1
|
Chen H, Fang Y, Dai S, Jiang K, Shen L, Zhao J, Huang K, Zhou X, Ding K. Characterization and proteomic analysis of plasma-derived small extracellular vesicles in locally advanced rectal cancer patients. Cell Oncol (Dordr) 2024; 47:1995-2009. [PMID: 39162991 DOI: 10.1007/s13402-024-00983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Neoadjuvant chemoradiotherapy (nCRT) stands as a pivotal therapeutic approach for locally advanced rectal cancer (LARC), yet the absence of a reliable biomarker to forecast its efficacy remains a challenge. Thus, this study aimed to assess whether the proteomic compositions of small extracellular vesicles (sEVs) might offer predictive insights into nCRT response among patients with LARC, while also delving into the proteomic alterations within sEVs post nCRT. METHODS Plasma samples were obtained from LARC patients both pre- and post-nCRT. Plasma-derived sEVs were isolated utilizing the TIO2-based method, followed by LC-MS/MS-based proteomic analysis. Subsequently, pathway enrichment analysis was performed to the Differentially Expressed Proteins (DEPs). Additionally, ROC curves were generated to evaluate the predictive potential of sEV proteins in determining nCRT response. Public databases were interrogated to identify sEV protein-associated genes that are correlated with the response to nCRT in LARC. RESULTS A total of 16 patients were enrolled. Among them, 8 patients achieved a pathological complete response (good responders, GR), while the remaining 8 did not achieve a complete response (poor responders, PR). Our analysis of pretreatment plasma-derived sEVs revealed 67 significantly up-regulated DEPs and 9 significantly down-regulated DEPs. Notably, PROC (AUC: 0.922), F7 (AUC: 0.953) and AZU1 (AUC: 0.906) demonstrated high AUC values and significant differences (P value < 0.05) in discriminating between GR and PR patients. Furthermore, a signature consisting of 5 sEV protein-associated genes (S100A6, ENO1, MIF, PRDX6 and MYL6) was capable of predicting the response to nCRT, yielding an AUC of 0.621(95% CI: 0.454-0.788). Besides, this 5-sEV protein-associated gene signature enabled stratification of patients into low- and high-risk group, with the low-risk group demonstrating a longer overall survival in the testing set (P = 0.048). Moreover, our investigation identified 11 significantly up-regulated DEPs and 31 significantly down-regulated DEPs when comparing pre- and post-nCRT proteomic profiles. GO analysis unveiled enrichment in the regulation of phospholipase A2 activity. CONCLUSIONS Differential expression of sEV proteins distinguishes between GR and PR patients and holds promise as predictive markers for nCRT response and prognosis in patients with LARC. Furthermore, our findings highlight substantial alterations in sEV protein composition following nCRT.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China.
- Anhui Hospital of the Second Affiliated Hospital, Zhejiang University School of Medicine, Bengbu, 233000, China.
| | - Yimin Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siqi Dai
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Jiang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Shen
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Zhao
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Anhui Hospital of the Second Affiliated Hospital, Zhejiang University School of Medicine, Bengbu, 233000, China
| | - Kanghua Huang
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhou
- Department of Radiation Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for CANCER, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Colorectal Surgery (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Sakano Y, Matoba D, Noda T, Kobayashi S, Yamada D, Tomimaru Y, Takahashi H, Uemura M, Doki Y, Eguchi H. Clinical significance of ribosomal protein S15 expression in patients with colorectal cancer liver metastases. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2024; 31:611-624. [PMID: 38838053 PMCID: PMC11503462 DOI: 10.1002/jhbp.12012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Liver metastasis is the most frequently observed distant metastasis of colorectal cancer, and the residual liver recurrence rate after hepatic resection is still high. To explore the mechanism of liver metastasis to discover potential new treatments, we assessed the relationship between the expression of differentially expressed genes (DEGs) and prognosis in patients with colorectal cancer liver metastasis (CRLM). METHODS The gene expression dataset was extracted from The Cancer Genome Atlas and the Gene Expression Omnibus. Significance analysis of DEGs between tumor and normal samples of colorectum, liver, and lung was conducted. A total of 80 CRLM patients were studied to assess the expression of RPS15, characteristics, and outcomes. We examined the relationships of RPS15 expression to cell viability and apoptosis in vitro and vivo. RESULTS Significance analysis identified 33 DEGs. In our cohorts, the overall survival rates were significantly lower in the high-RPS15-expression group, and high expression of RPS15 was an independent and unfavorable prognostic factor in recurrence-free survival and overall survival. Knockdown of RPS15 expression reduced the proliferative capacity of colorectal cancer cells and increased BAX-induced apoptotic cell death. CONCLUSIONS RPS15 expression is an independent prognostic factor for CRLM patients and might be a novel therapeutic target for CRLM.
Collapse
Affiliation(s)
- Yoshihiro Sakano
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Daijiro Matoba
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of MedicineOsaka UniversityOsakaJapan
| |
Collapse
|
3
|
Kong WS, Li JJ, Deng YQ, Ju HQ, Xu RH. Immunomodulatory molecules in colorectal cancer liver metastasis. Cancer Lett 2024; 598:217113. [PMID: 39009068 DOI: 10.1016/j.canlet.2024.217113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Colorectal cancer (CRC) ranks as the third most common cancer and the second leading cause of cancer-related deaths. According to clinical diagnosis and treatment, liver metastasis occurs in approximately 50 % of CRC patients, indicating a poor prognosis. The unique immune tolerance of the liver fosters an immunosuppressive tumor microenvironment (TME). In the context of tumors, numerous membrane and secreted proteins have been linked to tumor immune evasion as immunomodulatory molecules, but much remains unknown about how these proteins contribute to immune evasion in colorectal cancer liver metastasis (CRLM). This article reviews recently discovered membrane and secreted proteins with roles as both immunostimulatory and immunosuppressive molecules within the TME that influence immune evasion in CRC primary and metastatic lesions, particularly their mechanisms in promoting CRLM. This article also addresses screening strategies for identifying proteins involved in immune evasion in CRLM and provides insights into potential protein targets for treating CRLM.
Collapse
Affiliation(s)
- Wei-Shuai Kong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China
| | - Jia-Jun Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yu-Qing Deng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China
| | - Huai-Qiang Ju
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Critical Overview of Hepatic Factors That Link Non-Alcoholic Fatty Liver Disease and Acute Kidney Injury: Physiology and Therapeutic Implications. Int J Mol Sci 2022; 23:ijms232012464. [PMID: 36293317 PMCID: PMC9604121 DOI: 10.3390/ijms232012464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is defined as a combination of a group of progressive diseases, presenting different structural features of the liver at different stages of the disease. According to epidemiological surveys, as living standards improve, the global prevalence of NAFLD increases. Acute kidney injury (AKI) is a class of clinical conditions characterized by a rapid decline in kidney function. NAFLD and AKI, as major public health diseases with high prevalence and mortality, respectively, worldwide, place a heavy burden on societal healthcare systems. Clinical observations of patients with NAFLD with AKI suggest a possible association between the two diseases. However, little is known about the pathogenic mechanisms linking NAFLD and AKI, and the combination of the diseases is poorly treated. Previous studies have revealed that liver-derived factors are transported to distal organs via circulation, such as the kidney, where they elicit specific effects. Of note, while NAFLD affects the expression of many hepatic factors, studies on the mechanisms whereby NAFLD mediates the generation of hepatic factors that lead to AKI are lacking. Considering the unique positioning of hepatic factors in coordinating systemic energy metabolism and maintaining energy homeostasis, we hypothesize that the effects of NAFLD are not only limited to the structural and functional changes in the liver but may also involve the entire body via the hepatic factors, e.g., playing an important role in the development of AKI. This raises the question of whether analogs of beneficial hepatic factors or inhibitors of detrimental hepatic factors could be used as a treatment for NAFLD-mediated and hepatic factor-driven AKI or other metabolic disorders. Accordingly, in this review, we describe the systemic effects of several types of hepatic factors, with a particular focus on the possible link between hepatic factors whose expression is altered under NAFLD and AKI. We also summarize the role of some key hepatic factors in metabolic control mechanisms and discuss their possible use as a preventive treatment for the progression of metabolic diseases.
Collapse
|
5
|
ANGPTL1, Foxo3a-Sox2, and colorectal cancer metastasis. Clin Sci (Lond) 2022; 136:1367-1370. [PMID: 36156125 PMCID: PMC9527825 DOI: 10.1042/cs20220394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022]
Abstract
In the present commentary, we discuss new observations stating that angiopoietin-like protein 1 (ANGPTL1) attenuates cancer metastasis and stemness through Forkhead box O-3a (Foxo3a)–SRY-related HMG-box-2 (Sox2) axis in colorectal cancer (Clin. Sci. (2022) 136, 657–673, https://doi.org/10.1042/CS20220043). ANGPTL1 has been reported to play a critical role in cancer progression and metastasis. However, the underlying mechanisms remain controversial. Here, we integrate the possible mechanisms for ANGPTL1 inhibiting colorectal cancer liver metastasis and discuss the regulation of ANGPTL1 on the Foxo3a–Sox2 pathway. Although ANGPTL1 showed multifunctional potential, there is still a long way to go for ANGPTL1 to be an effective treatment strategy in the clinic.
Collapse
|
6
|
Chen B, Wang T, Zhang J, Zhang S, Shang X. Identification of Colon Cancer-Related RNAs Based on Heterogeneous Networks and Random Walk. BIOLOGY 2022; 11:1003. [PMID: 36101384 PMCID: PMC9312154 DOI: 10.3390/biology11071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Colon cancer is considered as a complex disease that consists of metastatic seeding in early stages. Such disease is not simply caused by the action of a single RNA, but is associated with disorders of many kinds of RNAs and their regulation relationships. Hence, it is of great significance to study the complex regulatory roles among mRNAs, miRNAs and lncRNAs for further understanding the pathogenic mechanism of colon cancer. In this study, we constructed a heterogeneous network consisting of differentially expressed mRNAs, miRNAs and lncRNAs. This contains three kinds of vertices and six types of edges. All RNAs were re-divided into three categories, which were "related", "irrelevant" and "unlabeled". They were processed by dynamic excitation restart random walk (RW-DIR) for identifying colon cancer-related RNAs. Ten RNAs were finally obtained related to colon cancer, which were hsa-miR-2682-5p, hsa-miR-1277-3p, ANGPTL1, SLC22A18AS, FENDRR, PHLPP2, hsa-miR-302a-5p, APCDD1, MEX3A and hsa-miR-509-3-5p. Numerical experiments have indicated that the proposed network construction framework and the following RW-DIR algorithm are effective for identifying colon cancer-related RNAs, and this kind of analysis framework can also be easily extended to other diseases, effectively narrowing the scope of biological experimental research.
Collapse
Affiliation(s)
- Bolin Chen
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; (B.C.); (T.W.); (J.Z.)
| | - Teng Wang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; (B.C.); (T.W.); (J.Z.)
| | - Jinlei Zhang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; (B.C.); (T.W.); (J.Z.)
| | - Shengli Zhang
- School of Information Technology, Minzu Normal University of Xingyi, Xingyi 562400, China;
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China; (B.C.); (T.W.); (J.Z.)
| |
Collapse
|
7
|
The Role of ANGPTL Gene Family Members in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:1844352. [PMID: 35692877 PMCID: PMC9177307 DOI: 10.1155/2022/1844352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is highly aggressive with a poor prognosis and survival rate. Certain ANGPTL members have been implicated in tumor progression. However, the relevance of the ANGPTL gene family to HCC remains poorly understood. In this study, we explored the role of ANGPTLs in the prognosis of HCC. Methods From the CCLE database, we studied the expression of ANGPTLs in a range of cancer cell lines. The UCSC, HCCDB, and Human Protein Atlas databases were used to analyze the differences in mRNA and protein expression of ANGPTLs in HCC tissues. Additionally, the correlation between ANGPTL mRNA and methylation levels and clinicopathological features were assessed in the TCGA database. The correlation between ANGPTL mRNA and overall survival was determined by the Kaplan-Meier plotter. cBioPortal database was used to analyze ANGPTL genomic alterations. Genes associated with ANGPTLs were determined by enrichment with KEGG. Moreover, the differentially expressed genes of ANGPTLs were analyzed by the LinkedOmics database, and the KEGG pathway and miRNA targets of ANGPTLs were also enriched. Results There was a significant correlation between the ANGPTL members (excluding ANGPTL2) and the prognosis of HCC patients according to the Kaplan-Meier plotter analysis (p < 0.05). ANGPTL1 was the gene with the highest mutation frequency. ANGPTLs are involved in certain pathways that may influence the development of HCC. Conclusion In summary, the expression of some members of ANGPTLs was significantly correlated with HCC prognosis, suggesting that the ANGPTL gene family members may be promising molecular markers for HCC treatment and prognosis.
Collapse
|
8
|
ANGPTL1 attenuates cancer migration, invasion, and stemness through regulating FOXO3a-mediated SOX2 expression in colorectal cancer. Clin Sci (Lond) 2022; 136:657-673. [PMID: 35475476 PMCID: PMC9093149 DOI: 10.1042/cs20220043] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022]
Abstract
Angiopoietin-like protein 1 (ANGPTL1) is a member of the ANGPTL family that suppresses angiogenesis, cancer invasion, metastasis, and cancer progression. ANGPTL1 is down-regulated in various cancers including colorectal cancer (CRC); however, the effects and mechanisms of ANGPTL1 on liver metastasis and cancer stemness in CRC are poorly understood. In the present study, we identified that ANGPTL1 was down-regulated in CRC and inversely correlated with metastasis and poor clinical outcomes in CRC patients form the ONCOMINE database and Human Tissue Microarray staining. ANGPTL1 significantly suppressed the migration/invasion abilities, the expression of cancer stem cell (CSC) markers, and sphere formation by enhancing FOXO3a expression, which contributed to the reduction of stem cell transcription factor SOX2 expression in CRC cells. Consistently, overexpression of ANGPTL1 reduced liver metastasis, tumor growth, and tumorigenicity in tumor-bearing mice. ANGPTL1 expression was negatively correlated with CSC markers expression and poor clinical outcomes in CRC patients. Taken together, these findings demonstrate that the molecular mechanisms of ANGPTL1 in colorectal cancer stem cell progression may provide a novel therapeutic strategy for CRC.
Collapse
|
9
|
Yang H, Zhang M, Mao XY, Chang H, Perez-Losada J, Mao JH. Distinct Clinical Impact and Biological Function of Angiopoietin and Angiopoietin-like Proteins in Human Breast Cancer. Cells 2021; 10:cells10102590. [PMID: 34685578 PMCID: PMC8534176 DOI: 10.3390/cells10102590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/16/2022] Open
Abstract
Secreted angiopoietin/angiopoietin-like (ANGPT/ANGPTL) proteins are involved in many biological processes. However, the role of these proteins in human breast cancers (BCs) remains largely unclear. Here, we conducted integrated omics analyses to evaluate the clinical impact of ANGPT/ANGPTL proteins and to elucidate their biological functions. In BCs, we identified rare mutations in ANGPT/ANGPTL genes, frequent gains of ANGPT1, ANGPT4, and ANGPTL1, and frequent losses of ANGPT2, ANGPTL5, and ANGPTL7, but observed that ANGPTL1, 2, and 4 were robustly downregulated in multiple datasets. The expression levels of ANGPTL1, 5, and 8 were positively correlated with overall survival (OS), while the expression levels of ANGPTL4 were negatively correlated with OS. Additionally, the expression levels of ANGPTL1 and 7 were positively correlated with distant metastasis-free survival (DMFS), while the expression levels of ANGPT2 and ANGPTL4 were negatively correlated with DMFS. The prognostic impacts of ANGPT/ANGPTL genes depended on the molecular subtypes and on clinical factors. We discovered that various ANGPT/ANGPTL genes were co-expressed with various genes involved in different pathways. Finally, with the exception of ANGPTL3, the remaining genes showed significant correlations with cancer-associated fibroblasts, endothelial cells, and microenvironment score, whereas only ANGPTL6 was significantly correlated with immune score. Our findings provide strong evidence for the distinct clinical impact and biological function of ANGPT/ANGPTL proteins, but the question of whether some of them could be potential therapeutic targets still needs further investigation in BCs.
Collapse
Affiliation(s)
- Hui Yang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (H.Y.); (M.Z.); (X.-Y.M.); (H.C.)
- Hubei Key Laboratory of Tumor Biological Behaviors, Department of Radiation and Medical Oncology, Hubei Cancer Clinical Study Centre, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Melody Zhang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (H.Y.); (M.Z.); (X.-Y.M.); (H.C.)
- Undergraduate Program at Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xuan-Yu Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (H.Y.); (M.Z.); (X.-Y.M.); (H.C.)
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (H.Y.); (M.Z.); (X.-Y.M.); (H.C.)
| | - Jesus Perez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain;
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; (H.Y.); (M.Z.); (X.-Y.M.); (H.C.)
- Correspondence: ; Tel.:+1-510-486-6204
| |
Collapse
|
10
|
Angiopoietin-like Proteins in Colorectal Cancer-A Literature Review. Int J Mol Sci 2021; 22:ijms22168439. [PMID: 34445141 PMCID: PMC8395131 DOI: 10.3390/ijms22168439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of malignancy, with an annual incidence of about 10% of the total number of new cases. Despite well-developed screening tests, mortality from this type of cancer remains unchanged. Therefore, it is important to search for more accurate markers that are useful in the detection of colorectal cancer (especially in its early stages), and treatment. Angiopoietin-like proteins (ANGPTLs) are a family of eight proteins with a diversity of applications, including pro- and anti-angiogenic properties. Consequently, we performed an extensive search of the literature, pertaining to our investigation, via the MEDLINE/PubMed database. Based on the available literature, we summarize that some of those proteins are characterized by increased or decreased concentrations during the course of CRC. We can also assume that some ANGPTLs can inhibit the development of CRC, while others induce its progress. Moreover, some factors are dependent on the stage or histological type of the tumor, the presence of hypoxia, or metastases. Most importantly, some ANGPTLs can be useful in anti-cancer therapy. Therefore, further studies on ANGPTLs as potential markers of CRC should be continued.
Collapse
|
11
|
Jiang K, Chen H, Fang Y, Chen L, Zhong C, Bu T, Dai S, Pan X, Fu D, Qian Y, Wei J, Ding K. Exosomal ANGPTL1 attenuates colorectal cancer liver metastasis by regulating Kupffer cell secretion pattern and impeding MMP9 induced vascular leakiness. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:21. [PMID: 33413536 PMCID: PMC7792106 DOI: 10.1186/s13046-020-01816-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/13/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Angiopoietin-like protein 1 (ANGPTL1) has been proved to suppress tumor metastasis in several cancers. However, its extracellular effects on the pre-metastatic niches (PMNs) are still unclear. ANGPTL1 has been identified in exosomes, while its function remains unknown. This study was designed to explore the role of exosomal ANGPTL1 on liver metastasis in colorectal cancer (CRC). METHODS Exosomes were isolated by ultracentrifugation. The ANGPTL1 level was detected in exosomes derived from human CRC tissues. The effects of exosomal ANGPTL1 on CRC liver metastasis were explored by the intrasplenic injection mouse model. The liver PMN was examined by vascular permeability assays. Exosomal ANGPTL1 localization was validated by exosome labeling. The regulatory mechanisms of exosomal ANGPTL1 on Kupffer cells were determined by RNA sequencing. qRT-PCR, Western Blot, and ELISA analysis were conducted to examine gene expressions at mRNA and protein levels. RESULTS ANGPTL1 protein level was significantly downregulated in the exosomes derived from CRC tumors compared with paired normal tissues. Besides, exosomal ANGPTL1 attenuated liver metastasis and impeded vascular leakiness in the liver PMN. Moreover, exosomal ANGPTL1 was mainly taken up by KCs and regulated the KCs secretion pattern, enormously decreasing the MMP9 expression, which finally prevented the liver vascular leakiness. In mechanism, exosomal ANGPTL1 downregulated MMP9 level in KCs by inhibiting the JAK2-STAT3 signaling pathway. CONCLUSIONS Taken together, exosomal ANGPTL1 attenuated CRC liver metastasis and impeded vascular leakiness in the liver PMN by reprogramming the Kupffer cell and decreasing the MMP9 expression. This study suggests a suppression role of exosomal ANGPTL1 on CRC liver metastasis and expands the approach of ANGPTL1 functioning.
Collapse
Affiliation(s)
- Kai Jiang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiyan Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yimin Fang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liubo Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenhan Zhong
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tongtong Bu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siqi Dai
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiang Pan
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongliang Fu
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yucheng Qian
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingsun Wei
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Cord Blood Levels of Angiopoietin-Like 7 (ANGPTL7) in Preterm Infants. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1892458. [PMID: 33313310 PMCID: PMC7719486 DOI: 10.1155/2020/1892458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/08/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022]
Abstract
Objective ANGPTL7 is a member of the angiogenin-like protein family. Compared to other members, ANGPTL7 is the least known. Recent studies have explored the relationship between ANGPTL7 and multiple pathological processes and diseases. However, there is no research about ANGPTL7 in neonates. This study was designed to investigate the concentration of ANGPTL7 in cord blood of preterm infants. Method Singleton infants born in November 2017 to June 2019 in the study hospital were enrolled in the study. Maternal and neonatal clinical data were collected. ANGPTL7 levels in cord blood and serum on the third day after birth were measured by an enzyme-linked immunosorbent assay. Result A total of 182 infants were enrolled in this study. Patients were categorized into two groups by gestational age (102 preterm, 80 full-term). ANGPTL7 levels in preterm infants were significantly higher than that in full-term babies (t = 15.4, P < 0.001). In multiple line regression analysis, ANGPTL7 levels independently correlated with gestational age (β = −0.556, P < 0.001). There is also no correlation between preterm outcomes and ANGPTL7 levels. Cord blood levels of ANGPTL7 were significantly higher than those in serum on the third day after birth (t = 13.88, P < 0.001). Conclusion Cord blood ANGPTL7 levels are higher in preterm infants than full-term babies. The levels are independently influenced by gestational ages and attenuated significantly after birth. The underlying mechanism needs to be further studied.
Collapse
|
13
|
Wen XQ, Qian XL, Sun HK, Zheng LL, Zhu WQ, Li TY, Hu JP. MicroRNAs: Multifaceted Regulators of Colorectal Cancer Metastasis and Clinical Applications. Onco Targets Ther 2020; 13:10851-10866. [PMID: 33149603 PMCID: PMC7602903 DOI: 10.2147/ott.s265580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third-commonest malignant cancer, and its metastasis is the major reason for cancer-related death. The process of metastasis is highly coordinated and involves a complex cascade of multiple steps. In recent years, miRNAs, as highly conserved, endogenous, noncoding, single-stranded RNA, has been confirmed to be involved in the development of various cancers. Considering that miRNA is also involved in a series of biological behaviors, regulating CRC occurrence and development, we review and summarize the role of miRNAs and related signaling pathways in several CRC-metastasis stages, including invasion and migration, mobility, metabolism, epithelial-mesenchymal transition, tumor-microenvironment communication, angiogenesis, anoikis, premetastatic-niche formation, and cancer stemness. In addition, we review the application of miRNAs as diagnostic CRC markers and in clinical treatment resistance. This review can contribute to understanding of the mechanism of miRNAs in CRC progression and provide a theoretical basis for clinical CRC treatment.
Collapse
Affiliation(s)
- Xiang-Qiong Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Xian-Ling Qian
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Medical Imaging, Shanghai Medical College,Fudan University, Shanghai, 200032, People's Republic of China
| | - Huan-Kui Sun
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lin-Lin Zheng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Wei-Quan Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Tai-Yuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Jia-Ping Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University; Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
14
|
Sun R, Yang L, Hu Y, Wang Y, Zhang Q, Zhang Y, Ji Z, Zhao D. ANGPTL1 is a potential biomarker for differentiated thyroid cancer diagnosis and recurrence. Oncol Lett 2020; 20:240. [PMID: 32973954 PMCID: PMC7509504 DOI: 10.3892/ol.2020.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Differentiated thyroid cancer (DTC) is a common type of cancer among women with an increasing worldwide incidence rate. However, there are no specific and sensitive molecular biomarkers for DTC diagnosis or prognosis. Angiopoietin-like protein 1 (ANGPTL1) may be a novel tumor suppressor in lung, breast, colorectal and hepatocellular carcinoma. However, little is known about the influence of ANGPTL1 on the malignant properties of thyroid cancer cells or DTC recurrence in patients. Thus, the present study aimed to investigate the effects of ANGPTL1 on thyroid cancer malignancy or recurrence. The present study examined the mRNA levels of ANGPTL1 in thyroid cancer and paracancerous tissues using RNA sequencing data from The Cancer Genome Atlas. The present study also determined the effects of ANGPTL1 on thyroid cancer cell proliferation using the Cell Counting Kit-8 assay. Associations were identified among ANGPTL1 expression levels and thyroid cancer proliferation, migration and metastasis using The Cancer Genome Atlas data set and by Gene Set Enrichment Analysis. The expression of ANGPTL1 in patients with DTC and without recurrence was compared in order to assess its potential as a prognostic biomarker for DTC. In addition, ANGPTL1 concentrations in the serum of patients with DTC and individuals with benign thyroid nodules were compared to evaluate the sensitivity and specificity of ANGPTL1 as a predictive biomarker for DTC. The results of the present study demonstrated that ANGPTL1 expression levels were lower in thyroid cancer compared with those in adjacent normal thyroid tissues. ANGPTL1 expression was observed to decrease with thyroid cancer progression. In addition, ANGPTL1 was demonstrated to inhibit thyroid cancer cell proliferation, migration and invasion and ANGPTL1 expression levels were reduced in patients with DTC with recurrence compared with those in patients with non-recurrent DTC. Additionally, serum concentrations of ANGPTL1 in patients with DTC were decreased compared with those in individuals with benign thyroid nodules. In conclusion, ANGPTL1 may be a novel predictive biomarker for DTC diagnosis and recurrence in patients with DTC.
Collapse
Affiliation(s)
- Rongxin Sun
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Longyan Yang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yangping Hu
- Department of Pathology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yan Wang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Zhili Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|
15
|
Hu X, Sun G, Shi Z, Ni H, Jiang S. Identification and validation of key modules and hub genes associated with the pathological stage of oral squamous cell carcinoma by weighted gene co-expression network analysis. PeerJ 2020; 8:e8505. [PMID: 32117620 PMCID: PMC7006519 DOI: 10.7717/peerj.8505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a major lethal malignant cancer of the head and neck region, yet its molecular mechanisms of tumourigenesis are still unclear. Patients and methods We performed weighted gene co-expression network analysis (WGCNA) on RNA-sequencing data with clinical information obtained from The Cancer Genome Atlas (TCGA) database. The relationship between co-expression modules and clinical traits was investigated by Pearson correlation analysis. Furthermore, the prognostic value and expression level of the hub genes of these modules were validated based on data from the TCGA database and other independent datasets from the Gene Expression Omnibus (GEO) database and the Human Protein Atlas database. The significant modules and hub genes were also assessed by functional analysis and gene set enrichment analysis (GSEA). Results We found that the turquoise module was strongly correlated with pathologic T stage and significantly enriched in critical functions and pathways related to tumourigenesis. PPP1R12B, CFD, CRYAB, FAM189A2 and ANGPTL1 were identified and statistically validated as hub genes in the turquoise module and were closely implicated in the prognosis of OSCC. GSEA indicated that five hub genes were significantly involved in many well-known cancer-related biological functions and signaling pathways. Conclusion In brief, we systematically discovered a co-expressed turquoise module and five hub genes associated with the pathologic T stage for the first time, which provided further insight that WGCNA may reveal the molecular regulatory mechanism involved in the carcinogenesis and progression of OSCC. In addition, the five hub genes may be considered candidate prognostic biomarkers and potential therapeutic targets for the precise early diagnosis, clinical treatment and prognosis of OSCC in the future.
Collapse
Affiliation(s)
- Xuegang Hu
- Department of Stomatology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China.,Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuhou, Fujian, China
| | - Guanwen Sun
- Department of Endodontics and Operative Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuhou, Fujian, China.,Department of Stomatology, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang, China
| | - Zhiqiang Shi
- Department of Stomatology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hui Ni
- Department of Stomatology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Shan Jiang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Zhao T, Liang X, Chen J, Bao Y, Wang A, Gan X, Lu X, Wang L. ANGPTL3 inhibits renal cell carcinoma metastasis by inhibiting VASP phosphorylation. Biochem Biophys Res Commun 2019; 516:880-887. [PMID: 31270029 DOI: 10.1016/j.bbrc.2019.06.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022]
Abstract
Angiopoietin-like proteins (ANGPTLs) comprise a group of proteins that are structurally similar to angiopoietins. In our previous studies, we found that ANGPTL3 can inhibit sorafenib resistance in renal cell carcinoma (RCC). According to bioinformatics analysis based on data in the Cancer Genome Atlas (TCGA), we found that expression of ANGPTL3 was significantly lower in RCC tissues than in adjacent tissues and that disease-free survival and overall survival were significantly shorter in patients with lower ANGPTL3 levels than in those with higher ANGPTL3 levels. Consistent with these results, we demonstrated that RCC tissues exhibited lower ANGPTL3 mRNA and protein expression levels than paired adjacent tissues. Moreover, we found that ANGPTL3 upregulation was associated with better clinical outcomes in RCC patients. ANGPTL3 overexpression inhibited the metastatic ability in RCC cells. Mechanistically, ANGPTL3 binds to vasodilator-stimulated phosphoprotein (VASP) and inhibits its phosphorylation at amino acid 157 in RCC cells. Finally, ANGPTL3 expression and VASP-157 phosphorylation may be combined to predict the prognosis of RCC patients. Overall, our findings describe the role of ANGPTL3 in inhibiting RCC metastasis and thus provide new molecular markers for RCC treatment and prognosis.
Collapse
Affiliation(s)
- Tangliang Zhao
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xiaolong Liang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Junming Chen
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Yi Bao
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Anbang Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xinxin Gan
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xin Lu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Linhui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
17
|
Robinson JL, Feizi A, Uhlén M, Nielsen J. A Systematic Investigation of the Malignant Functions and Diagnostic Potential of the Cancer Secretome. Cell Rep 2019; 26:2622-2635.e5. [PMID: 30840886 PMCID: PMC6441842 DOI: 10.1016/j.celrep.2019.02.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/13/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
The collection of proteins secreted from a cell-the secretome-is of particular interest in cancer pathophysiology due to its diagnostic potential and role in tumorigenesis. However, cancer secretome studies are often limited to one tissue or cancer type or focus on biomarker prediction without exploring the associated functions. We therefore conducted a pan-cancer analysis of secretome gene expression changes to identify candidate diagnostic biomarkers and to investigate the underlying biological function of these changes. Using transcriptomic data spanning 32 cancer types and 30 healthy tissues, we quantified the relative diagnostic potential of secretome proteins for each cancer. Furthermore, we offer a potential mechanism by which cancer cells relieve secretory pathway stress by decreasing the expression of tissue-specific genes, thereby facilitating the secretion of proteins promoting invasion and proliferation. These results provide a more systematic understanding of the cancer secretome, facilitating its use in diagnostics and its targeting for therapeutic development.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Wallenberg Centre for Protein Research, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden
| | - Amir Feizi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Wallenberg Centre for Protein Research, Chalmers University of Technology, Kemivägen 10, Gothenburg, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
18
|
Abstract
Angiopoietins play important roles in angiogenesis and the maintenance of hematopoietic stem cells. Angiopoietin-like proteins (ANGPTLs) are identified as proteins structurally similar to angiopoietins, and the ANGPTL family now consists of eight members. ANGPTLs are secretary proteins, and some ANGPTLs are not only angiogenic factors but also proteins with multiple functions such as glucose metabolism, lipid metabolism, redox regulation and chronic inflammation. Chronic inflammation is one of the key factors in carcinogenesis and cancer growth, proliferation, invasion and metastasis. ANGPTL 2, 3, 4, 6 and 7 are pro-inflammatory factors and regulate cancer progression, while ANGPTL1 inhibits tumor angiogenesis and metastasis. In this review, we describe the roles of ANGPTLs in cancer progression and discuss the possibility of disturbing the progression of cancer by regulating ANGPTLs expression.
Collapse
Affiliation(s)
- Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan
| |
Collapse
|
19
|
Chen F, Li Y, Li M, Wang L. Long noncoding RNA GAS5 inhibits metastasis by targeting miR-182/ANGPTL1 in hepatocellular carcinoma. Am J Cancer Res 2019; 9:108-121. [PMID: 30755815 PMCID: PMC6356919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023] Open
Abstract
Intrahepatic and extrahepatic metastases are responsible for the majority of hepatocellular carcinoma (HCC)-related mortalities. Long noncoding RNAs (lncRNAs) exert important functions in modulating various tumor behaviors. However, the functions and mechanisms of lncRNAs in HCC metastasis remain largely unknown. In this study, downregulation of lncRNA growth arrest-specific 5 (GAS5) was observed in HCC tissues and cells, and predicted poor prognosis of patients with HCC. Through performing gain- and loss-of-function experiments, we found that GAS5 could obviously inhibit migration and invasion of HCC cells in vitro, and suppress tumor metastasis in vivo. Mechanistically, GAS5 functioned as a tumor suppressor in HCC metastasis through directly interacting with miR-182 and abrogating its oncogenic function in this setting. Moreover, GAS5 acted as a competing endogenous RNA (ceRNA) for miR-182 to upregulate the expression of anti-metastasis protein ANGPTL1. Finally, we demonstrated that using ultrasound targeted microbubble destruction (UTMD)-mediated GAS5 transfection could significantly decrease migratory and invasive abilities of HCC cells. Collectively, our study first reveals the mechanism of GAS5/miR-182/ANGPTL1 axis in suppressing HCC metastasis, which provides promising new avenues for therapeutic intervention against HCC progression.
Collapse
Affiliation(s)
- Fei Chen
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou 121001, Liaoning Province, China
| | - Yuhong Li
- Department of Ultrasound, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou 121001, Liaoning Province, China
| | - Meijun Li
- Medicine Department, The Third Affiliated Hospital of Jinzhou Medical UniversityJinzhou 121001, Liaoning Province, China
| | - Liang Wang
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical UniversityJinzhou 121001, Liaoning Province, China
| |
Collapse
|
20
|
Hu W, Yang Y, Ge W, Zheng S. Deciphering molecular properties of hypermutated gastrointestinal cancer. J Cell Mol Med 2018; 23:370-379. [PMID: 30381870 PMCID: PMC6307802 DOI: 10.1111/jcmm.13941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022] Open
Abstract
Great mutational heterogeneity is observed both across cancer types (>1000-fold) and within a given cancer type, with a fraction harboring >10 mutations per million bases, thus termed hypermutation. We determined the genome-wide effects of high mutation load on the transcriptome and methylome of two cancer types; namely, colorectal cancer (CRC) and stomach adenocarcinoma (STAD). Briefly, hierarchical clustering of the expression and methylation profiles showed that the majority of CRC and STAD hypermutated samples were mixed and separated from their respective non-hypermutated samples, exceeding the boundary of tissue specificity. Further in-detailed exploration uncovered that the underlying molecular mechanism may be related to the perturbation of chromatin remodeling genes.
Collapse
Affiliation(s)
- Wangxiong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yanmei Yang
- Key Laboratory of Reproductive and Genetics, Ministry of Education, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Weiting Ge
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| |
Collapse
|
21
|
Jiang K, Jiao Y, Liu Y, Fu D, Geng H, Chen L, Chen H, Shen X, Sun L, Ding K. HNF6 promotes tumor growth in colorectal cancer and enhances liver metastasis in mouse model. J Cell Physiol 2018; 234:3675-3684. [PMID: 30256389 DOI: 10.1002/jcp.27140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/05/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Kai Jiang
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Yurong Jiao
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Yue Liu
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Dongliang Fu
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Haitao Geng
- Department of Oncology Binzhou Medical University Hospital Binzhou China
| | - Liubo Chen
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Haiyan Chen
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Xiangfeng Shen
- Department of Mastopathy Zhejiang Provincial Hospital of TCM Hangzhou China
| | - Lifeng Sun
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Kefeng Ding
- Key Laboratory of Cancer Prevention and Intervention China National Ministry of Education, Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
- Department of Surgical Oncology The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
22
|
Angiopoietin-like protein 3 blocks nuclear import of FAK and contributes to sorafenib response. Br J Cancer 2018; 119:450-461. [PMID: 30033448 PMCID: PMC6134083 DOI: 10.1038/s41416-018-0189-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 01/08/2023] Open
Abstract
Background Poor drug response of sorafenib is a major challenge which reduces clinical benefit of renal cell carcinoma (RCC) patients. It is therefore of great clinical significance to elucidate the underlying mechanism to restore the therapeutic response to sorafenib. Methods Angiopoietin-like protein 3 (ANGPTL3) protein levels were measured by western blot and immunohistochemistry in two cohorts of RCC patients. Loss-of-function and gain-of-function experiments were performed to investigate the biological roles of ANGPTL3 in response to sorafenib treatment in RCC cells. Human proteome microarray and immunoprecipitation analysis were performed to explore the molecular mechanisms underlying the functions of ANGPTL3. Results ANGPTL3 was upregulated in sorafenib-responsive RCC, which correlated with clinically good sorafenib response. Knockdown of ANGPTL3 conferred sorafenib-tolerance traits to RCC cells, whereas overexpression of ANGPTL3 restored sorafenib sensitivity in RCC cells. Mechanistically, ANGPTL3 bound to Focal Adhesion Kinase(FAK) and restained sorafenib induced nuclear translocation of FAK, leading to attenuate the ubiquitination of p53, which contributed to cellular apoptosis and enhanced sorafenib response. Conclusions ANGPTL3 may be a novel predictor for the response of sorafenib therapy in RCC patients, and a potential target in improving its therapeutic effect.
Collapse
|
23
|
Han YH, Kee JY, Hong SH. Rosmarinic Acid Activates AMPK to Inhibit Metastasis of Colorectal Cancer. Front Pharmacol 2018; 9:68. [PMID: 29459827 PMCID: PMC5807338 DOI: 10.3389/fphar.2018.00068] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
Rosmarinic acid (RA) has been used as an anti-inflammatory, anti-diabetic, and anti-cancer agent. Although RA has also been shown to exert an anti-metastatic effect, the mechanism of this effect has not been reported to be associated with AMP-activated protein kinase (AMPK). The aim of this study was to elucidate whether RA could inhibit the metastatic properties of colorectal cancer (CRC) cells via the phosphorylation of AMPK. RA inhibited the proliferation of CRC cells through the induction of cell cycle arrest and apoptosis. In several metastatic phenotypes of CRC cells, RA regulated epithelial-mesenchymal transition (EMT) through the upregulation of an epithelial marker, E-cadherin, and the downregulation of the mesenchymal markers, N-cadherin, snail, twist, vimentin, and slug. Invasion and migration of CRC cells were inhibited and expressions of matrix metalloproteinase (MMP)-2 and MMP-9 were decreased by RA treatment. Adhesion and adhesion molecules such as ICAM-1 and integrin β1 expressions were also reduced by RA treatment. In particular, the effects of RA on EMT and MMPs expressions were due to the activation of AMPK. Moreover, RA inhibited lung metastasis of CRC cells by activating AMPK in mouse model. Collectively, these results proved that RA could be potential therapeutic agent against metastasis of CRC.
Collapse
Affiliation(s)
- Yo-Han Han
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, South Korea
| |
Collapse
|