1
|
Chen H, Lin Y, Chen J, Luo X, Kan Y, He Y, Zhu R, Jin J, Li D, Wang Y, Han Z. Targeting caspase-8: a new strategy for combating hepatocellular carcinoma. Front Immunol 2024; 15:1501659. [PMID: 39726605 PMCID: PMC11669555 DOI: 10.3389/fimmu.2024.1501659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents the most prevalent form of primary liver cancer and has a high mortality rate. Caspase-8 plays a pivotal role in an array of cellular signaling pathways and is essential for the governance of programmed cell death mechanisms, inflammatory responses, and the dynamics of the tumor microenvironment. Dysregulation of caspase-8 is intricately linked to the complex biological underpinnings of HCC. In this manuscript, we provide a comprehensive review of the regulatory roles of caspase-8 in apoptosis, necroptosis, pyroptosis, and PANoptosis, as well as its impact on inflammatory reactions and the intricate interplay with critical immune cells within the tumor microenvironment, such as tumor-associated macrophages, T cells, natural killer cells, and dendritic cells. Furthermore, we emphasize how caspase-8 plays pivotal roles in the development, progression, and drug resistance observed in HCC, and explore the potential of targeting caspase-8 as a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jie Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xuemei Luo
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yubo Kan
- Sichuan Provincial Woman’s and Children’s Hospital/The Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu, China
| | - Yuqi He
- Department of Blood Transfusion, Lu’an People’s Hospital, the Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Renhe Zhu
- Department of Blood Transfusion, Lu’an People’s Hospital, the Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Jiahui Jin
- Department of gastroenterology, Baoji Central Hospital, Baoji, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
2
|
Kozlova I, Sytnyk V. Cell Adhesion Molecules as Modulators of the Epidermal Growth Factor Receptor. Cells 2024; 13:1919. [PMID: 39594667 PMCID: PMC11592701 DOI: 10.3390/cells13221919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Cell adhesion molecules (CAMs) are cell surface glycoproteins mediating interactions of cells with other cells and the extracellular matrix. By mediating the adhesion and modulating activity of other plasma membrane proteins, CAMs are involved in regulating a multitude of cellular processes, including growth, proliferation, migration, and survival of cells. In this review, we present evidence showing that various CAMs interact with the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase inducing pro-proliferative and anti-apoptotic intracellular signaling in response to binding to several soluble ligands, including the epidermal growth factor. We discuss that CAMs are involved in regulating EGFR signaling by either potentiating or inhibiting the soluble ligand-dependent activation of EGFR. In addition, CAMs induce soluble ligand-independent forms of EGFR activity and regulate the levels of EGFR and its ligand-induced degradation. The CAM-dependent modulation of EGFR activity plays a key role in regulating the growth, proliferation, and survival of cells. Future research is needed to determine whether these processes can be targeted in both normal and cancerous cells by regulating interactions of EGFR with various CAMs.
Collapse
Affiliation(s)
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
3
|
Van Campenhout R, Vinken M. Hepatic cell junctions: Pulling a double-duty. Liver Int 2024; 44:2873-2889. [PMID: 39115254 DOI: 10.1111/liv.16045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Cell junctions, including anchoring, occluding and communicating junctions, play an indispensable role in the structural and functional organization of multicellular tissues, including in liver. Specifically, hepatic cell junctions mediate intercellular adhesion and communication between liver cells. The establishment of the hepatic cell junction network is a prerequisite for normal liver functioning. Hepatic cell junctions indeed support liver-specific features and control essential aspects of the hepatic life cycle. This review paper summarizes the role of cell junctions and their components in relation to liver physiology, thereby also discussing their involvement in hepatic dysfunctionality, including liver disease and toxicity.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Chen H, Hou G, Lan T, Xue S, Xu L, Feng Q, Zeng Y, Wang H. Identification and validation of a five-necroptosis-related lncRNAs signature for prognostic prediction in hepatocellular carcinoma. Heliyon 2024; 10:e37403. [PMID: 39309864 PMCID: PMC11415698 DOI: 10.1016/j.heliyon.2024.e37403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is among the most prevalent digestive system malignancies and is associated with a poor prognosis. Necroptosis, a form of regulated death mediated by death receptors, exhibits characteristics of both necrosis and apoptosis. Long non-coding RNAs (lncRNAs) have been identified as crucial regulators in tumor necroptosis. This study aims to identify the necroptosis-related lncRNAs (np-lncRNA) in HCC and investigate their relationships with prognosis. Method The RNA-sequencing data, along with clinicopathological and survival information of HCC patients were sourced from The Cancer Genome Atlas (TCGA) database. The np-lncRNAs were analyzed to assess their potential in predicting HCC prognosis. Prognostic signatures related to necroptosis were constructed using stepwise multivariate Cox regression analysis. The prognosis of patients was compared using Kaplan-Meier (KM) analysis. The accuracy of the prognostic signature was evaluated using Receiver operating characteristic (ROC) analysis and decision curve analysis (DCA). Quantitative real-time polymerase chain reaction(qPCR) was employed to validate the lncRNAs expression levels of lncRNAs among samples from an independent cohort. Results The np-lncRNAs ZFPM2-AS1, AC099850.3, BACE1-AS, KDM4A-AS1 and MKLN1-AS were identified as potential prognostic biomarkers. The prognostic signature constructed from these np-lncRNAs achieved an Area Under the Curve (AUC) of 0.773. Based on the risk score derived from the signature, patients were divided into two groups, with the high-risk group exhibiting poorer overall survival. Gene Set Enrichment Analysis (GSEA) revealed significantly different between the low risk and high risk groups in tumor-related pathways (such as mTOR, MAPK and p53 signaling pathways) and immune-related functions (like T cell receptor signaling pathway and natural killer cell mediated cytotoxicity). The increased expression of np-lncRNAs was confirmed in another independent HCC cohort. Conclusions This signature offers a dependable method for forecasting the prognosis of HCC patients. Our findings indicate a subset of np-lncRNA biomarkers that could be utilized for prognosis prediction and personalized treatment strategies of HCC patients.
Collapse
Affiliation(s)
- Hao Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Luzhou, 646000, China
| | - Guimin Hou
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hepato-Biliary-Pancreatic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Tian Lan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuai Xue
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Xu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingbo Feng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haichuan Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Gao J, Jin HJ, Wei X, Ding XL, Li ZQ, Wang K, Xia XH. Closed Bipolar Nanoelectrode Array for Ultra-Sensitive Detection of Alkaline Phosphatase and Two-Dimensional Imaging of Epidermal Growth Factor Receptors. ACS Sens 2024; 9:3754-3762. [PMID: 38970501 DOI: 10.1021/acssensors.4c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The combination of closed bipolar electrodes (cBPE) with electrochemiluminescence (ECL) imaging has demonstrated remarkable capabilities in the field of bioanalysis. Here, we established a cBPE-ECL platform for ultrasensitive detection of alkaline phosphatase (ALP) and two-dimensional imaging of epidermal growth factor receptor (EGFR). This cBPE-ECL system consists of a high-density gold nanowire array in anodic aluminum oxide (AAO) membrane as the cBPE coupled with ECL of highly luminescent cadmium selenide quantum dots (CdSe QDs) luminophores to achieve cathodic electro-optical conversion. When an enzyme-catalyzed amplification effect of ALP with 4-aminophenyl phosphate monosodium salt hydrate (p-APP) as the substrate and 4-aminophenol (p-AP) as the electroactive probe is introduced, a significant improvement of sensing sensitivity with a detection limit as low as 0.5 fM for ALP on the cBPE-ECL platform can be obtained. In addition, the cBPE-ECL sensing system can also be used to detect cancer cells with an impressive detection limit of 50 cells/mL by labeling ALP onto the EGFR protein on A431 human epidermal cancer cell membranes. Thus, two-dimensional (2D) imaging of the EGFR proteins on the cell surface can be achieved, demonstrating that the established cBPE-ECL sensing system is of high resolution for spatiotemporal cell imaging.
Collapse
Affiliation(s)
- Jiao Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua-Jiang Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuan Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Chen S, Lu C, Lin S, Sun C, Wen Z, Ge Z, Chen W, Li Y, Zhang P, Wu Y, Wang W, Zhou H, Li X, Lai Y, Li H. A panel based on three-miRNAs as diagnostic biomarker for prostate cancer. Front Genet 2024; 15:1371441. [PMID: 38818039 PMCID: PMC11137311 DOI: 10.3389/fgene.2024.1371441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Background: Prostate cancer (PCa) is one of the most prevalent malignancies affecting the male life cycle. The incidence and mortality of prostate cancer are also increasing every year. Detection of MicroRNA expression in serum to diagnose prostate cancer and determine prognosis is a very promising non-invasive modality. Materials and method: A total of 224 study participants were included in our study, including 112 prostate cancer patients and 112 healthy adults. The experiment consisted of three main phases, namely, the screening phase, the testing phase, and the validation phase. The expression levels of serum miRNAs in patients and healthy adults were detected using quantitative reverse transcription-polymerase chain reaction. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used to evaluate the diagnostic ability, specificity, and sensitivity of the candidate miRNAs. Result: Eventually, three miRNAs most relevant to prostate cancer diagnosis were selected, namely, miR-106b-5p, miR-129-1-3p and miR-381-3p. We used these three miRNAs to construct a diagnostic panel with very high diagnostic potential for prostate cancer, which had an AUC of 0.912 [95% confidence interval (CI): 0.858 to 0.950; p < 0.001; sensitivity = 91.67%; specificity = 79.76%]. In addition, the three target genes (DTNA, GJB1, and TRPC4) we searched for are also expected to be used for prostate cancer diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen University Health Science Center, Shenzhen, China
| | - Chong Lu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Shengjie Lin
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Chen Sun
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Zhenyu Wen
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Zhenjian Ge
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Wenkang Chen
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Yingqi Li
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen University Health Science Center, Shenzhen, China
| | - Pengwu Zhang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Peking University Health Science Center, Beijing, China
| | - Yutong Wu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Wuping Wang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen University Health Science Center, Shenzhen, China
| | - Huimei Zhou
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xutai Li
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Shantou University Medical College, Shantou, China
- Peking University Health Science Center, Beijing, China
| | - Hang Li
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
7
|
Papadakos SP, Chatzikalil E, Arvanitakis K, Vakadaris G, Stergiou IE, Koutsompina ML, Argyrou A, Lekakis V, Konstantinidis I, Germanidis G, Theocharis S. Understanding the Role of Connexins in Hepatocellular Carcinoma: Molecular and Prognostic Implications. Cancers (Basel) 2024; 16:1533. [PMID: 38672615 PMCID: PMC11048329 DOI: 10.3390/cancers16081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Connexins, a family of tetraspan membrane proteins forming intercellular channels localized in gap junctions, play a pivotal role at the different stages of tumor progression presenting both pro- and anti-tumorigenic effects. Considering the potential role of connexins as tumor suppressors through multiple channel-independent mechanisms, their loss of expression may be associated with tumorigenic activity, while it is hypothesized that connexins favor the clonal expansion of tumor cells and promote cell migration, invasion, and proliferation, affecting metastasis and chemoresistance in some cases. Hepatocellular carcinoma (HCC), characterized by unfavorable prognosis and limited responsiveness to current therapeutic strategies, has been linked to gap junction proteins as tumorigenic factors with prognostic value. Notably, several members of connexins have emerged as promising markers for assessing the progression and aggressiveness of HCC, as well as the chemosensitivity and radiosensitivity of hepatocellular tumor cells. Our review sheds light on the multifaceted role of connexins in HCC pathogenesis, offering valuable insights on recent advances in determining their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Elena Chatzikalil
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Vakadaris
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
| | - Ioanna E. Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Maria-Loukia Koutsompina
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (M.-L.K.)
| | - Alexandra Argyrou
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | - Vasileios Lekakis
- Academic Department of Gastroenterology, Laikon General Hospital, Athens University Medical School, 11527 Athens, Greece; (A.A.); (V.L.)
| | | | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.A.); (G.V.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.P.P.); (E.C.)
| |
Collapse
|
8
|
Wang X, Zheng Q, Sun M, Liu L, Zhang H, Ying W. Signatures of necroptosis-related genes as diagnostic markers of endometriosis and their correlation with immune infiltration. BMC Womens Health 2023; 23:535. [PMID: 37817158 PMCID: PMC10566087 DOI: 10.1186/s12905-023-02668-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Endometriosis (EMS) occurs when normal uterine tissue grows outside the uterus and causes chronic pelvic pain and infertility. Endometriosis-associated infertility is thought to be caused by unknown mechanisms. In this study, using necroptosis-related genes, we developed and validated multigene joint signatures to diagnose EMS and explored their biological roles. METHODS We downloaded two databases (GSE7305 and GSE1169) from the Gene Expression Omnibus (GEO) database and 630 necroptosis-related genes from the GeneCards and GSEA databases. The limma package in Rsoftware was used to identify differentially expressed genes (DEGs). We interleaved common differentially expressed genes (co-DEGs) and necroptosis-related genes (NRDEGs) in the endometriosis dataset. The DEGs functions were reflected by gene ontology analysis (GO), pathway enrichment analysis, and gene set enrichment analysis (GSEA). We used CIBERSORT to analyze the immune microenvironment differences between EMS patients and controls. Furthermore, a correlation was found between necroptosis-related differentially expressed genes and infiltrating immune cells to better understand the molecular immune mechanism. RESULTS Compared with the control group, this study revealed that 10 NRDEGs were identified in EMS. There were two types of immune cell infiltration abundance (activated NK cells and M2 macrophages) in these two datasets, and the correlation between different groups of samples was statistically significant (P < 0.05). MYO6 consistently correlated with activated NK cells in the two datasets. HOOK1 consistently demonstrated a high correlation with M2 Macrophages in two datasets. The immunohistochemical result indicated that the protein levels of MYO6 and HOOK1 were increased in patients with endometriosis, further suggesting that MYO6 and HOOK1 can be used as potential biomarkers for endometriosis. CONCLUSIONS We identified ten necroptosis-related genes in EMS and assessed their relationship with the immune microenvironment. MYO6 and HOOK1 may serve as novel biomarkers and treatment targets in the future.
Collapse
Affiliation(s)
- Xuezhen Wang
- Department of Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, China
| | - Qin Zheng
- Department of Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, China
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Luotong Liu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Weiwei Ying
- Department of Gynecology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, China.
| |
Collapse
|
9
|
Chen M, Zhu X, Zhang L, Zhao D. COL5A2 is a prognostic-related biomarker and correlated with immune infiltrates in gastric cancer based on transcriptomics and single-cell RNA sequencing. BMC Med Genomics 2023; 16:220. [PMID: 37723519 PMCID: PMC10506210 DOI: 10.1186/s12920-023-01659-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND There is still a therapeutic challenge in treating gastric cancer (GC) due to its high incidence and poor prognosis. Collagen type V alpha 2 (COL5A2) is increased in various cancers, yet it remains unclear how it contributes to the prognosis and immunity of GC. METHODS The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used to download transcriptome profiling (TCGA-STAD; GSE84437), single-cell RNA sequencing (scRNA-seq) data (GSE167297) and clinical information. COL5A2 expression and its relationship with clinicopathological factors were analyzed. We conducted survival analysis and Cox regression analysis to evaluate the prognosis and independent factors of GC. Co-expressed analysis was also performed. To identify the underlying mechanism, we conducted analyses of differentially expressed genes (DEGs) and functional enrichment. The correlations between COL5A2 expression and immune cell infiltration levels and immune infiltrate gene marker sets were further explored. Additionally, we analyzed the association of COL5A2 expression with immunological checkpoint molecules. Furthermore, the relationship between COL5A2 expression and immunotherapy sensitivity was also investigated. RESULTS COL5A2 expression was elevated in GC. More than this, the scRNA-seq analysis revealed that COL5A2 expression had a spatial gradient. The upregulated COL5A2 was associated with worse overall survival. A significant correlation was found between COL5A2 overexpression and age, T classification and clinical stage in GC. COL5A2 was found to be an independent factor for the unfortunate outcome in Cox regression analysis. The co-expressed genes of COL5A2 were associated with tumor stage or poor survival. Enrichment analysis revealed that the DEGs were mainly associated with extracellular matrix (ECM)-related processes, PI3K-AKT signaling pathway, and focal adhesion. GSEA analyses revealed that COL5A2 was associated with tumor progression-related pathways. Meanwhile, COL5A2 expression was correlated with tumor-infiltrating immune cells. Moreover, immunophenoscore (IPS) analysis and PRJEB25780 cohorts showed that patients with low COL5A2 expression were highly sensitive to immunotherapy. CONCLUSIONS COL5A2 might act as a prognostic biomarker of GC prognosis and immune infiltration and may provide a therapeutic intervention strategy.
Collapse
Affiliation(s)
- Meiru Chen
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
- Department of Gastroenterology, Hengshui People's Hospital, Hengshui, Hebei Province, 053000, China
| | - Xinying Zhu
- Department of Gastroenterology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Lixian Zhang
- Department of Gastroenterology, Hengshui People's Hospital, Hengshui, Hebei Province, 053000, China
| | - Dongqiang Zhao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China.
| |
Collapse
|
10
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
11
|
A new IRES-mediated truncated Cx32 isoform inhibits global mRNA translation to suppress glioblastoma. Biomed Pharmacother 2023; 161:114513. [PMID: 36931032 DOI: 10.1016/j.biopha.2023.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma (GBM) is the most lethal malignant primary brain tumor. Although multimodal therapy has been applied for GBM, the median survival time remains less than 16 months. Thus, better therapeutic targets in GBM are urgently needed. Herein, we first identified five new N-terminal-truncated Cx32 isoforms (GJB1-28k, GJB1-22k, GJB1-20k, GJB1-15k, and GJB1-13k) and further demonstrated that they were generated via cap-independent internal translation through internal ribosome entry sites (IRESs) in the coding sequence of GJB1 mRNA. Among these isoforms, GJB1-13k inhibited proliferation, promoted apoptosis, and limited cell cycle progression in GBM cells by inhibiting global mRNA translation. In vivo experiments further confirmed the antitumor activity of GJB1-13k against GBM cells. In addition, TSR3, a ribosomal maturation factor, was demonstrated to directly interact with GJB1-13k. Moreover, GBM cells with high TSR3 expression exhibited low sensitivity to GJB1-13k treatment, while GJB1-13k sensitivity was restored by TSR3 knockdown. Our work identifies a new IRES-mediated protein, GJB1-13k, and suggests that overexpression of GJB1-13k in GBM cells with low TSR3 expression or combined targeting of GJB1-13k and TSR3 in GBM cells with high TSR3 expression constitutes a potential therapeutic strategy for GBM.
Collapse
|
12
|
Upregulated FKBP1A Suppresses Glioblastoma Cell Growth via Apoptosis Pathway. Int J Mol Sci 2022; 23:ijms232314935. [PMID: 36499275 PMCID: PMC9739687 DOI: 10.3390/ijms232314935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Glioblastoma (GBM), the most deadly primary brain tumor, presents a major medical difficulty. The need for better therapeutic targets in GBM is therefore urgent. A growing body of evidence suggests that the gene FKBP1A plays an important role in tumor progression and may be therapeutically useful. However, the role of FKBP1A in glioblastoma and the underlying biologic mechanism remain unclear. The purpose of this study was to identify the role of FKBP1A in GBM and its molecular mechanism. We demonstrated that FKBP1A was the hub gene in GBM via a weighted correlation network analysis (WGCNA) and differentially expressed genes (DEGs) analysis based on the bulk RNA-seq data from TCGA and GTEx. Afterwards, we proved that the upregulated FKBP1A protein could promote GBM cell death by CCK-8 assays in U87MG and t98g GBM cell lines. We further demonstrated two key pathways of FKBP1A in GBM by bioinformatics methods: 'Apoptosis' and 'mTOR signaling pathway'. Subsequently, the key pathways were verified by flow cytometry and Western blot. We identified that upregulated FKBP1A could inhibit GBM growth via the apoptosis pathway. Together, these findings may contribute to future GBM treatment.
Collapse
|
13
|
Liu YJ, Han M, Li JP, Zeng SH, Ye QW, Yin ZH, Liu SL, Zou X. An Analysis Regarding the Association Between Connexins and Colorectal Cancer (CRC) Tumor Microenvironment. J Inflamm Res 2022; 15:2461-2476. [PMID: 35449599 PMCID: PMC9017696 DOI: 10.2147/jir.s361362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
Background Gap junctions, as one of the major ways to maintain social connections between cells, are now considered as one of the potential regulators of tumor metastasis. However, to date, studies on the relationship between gap junctions and colorectal cancer (CRC) are limited. Methods We synthesized connexins-coding gene expression data from public Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatics analysis was performed using R software and several database resources such as MEXPRESS database, Gene Set Cancer Analysis (GSCA) database, Human Protein Atlas (HPA) database, Tumor Immune Single Cell Hub (TISCH) database, Search Tool for Retrieval of Gene Interaction Relationships (STRING), and Cytoscape software, etc., to investigate the biological mechanisms that may be involved in connexins. Immunofluorescence and immunohistochemical staining were used to validate the expression and localization of GJA4. Results We found that CRC patients can be divided into two connexin clusters and that patients in cluster C1 had shorter survival than in cluster C2. The infiltration of M1 macrophages and NK cells was lower in cluster C1, while the levels of M2 macrophages and immune checkpoints were higher, indicating an immunosuppressed state in cluster C1. In addition, the epithelial–mesenchymal transition (EMT) phenotype was significantly activated in cluster C1. We observed that GJA4 was up-regulated in colorectal cancer tissues, which was related to poor prognosis. It was mainly expressed in fibroblasts, but the expression levels in normal intestinal epithelial cells were low. Finally, we found that GJA4 was associated with M2 macrophages and may be a potential immunosuppressive factor. Conclusion We found that there is a significant correlation between abnormal connexins expression and patients’ prognosis, and connexins play an important role in stromal-tumor interactions. Connexins, especially GJA4, can help enhance our understanding of tumor microenvironment (TME) and may guide more effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Yuan-jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Mei Han
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jie-pin Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, People’s Republic of China
| | - Shu-hong Zeng
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Qian-wen Ye
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Zhong-hua Yin
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Shen-lin Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, People’s Republic of China
- Correspondence: Xi Zou; Shen-lin Liu, Email ;
| |
Collapse
|
14
|
Fan LX, Tao L, Lai YC, Cai SY, Zhao ZY, Yang F, Su RY, Wang Q. Cx32 promotes autophagy and produces resistance to SN‑induced apoptosis via activation of AMPK signalling in cervical cancer. Int J Oncol 2022; 60:10. [PMID: 34970699 DOI: 10.3892/ijo.2021.5300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/01/2021] [Indexed: 11/06/2022] Open
Abstract
The roles of gap junctions (GJs) and its components, connexins, in the autophagy of cervical cancer cells have been rarely investigated. Our previous study demonstrated that connexin 32 (Cx32) exerted an anti‑apoptotic effect on cervical cancer. However, as an important regulator of apoptosis, whether the autophagy is involved in the function of Cx32 on cervical cancer cells is not well defined. The present study aimed to investigate the role of Cx32 on autophagy and apoptosis inhibition in cervical cancer cells. The expression levels of Cx32 and the autophagy‑associated protein LC3‑Ⅱ in paracancerous cervical tissues (n=30) and cervical cancer (n=50) tissues were determined via western blotting. In total, 45 cervical cancer specimens were used to evaluate the clinical relevance of Cx32 and LC3‑Ⅱ. It was found that both Cx32 and LC3‑Ⅱ were upregulated in cervical cancer tissues compared with those in paracancerous cervical tissues. The effect of Cx32 on autophagy was examined by detecting the change of LC3‑Ⅱ using western blotting, transfection with enhanced green fluorescent protein‑LC3 plasmid and transmission electron microscopy analysis. Overexpression of Cx32 significantly enhanced autophagy in HeLa‑Cx32 cells, whereas knockdown of Cx32 suppressed autophagy in C‑33A cells. The flow cytometry results demonstrated that Cx32 inhibited the apoptosis of cervical cancer cells by promoting autophagy. Moreover, Cx32 triggered autophagy via the activation of the AMP‑activated protein kinase (AMPK) signalling, regardless of the presence or absence of GJs. Collectively, it was identified that Cx32 exerted its anti‑apoptotic effect by activating autophagy via the AMPK pathway in cervical cancer, which demonstrates a novel mechanism for Cx32 in human cervical cancer progression.
Collapse
Affiliation(s)
- Li-Xia Fan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yong-Chang Lai
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat‑Sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Shao-Yi Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zi-Yu Zhao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Feng Yang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ri-Ya Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
15
|
Leroy K, Silva Costa CJ, Pieters A, dos Santos Rodrigues B, Van Campenhout R, Cooreman A, Tabernilla A, Cogliati B, Vinken M. Expression and Functionality of Connexin-Based Channels in Human Liver Cancer Cell Lines. Int J Mol Sci 2021; 22:12187. [PMID: 34830068 PMCID: PMC8623148 DOI: 10.3390/ijms222212187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/14/2023] Open
Abstract
Liver cancer cell lines are frequently used in vitro tools to test candidate anti-cancer agents as well as to elucidate mechanisms of liver carcinogenesis. Among such mechanisms is cellular communication mediated by connexin-based gap junctions. The present study investigated changes in connexin expression and gap junction functionality in liver cancer in vitro. For this purpose, seven human liver cancer cell lines, as well as primary human hepatocytes, were subjected to connexin and gap junction analysis at the transcriptional, translational and activity level. Real-time quantitative reverse transcription polymerase chain reaction analysis showed enhanced expression of connexin43 in the majority of liver cancer cell lines at the expense of connexin32 and connexin26. Some of these changes were paralleled at the protein level, as evidenced by immunoblot analysis and in situ immunocytochemistry. Gap junctional intercellular communication, assessed by the scrape loading/dye transfer assay, was generally low in all liver cancer cell lines. Collectively, these results provide a full scenario of modifications in hepatocyte connexin production and gap junction activity in cultured liver cancer cell lines. The findings may be valuable for the selection of neoplastic hepatocytes for future mechanistic investigation and testing of anti-cancer drugs that target connexins and their channels.
Collapse
Affiliation(s)
- Kaat Leroy
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (B.d.S.R.); (R.V.C.); (A.C.); (A.T.)
| | - Cícero Júlio Silva Costa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, Brazil; (C.J.S.C.); (B.C.)
| | - Alanah Pieters
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (B.d.S.R.); (R.V.C.); (A.C.); (A.T.)
| | - Bruna dos Santos Rodrigues
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (B.d.S.R.); (R.V.C.); (A.C.); (A.T.)
| | - Raf Van Campenhout
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (B.d.S.R.); (R.V.C.); (A.C.); (A.T.)
| | - Axelle Cooreman
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (B.d.S.R.); (R.V.C.); (A.C.); (A.T.)
| | - Andrés Tabernilla
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (B.d.S.R.); (R.V.C.); (A.C.); (A.T.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, Brazil; (C.J.S.C.); (B.C.)
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (B.d.S.R.); (R.V.C.); (A.C.); (A.T.)
| |
Collapse
|
16
|
Leroy K, Pieters A, Cooreman A, Van Campenhout R, Cogliati B, Vinken M. Connexin-Based Channel Activity Is Not Specifically Altered by Hepatocarcinogenic Chemicals. Int J Mol Sci 2021; 22:11724. [PMID: 34769157 PMCID: PMC8584159 DOI: 10.3390/ijms222111724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
Connexin-based channels play key roles in cellular communication and can be affected by deleterious chemicals. In this study, the effects of various genotoxic carcinogenic compounds, non-genotoxic carcinogenic compounds and non-carcinogenic compounds on the expression and functionality of connexin-based channels, both gap junctions and connexin hemichannels, were investigated in human hepatoma HepaRG cell cultures. Expression of connexin26, connexin32, and connexin43 was evaluated by means of real-time reverse transcription quantitative polymerase chain reaction analysis, immunoblot analysis and in situ immunostaining. Gap junction functionality was assessed via a scrape loading/dye transfer assay. Opening of connexin hemichannels was monitored by measuring extracellular release of adenosine triphosphate. It was found that both genotoxic and non-genotoxic carcinogenic compounds negatively affect connexin32 expression. However, no specific effects related to chemical type were observed at gap junction or connexin hemichannel functionality level.
Collapse
Affiliation(s)
- Kaat Leroy
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (A.C.); (R.V.C.)
| | - Alanah Pieters
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (A.C.); (R.V.C.)
| | - Axelle Cooreman
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (A.C.); (R.V.C.)
| | - Raf Van Campenhout
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (A.C.); (R.V.C.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo 05508-270, Brazil;
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (K.L.); (A.P.); (A.C.); (R.V.C.)
| |
Collapse
|
17
|
Xiang Y, Peng F, Guo Y, Ge H, Cai S, Fan L, Peng Y, Wen H, Wang Q, Tao L. Connexin32 activates necroptosis through Src-mediated inhibition of caspase 8 in hepatocellular carcinoma. Cancer Sci 2021; 112:3507-3519. [PMID: 34050696 PMCID: PMC8409421 DOI: 10.1111/cas.14994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/28/2022] Open
Abstract
Necroptosis is an alternative form of programmed cell death that generally occurs under apoptosis-deficient conditions. Our previous work showed that connexin32 (Cx32) promotes the malignant progress of hepatocellular carcinoma (HCC) by enhancing the ability of resisting apoptosis in vivo and in vitro. Whether triggering necroptosis is a promising strategy to eliminate the apoptosis-resistant HCC cells with high Cx32 expression remains unknown. In this study, we found that Cx32 expression was positively correlated with the expression of necroptosis protein biomarkers in human HCC specimens, cell lines, and a xenograft model. Treatment with shikonin, a well-used necroptosis inducer, markedly caused necroptosis in HCC cells. Interestingly, overexpressed Cx32 exacerbated shikonin-induced necroptosis, but downregulation of Cx32 alleviated necroptosis in vitro and in vivo. Mechanistically, Cx32 was found to bind to Src and promote Src-mediated caspase 8 phosphorylation and inactivation, which ultimately reduced the activated caspase 8-mediated proteolysis of receptor-interacting serine-threonine protein kinase 1/3, the key molecule for necroptosis activation. In conclusion, we showed that Cx32 contributed to the activation of necroptosis in HCC cells through binding to Src and then mediating the inactivation of caspase 8. The present study suggested that necroptosis inducers could be more favorable than apoptosis inducers to eliminate HCC cells with high expression of Cx32.
Collapse
Affiliation(s)
- Yu‐ke Xiang
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Fu‐hua Peng
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Yun‐quan Guo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central AsiaThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiPR China
| | - Hui Ge
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central AsiaThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiPR China
| | - Shao‐yi Cai
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Li‐xia Fan
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Yue‐xia Peng
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central AsiaThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiPR China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouChina
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central AsiaThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiPR China
| |
Collapse
|
18
|
Katturajan R, Evan Prince S. A role of connexin 43 on the drug-induced liver, kidney, and gastrointestinal tract toxicity with associated signaling pathways. Life Sci 2021; 280:119629. [PMID: 34004253 DOI: 10.1016/j.lfs.2021.119629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022]
Abstract
Drug-induced organ toxicity/injury, especially in the liver, kidney, and gastrointestinal tract, is a systematic disorder that causes oxidative stress formation and inflammation resulting in cell death and organ failure. Current therapies target reactive oxygen species (ROS) scavenging and inhibit inflammatory factors in organ injury to restore the functions and temporary relief. Organ cell function and tissue homeostasis are maintained through gap junction intercellular communication, regulating connexin hemichannels. Mis-regulation of such connexin, especially connexin (Cx) 43, affects a comprehensive process, including cell differentiation, inflammation, and cell death. Aim to describe knowledge about the importance of connexin role and insights therapeutic targeting. Cx43 misregulation has been implicated in recent decades in various diseases. Moreover, in recent years there is increasing evidence that Cx43 is involved in the toxicity process, including hepatic, renal, and gastrointestinal disorders. Cx43 has the potential to initiate the immune system to cause cell death, which has been activated in the acceleration of apoptosis, necroptosis, and autophagy signaling pathway. So far, therapies targeting Cx43 have been under inspection and are subjected to clinical trial phases. This review elucidates the role of Cx43 in drug-induced vital organ injury, and recent reports compromise its function in the major signaling pathways.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India.
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India.
| |
Collapse
|
19
|
Yang J, Fan Y, Xie B, Yang D. A Combination of RNA-Seq Analysis and Use of TCGA Database for Determining the Molecular Mechanism and Identifying Potential Drugs for GJB1 in Ovarian Cancer. Onco Targets Ther 2021; 14:2623-2633. [PMID: 33883906 PMCID: PMC8055374 DOI: 10.2147/ott.s303589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 11/23/2022] Open
Abstract
Background There has been increasing evidence for the vital role played by gap junction protein beta-1 (GJB1) in ovarian cancer (OC) and for the possibility of this protein serving as a therapeutic target. However, the detailed mechanism of GJB1 in OC has not yet been clearly determined. The current study aimed to establish the molecular mechanisms of the involvement of GJB1 in OC and to further predict potential drugs targeting this protein. Methods To better understand the molecular mechanisms of the involvement of GJB1 in OC, RNA-Seq transcriptome sequencing was performed. Then, we carried out an RNA-Seq analysis to determine the genes differentially co-expressed with GJB1. Subsequently, we carried out bioinformation methods to study the upstream regulatory transcriptional factor (TF) of GJB1. Further, the binding of FOXA1 and GJB1 promoter was tested using ChIP-qPCR. Moreover, we performed pathway enrichment to identify the downstream regulatory mechanisms of GJB1. Furthermore, potential drugs targeting GJB1 were screened using AutoDock 4.2. Results We constructed the transcriptional factor FOXA1 regulatory network based on the AnimalTFDB, JASPAR, RNA-Seq, TCGA cohort and ChIP-qPCR to study the upstream regulation of GJB1. In addition, two key pathways for the involvement of GJB1 in OC-namely the "ECM-receptor interaction" and "focal adhesion" KEGG pathways-were identified. Furthermore, ZINC000005552022 was found in a screening to be a potentially promising drug targeting GJB1. Conclusion Our study results suggested that the transcriptional factor FOXA1 regulates the involvement of GJB1 in OC through ECM-receptor interaction and focal adhesion KEGG pathways, and that ZINC000005552022 may have promising potential as a drug targeting GJB1; this finding might be used to help accelerate drug development and improve the outcomes for patients with OC.
Collapse
Affiliation(s)
- Jie Yang
- Obstetrics and Gynecology, Yuncheng County People's Hospital, Heze, People's Republic of China
| | - Yaqin Fan
- Obstetrics and Gynecology, Yuncheng County People's Hospital, Heze, People's Republic of China
| | - Beibei Xie
- Faculty of Health, Yantai Nanshan University, Yantai, People's Republic of China
| | - Dan Yang
- Obstetrics and Gynecology, Yuncheng County People's Hospital, Heze, People's Republic of China.,Faculty of Health, Yantai Nanshan University, Yantai, People's Republic of China
| |
Collapse
|
20
|
Fu YL, Tao L, Peng FH, Zheng NZ, Lin Q, Cai SY, Wang Q. GJA1-20k attenuates Ang II-induced pathological cardiac hypertrophy by regulating gap junction formation and mitochondrial function. Acta Pharmacol Sin 2021; 42:536-549. [PMID: 32620936 PMCID: PMC8115281 DOI: 10.1038/s41401-020-0459-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac hypertrophy (CH) is characterized by an increase in cardiomyocyte size, and is the most common cause of cardiac-related sudden death. A decrease in gap junction (GJ) coupling and mitochondrial dysfunction are important features of CH, but the mechanisms of decreased coupling and energy impairment are poorly understood. It has been reported that GJA1-20k has a strong tropism for mitochondria and is required for the trafficking of connexin 43 (Cx43) to cell-cell borders. In this study, we investigated the effects of GJA1-20k on Cx43 GJ coupling and mitochondrial function in the pathogenesis of CH. We performed hematoxylin-eosin (HE) and Masson staining, and observed significant CH in 18-week-old male spontaneously hypertensive rats (SHRs) compared to age-matched normotensive Wistar-Kyoto (WKY) rats. In cardiomyocytes from SHRs, the levels of Cx43 at the intercalated disc (ID) and the expression of GJA1-20k were significantly reduced, whereas JAK-STAT signaling was activated. Furthermore, the SHR rats displayed suppressed mitochondrial GJA1-20k and mitochondrial biogenesis. Administration of valsartan (10 mg· [Formula: see text] d-1, i.g., for 8 weeks) prevented all of these changes. In neonatal rat cardiomyocytes (NRCMs), overexpression of GJA1-20k attenuated Ang II-induced cardiomyocyte hypertrophy and caused elevated levels of GJ coupling at the cell-cell borders. Pretreatment of NRCMs with the Jak2 inhibitor AG490 (10 µM) blocked Ang II-induced reduction in GJA1-20k expression and Cx43 gap junction formation; knockdown of Jak2 in NRCMs significantly lessened Ang II-induced cardiomyocyte hypertrophy and normalized GJA1-20k expression and Cx43 gap junction formation. Overexpression of GJA1-20k improved mitochondrial membrane potential and respiration and lowered ROS production in Ang II-induced cardiomyocyte hypertrophy. These results demonstrate the importance of GJA1-20k in regulating gap junction formation and mitochondrial function in Ang II-induced cardiomyocyte hypertrophy, thus providing a novel therapeutic strategy for patients with cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Yi-le Fu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fu-Hua Peng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ning-Ze Zheng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qing Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shao-Yi Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
21
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
22
|
Adak A, Unal YC, Yucel S, Vural Z, Turan FB, Yalcin-Ozuysal O, Ozcivici E, Mese G. Connexin 32 induces pro-tumorigenic features in MCF10A normal breast cells and MDA-MB-231 metastatic breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118851. [PMID: 32918981 DOI: 10.1016/j.bbamcr.2020.118851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022]
Abstract
Connexins (Cx), the basic subunit of gap junctions, play important roles in cell homeostasis, and their abnormal expression and function are associated with human hereditary diseases and cancers. In tumorigenesis, connexins were observed to have both anti-tumorigenic and pro-tumorigenic roles in a context- and stage-dependent manner. Initially, Cx26 and Cx43 were thought to be the only connexins involved in normal breast homeostasis and breast cancer. Later on, association of Cx32 expression with lymph node metastasis of breast cancer and subsequent demonstration of its expression in normal breast tissue suggested that Cx32 contributes to breast tissue homeostasis. Here, we aimed to determine the effects of Cx32 on normal breast cells, MCF10A, and on breast cancer cells, MDA-MB-231. Cx32 overexpression had profound effects on MCF10A cells, decreasing cell proliferation by increasing the doubling time of MCF10A. Furthermore, MCF10A cells acquired mesenchymal-like appearance upon Cx32 expression and had increased migration capacity and expression of both E-cadherin and vimentin. In contrast, Cx32 overexpression altered the EMT markers of MDA-MB-231 by increasing the expression of mesenchymal markers, such as slug and vimentin, and decreasing E-cadherin expression without affecting their proliferation and morphology. Our results indicate, for the first time in the literature, that Cx32 has tumor-promoting roles in MCF10A and MDA-MB-231 cells.
Collapse
Affiliation(s)
- Asli Adak
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Yagmur Ceren Unal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Simge Yucel
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Zehra Vural
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Fatma Basak Turan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey.
| |
Collapse
|
23
|
Connexins-Therapeutic Targets in Cancers. Int J Mol Sci 2020; 21:ijms21239119. [PMID: 33266154 PMCID: PMC7730856 DOI: 10.3390/ijms21239119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Connexins (Cx) are members of a protein family that forms intercellular channels localised in gap junction (GJ) plaques and single transmembrane channels called hemichannels. They participate in intercellular communication or communication between the intracellular and extracellular environments. Connexins affect cell homeostasis, growth and differentiation by enabling the exchange of metabolites or by interfering with various signalling pathways. Alterations in the functionality and the expression of connexins have been linked to the occurrence of many diseases. Connexins have been already linked to cancers, cardiac and brain disorders, chronic lung and kidney conditions and wound healing processes. Connexins have been shown either to suppress cancer tumour growth or to increase tumorigenicity by promoting cancer cell growth, migration and invasiveness. A better understanding of the complexity of cancer biology related to connexins and intercellular communication could result in the design of novel therapeutic strategies. The modulation of connexin expression may be an effective therapeutic approach in some types of cancers. Therefore, one important challenge is the search for mechanisms and new drugs, selectively modulating the expression of various connexin isoforms. We performed a systematic literature search up to February 2020 in the electronic databases PubMed and EMBASE. Our search terms were as follows: connexins, hemichannels, cancer and cancer treatment. This review aims to provide information about the role of connexins and gap junctions in cancer, as well as to discuss possible therapeutic options that are currently being studied.
Collapse
|
24
|
Leroy K, Pieters A, Tabernilla A, Cooreman A, Van Campenhout R, Cogliati B, Vinken M. Targeting gap junctional intercellular communication by hepatocarcinogenic compounds. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:255-275. [PMID: 32568623 DOI: 10.1080/10937404.2020.1781010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gap junctions in liver, as in other organs, play a critical role in tissue homeostasis. Inherently, these cellular constituents are major targets for systemic toxicity and diseases, including cancer. This review provides an overview of chemicals that compromise liver gap junctions, in particular biological toxins, organic solvents, pesticides, pharmaceuticals, peroxides, metals and phthalates. The focus in this review is placed upon the mechanistic scenarios that underlie these adverse effects. Further, the potential use of gap junctional activity as an in vitro biomarker to identify non-genotoxic hepatocarcinogenic chemicals is discussed.
Collapse
Affiliation(s)
- Kaat Leroy
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Andrés Tabernilla
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Cidade Universitária , São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| |
Collapse
|