1
|
Mastronikolis NS, Kyrodimos E, Piperigkou Z, Spyropoulou D, Delides A, Giotakis E, Alexopoulou M, Bakalis NA, Karamanos NK. Matrix-based molecular mechanisms, targeting and diagnostics in oral squamous cell carcinoma. IUBMB Life 2024; 76:368-382. [PMID: 38168122 DOI: 10.1002/iub.2803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a head and neck cancer (HNC) with a high mortality rate. OSCC is developed in the oral cavity and it is triggered by many etiologic factors and can metastasize both regionally and distantly. Recent research advances in OSCC improved our understanding on the molecular mechanisms involved in and the initiation of OSCC metastasis. The key roles of the extracellular matrix (ECM) in OSCC are an emerging area of intensive research as the ECM macromolecular network is actively involved in events that regulate cellular morphological and functional properties, transcription and cell signaling mechanisms in invasion and metastasis. The provisional matrix that is formed by cancer cells is profoundly different in composition and functions as compared with the matrix of normal tissue. Fibroblasts are mainly responsible for matrix production and remodeling, but in cancer, the tumor matrix in the tumor microenvironment (TME) also originates from cancer cells. Even though extensive research has been conducted on the role of ECM in regulating cancer pathogenesis, its role in modulating OSCC is less elucidated since there are several issues yet to be fully understood. This critical review is focused on recent research as to present and discuss on the involvement of ECM macromolecular effectors (i.e., proteoglycans, integrins, matrix metalloproteinases) in OSCC development and progression.
Collapse
Affiliation(s)
- Nicholas S Mastronikolis
- Department of Otorhinolaryngology - Head and Neck Surgery, School of Medicine, University of Patras, Patras, Greece
| | - Efthymios Kyrodimos
- 1st Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Ippokrateion' General Hospital, Athens, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology - Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, School of Medicine, University of Patras, Patras, Greece
| | - Alexander Delides
- 2nd Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Attikon' University Hospital, Athens, Greece
| | - Evangelos Giotakis
- 1st Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Ippokrateion' General Hospital, Athens, Greece
- Department of Radiation Oncology, School of Medicine, University of Patras, Patras, Greece
- 2nd Otolaryngology Department, School of Medicine, National & Kapodistrian University of Athens, 'Attikon' University Hospital, Athens, Greece
| | - Miranda Alexopoulou
- Department of Maxillofacial Surgery, University Hospital of Patras, Patras, Greece
| | - Nick A Bakalis
- Department of Nursing, University of Patras, Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology - Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
2
|
Golo M, Newman PLH, Kempe D, Biro M. Mechanoimmunology in the solid tumor microenvironment. Biochem Soc Trans 2024; 52:1489-1502. [PMID: 38856041 DOI: 10.1042/bst20231427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The tumor microenvironment (TME) is a complex and dynamic ecosystem that adjoins the cancer cells within solid tumors and comprises distinct components such as extracellular matrix, stromal and immune cells, blood vessels, and an abundance of signaling molecules. In recent years, the mechanical properties of the TME have emerged as critical determinants of tumor progression and therapeutic response. Aberrant mechanical cues, including altered tissue architecture and stiffness, contribute to tumor progression, metastasis, and resistance to treatment. Moreover, burgeoning immunotherapies hold great promise for harnessing the immune system to target and eliminate solid malignancies; however, their success is hindered by the hostile mechanical landscape of the TME, which can impede immune cell infiltration, function, and persistence. Consequently, understanding TME mechanoimmunology - the interplay between mechanical forces and immune cell behavior - is essential for developing effective solid cancer therapies. Here, we review the role of TME mechanics in tumor immunology, focusing on recent therapeutic interventions aimed at modulating the mechanical properties of the TME to potentiate T cell immunotherapies, and innovative assays tailored to evaluate their clinical efficacy.
Collapse
Affiliation(s)
- Matteo Golo
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter L H Newman
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Meng X, Ma F, Yu D. The diverse effects of cisplatin on tumor microenvironment: Insights and challenges for the delivery of cisplatin by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 240:117362. [PMID: 37827371 DOI: 10.1016/j.envres.2023.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cisplatin is a well-known platinum-based chemotherapy medication that is widely utilized for some malignancies. Despite the direct cytotoxic consequences of cisplatin on tumor cells, studies in the recent decade have revealed that cisplatin can also affect different cells and their secretions in the tumor microenvironment (TME). Cisplatin has complex impacts on the TME, which may contribute to its anti-tumor activity or drug resistance mechanisms. These regulatory effects of cisplatin play a paramount function in tumor growth, invasion, and metastasis. This paper aims to review the diverse impacts of cisplatin and nanoparticles loaded with cisplatin on cancer cells and also non-cancerous cells in TME. The impacts of cisplatin on immune cells, tumor stroma, cancer cells, and also hypoxia will be discussed in the current review. Furthermore, we emphasize the challenges and prospects of using cisplatin in combination with other adjuvants and therapeutic modalities that target TME. We also discuss the potential synergistic effects of cisplatin with immune checkpoint inhibitors (ICIs) and other agents with anticancer potentials such as polyphenols and photosensitizers. Furthermore, the potential of nanoparticles for targeting TME and better delivery of cisplatin into tumors will be discussed.
Collapse
Affiliation(s)
- Xinxin Meng
- Zhuji Sixth People's Hospital of Zhejiang Province, Zhuji, Zhejiang, 311801, China
| | - Fengyun Ma
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China.
| | - Dingli Yu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| |
Collapse
|
4
|
Yang W, Chen Z, Qu L, Zhang C, Chen H, Zheng J, Chen W, Tan X, Shi C. IR-780 Dye-based Targeting of Cancer-associated Fibroblasts Improves Cancer Immunotherapy by Increasing Intra-tumoral T Lymphocytes Infiltration. Curr Cancer Drug Targets 2024; 24:642-653. [PMID: 38310462 DOI: 10.2174/0115680096261142231018104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/08/2023] [Accepted: 09/08/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Immune-checkpoint inhibitors (ICIs) against programmed death (PD)-1/PD-L1 pathway immunotherapy have been demonstrated to be effective in only a subset of patients with cancer, while the rest may exhibit low response or may develop drug resistance after initially responding. Previous studies have indicated that extensive collagen-rich stroma secreted by cancer-associated fibroblasts (CAFs) within the tumor microenvironment is one of the key obstructions of the immunotherapy for some tumors by decreasing the infiltrating cytotoxic T cells. However, there is still a lack of effective therapeutic strategies to control the extracellular matrix by targeting CAFs. METHODS The enhanced uptake of IR-780 by CAFs was assessed by using in vivo or ex vivo nearinfrared fluorescence imaging, confocal NIR fluorescent imaging, and CAFs isolation testing. The fibrotic phenotype down-regulation effects and in vitro CAFs killing effect of IR-780 were tested by qPCR, western blot, and flow cytometry. The in vivo therapeutic enhancement of anti-PD-L1 by IR-780 was evaluated on EMT6 and MC38 subcutaneous xenograft mice models. RESULTS IR-780 has been demonstrated to be preferentially taken up by CAFs and accumulate in the mitochondria. Further results identified low-dose IR-780 to downregulate the fibrotic phenotype, while high-dose IR-780 could directly kill both CAFs and EMT6 cells in vitro. Moreover, IR-780 significantly inhibited extracellular matrix (ECM) protein deposition in the peri-tumoral stroma on subcutaneous EMT6 and MC38 xenografts, which increased the proportion of tumor-infiltrating lymphocytes (TILs) in the deep tumor and further promoted anti-PD-L1 therapeutic efficacy. CONCLUSION This work provides a unique strategy for the inhibition of ECM protein deposition in the tumor microenvironment by targeted regulating of CAFs, which destroys the T cell barrier and further promotes tumor response to PD-L1 monoclonal antibody. IR-780 has been proposed as a potential therapeutic small-molecule adjuvant to promote the effect of immunotherapy.
Collapse
Affiliation(s)
- Wei Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Langfan Qu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401121, China
| | - Jiancheng Zheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wanchao Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chunmeng Shi
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
5
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
6
|
Dalir Abdolahinia E, Han X. The Three-Dimensional In Vitro Cell Culture Models in the Study of Oral Cancer Immune Microenvironment. Cancers (Basel) 2023; 15:4266. [PMID: 37686542 PMCID: PMC10487272 DOI: 10.3390/cancers15174266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The onset and progression of oral cancer are accompanied by a dynamic interaction with the host immune system, and the immune cells within the tumor microenvironment play a pivotal role in the development of the tumor. By exploring the cellular immunity of oral cancer, we can gain insight into the contribution of both tumor cells and immune cells to tumorigenesis. This understanding is crucial for developing effective immunotherapeutic strategies to combat oral cancer. Studies of cancer immunology present unique challenges in terms of modeling due to the extraordinary complexity of the immune system. With its multitude of cellular components, each with distinct subtypes and various activation states, the immune system interacts with cancer cells and other components of the tumor, ultimately shaping the course of the disease. Conventional two-dimensional (2D) culture methods fall short of capturing these intricate cellular interactions. Mouse models enable us to learn about tumor biology in complicated and dynamic physiological systems but have limitations as the murine immune system differs significantly from that of humans. In light of these challenges, three-dimensional (3D) culture systems offer an alternative approach to studying cancer immunology and filling the existing gaps in available models. These 3D culture models provide a means to investigate complex cellular interactions that are difficult to replicate in 2D cultures. The direct study of the interaction between immune cells and cancer cells of human origin offers a more relevant and representative platform compared to mouse models, enabling advancements in our understanding of cancer immunology. This review explores commonly used 3D culture models and highlights their significant contributions to expanding our knowledge of cancer immunology. By harnessing the power of 3D culture systems, we can unlock new insights that pave the way for improved strategies in the battle against oral cancer.
Collapse
Affiliation(s)
| | - Xiaozhe Han
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
7
|
Spataro S, Guerra C, Cavalli A, Sgrignani J, Sleeman J, Poulain L, Boland A, Scapozza L, Moll S, Prunotto M. CEMIP (HYBID, KIAA1199): structure, function and expression in health and disease. FEBS J 2023; 290:3946-3962. [PMID: 35997767 DOI: 10.1111/febs.16600] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022]
Abstract
CEMIP (cell migration-inducing protein), also known as KIAA1199 or HYBID, is a protein involved in the depolymerisation of hyaluronic acid (HA), a major glycosaminoglycan component of the extracellular matrix. CEMIP was originally described in patients affected by nonsyndromic hearing loss and has subsequently been shown to play a key role in tumour initiation and progression, as well as arthritis, atherosclerosis and idiopathic pulmonary fibrosis. Despite the vast literature associating CEMIP with these diseases, its biology remains elusive. The present review article summarises all the major scientific evidence regarding its structure, function, role and expression, and attempts to cast light on a protein that modulates EMT, fibrosis and tissue inflammation, an unmet key aspect in several inflammatory disease conditions.
Collapse
Affiliation(s)
- Sofia Spataro
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Jonathan Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS - BIP), Karlsruhe Institute for Technology (KIT), Germany
| | - Lina Poulain
- Department of Molecular Biology, University of Geneva, Switzerland
| | - Andreas Boland
- Department of Molecular Biology, University of Geneva, Switzerland
| | - Leonardo Scapozza
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| | - Solange Moll
- Department of Pathology, University Hospital of Geneva, Switzerland
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| |
Collapse
|
8
|
Budi HS, Farhood B. Targeting oral tumor microenvironment for effective therapy. Cancer Cell Int 2023; 23:101. [PMID: 37221555 DOI: 10.1186/s12935-023-02943-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Oral cancers are among the common head and neck malignancies. Different anticancer therapy modalities such as chemotherapy, immunotherapy, radiation therapy, and also targeted molecular therapy may be prescribed for targeting oral malignancies. Traditionally, it has been assumed that targeting malignant cells alone by anticancer modalities such as chemotherapy and radiotherapy suppresses tumor growth. In the last decade, a large number of experiments have confirmed the pivotal role of other cells and secreted molecules in the tumor microenvironment (TME) on tumor progression. Extracellular matrix and immunosuppressive cells such as tumor-associated macrophages, myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs) play key roles in the progression of tumors like oral cancers and resistance to therapy. On the other hand, infiltrated CD4 + and CD8 + T lymphocytes, and natural killer (NK) cells are key anti-tumor cells that suppress the proliferation of malignant cells. Modulation of extracellular matrix and immunosuppressive cells, and also stimulation of anticancer immunity have been suggested to treat oral malignancies more effectively. Furthermore, the administration of some adjuvants or combination therapy modalities may suppress oral malignancies more effectively. In this review, we discuss various interactions between oral cancer cells and TME. Furthermore, we also review the basic mechanisms within oral TME that may cause resistance to therapy. Potential targets and approaches for overcoming the resistance of oral cancers to various anticancer modalities will also be reviewed. The findings for targeting cells and potential therapeutic targets in clinical studies will also be reviewed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Prieto-Fernández L, Montoro-Jiménez I, de Luxan-Delgado B, Otero-Rosales M, Rodrigo JP, Calvo F, García-Pedrero JM, Álvarez-Teijeiro S. Dissecting the functions of cancer-associated fibroblasts to therapeutically target head and neck cancer microenvironment. Biomed Pharmacother 2023; 161:114502. [PMID: 37002578 DOI: 10.1016/j.biopha.2023.114502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Head and neck cancers (HNC) are a diverse group of aggressive malignancies with high morbidity and mortality, leading to almost half-million deaths annually worldwide. A better understanding of the molecular processes governing tumor formation and progression is crucial to improve current diagnostic and prognostic tools as well as to develop more personalized treatment strategies. Tumors are highly complex and heterogeneous structures in which growth and dissemination is not only governed by the cancer cells intrinsic mechanisms, but also by the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) emerge as predominant TME components and key players in the generation of permissive conditions that ultimately impact in tumor progression and metastatic dissemination. Although CAFs were initially considered a consequence of tumor development, it is now well established that they actively contribute to numerous cancer hallmarks i.e., tumor cell growth, migration and invasion, cancer cell stemness, angiogenesis, metabolic reprograming, inflammation, and immune system modulation. In this scenario, therapeutic strategies targeting CAF functions could potentially have a major impact in cancer therapeutics, providing avenues for new treatment options or for improving efficacy in established approaches. This review is focused on thoroughly dissecting existing evidences supporting the contribution of CAFs in HNC biology with an emphasis on current knowledge of the key molecules and pathways involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effectively interfere the tumor-stroma crosstalk for HNC patients benefit. involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effec- tively interfere the tumor-stroma crosstalk for HNC patients benefit.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz de Luxan-Delgado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Kang J, Su M, Xu Q, Wang C, Yuan X, Han Z. Tumour-stroma ratio is a valuable prognostic factor for oral tongue squamous cell carcinoma. Oral Dis 2023; 29:628-638. [PMID: 34455659 DOI: 10.1111/odi.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The objectives of this study were to estimate the prognostic value of the tumour-stroma ratio (TSR) and tumour budding (TB) in oral tongue squamous cell carcinoma (OTSCC) and to establish a reliable model to predict the outcome of OTSCC patients. METHODS A total of 103 patients surgically treated at our hospital were enrolled in this study. Chi-square tests, Kaplan-Meier analyses and Cox proportional hazards regression models were performed for statistical analysis. RESULTS Fifty-six patients were categorized as stroma-rich, and 47 patients were categorized as stroma-poor. Only pathological grade was associated with the TSR (p = 0.017). Kaplan-Meier analysis showed that stroma-rich, high-intensity budding and high risk groups were associated with worse prognosis. The Cox regression model showed that the TSR was an independent risk factor for OTSCC patients prognosis, and the high risk group was also related to poor prognosis (p < 0.05). TB was significantly associated with poor prognosis but was not an independent risk factor. CONCLUSIONS We found that patients in the stroma-rich group had a worse long-term prognosis. The TSR is an independent risk factor for OTSCC patients' outcome. In addition, a risk model that combined the TSR and TB proved to be valuable for predicting OTSCC patients' outcome.
Collapse
Affiliation(s)
- Jia Kang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ming Su
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Qiaoshi Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Chong Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Yuan
- Department of Pathology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Witschen PM, Elfstrum AK, Nelson AC, Schwertfeger KL. Characterization of Hyaluronan Localization in the Developing Mammary Gland and Mammary Tumors. J Mammary Gland Biol Neoplasia 2023; 28:1. [PMID: 36723776 PMCID: PMC9892096 DOI: 10.1007/s10911-023-09528-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
The extracellular matrix (ECM) is biochemically and biomechanically important for the structure and function of the mammary gland, which undergoes vast structural changes throughout pubertal and reproductive development. Although hyaluronan (HA) is a ubiquitous glycosaminoglycan (GAG) of the mammary gland ECM, extensive characterization of HA deposition in the mammary gland is lacking. Understanding physiologic HA metabolism is critical as this tightly controlled system is often hijacked in cancer. In the current studies, we characterize HA regulation throughout mammary gland development to better understand subsequent dysregulation of HA in mammary tumors. Using immunofluorescence (IF) imaging, we demonstrate that organized HA-rich septa exist in the mammary gland stroma throughout puberty, pregnancy, and involution. Furthermore, we find heterogeneous HA deposition within two murine models of breast cancer. Using cell specific isolation techniques, we characterize expression of genes associated with HA binding, synthesis, and degradation within EpCAM + epithelial cells, CD90.2 + fibroblasts, and F4/80 + macrophages isolated from mammary glands and tumors. Most notably, we identify elevated levels of the hyaluronidases Hyal1 and Hyal2 in tumor-association macrophages (TAMs), suggesting a role for TAM-mediated turnover of HA in the tumor microenvironment (TME). Gene expression is supported functionally by in vitro experiments in which macrophages treated with tumor-cell conditioned media exhibit increased hyaluronidase activity. These findings link TAMs to the direct degradation of HA within the TME of mammary tumors, which has negative implications for patient survival.
Collapse
Affiliation(s)
- Patrice M Witschen
- Comparative and Molecular Biosciences Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Alexis K Elfstrum
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
12
|
Liu Y, Li L, Wang L, Lu L, Li Y, Huang G, Song J. 'Two-faces' of hyaluronan, a dynamic barometer of disease progression in tumor microenvironment. Discov Oncol 2023; 14:11. [PMID: 36698043 PMCID: PMC9877274 DOI: 10.1007/s12672-023-00618-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Hyaluronan (HA) is a linear polysaccharide consisting of disaccharide units which are the D-glucuronic acid and N-acetyl-D-glucosamine. As the largest component of the extracellular matrix in microenvironment, HA polymers with different molecular weights vary in properties to molecular biology function. High molecular weight HA (HMW-HA) is mainly found in normal tissue or physiological condition, and exhibits lubrication and protection properties due to its good water retention and viscoelasticity. On the other hand, an increase in HA catabolism leads to the accumulation of low molecular weight HA (LMW-HA) under pathological circumstances such as inflammation, pre-cancerous and tumor microenvironment. LMW-HA acts as extracellular signals to enhance tumorigenic and metastatic phenotype, such as energy reprogramming, angiogenesis and extracellular matrix (ECM) remodeling. This review discusses the basic properties of this simplest carbohydrate molecule in ECM with enormous potential, and its regulatory role between tumorigenesis and microenvironmental homeostasis. The extensive discoveries of the mechanisms underlying the roles of HA in various physiological and pathological processes would provide more information for future research in the fields of biomimetic materials, pharmaceutical and clinical applications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001, Guangxi, People's Republic of China
| | - Li Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001, Guangxi, People's Republic of China.
| | - Li Wang
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001, Guangxi, People's Republic of China
| | - Lu Lu
- School of Medicine & Health, Guangxi Vocational & Technical Institute of Industry, Nanning, 530001, Guangxi, People's Republic of China
| | - Ying Li
- Department of Pharmacy, Guangxi Orthopaedics and Traumatology Hospital, Nanning, 530012, Guangxi, People's Republic of China
| | - Guolin Huang
- Department of Pharmacy, The First People's Hospital of Nanning, Nanning, 530022, Guangxi, People's Republic of China
| | - Jinjing Song
- Department of Pharmacy, The First People's Hospital of Nanning, Nanning, 530022, Guangxi, People's Republic of China
| |
Collapse
|
13
|
Owen JS, Clayton A, Pearson HB. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022; 13:67. [PMID: 36671452 PMCID: PMC9856041 DOI: 10.3390/biom13010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The continuous remodeling of the tumor microenvironment (TME) during prostate tumorigenesis is emerging as a critical event that facilitates cancer growth, progression and drug-resistance. Recent advances have identified extensive communication networks that enable tumor-stroma cross-talk, and emphasized the functional importance of diverse, heterogeneous stromal fibroblast populations during malignant growth. Cancer-associated fibroblasts (CAFs) are a vital component of the TME, which mediate key oncogenic events including angiogenesis, immunosuppression, metastatic progression and therapeutic resistance, thus presenting an attractive therapeutic target. Nevertheless, how fibroblast heterogeneity, recruitment, cell-of-origin and differential functions contribute to prostate cancer remains to be fully delineated. Developing our molecular understanding of these processes is fundamental to developing new therapies and biomarkers that can ultimately improve clinical outcomes. In this review, we explore the current challenges surrounding fibroblast identification, discuss new mechanistic insights into fibroblast functions during normal prostate tissue homeostasis and tumorigenesis, and illustrate the diverse nature of fibroblast recruitment and CAF generation. We also highlight the promise of CAF-targeted therapies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmine S. Owen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
14
|
Hyaluronan nanoscale clustering and Hyaluronan synthase 2 expression are linked to the invasion of child fibroblasts and infantile fibrosarcoma in vitro and in vivo. Sci Rep 2022; 12:19835. [PMID: 36400790 PMCID: PMC9674583 DOI: 10.1038/s41598-022-21952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022] Open
Abstract
Infantile fibrosarcoma is a rare childhood tumour that originates in the fibrous connective tissue of the long bones for which there is an urgent need to identify novel therapeutic targets. This study aims to clarify the role of the extracellular matrix component hyaluronan in the invasion of child fibroblasts and Infantile fibrosarcoma into the surrounding environment. Using nanoscale super-resolution STED (Stimulated emission depletion) microscopy followed by computational image analysis, we observed, for the first time, that invasive child fibroblasts showed increased nanoscale clustering of hyaluronan at the cell periphery, as compared to control cells. Hyaluronan was not observed within focal adhesions. Bioinformatic analyses further revealed that the increased nanoscale hyaluronan clustering was accompanied by increased gene expression of Hyaluronan synthase 2, reduced expression of Hyaluronidase 2 and CD44, and no change of Hyaluronan synthase 1 and Hyaluronidases 1, 3, 4 or 5. We further observed that the expression of the Hyaluronan synthase 1, 2 and 3, and the Hyaluronidase 3 and 5 genes was linked to reduced life expectancy of fibrosarcoma patients. The invasive front of infantile fibrosarcoma tumours further showed increased levels of hyaluronan, as compared to the tumour centre. Taken together, our findings are consistent with the possibility that while Hyaluronan synthase 2 increases the levels, the Hyaluronidases 3 and 5 reduce the weight of hyaluronan, resulting in the nanoscale clustering of hyaluronan at the leading edge of cells, cell invasion and the spread of Infantile fibrosarcoma.
Collapse
|
15
|
Kainulainen K, Takabe P, Heikkinen S, Aaltonen N, Motte CDL, Rauhala L, Durst FC, Oikari S, Hukkanen T, Rahunen E, Ikonen E, Hartikainen JM, Ketola K, Pasonen-Seppänen S. M1 macrophages induce pro-tumor inflammation in melanoma cells via TNFR–NF-κB signaling. J Invest Dermatol 2022; 142:3041-3051.e10. [DOI: 10.1016/j.jid.2022.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/23/2023]
|
16
|
Bête Noire of Chemotherapy and Targeted Therapy: CAF-Mediated Resistance. Cancers (Basel) 2022; 14:cancers14061519. [PMID: 35326670 PMCID: PMC8946545 DOI: 10.3390/cancers14061519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Tumor cells struggle to survive following treatment. The struggle ends in either of two ways. The drug combination used for the treatment blocks the proliferation of tumor cells and initiates apoptosis of cells, which is a win for the patient, or tumor cells resist the effect of the drug combination used for the treatment and continue to evade the effect of anti-tumor drugs, which is a bête noire of therapy. Cancer-associated fibroblasts are the most abundant non-transformed element of the microenvironment in solid tumors. Tumor cells play a direct role in establishing the cancer-associated fibroblasts’ population in its microenvironment. Since cancer-associated fibroblasts are activated by tumor cells, cancer-associated fibroblasts show unconditional servitude to tumor cells in their effort to resist treatment. Thus, cancer-associated fibroblasts, as the critical or indispensable component of resistance to the treatment, are one of the most logical targets within tumors that eventually progress despite therapy. We evaluate the participatory role of cancer-associated fibroblasts in the development of drug resistance in solid tumors. In the future, we will establish the specific mode of action of cancer-associated fibroblasts in solid tumors, paving the way for cancer-associated-fibroblast-inclusive personalized therapy. Abstract In tumor cells’ struggle for survival following therapy, they resist treatment. Resistance to therapy is the outcome of well-planned, highly efficient adaptive strategies initiated and utilized by these transformed tumor cells. Cancer cells undergo several reprogramming events towards adapting this opportunistic behavior, leading them to gain specific survival advantages. The strategy involves changes within the transformed tumors cells as well as in their neighboring non-transformed extra-tumoral support system, the tumor microenvironment (TME). Cancer-Associated Fibroblasts (CAFs) are one of the components of the TME that is used by tumor cells to achieve resistance to therapy. CAFs are diverse in origin and are the most abundant non-transformed element of the microenvironment in solid tumors. Cells of an established tumor initially play a direct role in the establishment of the CAF population for its own microenvironment. Like their origin, CAFs are also diverse in their functions in catering to the pro-tumor microenvironment. Once instituted, CAFs interact in unison with both tumor cells and all other components of the TME towards the progression of the disease and the worst outcome. One of the many functions of CAFs in influencing the outcome of the disease is their participation in the development of resistance to treatment. CAFs resist therapy in solid tumors. A tumor–CAF relationship is initiated by tumor cells to exploit host stroma in favor of tumor progression. CAFs in concert with tumor cells and other components of the TME are abettors of resistance to treatment. Thus, this liaison between CAFs and tumor cells is a bête noire of therapy. Here, we portray a comprehensive picture of the modes and functions of CAFs in conjunction with their role in orchestrating the development of resistance to different chemotherapies and targeted therapies in solid tumors. We investigate the various functions of CAFs in various solid tumors in light of their dialogue with tumor cells and the two components of the TME, the immune component, and the vascular component. Acknowledgment of the irrefutable role of CAFs in the development of treatment resistance will impact our future strategies and ability to design improved therapies inclusive of CAFs. Finally, we discuss the future implications of this understanding from a therapeutic standpoint and in light of currently ongoing and completed CAF-based NIH clinical trials.
Collapse
|
17
|
Kokoretsis D, Maniaki EK, Kyriakopoulou K, Koutsakis C, Piperigkou Z, Karamanos NK. Hyaluronan as "Agent Smith" in cancer extracellular matrix pathobiology: Regulatory roles in immune response, cancer progression and targeting. IUBMB Life 2022; 74:943-954. [PMID: 35261139 DOI: 10.1002/iub.2608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/16/2022]
Abstract
Extracellular matrix (ECM) critically regulates cancer cell behavior by governing cell signaling and properties. Hyaluronan (HA) acts as a structural and functional ECM component that mediates critical properties of cancer cells in a molecular size-dependent manner. HA fragments secreted by cancer-associated fibroblasts (CAFs) reveal the correlation of HA to CAF-mediated matrix remodeling, a key step for the initiation of metastasis. The main goal of this article is to highlight the vital functions of HA in cancer cell initiation and progression as well as HA-mediated paracrine interactions among cancer and stromal cells. Furthermore, the HA implication in mediating immune responses to cancer progression is also discussed. Novel data on the role of HA in the formation of pre-metastatic niche may contribute towards the improvement of current theranostic approaches that benefit cancer management.
Collapse
Affiliation(s)
- Dimitris Kokoretsis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Evangelia-Konstantina Maniaki
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
18
|
Estimation of serum and salivary matrix metalloproteinase levels in oral squamous cell carcinoma patients: a systematic review and meta-analysis. Postepy Dermatol Alergol 2021; 38:106-114. [PMID: 34408576 PMCID: PMC8362777 DOI: 10.5114/ada.2021.104285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction Matrix metalloproteinases (MMPs) play a pivotal role in the cancer progression, invasion, and angiogenesis. Aim This meta-analysis was conducted to evaluate the difference between oral squamous cell carcinoma (OSCC) patients and healthy controls in the serum and salivary MMP levels. Material and methods Four databases – Web of Science, PubMed, Scopus, and Cochrane Library – were searched up to March 2019. The pooled standard mean difference (SMD) and 95% confidence interval (CI) were obtained to explain the difference between the patients and controls in the salivary and serum MMP levels. Both Egger’s and Begg’s tests were considered as the significant publication bias. Results Thirteen case-control studies were included in the meta-analysis. Among the analyses of serum MMP levels, the serum MMP7 (SMD = 0.78; 95% CI: 0.15–1.41; p = 0.02) and MMP9 (SMD = 1.18; 95% CI: 0.51–1.84; p = 0.0005) levels were significantly higher in the OSCC patients than in the controls. In addition, the analyses of salivary MMP levels showed that the MMP1 (SMD = 0.46; 95% CI: 0.22–0.70; p = 0.0001) and MMP9 (SMD = 0.66; 95% CI: 0.19–1.12; p = 0.005) levels were significantly higher in the OSCC patients than in the controls. Conclusions The meta-analysis showed that the serum MMP7 and MPP9 levels as well as the salivary MMP1 and MPP9 levels were significantly higher in the OSCC patients than in the controls.
Collapse
|
19
|
Bienkowska KJ, Hanley CJ, Thomas GJ. Cancer-Associated Fibroblasts in Oral Cancer: A Current Perspective on Function and Potential for Therapeutic Targeting. FRONTIERS IN ORAL HEALTH 2021; 2:686337. [PMID: 35048030 PMCID: PMC8757746 DOI: 10.3389/froh.2021.686337] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The role of the tumour microenvironement (TME) in cancer progression and resistance to therapies is now widely recognized. The most prominent non-immune cell type in the microenvironment of oral cancer (OSCC) is cancer-associated fibroblasts (CAF). Although CAF are a poorly characterised and heterogenous cell population, those with an "activated" myofibroblastic phenotype have been shown to support OSCC progression, promoting growth, invasion and numerous other "hallmarks of malignancy." CAF also confer broad resistance to different types of therapy, including chemo/radiotherapy and EGFR inhibitors; consistent with this, CAF-rich OSCC are associated with poor prognosis. In recent years, much CAF research has focused on their immunological role in the tumour microenvironment, showing that CAF shield tumours from immune attack through multiple mechanisms, and particularly on their role in promoting resistance to anti-PD-1/PD-L1 checkpoint inhibitors, an exciting development for the treatment of recurrent/metastatic oral cancer, but which fails in most patients. This review summarises our current understanding of CAF subtypes and function in OSCC and discusses the potential for targeting these cells therapeutically.
Collapse
Affiliation(s)
- Kamila J. Bienkowska
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Gareth J. Thomas
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
- Cancer Research UK and National Institute for Health Research (NIHR) Southampton Experimental Cancer Medicine Centre, Southampton, United Kingdom
| |
Collapse
|
20
|
Zhang G, He Y, Liu Y, Du Y, Yang C, Gao F. Reduced hyaluronan cross-linking induces breast cancer malignancy in a CAF-dependent manner. Cell Death Dis 2021; 12:586. [PMID: 34099638 PMCID: PMC8184848 DOI: 10.1038/s41419-021-03875-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/29/2022]
Abstract
Hyaluronan (HA) cross-linking is a conformational state of HA, a covalent complex between HA and heavy chains (HCs) from inter-α-trypsin inhibitor (I-α-I) mediated by tumor necrosis factor-induced protein 6 (TSG6). Cross-linked HA has been identified as a protective factor in physiological and inflammatory conditions. However, the state of HA cross-linking in tumor microenvironment has not been fully elucidated. As a major constituent of the extracellular matrix (ECM), HA is mainly synthesized by cancer-associated fibroblasts (CAFs). Our study aimed to clarify the role of HA cross-linking in breast cancer malignancy. Compared to normal mammary gland tissues, cross-linked HA levels were significantly decreased in breast cancer and associated with tumor malignancy. When NFbs were activated into CAFs, the levels of cross-linked HA and TSG6 were both suppressed. Through upregulating TSG6, CAFs restored the high level of cross-linked HA and significantly inhibited breast cancer malignancy, whereas NFbs promoted the malignancy when the cross-linked HA level was reduced. Furthermore, the inhibitory role of HA cross-linking in tumor malignancy was directly verified using the synthesized HA-HC complex. Collectively, our study found that the deficiency of cross-linked HA induced breast cancer malignancy in a CAF-dependent manner, suggesting that recovering HA cross-linking may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China.
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, 200233, Shanghai, China.
| |
Collapse
|
21
|
Downregulation of Hyaluronic acid-CD44 signaling pathway in cervical cancer cell by natural polyphenols Plumbagin, Pongapin and Karanjin. Mol Cell Biochem 2021; 476:3701-3709. [PMID: 34081254 DOI: 10.1007/s11010-021-04195-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/27/2021] [Indexed: 12/08/2022]
Abstract
Hyaluronic acid (HA)-CD44 pathway showed association with several malignancies. The natural polyphenols Plumbagin, Pongapin and Karanjin showed anti-cancer activities in different tumors including cervical carcinoma. To understand their mechanism of anti-cancer activity, the effect of the compounds on HA-CD44 pathway was analyzed in cervical cancer cell line HeLa. The mRNA expression of three different isoforms of CD44 i.e., CD44s, CD44v3, and CD44v6, was differentially downregulated by the compounds. This was validated by Western blot and immunocytochemical analysis of CD44s.The low molecular weight HA (LMW-HA) showed growth promoting activity in HeLa at low concentration, whereas high molecular weight HA (HMW-HA) had no such effect. The compounds could preferentially downregulate the LMW-HA level in HeLa, as evident in the cell as well as in the cell-free conditioned medium. Concentration-dependent upregulation of HA synthase-2 (HAS2) was seen in the cell by the compounds, whereas differential downregulation of hyalurinidases 1-4 (HYAL 1-4), predominantly HYAL1, were seen. The compounds could also downregulate the downstream target of the pathway p-AKT (T-308) in concentration-dependent manner. Thus, the compounds could attenuate the HA-CD44 pathway in HeLa cell to restrict the tumor growth.
Collapse
|
22
|
Desbois M, Wang Y. Cancer-associated fibroblasts: Key players in shaping the tumor immune microenvironment. Immunol Rev 2021; 302:241-258. [PMID: 34075584 DOI: 10.1111/imr.12982] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapies have rapidly changed the therapeutic landscape for cancer. Nevertheless, most of the patients show innate or acquired resistance to these therapies. Studies conducted in recent years have highlighted an emerging role of cancer-associated fibroblasts (CAFs) in immune regulation that shapes the tumor immune microenvironment (TIME) and influences response to cancer immunotherapies. In this review, we outline recent advances in the understanding of phenotypic and functional heterogeneity of CAFs. We will focus on emerging roles of CAFs in shaping the TIME, especially under a framework of tumor immunity continuum, and discuss current and future CAF-targeting therapeutic strategies in particular in the context of optimizing the success of immunotherapies.
Collapse
Affiliation(s)
- Mélanie Desbois
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| | - Yulei Wang
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
23
|
Tavianatou AG, Piperigkou Z, Koutsakis C, Barbera C, Beninatto R, Franchi M, Karamanos NK. The action of hyaluronan in functional properties, morphology and expression of matrix effectors in mammary cancer cells depends on its molecular size. FEBS J 2021; 288:4291-4310. [PMID: 33512780 DOI: 10.1111/febs.15734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer constitutes a heterogeneous disease. The expression profiles of estrogen receptors (ERs), as well as the expression patterns of extracellular matrix (ECM) macromolecules, determine its development and progression. Hyaluronan (HA) is an ECM molecule that regulates breast cancer cells' properties in a molecular size-dependent way. Previous studies have shown that 200-kDa HA fragments modulate the functional properties, morphology, and expression of several matrix mediators of the highly metastatic ERα- /ERβ+ MDA-MB-231 cells. In order to evaluate the effects of HA fragments (< 10, 30 and 200-kDa) in ERβ-suppressed breast cancer cells, the shERβ MDA-MB-231 cells were used. These cells are less aggressive when compared with MDA-MB-231 cells. To this end, the functional properties, the morphology, and the expression of the molecules associated with breast cancer cells metastatic potential were studied. Notably, both cell proliferation and invasion were significantly reduced after treatment with 200-kDa HA. Moreover, as assessed by scanning electron microscopy, 200-kDa HA affected cellular morphology, and as assessed by qPCR, upregulated the epithelial marker Ε-cadherin. The expression profiles of ECM mediators, such as HAS2, CD44, and MMP7, were also altered. On the other hand, cellular migration and the expression levels of syndecan-4 (SDC-4) were not significantly affected in contrast to our observations regarding MDA-MB-231 cells. These novel data demonstrate that the molecular size of the HA determines its effects on ERβ-suppressed breast cancer cells and that 200-kDa HA exhibits antiproliferative effects on these cells. A deeper understanding of this mechanism may contribute to the development of therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- Anastasia-Gerasimoula Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | | | | | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
24
|
Berdiel-Acer M, Maia A, Hristova Z, Borgoni S, Vetter M, Burmester S, Becki C, Michels B, Abnaof K, Binenbaum I, Bethmann D, Chatziioannou A, Hasmann M, Thomssen C, Espinet E, Wiemann S. Stromal NRG1 in luminal breast cancer defines pro-fibrotic and migratory cancer-associated fibroblasts. Oncogene 2021; 40:2651-2666. [PMID: 33692466 PMCID: PMC8049869 DOI: 10.1038/s41388-021-01719-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
HER3 is highly expressed in luminal breast cancer subtypes. Its activation by NRG1 promotes activation of AKT and ERK1/2, contributing to tumour progression and therapy resistance. HER3-targeting agents that block this activation, are currently under phase 1/2 clinical studies, and although they have shown favorable tolerability, their activity as a single agent has proven to be limited. Here we show that phosphorylation and activation of HER3 in luminal breast cancer cells occurs in a paracrine manner and is mediated by NRG1 expressed by cancer-associated fibroblasts (CAFs). Moreover, we uncover a HER3-independent NRG1 signaling in CAFs that results in the induction of a strong migratory and pro-fibrotic phenotype, describing a subtype of CAFs with elevated expression of NRG1 and an associated transcriptomic profile that determines their functional properties. Finally, we identified Hyaluronan Synthase 2 (HAS2), a targetable molecule strongly correlated with NRG1, as an attractive player supporting NRG1 signaling in CAFs.
Collapse
Affiliation(s)
- Mireia Berdiel-Acer
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Maia
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Ruprecht-Karls-University, Heidelberg, Germany
| | - Zhivka Hristova
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Ruprecht-Karls-University, Heidelberg, Germany
| | - Simone Borgoni
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Ruprecht-Karls-University, Heidelberg, Germany
| | - Martina Vetter
- grid.9018.00000 0001 0679 2801Department of Gynecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Sara Burmester
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Corinna Becki
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Birgitta Michels
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Khalid Abnaof
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilona Binenbaum
- grid.7497.d0000 0004 0492 0584Division of Medical Informatics for Translational Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.11047.330000 0004 0576 5395Department of Biology, University of Patras, Patras, Greece ,grid.22459.380000 0001 2232 6894Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Daniel Bethmann
- grid.9018.00000 0001 0679 2801Institute of Pathology Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Aristotelis Chatziioannou
- grid.22459.380000 0001 2232 6894Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece ,e-NIOS PC, Kallithea-Athens, Greece
| | - Max Hasmann
- grid.424277.0Roche Diagnostics, Penzberg, Germany
| | - Christoph Thomssen
- grid.9018.00000 0001 0679 2801Department of Gynecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Elisa Espinet
- grid.7497.d0000 0004 0492 0584Divison of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.482664.aHeidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Stefan Wiemann
- grid.7497.d0000 0004 0492 0584Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Knops AM, South A, Rodeck U, Martinez-Outschoorn U, Harshyne LA, Johnson J, Luginbuhl AJ, Curry JM. Cancer-Associated Fibroblast Density, Prognostic Characteristics, and Recurrence in Head and Neck Squamous Cell Carcinoma: A Meta-Analysis. Front Oncol 2020; 10:565306. [PMID: 33330034 PMCID: PMC7729160 DOI: 10.3389/fonc.2020.565306] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction The progression and clinical course of head and neck squamous cell carcinoma (HNSCC) relies on complex interactions between cancer and stromal cells in the tumor microenvironment (TME). Among the most abundant of these stromal cells are cancer-associated fibroblasts (CAFs). While their contribution to tumor progression is widely acknowledged, and various CAF-targeted treatments are under development, the relationship between CAF density and the clinicopathologic course of HNSCC has not been clearly defined. Here we examine the published evidence investigating the relationship of cancer-associated fibroblasts to local recurrence and indicators of prognostic significance in HNSCC. Methods We conducted a meta-analysis of existing publications that compare the relationship between CAF density, local recurrence, and clinically significant pathologic criteria of disease development (T stage, nodal positivity, clinical stage, vascular invasion, perineural invasion, Ki67 expression, and differentiation). Thirteen studies met the selection criteria, providing a total study population of 926 patients. Forest plots and risk ratios were generated to illustrate overall relationships. Results Higher CAF density within the tumor microenvironment is associated with advanced T stage, nodal infiltration, clinical stage, vascular invasion, perineural invasion, Ki67 expression, and differentiation (p <0.05). High CAF density is also associated with increased rates of local recurrence (p <0.001). Conclusions Across multiple studies, increased CAF density is correlated with histopathological criteria of poor prognosis in HNSCC. These findings highlight that CAFs may play a pivotal role in HNSCC development and progression. Staining for CAFs may represent a valuable addition to current pathologic analysis and help to guide prognosis and treatment. Understanding the mechanisms by which CAFs reciprocally interact with cancer cells will be crucial for optimization of TME-focused treatment of HNSCC.
Collapse
Affiliation(s)
- Alexander M Knops
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew South
- Department of Dermatology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ulrich Rodeck
- Department of Dermatology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Larry A Harshyne
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer Johnson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Adam J Luginbuhl
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph M Curry
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Sapudom J, Müller CD, Nguyen KT, Martin S, Anderegg U, Pompe T. Matrix Remodeling and Hyaluronan Production by Myofibroblasts and Cancer-Associated Fibroblasts in 3D Collagen Matrices. Gels 2020; 6:E33. [PMID: 33008082 PMCID: PMC7709683 DOI: 10.3390/gels6040033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment is a key modulator in cancer progression and has become a novel target in cancer therapy. An increase in hyaluronan (HA) accumulation and metabolism can be found in advancing tumor progression and are often associated with aggressive malignancy, drug resistance and poor prognosis. Wound-healing related myofibroblasts or activated cancer-associated fibroblasts (CAF) are assumed to be the major sources of HA. Both cell types are capable to synthesize new matrix components as well as reorganize the extracellular matrix. However, to which extent myofibroblasts and CAF perform these actions are still unclear. In this work, we investigated the matrix remodeling and HA production potential in normal human dermal fibroblasts (NHFB) and CAF in the absence and presence of transforming growth factor beta -1 (TGF-β1), with TGF-β1 being a major factor of regulating fibroblast differentiation. Three-dimensional (3D) collagen matrix was utilized to mimic the extracellular matrix of the tumor microenvironment. We found that CAF appeared to response insensitively towards TGF-β1 in terms of cell proliferation and matrix remodeling when compared to NHFB. In regards of HA production, we found that both cell types were capable to produce matrix bound HA, rather than a soluble counterpart, in response to TGF-β1. However, activated CAF demonstrated higher HA production when compared to myofibroblasts. The average molecular weight of produced HA was found in the range of 480 kDa for both cells. By analyzing gene expression of HA metabolizing enzymes, namely hyaluronan synthase (HAS1-3) and hyaluronidase (HYAL1-3) isoforms, we found expression of specific isoforms in dependence of TGF-β1 present in both cells. In addition, HAS2 and HYAL1 are highly expressed in CAF, which might contribute to a higher production and degradation of HA in CAF matrix. Overall, our results suggested a distinct behavior of NHFB and CAF in 3D collagen matrices in the presence of TGF-β1 in terms of matrix remodeling and HA production pointing to a specific impact on tumor modulation.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, UAE
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Universität Leipzig, 04103 Leipzig, Germany; (K.-T.N.); (U.A.)
| | - Claudia Damaris Müller
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
| | - Khiet-Tam Nguyen
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Universität Leipzig, 04103 Leipzig, Germany; (K.-T.N.); (U.A.)
| | - Steve Martin
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Universität Leipzig, 04103 Leipzig, Germany; (K.-T.N.); (U.A.)
| | - Tilo Pompe
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, 04103 Leipzig, Germany; (C.D.M.); (S.M.); (T.P.)
| |
Collapse
|
27
|
Ramesh V, Brabletz T, Ceppi P. Targeting EMT in Cancer with Repurposed Metabolic Inhibitors. Trends Cancer 2020; 6:942-950. [PMID: 32680650 DOI: 10.1016/j.trecan.2020.06.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) determines the most lethal features of cancer, metastasis formation and chemoresistance, and therefore represents an attractive target in oncology. However, direct targeting of EMT effector molecules is, in most cases, pharmacologically challenging. Since emerging research has highlighted the distinct metabolic circuits involved in EMT, we propose the use of metabolism-specific inhibitors, FDA approved or under clinical trials, as a drug repurposing approach to target EMT in cancer. Metabolism-inhibiting drugs could be coupled with standard chemo- or immunotherapy to combat EMT-driven resistant and aggressive cancers.
Collapse
Affiliation(s)
- Vignesh Ramesh
- Interdisciplinary Centre for Clinical Research, University Hospital Erlangen, FAU-Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine-I and Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Paolo Ceppi
- Interdisciplinary Centre for Clinical Research, University Hospital Erlangen, FAU-Erlangen-Nuremberg, Erlangen, Germany; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
28
|
Mhaidly R, Mechta-Grigoriou F. Fibroblast heterogeneity in tumor micro-environment: Role in immunosuppression and new therapies. Semin Immunol 2020; 48:101417. [DOI: 10.1016/j.smim.2020.101417] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
|
29
|
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5:28. [PMID: 32296047 PMCID: PMC7067809 DOI: 10.1038/s41392-020-0134-x] [Citation(s) in RCA: 1086] [Impact Index Per Article: 271.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the hallmark of cancer that is responsible for the greatest number of cancer-related deaths. Yet, it remains poorly understood. The continuous evolution of cancer biology research and the emergence of new paradigms in the study of metastasis have revealed some of the molecular underpinnings of this dissemination process. The invading tumor cell, on its way to the target site, interacts with other proteins and cells. Recognition of these interactions improved the understanding of some of the biological principles of the metastatic cell that govern its mobility and plasticity. Communication with the tumor microenvironment allows invading cancer cells to overcome stromal challenges, settle, and colonize. These characteristics of cancer cells are driven by genetic and epigenetic modifications within the tumor cell itself and its microenvironment. Establishing the biological mechanisms of the metastatic process is crucial in finding open therapeutic windows for successful interventions. In this review, the authors explore the recent advancements in the field of metastasis and highlight the latest insights that contribute to shaping this hallmark of cancer.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- High-Impact Cancer Research Program, Harvard Medical School, Boston, MA, 02115, USA.
| | - Mohamad Y Fares
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hussein H Khachfe
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hamza A Salhab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
30
|
Sun DS, Won HS, Hong SA, Hong JH, Jo H, Lee H, Kim O, Lee MA, Ko YH. Prognostic implications of stromal hyaluronic acid protein expression in resected oropharyngeal and oral cavity cancers. Korean J Intern Med 2020; 35:408-420. [PMID: 31352717 PMCID: PMC7061007 DOI: 10.3904/kjim.2018.203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND/AIMS Hyaluronic acid (HA) regulates cell adhesion, migration and proliferation in various cancers. The clinical implications of HA in resected head and neck squamous cell carcinoma have not been elucidated. We investigated the clinical significance and prognostic value of the expression of tumoral and stromal HA and its related proteins in oropharyngeal and oral cavity cancer. METHODS Resected tissues from oropharyngeal or oral cavity cancer patients undergoing surgery were analysed in tissue microarrays divided into stroma and cancer panels. The expression levels of HA, HA synthases and hyaluronidases were also assessed by immunohistochemistry. RESULTS A total of 160 resected oropharyngeal or oral cavity cancer tissues were analysed. Stromal HA expression was observed more frequently in human papilloma virus (HPV)-negative tumors, but other clinicopathological characteristics did not differ. In patients with HPV-negative oral cavity cancers, high stromal HA expression was associated with significantly shorter recurrence-free survival and overall survival compared with low stromal HA expression. The expression of HA in both tumors and stroma was significantly correlated with poorer outcomes than other combinations in patients with HPV-negative oral cavity cancers. However, these prognostic roles of HA were not observed in patients with HPV-negative oropharyngeal cancers. In the HPV-stratified multivariate analysis, high stromal HA expression remained an independent indicator of poor prognosis in terms of recurrence-free survival. CONCLUSION High stromal HA and expression of HA in both tumors and stroma were correlated with poor prognosis in HPV-negative oral cavity cancer, but not in HPV-negative oropharyngeal cancers.
Collapse
Affiliation(s)
- Der Sheng Sun
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Sung Won
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soon Auck Hong
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Ji Hyung Hong
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Heejoon Jo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heejin Lee
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Okran Kim
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myung Ah Lee
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Correspondence to Yoon Ho Ko, M.D. Division of Oncology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271 Cheonbo-ro, Uijeongbu 11765, Korea Tel: +82-31-820-3985 Fax: +82-31-847-2719 E-mail:
| |
Collapse
|
31
|
Sapudom J, Nguyen KT, Martin S, Wippold T, Möller S, Schnabelrauch M, Anderegg U, Pompe T. Biomimetic tissue models reveal the role of hyaluronan in melanoma proliferation and invasion. Biomater Sci 2020; 8:1405-1417. [DOI: 10.1039/c9bm01636h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomimetic matrix models demonstrate the role of the size-dependent effect of hyaluronan in melanoma progression and reveal an alternative explanation forin vivofindings of hyaluronan dependent melanoma growth.
Collapse
Affiliation(s)
- Jiranuwat Sapudom
- Institute of Biochemistry
- Faculty of Life Sciences
- Universität Leipzig
- Leipzig 04103
- Germany
| | - Khiet-Tam Nguyen
- Department of Dermatology
- Venerology and Allergology
- Medical Faculty, Universität Leipzig
- Leipzig 04103
- Germany
| | - Steve Martin
- Institute of Biochemistry
- Faculty of Life Sciences
- Universität Leipzig
- Leipzig 04103
- Germany
| | - Tom Wippold
- Department of Dermatology
- Venerology and Allergology
- Medical Faculty, Universität Leipzig
- Leipzig 04103
- Germany
| | | | | | - Ulf Anderegg
- Department of Dermatology
- Venerology and Allergology
- Medical Faculty, Universität Leipzig
- Leipzig 04103
- Germany
| | - Tilo Pompe
- Institute of Biochemistry
- Faculty of Life Sciences
- Universität Leipzig
- Leipzig 04103
- Germany
| |
Collapse
|
32
|
Revisiting the hallmarks of cancer: The role of hyaluronan. Semin Cancer Biol 2019; 62:9-19. [PMID: 31319162 DOI: 10.1016/j.semcancer.2019.07.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 07/14/2019] [Indexed: 12/15/2022]
Abstract
Extracellular matrix (ECM) is a complex network of macromolecules such as proteoglycans (PGs), glycosaminoglycans (GAGs) and fibrous proteins present within all tissues and organs. The main role of ECM is not only to provide an essential mechanical scaffold for the cells but also to mediate crucial biochemical cues that are required for tissue homeostasis. Dysregulations in ECM deposition alter cell microenvironment, triggering the onset or the rapid progression of several diseases, including cancer. Hyaluronan (HA) is a ubiquitous component of ECM considered as one of the main players of cancer initiation and progression. This review discusses how HA participate in and regulate several aspects of tumorigenesis, with particular attention to the hallmarks of cancer proposed by Hanahan and Weinberg such as sustaining of the proliferative signaling, evasion of apoptosis, angiogenesis, activation of invasion and metastases, reprogramming of energy metabolism and evasion of immune response.
Collapse
|
33
|
Song JM, Im J, Nho RS, Han YH, Upadhyaya P, Kassie F. Hyaluronan-CD44/RHAMM interaction-dependent cell proliferation and survival in lung cancer cells. Mol Carcinog 2019; 58:321-333. [PMID: 30365189 PMCID: PMC11005861 DOI: 10.1002/mc.22930] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/16/2018] [Accepted: 10/23/2018] [Indexed: 04/12/2024]
Abstract
Although members of the hyaluronan (HA)-CD44/HA-mediated motility receptor (RHAMM) signaling pathway have been shown to be overexpressed in lung cancer, their role in lung tumorigenesis is unclear. In the present study, we first determined levels of HA and its receptors CD44 and RHAMM in human non-small cell lung cancer (NSCLC) cells and stromal cells as well as mouse lung tumors. Subsequently, we examined the role of HA-CD44/RHAMM signaling pathway in mediating the proliferation and survival of NSCLC cells and the cross-talk between NSCLC cells and normal human lung fibroblasts (NHLFs)/lung cancer-associated fibroblasts (LCAFs). The highest levels of HA and CD44 were observed in NHLFs/LCAFs followed by NSCLC cells, whereas THP-1 monocytes/macrophages showed negligible levels of both HA and CD44. Simultaneous silencing of HA synthase 2 (HAS2) and HAS3 or CD44 and RHAMM suppressed cell proliferation and survival as well as the EGFR/AKT/ERK signaling pathway. Exogenous HA partially rescued the defect in cell proliferation and survival. Moreover, conditioned media (CM) generated by NHLFs/LCAFs enhanced the proliferation of NSCLC cells in a HA-dependent manner as treatment of NHLFs and LCAFs with HAS2 siRNA, 4-methylumbelliferone, an inhibitor of HASs, LY2228820, an inhibitor of p38MAPK, or treatment of A549 cells with CD44 blocking antibody suppressed the effects of the CM. Upon incubation in CM generated by A549 cells or THP-1 macrophages, NHLFs/LCAFs secreted higher concentrations of HA. Overall, our findings indicate that targeting the HA-CD44/RHAMM signaling pathway could be a promising approach for the prevention and therapy of lung cancer.
Collapse
Affiliation(s)
- Jung Min Song
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jintaek Im
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Yong Hwan Han
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fekadu Kassie
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
34
|
Choudhry N, Sarmad S, Waheed NUA, Gondal AJ. Estimation of serum matrix metalloproteinases among patients of oral squamous cell carcinoma. Pak J Med Sci 2019; 35:252-256. [PMID: 30881433 PMCID: PMC6408633 DOI: 10.12669/pjms.35.1.68] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective To estimate the serum levels of matrix metalloproteinases in oral squamous cell carcinoma patients and in healthy subjects. Methods In this observational study, biopsy diagnosed oral squamous cell carcinoma patients (n= 38) were recruited from Mayo Hospital, Lahore during 2016 to 2017. Age and gender matched Controls (n= 38) were also included. Venous blood sample of each participant was drawn, serum separated and the levels of matrix metalloproteinases were measured by multiplex ELISA. Results Serum levels of MMP-1, -8, -10, -12 and -13 in OSCC patients showed statistically significant increase as compared to control group (p < 0.01). The MMP-12 predicted the presence of OSCC with highest AUC of 0.836 (95% CI [0.733 to 0.911]) for sensitivity and specificity of 80% and 78.9%, respectively for a cut-off value of 16.13 pg/ml. Conclusions MMP-12 has been found to have significant sensitivity and specificity to qualify as a diagnostic biomarker.
Collapse
Affiliation(s)
- Nakhshab Choudhry
- Prof. Dr. Nakhshab Choudhry, PhD. Department of Biochemistry, King Edward Medical University, Lahore, Pakistan
| | - Sana Sarmad
- Dr. Sana Sarmad, MPhil. Department of Biochemistry, Rashid Latif Medical College, Lahore, Pakistan
| | - Noor Ul Ain Waheed
- Dr. Noor ul Ain Waheed, MPhil. Department of Biochemistry, King Edward Medical University, Lahore, Pakistan
| | - Aamir Jamal Gondal
- Mr. Aamir Jamal Gondal, MPhil. Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| |
Collapse
|
35
|
Siddiqui S, Khalid A, Faizi N, Hassan J, Nehal N, Siddiqui A. Role of stromal myofibroblasts in the progression of oral lesions from dysplasia to invasive carcinoma. Indian J Med Paediatr Oncol 2019. [DOI: 10.4103/ijmpo.ijmpo_121_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
36
|
Tai AS, Peng CH, Peng SC, Hsieh WP. Decomposing the subclonal structure of tumors with two-way mixture models on copy number aberrations. PLoS One 2018; 13:e0206579. [PMID: 30540749 PMCID: PMC6291075 DOI: 10.1371/journal.pone.0206579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/16/2018] [Indexed: 12/02/2022] Open
Abstract
Multistage tumorigenesis is a dynamic process characterized by the accumulation of mutations. Thus, a tumor mass is composed of genetically divergent cell subclones. With the advancement of next-generation sequencing (NGS), mathematical models have been recently developed to decompose tumor subclonal architecture from a collective genome sequencing data. Most of the methods focused on single-nucleotide variants (SNVs). However, somatic copy number aberrations (CNAs) also play critical roles in carcinogenesis. Therefore, further modeling subclonal CNAs composition would hold the promise to improve the analysis of tumor heterogeneity and cancer evolution. To address this issue, we developed a two-way mixture Poisson model, named CloneDeMix for the deconvolution of read-depth information. It can infer the subclonal copy number, mutational cellular prevalence (MCP), subclone composition, and the order in which mutations occurred in the evolutionary hierarchy. The performance of CloneDeMix was systematically assessed in simulations. As a result, the accuracy of CNA inference was nearly 93% and the MCP was also accurately restored. Furthermore, we also demonstrated its applicability using head and neck cancer samples from TCGA. Our results inform about the extent of subclonal CNA diversity, and a group of candidate genes that probably initiate lymph node metastasis during tumor evolution was also discovered. Most importantly, these driver genes are located at 11q13.3 which is highly susceptible to copy number change in head and neck cancer genomes. This study successfully estimates subclonal CNAs and exhibit the evolutionary relationships of mutation events. By doing so, we can track tumor heterogeneity and identify crucial mutations during evolution process. Hence, it facilitates not only understanding the cancer development but finding potential therapeutic targets. Briefly, this framework has implications for improved modeling of tumor evolution and the importance of inclusion of subclonal CNAs.
Collapse
Affiliation(s)
- An-Shun Tai
- Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Chien-Hua Peng
- Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
- * E-mail: (WPH); (CHP)
| | - Shih-Chi Peng
- Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Wen-Ping Hsieh
- Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
- * E-mail: (WPH); (CHP)
| |
Collapse
|
37
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
38
|
Bierbaumer L, Schwarze UY, Gruber R, Neuhaus W. Cell culture models of oral mucosal barriers: A review with a focus on applications, culture conditions and barrier properties. Tissue Barriers 2018; 6:1479568. [PMID: 30252599 PMCID: PMC6389128 DOI: 10.1080/21688370.2018.1479568] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the function of oral mucosal epithelial barriers is essential for a plethora of research fields such as tumor biology, inflammation and infection diseases, microbiomics, pharmacology, drug delivery, dental and biomarker research. The barrier properties are comprised by a physical, a transport and a metabolic barrier, and all these barrier components play pivotal roles in the communication between saliva and blood. The sum of all epithelia of the oral cavity and salivary glands is defined as the blood-saliva barrier. The functionality of the barrier is regulated by its microenvironment and often altered during diseases. A huge array of cell culture models have been developed to mimic specific parts of the blood-saliva barrier, but no ultimate standard in vitro models have been established. This review provides a comprehensive overview about developed in vitro models of oral mucosal barriers, their applications, various cultivation protocols and corresponding barrier properties.
Collapse
Affiliation(s)
- Lisa Bierbaumer
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| | - Uwe Yacine Schwarze
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Reinhard Gruber
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria.,d Department of Periodontology , School of Dental Medicine, University of Bern , Bern , Switzerland
| | - Winfried Neuhaus
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| |
Collapse
|
39
|
Khalid A, Siddiqui S, Bordoloi B, Faizi N, Samadi F, Saeed N. An Immunohistochemical and Polarizing Microscopic Study of the Tumor Microenvironment in Varying Grades of Oral Squamous Cell Carcinoma. J Pathol Transl Med 2018; 52:314-322. [PMID: 30056635 PMCID: PMC6166015 DOI: 10.4132/jptm.2018.07.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/17/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Invasion of epithelial cells into the connective tissue brings about massive morphological and architectural changes in the underlying stroma. Myofibroblasts reorganize the stroma to facilitate the movement of tumor cells leading to metastasis. The aim of this study was to determine the number and pattern of distribution of myofibroblasts and the qualitative and quantitative change that they cause in the collagen present in the stroma in various grades of oral squamous cell carcinoma (OSCC). METHODS The study was divided into two groups with group I (test group, 65 cases) consisting of 29 cases of well-differentiated squamous cell carcinoma, 25 moderately differentiated SCC, and 11 poorly differentiated SCC, and group II (control group) consisting of 11 cases of normal mucosa. Sections from each sample were stained with anti-α-smooth muscle actin (α-SMA) antibodies, hematoxylin and eosin, and Picrosirius red. Several additional sections from each grade of OSCC were stained with Masson's trichrome to observe the changes in collagen. For the statistical analysis, Fisher's exact test, Tukey's post hoc honest significant difference test, ANOVA, and the chi-square test were used, and p < .05 was considered statistically significant. RESULTS As the tumor stage progressed, an increase in the intensity α-SMA expression was seen, and the network pattern dominated in more dedifferentiated carcinomas. The collagen fibers became thin, loosely packed, and haphazardly aligned with progressing cancer. Additionally, the mean area fraction decreased, and the fibers attained a greenish yellow hue and a weak birefringence when observed using polarizing light microscopy. CONCLUSIONS Myofibroblasts bring about numerous changes in collagen. As cancer progresses, there isincrease in pathological collagen,which enhances the movement of cells within the stroma.
Collapse
Affiliation(s)
- Aeman Khalid
- Department of Pathology, Jawahar Lal Nehru Medical College, Aligarh, India
| | - Safia Siddiqui
- Department of Oral Pathology and Microbiology, Sardar Patel Post Graduate Institute of Dental & Medical Sciences, Lucknow, India
| | - Bharadwaj Bordoloi
- Department of Oral Pathology and Microbiology, Sardar Patel Post Graduate Institute of Dental & Medical Sciences, Lucknow, India
| | - Nafis Faizi
- Department of Community Medicine, Jawahar Lal Nehru Medical College, AMU, Aligarh, India
| | - Fahad Samadi
- Department of Oral Pathology and Microbiology, King George Medical University, Lucknow, India
| | - Noora Saeed
- Department of Pathology, Jawahar Lal Nehru Medical College, Aligarh, India
| |
Collapse
|
40
|
Fallacara A, Baldini E, Manfredini S, Vertuani S. Hyaluronic Acid in the Third Millennium. Polymers (Basel) 2018; 10:E701. [PMID: 30960626 PMCID: PMC6403654 DOI: 10.3390/polym10070701] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Since its first isolation in 1934, hyaluronic acid (HA) has been studied across a variety of research areas. This unbranched glycosaminoglycan consisting of repeating disaccharide units of N-acetyl-d-glucosamine and d-glucuronic acid is almost ubiquitous in humans and in other vertebrates. HA is involved in many key processes, including cell signaling, wound reparation, tissue regeneration, morphogenesis, matrix organization and pathobiology, and has unique physico-chemical properties, such as biocompatibility, biodegradability, mucoadhesivity, hygroscopicity and viscoelasticity. For these reasons, exogenous HA has been investigated as a drug delivery system and treatment in cancer, ophthalmology, arthrology, pneumology, rhinology, urology, aesthetic medicine and cosmetics. To improve and customize its properties and applications, HA can be subjected to chemical modifications: conjugation and crosslinking. The present review gives an overview regarding HA, describing its history, physico-chemical, structural and hydrodynamic properties and biology (occurrence, biosynthesis (by hyaluronan synthases), degradation (by hyaluronidases and oxidative stress), roles, mechanisms of action and receptors). Furthermore, both conventional and recently emerging methods developed for the industrial production of HA and its chemical derivatization are presented. Finally, the medical, pharmaceutical and cosmetic applications of HA and its derivatives are reviewed, reporting examples of HA-based products that currently are on the market or are undergoing further investigations.
Collapse
Affiliation(s)
- Arianna Fallacara
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
41
|
Buduru S, Zimta AA, Ciocan C, Braicu C, Dudea D, Irimie AI, Berindan-Neagoe I. RNA interference: new mechanistic and biochemical insights with application in oral cancer therapy. Int J Nanomedicine 2018; 13:3397-3409. [PMID: 29922059 PMCID: PMC5997132 DOI: 10.2147/ijn.s167383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, the incidence of oral cancer has gradually increased, due to the negative influence of environmental factors and also abnormalities within the genome. The main issues in oral cancer treatment consist in surpassing resistance and recurrence. However, continuous discovery of altered signaling pathways in these tumors provides valuable information for the identification of novel gene candidates targeted in personalized therapy. RNA interference (RNAi) is a natural mechanism that involves small interfering RNA (siRNA); this can be exploited in biomedical research by using natural or synthetic constructs for activation of the mechanism. Synthetic siRNA transcripts were developed as a versatile class of molecular tools that have a diverse range of programmable roles, being involved in the regulation of several biological processes, thereby providing the perspective of an alternative option to classical treatment. In this review, we summarize the latest information related to the application of siRNA in oral malignancy together with molecular aspects of the technology and also the perspective upon the delivery system. Also, the emergence of newer technologies such as clustered regularly interspaced short palindromic repeats/Cas9 or transcription activator-like effector nucleases in comparison with the RNAi approach is discussed in this paper.
Collapse
Affiliation(s)
- Smaranda Buduru
- Department of Prosthetics and Dental Materials, Faculty of Dental Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- MEDFUTURE – Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Ciocan
- MEDFUTURE – Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Dudea
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutic, Aesthetic, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Iulia Irimie
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutic, Aesthetic, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE – Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
| |
Collapse
|
42
|
Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K. Fibroblasts in the Tumor Microenvironment: Shield or Spear? Int J Mol Sci 2018; 19:ijms19051532. [PMID: 29883428 PMCID: PMC5983719 DOI: 10.3390/ijms19051532] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Tumorigenesis is a complex process involving dynamic interactions between malignant cells and their surrounding stroma, including both the cellular and acellular components. Within the stroma, fibroblasts represent not only a predominant cell type, but also a major source of the acellular tissue microenvironment comprising the extracellular matrix (ECM) and soluble factors. Normal fibroblasts can exert diverse suppressive functions against cancer initiating and metastatic cells via direct cell-cell contact, paracrine signaling by soluble factors, and ECM integrity. The loss of such suppressive functions is an inherent step in tumor progression. A tumor cell-induced switch of normal fibroblasts into cancer-associated fibroblasts (CAFs), in turn, triggers a range of pro-tumorigenic signals accompanied by distraction of the normal tissue architecture, thus creating an optimal niche for cancer cells to grow extensively. To further support tumor progression and metastasis, CAFs secrete factors such as ECM remodeling enzymes that further modify the tumor microenvironment in combination with the altered adhesive forces and cell-cell interactions. These paradoxical tumor suppressive and promoting actions of fibroblasts are the focus of this review, highlighting the heterogenic molecular properties of both normal and cancer-associated fibroblasts, as well as their main mechanisms of action, including the emerging impact on immunomodulation and different therapy responses.
Collapse
Affiliation(s)
- Twana Alkasalias
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden.
- Department of Biology, College of Science, Salahaddin University, Irbil 44002, Kurdistan-Iraq.
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden.
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden.
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177 Stockholm, Sweden.
- Research Programs Unit, Genome-Scale Biology and Medicum, University of Helsinki, and Helsinki University Hospital, P.O. Box 63, FI-00014 Helsinki, Finland.
| |
Collapse
|
43
|
Abstract
The worldwide annual incidence of oral squamous cell carcinoma (OSCC) is over 300,000 cases with a mortality rate of 48%. This cancer type accounts for 90% of all oral cancers, with the highest incidence in men over 50 years of age. A significantly increased risk of developing OSCC exists among smokers and people who consume alcohol daily. OSCC is an aggressive cancer that metastasizes rapidly. Despite the development of new therapies in the treatment of OSCC, no significant increase in 5-year survival has been recorded in the past decades. The latest research suggests focus should be put on examining tumor stroma activation within OSCC, as the stroma may contain cells that can produce signal molecules and a microenvironment crucial for the development of metastases. The aim of this review is to provide an insight into the factors that activate OSCC stroma and hence faciliate neoplastic progression. It is based on the currently available data on the role and interaction between metalloproteinases, cytokines, growth factors, hypoxia factor and extracellular adhesion proteins in the stroma of OSCC and neoplastic cells. Their interplay is additionally presented using the Systems Biology Graphical Notation in order to sublimate the collected knowledge and enable the more efficient recognition of possible new biomarkers in the diagnostics and follow-up of OSCC or in finding new therapeutic targets.
Collapse
|
44
|
Lopes-Coelho F, André S, Félix A, Serpa J. Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol 2018; 462:93-106. [PMID: 28119133 DOI: 10.1016/j.mce.2017.01.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022]
Abstract
The cellular components of microenvironment are partners of cancer cells, sharing soluble factors and organic molecules to accomplish tumor energy and biomass demands. We tested the role of fibroblasts in fatty acids metabolism in breast cancer, addressing fatty acid synthase (FASN) expression and activity, the expression of lipids chaperons (FABPs) and transporters (FATPs) and lipids cellular content. We showed that the amount of lipids increased in cancer cells exposed to fibroblasts conditioned media, showing that lipids transfer is crucial in this metabolic cross-talk. Accordingly, it was seen in those cancer cells a concomitant decrease in the expression of FABP2 and FABP3 and an increase in FATP1 expression, whose function is independent of FABPs. The in vivo experiment corroborates the role of CAFs in tumor growth. Our study is one more step toward the understanding of metabolic dynamics between cancer cells and CAFs, disclosing FATP1 as a putative target to disturb the transfer of lipids between CAFs and breast cancer cells.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Unidade de Investigação Em Patobiologia Molecular Do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Saudade André
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Pathology Department, IPOLFG, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Ana Félix
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Pathology Department, IPOLFG, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Jacinta Serpa
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Unidade de Investigação Em Patobiologia Molecular Do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal.
| |
Collapse
|
45
|
Tian R, Li X, Gao Y, Li Y, Yang P, Wang K. Identification and validation of the role of matrix metalloproteinase-1 in cervical cancer. Int J Oncol 2018; 52:1198-1208. [PMID: 29436615 PMCID: PMC5843389 DOI: 10.3892/ijo.2018.4267] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Lymph node (LN) metastasis at an early stage of cervical cancer is often an indicator of poor prognosis and is critical for subsequent adjuvant therapy. The current study aimed to identify aberrant gene signatures and biomarkers of metastasis for patients with cervical cancer. RNA-sequencing data of 132 LN negative (N0) and 60 LN positive (N1) cervical cancer samples obtained from The Cancer Genome Atlas database were analyzed. Differentially expressed genes were identified using R packages 'edgeR' and 'limma'. Kyoto Encyclopedia of Genes and Genomes pathway enrichment and Gene Set Enrichment Analysis (GSEA) were conducted. The GSE9750 dataset obtained from Gene Expression Omnibus was analyzed to identify genes that are persistently aberrantly expressed during the development of cervical cancer. The peroxisome proliferator-activated receptor (PPAR) signaling pathway was screened out to be significant during LN metastasis. In the two analyzed datasets, 11 genes were aberrantly expressed, while matrix metalloproteinase 1 (MMP1) was the only gene that was persistently overexpressed. Cell viability, wound healing and Transwell assays were performed to evaluate the effects of MMP1 knockdown in cervical cancer cell lines, and the expression of epithelial mesenchymal transition (EMT) markers was detected. Finally, the clinical significance of MMP1 was investigated. The current study identified that MMP1 was overexpressed and the PPAR signaling pathway was associated LN metastasis in patients with cervical cancer. Following knockdown of MMP1, the proliferation, migration and invasion of cervical cancer cell lines were weakened, the expression of epithelial marker E-cadherin was increased, and the expression of metastasis-associated gene vimentin was decreased. MMP1 was an independent prognostic factor for cervical cancer. The current study indicated that MMP1 has a key role in the regulation of cervical tumor growth and LN metastasis via EMT to a certain extent. The results suggest that MMP1 may be a biomarker for LN metastasis of cervical cancer, and further validation should be performed.
Collapse
Affiliation(s)
- Run Tian
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaofang Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yan'e Gao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yue Li
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Pei Yang
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Kunzheng Wang
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
46
|
Dalla Pozza E, Forciniti S, Palmieri M, Dando I. Secreted molecules inducing epithelial-to-mesenchymal transition in cancer development. Semin Cell Dev Biol 2017; 78:62-72. [PMID: 28673679 DOI: 10.1016/j.semcdb.2017.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a biologic process that allows a polarized epithelial cell to undergo multiple biochemical changes that enable it to assume a mesenchymal cell phenotype. EMT is involved in embryo development, wound healing, tissue regeneration, organ fibrosis and has also been proposed as the critical mechanism for the acquisition of malignant phenotypes by epithelial cancer cells. These cells have been shown to acquire a mesenchymal phenotype when localized at the invasive front of primary tumours increasing aggressiveness, invasiveness, metastatic potential and resistance to chemotherapy. There is now increasing evidence demonstrating that a crucial role in the development of this process is played by factors secreted by cells of the tumour microenvironment or by the tumour cells themselves. This review summarises the current knowledge of EMT induction in cancer by paracrine or autocrine mechanisms, by exosomes or free proteins and miRNAs.
Collapse
Affiliation(s)
- Elisa Dalla Pozza
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Stefania Forciniti
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Marta Palmieri
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| |
Collapse
|