Chung-Ang University Hospital, Seoul, Korea
| | - Jeong-Min Kim
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
| | - Hae-Bong Jeong
- Department of Neurology, Chung-Ang University Hospital, Seoul, Korea
| | - Taek-Kyun Nam
- Department of Neurosurgery, Chung-Ang University Hospital, Seoul, Korea
| | - Hyun Ho Choi
- Department of Neurosurgery, Chung-Ang University Hospital, Seoul, Korea
| | - Suh Min Kim
- Department of Surgery, Chung-Ang University College of Medicine and Graduate School of Medicine, Seoul, Korea
| | - Kwang-Yeol Park
- Department of Neurology, Chung-Ang University Hospital, Seoul, Korea
| | - Hye Ryoun Kim
- Department of Laboratory Medicine, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
50
|
Zhang Y, Wang Y, Chen Y, Ding X, Wang S, Liu W, Hu M, Liu Z. PET Imaging of Peptide Probe Al[ 18F]F-NOTA-PCP1 for Monitoring the Engagement of PD-L1 Antibodies in Tumors. Mol Pharm 2024; 21:1515-1525. [PMID: 38291578 PMCID: PMC10915797 DOI: 10.1021/acs.molpharmaceut.3c01151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Immune checkpoint inhibitors (ICIs) are a powerful treatment modality for various types of cancer. The effectiveness of ICIs is intimately connected to the binding status of antibodies to receptors. However, validated means to accurately evaluate target specificity and predict antibody efficacy in vivo are lacking. A novel peptide-based probe called Al[18F]F-NOTA-PCP1 was developed and validated for its specificity to PD-L1 in A549, U87MG, GL261, and GL261-iPDL1 cell lines, as well as in xenograft models. Then the probe was used in PET/CT scans to determine the binding status of PD-L1 antibodies (atezolizumab, avelumab, and durvalumab) in U87MG xenograft model mice. Moreover, Al[18F]F-NOTA-PCP1 was used to evaluate the impact of different treatment times and doses. Al[18F]F-NOTA-PCP1 PET/CT can be used to evaluate the interaction between PD-L1 and antibodies to determine the effectiveness of immunotherapy. By quantifying target engagement, the probe has the potential to predict the efficacy of immunotherapy and optimize the dose and treatment schedules for PD-L1 immunotherapy. This imaging agent could be a valuable tool in guiding personalized treatment strategies and improving cancer patient outcomes.
Collapse
Affiliation(s)
- Yang Zhang
- Department
of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Sciences, Jinan 250117, Shandong China
| | - Yong Wang
- Department
of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Sciences, Jinan 250117, Shandong China
| | - Yunhao Chen
- Department
of Oncology, Shandong Provincial Third Hospital. Jinan 250031, Shandong, China
| | - Xingchen Ding
- Department
of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Sciences, Jinan 250117, Shandong China
| | - Shijie Wang
- Shandong
Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital
and Institute, Shandong First Medical University,
Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Wei Liu
- Department
of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Sciences, Jinan 250117, Shandong China
| | - Man Hu
- Department
of Radiation Oncology, Shandong University
Cancer Center, Jinan 250117, Shandong, China
- Department
of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy
of Medical Sciences, Jinan 250117, Shandong China
| | - Zhiguo Liu
- College of
Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan 250355, Shandong, China
| |
Collapse
|