1
|
Sathishbabu P, Uthaiah CA, Hani U. Comprehensive evaluation of EGFR and AKT targeting efficacy of resveratrol loaded PEGylated liposomes for the glioblastoma management: In silico, in vitro BBB permeation studies. Bioorg Chem 2025; 154:108077. [PMID: 39718077 DOI: 10.1016/j.bioorg.2024.108077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Red grapes contain resveratrol (Resv), a polyphenol with anti-inflammatory, anti-diabetic, and anticancer properties. In this study, in silico molecular docking was used to assess the binding affinity of Resv to target proteins. Resv was encapsulated in PEGylated liposomes (LNPs) using Phospholipon 90G, cholesterol, and DSPE-mPEG2000. The particle size, surface charge, and structural details of the Res-LNPs and the Blank LNPs were determined. The effects of Res-LNPs and pure Resv were examined in vitro in C6 (rat glioma) and U87 MG (human glioblastoma) cell lines to evaluate cell survival, uptake, wound healing, and apoptosis. BBB permeability of the Res-LNPs was assessed using an in vitro BBB model with hCMEC/D3 cells. EGFR and AKT 1 and 2 expression levels in Resv-treated U87 MG cells were analyzed by RT-qPCR. Res-LNPs had a particle size of 155.0 ± 1.62 nm and an encapsulation efficiency (% EE) of 76.62 ± 3.43. FTIR, DSC, and XRD analyses confirmed the complete entrapment of Resv within the LNPs, displaying a unilamellar spherical morphology, as verified by SEM and TEM. In vitro studies on C6 and U87 MG cell lines showed that Res-LNPs significantly improved cell viability, uptake, migration, and apoptosis compared with Resv. An in vitro BBB model demonstrated that Res-LNPs efficiently crossed the BBB and accumulated in brain cancer cells. RT-qPCR results indicated that Resv treatment reduced EGFR and AKT 1 and 2 gene expression in U87 MG cells. These results suggest that Res-LNPs effectively crossed BBB and inhibited EGFR and its downstream pathways in glioma cell lines.
Collapse
Affiliation(s)
- Paranthaman Sathishbabu
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Tamaka 563103, Karnataka, India; Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| | - Chinnappa A Uthaiah
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, (a DST-FIST Sponsored Centre) Department of Biochemistry (a DST-FIST Sponsored Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
2
|
Wang J, Luo J, Yang S, Deng Y, Chen P, Tan Y, Liu Y. Development and validation of disulfidptosis-related genes signature for patients with glioma. Discov Oncol 2024; 15:758. [PMID: 39692962 DOI: 10.1007/s12672-024-01664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Disulfidptosis has recently emerged as a novel form of regulated cell death (RCD). Evasion of cell death is a hallmark of cancer, and the resistance of many tumors to apoptosis-inducing therapies has heightened interest in exploring alternative RCD mechanisms. METHODS Transcriptomic and clinical data were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA). Glioma samples were classified using non-negative matrix factorization (NMF). A predictive model was constructed using Lasso regression analysis, and its performance was evaluated through receiver operating characteristic (ROC) and Kaplan-Meier survival analyses. The relationship between the model and the tumor immune microenvironment (TIME) as well as treatment sensitivity was also assessed. Finally, we validated the expression of key signature genes in glioma. RESULTS Glioma samples were categorized into two distinct subtypes based on disulfidptosis-related genes, showing significant differences in overall survival (OS) and progression-free survival (PFS) between the subtypes. A genetic risk score model was then developed using these genes. A nomogram predicting OS was constructed using the risk score and clinical variables. Patients were stratified into low- and high-risk groups based on the median risk score from the TCGA cohort. Low-risk patients had significantly better outcomes compared to high-risk patients (TCGA cohort, OS: p < 0.001; PFS: p < 0.001; CGGA cohort, OS: p < 0.001). The risk score was associated with HLA expression, immune checkpoint genes, immune cell infiltration, immune function, tumor mutation burden, tumor stemness score, and drug sensitivity. Lastly, the expression of 11 signature genes was confirmed in glioma tissues. CONCLUSIONS The disulfidptosis-related gene-based risk score model effectively predicted glioma outcomes and highlighted the role of disulfidptosis-related genes in tumor immunity. This study offers potential new avenues for glioma treatment by targeting disulfidptosis.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Junchi Luo
- Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Sha Yang
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Peng Chen
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Ying Tan
- Zunyi Medical University, Zunyi, Guizhou Province, China
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yang Liu
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China.
| |
Collapse
|
3
|
Olthoff K, Nigra AD, Milla Sanabria LN. Erlotinib Improves the Response of Glioblastoma Cells Resistant to Photodynamic Therapy. Brain Sci 2024; 14:1192. [PMID: 39766391 PMCID: PMC11674483 DOI: 10.3390/brainsci14121192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Glioblastoma (GBM) is the most common and deadly type of brain cancer in adults. Dysregulation of receptor tyrosine kinase pathways, such as the epidermal growth factor receptor (EGFR), contributes to therapeutic resistance. Drugs that inhibit tyrosine kinase activity and monoclonal antibodies against EGFR are strategies used in clinical trials. Photodynamic therapy (PDT) is a tumor treatment that involves the administration of a photosensitizing drug, followed by its activation with visible light, which causes cell death due to oxidative stress. Although PDT helps prolong median survival in patients with GBM, complete remission has not been achieved. Populations of GBM cells have been obtained from the T98G line resistant to PDT with methyl-5-aminolevulinic acid (Me-ALA) for characterization, comparing them with the original parental population. Objective: The objective of this work was to evaluate the general response of T98G GBM cells resistant to PDT when EGFR activity is inhibited with the drug erlotinib. Methods and Results: It has been observed that the administration of the EGFR inhibitor drug in combination with PDT reduced viability (MTT) in resistant populations compared to PDT alone. Furthermore, the PpIX content (flow cytometry) was increased in the resistant population when cells were incubated with Me-ALA and erlotinib. Erlotinib prevented cell proliferation of parental and resistant spheroids. Wound closure was reduced in both parental and PDT-resistant populations. Conclusions: Our results indicate that EGFR activation would be relevant in the resistance of GBM cells to PDT.
Collapse
Affiliation(s)
| | | | - Laura N. Milla Sanabria
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), INBIAS (CONICET-UNRC), Río Cuarto 5800, Argentina (A.D.N.)
| |
Collapse
|
4
|
Aghova T, Lhotska H, Lizcova L, Svobodova K, Hodanova L, Janeckova K, Vucinic K, Gregor M, Konecna D, Kramar F, Soukup J, Netuka D, Zemanova Z. Diagnostic challenges in complicated case of glioblastoma. Pathol Oncol Res 2024; 30:1611875. [PMID: 39534304 PMCID: PMC11554483 DOI: 10.3389/pore.2024.1611875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma is the commonest primary malignant brain tumor, with a very poor prognosis and short overall survival. It is characterized by its high intra- and intertumoral heterogeneity, in terms of both the level of single-nucleotide variants, copy number alterations, and aneuploidy. Therefore, routine diagnosis can be challenging in some cases. We present a complicated case of glioblastoma, which was characterized with five cytogenomic methods: interphase fluorescence in situ hybridization, multiplex ligation-dependent probe amplification, comparative genomic hybridization array and single-nucleotide polymorphism, targeted gene panel, and whole-genome sequencing. These cytogenomic methods revealed classical findings associated with glioblastoma, such as a lack of IDH and TERT mutations, gain of chromosome 7, and loss of chromosome 10. At least three pathological clones were identified, including one with whole-genome duplication, and one with loss of 1p and suspected loss of 19q. Deletion and mutation of the TP53 gene were detected with numerous breakends on 17p and 20q. Based on these findings, we recommend a combined approach to the diagnosis of glioblastoma involving the detection of copy number alterations, mutations, and aneuploidy. The choice of the best combination of methods is based on cost, time required, staff expertise, and laboratory equipment. This integrated strategy could contribute directly to tangible improvements in the diagnosis, prognosis, and prediction of the therapeutic responses of patients with brain tumors.
Collapse
Affiliation(s)
- Tatiana Aghova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, Prague, Czechia
| | - Halka Lhotska
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, Prague, Czechia
| | - Libuse Lizcova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, Prague, Czechia
| | - Karla Svobodova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, Prague, Czechia
| | - Lucie Hodanova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, Prague, Czechia
| | - Karolina Janeckova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, Prague, Czechia
| | - Kim Vucinic
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Dora Konecna
- Department of Neurosurgery, 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Prague, Czechia
| | - Filip Kramar
- Department of Neurosurgery, 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Prague, Czechia
| | - Jiri Soukup
- Department of Pathology, 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Prague, Czechia
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czechia
- Department of Pathology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czechia
| | - David Netuka
- Department of Neurosurgery, 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Prague, Czechia
| | - Zuzana Zemanova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, Prague, Czechia
| |
Collapse
|
5
|
Li Z, Deng Z, Liu F, Li C, Yang K, Gong X, Feng S, Zeng Y, Zhou H, Fan F, Luo C, Liu Z, Zhang M. Clinical sequencing reveals diagnostic, therapeutic, and prognostic biomarkers for adult-type diffuse gliomas. Heliyon 2024; 10:e37712. [PMID: 39315202 PMCID: PMC11417559 DOI: 10.1016/j.heliyon.2024.e37712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Diffuse gliomas in adults are highly infiltrative and largely incurable. Whole exome sequencing (WES) has been demonstrated very useful in genetic analysis. Here WES was performed to characterize genomic landscape of adult-type diffuse gliomas to discover the diagnostic, therapeutic and prognostic biomarkers. Somatic and germline variants of 66 patients with adult-type diffuse gliomas were detected by WES based on the next-generation sequencing. TCGA and CGGA datasets were included to analyze the integrated diagnosis and prognosis. Among 66 patients, the diagnosis of 9 cases was changed, in which 8 cases of astrocytoma were corrected into IDH-wildtype glioblastoma (GBM), and 1 oligodendroglioma without 1p/19q co-deletion into astrocytoma. The distribution of mutations including ATRX/TP53 differed in three cohorts. The genetic mutations in GBM mainly concentrated on the cell cycle, PI3K and RTK pathways. The mutational landscape of astrocytoma was more similar to that of GBM, with the highest frequency in germline variants. Patients with IDH-mutant astrocytoma harboring SNVs of PIK3CA and PIK3R1 showed a significantly worse overall survival (OS) than wild-type patients. AEBP1 amplification was associated with shorter OS in GBM. Our study suggests that clinical sequencing can recapitulate previous findings, which may provide a powerful approach to discover diagnostic, therapeutic and prognostic markers for precision medicine in adult-type diffuse gliomas.
Collapse
Affiliation(s)
- Zhenyan Li
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Zhenghao Deng
- Department of Pathology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Chuntao Li
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Kui Yang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xuan Gong
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Hongshu Zhou
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Chengke Luo
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, 410008, China
| |
Collapse
|
6
|
Ius T, Somma T, Pasqualetti F, Berardinelli J, Vitulli F, Caccese M, Cella E, Cenciarelli C, Pozzoli G, Sconocchia G, Zeppieri M, Gerardo C, Caffo M, Lombardi G. Local therapy in glioma: An evolving paradigm from history to horizons (Review). Oncol Lett 2024; 28:440. [PMID: 39081966 PMCID: PMC11287108 DOI: 10.3892/ol.2024.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/14/2024] [Indexed: 08/02/2024] Open
Abstract
Despite the implementation of multimodal treatments after surgery, glioblastoma (GBM) remains an incurable disease, posing a significant challenge in neuro-oncology. In this clinical setting, local therapy (LT), a developing paradigm, has received significant interest over time due to its potential to overcome the drawbacks of conventional therapy options for GBM. The present review aimed to trace the historical development, highlight contemporary advances and provide insights into the future horizons of LT in GBM management. In compliance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols criteria, a systematic review of the literature on the role of LT in GBM management was conducted. A total of 2,467 potentially relevant articles were found and, after removal of duplicates, 2,007 studies were screened by title and abstract (Cohen's κ coefficient=0.92). Overall, it emerged that 15, 10 and 6 clinical studies explored the clinical efficiency of intraoperative local treatment modalities, local radiotherapy and local immunotherapy, respectively. GBM recurrences occur within 2 cm of the radiation field in 80% of cases, emphasizing the significant influence of local factors on recurrence. This highlights the urgent requirement for LT strategies. In total, three primary reasons have thus led to the development of numerous LT solutions in recent decades: i) Intratumoral implants allow the blood-brain barrier to be bypassed, resulting in limited systemic toxicity; ii) LT facilitates bridging therapy between surgery and standard treatments; and iii) given the complexity of GBM, targeting multiple components of the tumor microenvironment through ligands specific to various elements could have a synergistic effect in treatments. Considering the spatial and temporal heterogeneity of GBM, the disease prognosis could be significantly improved by a combination of therapeutic strategies in the era of precision medicine.
Collapse
Affiliation(s)
- Tamara Ius
- Unit of Neurosurgery, Head-Neck and Neurosciences Department, University Hospital of Udine, I-33100 Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | | | - Jacopo Berardinelli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Francesca Vitulli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Mario Caccese
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| | - Eugenia Cella
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
- Medical Oncology 2, San Martino Hospital-IRCCS, I-16131 Genoa Italy
| | - Carlo Cenciarelli
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Giacomo Pozzoli
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, I-33100 Udine, Italy
| | - Caruso Gerardo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Maria Caffo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Giuseppe Lombardi
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| |
Collapse
|
7
|
Bonada M, Pittarello M, De Fazio E, Gans A, Alimonti P, Slika H, Legnani F, Di Meco F, Tyler B. Pediatric Hemispheric High-Grade Gliomas and H3.3-G34 Mutation: A Review of the Literature on Biological Features and New Therapeutic Strategies. Genes (Basel) 2024; 15:1038. [PMID: 39202398 PMCID: PMC11353413 DOI: 10.3390/genes15081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Pediatric high-grade glioma (pHGG) encompasses a wide range of gliomas with different genomic, epigenomic, and transcriptomic features. Almost 50% of pHGGs present a mutation in genes coding for histone 3, including the subtype harboring the H3.3-G34 mutation. In this context, histone mutations are frequently associated with mutations in TP53 and ATRX, along with PDGFRA and NOTCH2NL amplifications. Moreover, the H3.3-G34 histone mutation induces epigenetic changes in immune-related genes and exerts modulatory functions on the microenvironment. Also, the functionality of the blood-brain barrier (BBB) has an impact on treatment response. The prognosis remains poor with conventional treatments, thus eliciting the investigation of additional and alternative therapies. Promising molecular targets include PDGFRA amplification, BRAF mutation, EGFR amplification, NF1 loss, and IDH mutation. Considering that pHGGs harboring the H3.3-G34R mutation appear to be more susceptible to immunotherapies (ITs), different options have been recently explored, including immune checkpoint inhibitors, antibody mediated IT, and Car-T cells. This review aims to summarize the knowledge concerning cancer biology and cancer-immune cell interaction in this set of pediatric gliomas, with a focus on possible therapeutic options.
Collapse
Affiliation(s)
- Marta Bonada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Matilde Pittarello
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy;
| | - Emerson De Fazio
- Department of Medicine, Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy;
| | - Alessandro Gans
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- ASST Ovest Milanese, Neurology and Stroke Unit, Neuroscience Department, 20025 Legnano, Italy
| | - Paolo Alimonti
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02120, USA;
| | - Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Federico Legnani
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy; (M.B.); (F.L.); (F.D.M.)
- Department of Oncology and Hemato-Oncology, University of Milan School of Medicine, Via Rudini 8, 20122 Milan, Italy;
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| |
Collapse
|
8
|
Sherman JH, Bobak A, Arsiwala T, Lockman P, Aulakh S. Targeting drug resistance in glioblastoma (Review). Int J Oncol 2024; 65:80. [PMID: 38994761 PMCID: PMC11251740 DOI: 10.3892/ijo.2024.5668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/16/2024] [Indexed: 07/13/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the central nervous system in adults. The current standard of care includes surgery, radiation therapy, temozolomide; and tumor‑treating fields leads to dismal overall survival. There are far limited treatments upon recurrence. Therapies to date are ineffective as a result of several factors, including the presence of the blood‑brain barrier, blood tumor barrier, glioma stem‑like cells and genetic heterogeneity in GBM. In the present review, the potential mechanisms that lead to treatment resistance in GBM and the measures which have been taken so far to attempt to overcome the resistance were discussed. The complex biology of GBM and lack of comprehensive understanding of the development of therapeutic resistance in GBM demands discovery of novel antigens that are targetable and provide effective therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan H. Sherman
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Martinsburg, WV 25401, USA
| | - Adam Bobak
- Department of Biology, Seton Hill University, Greensburg, PA 15601, USA
| | - Tasneem Arsiwala
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Paul Lockman
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Sonikpreet Aulakh
- Section of Hematology/Oncology, Department of Internal Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
9
|
Joyce LJ, Lindsay AJ. A systematic computational analysis of the endosomal recycling pathway in glioblastoma. Biochem Biophys Rep 2024; 38:101700. [PMID: 38638676 PMCID: PMC11024495 DOI: 10.1016/j.bbrep.2024.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive brain cancer in adults. The standard treatment is brutal and has changed little in 20 years, and more than 85% of patients will die within two years of their diagnosis. There is thus an urgent need to identify new drug targets and develop novel therapeutic strategies to increase survival and improve quality of life. Using publicly available genomics, transcriptomics and proteomics datasets, we compared the expression of endosomal recycling pathway regulators in non-tumour brain tissue with their expression in GBM. We found that key regulators of this pathway are dysregulated in GBM and their expression levels can be linked to survival outcomes. Further analysis of the differentially expressed endosomal recycling regulators allowed us to generate an 8-gene prognostic signature that can distinguish low-risk from high-risk GBM and potentially identify tumours that may benefit from treatment with endosomal recycling inhibitors. This study presents the first systematic analysis of the endosomal recycling pathway in glioblastoma and suggests it could be a promising target for the development of novel therapies and therapeutic strategies to improve outcomes for patients.
Collapse
Affiliation(s)
- Luke J. Joyce
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J. Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
10
|
Orda MA, Fowler PMPT, Tayo LL. Modular Hub Genes in DNA Microarray Suggest Potential Signaling Pathway Interconnectivity in Various Glioma Grades. BIOLOGY 2024; 13:206. [PMID: 38666818 PMCID: PMC11048586 DOI: 10.3390/biology13040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Gliomas have displayed significant challenges in oncology due to their high degree of invasiveness, recurrence, and resistance to treatment strategies. In this work, the key hub genes mainly associated with different grades of glioma, which were represented by pilocytic astrocytoma (PA), oligodendroglioma (OG), anaplastic astrocytoma (AA), and glioblastoma multiforme (GBM), were identified through weighted gene co-expression network analysis (WGCNA) of microarray datasets retrieved from the Gene Expression Omnibus (GEO) database. Through this, four highly correlated modules were observed to be present across the PA (GSE50161), OG (GSE4290), AA (GSE43378), and GBM (GSE36245) datasets. The functional annotation and pathway enrichment analysis done through the Database for Annotation, Visualization, and Integrated Discovery (DAVID) showed that the modules and hub genes identified were mainly involved in signal transduction, transcription regulation, and protein binding, which collectively deregulate several signaling pathways, mainly PI3K/Akt and metabolic pathways. The involvement of several hub genes primarily linked to other signaling pathways, including the cAMP, MAPK/ERK, Wnt/β-catenin, and calcium signaling pathways, indicates potential interconnectivity and influence on the PI3K/Akt pathway and, subsequently, glioma severity. The Drug Repurposing Encyclopedia (DRE) was used to screen for potential drugs based on the up- and downregulated hub genes, wherein the synthetic progestin hormones norgestimate and ethisterone were the top drug candidates. This shows the potential neuroprotective effect of progesterone against glioma due to its influence on EGFR expression and other signaling pathways. Aside from these, several experimental and approved drug candidates were also identified, which include an adrenergic receptor antagonist, a PPAR-γ receptor agonist, a CDK inhibitor, a sodium channel blocker, a bradykinin receptor antagonist, and a dopamine receptor agonist, which further highlights the gene network as a potential therapeutic avenue for glioma.
Collapse
Affiliation(s)
- Marco A. Orda
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines
| | - Peter Matthew Paul T. Fowler
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| |
Collapse
|
11
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
12
|
Ghosh D, Pryor B, Jiang N. Cellular signaling in glioblastoma: A molecular and clinical perspective. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:1-47. [PMID: 38782497 DOI: 10.1016/bs.ircmb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor with an average life expectancy of less than 15 months. Such high patient mortality in GBM is pertaining to the presence of clinical and molecular heterogeneity attributed to various genetic and epigenetic alterations. Such alterations in critically important signaling pathways are attributed to aberrant gene signaling. Different subclasses of GBM show predominance of different genetic alterations and therefore, understanding the complex signaling pathways and their key molecular components in different subclasses of GBM is extremely important with respect to clinical management. In this book chapter, we summarize the common and important signaling pathways that play a significant role in different subclasses and discuss their therapeutic targeting approaches in terms of preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Debarati Ghosh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.
| | - Brett Pryor
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nancy Jiang
- Wellesley College, Wellesley, MA, United States
| |
Collapse
|
13
|
Huang M, Li S, Li P, Kang Z, Zhang B, Li W. Drug clinical trials on high-grade gliomas: challenges and hopes. Cancer Biol Med 2024; 20:j.issn.2095-3941.2023.0364. [PMID: 38318805 PMCID: PMC10845939 DOI: 10.20892/j.issn.2095-3941.2023.0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/24/2023] [Indexed: 02/07/2024] Open
Affiliation(s)
- Mengqian Huang
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenglan Li
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Parker Li
- Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuang Kang
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Botao Zhang
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Frumento D, Grossi G, Falesiedi M, Musumeci F, Carbone A, Schenone S. Small Molecule Tyrosine Kinase Inhibitors (TKIs) for Glioblastoma Treatment. Int J Mol Sci 2024; 25:1398. [PMID: 38338677 PMCID: PMC10855061 DOI: 10.3390/ijms25031398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
In the last decade, many small molecules, usually characterized by heterocyclic scaffolds, have been designed and synthesized as tyrosine kinase inhibitors (TKIs). Among them, several compounds have been tested at preclinical and clinical levels to treat glioblastoma multiforme (GBM). GBM is the most common and aggressive type of cancer originating in the brain and has an unfavorable prognosis, with a median survival of 15-16 months and a 5-year survival rate of 5%. Despite recent advances in treating GBM, it represents an incurable disease associated with treatment resistance and high recurrence rates. For these reasons, there is an urgent need for the development of new pharmacological agents to fight this malignancy. In this review, we reported the compounds published in the last five years, which showed promising activity in GBM preclinical models acting as TKIs. We grouped the compounds based on the targeted kinase: first, we reported receptor TKIs and then, cytoplasmic and peculiar kinase inhibitors. For each small molecule, we included the chemical structure, and we schematized the interaction with the target for some representative compounds with the aim of elucidating the mechanism of action. Finally, we cited the most relevant clinical trials.
Collapse
Affiliation(s)
| | | | | | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | | |
Collapse
|
15
|
Guo T, Wu C, Zhang J, Yu J, Li G, Jiang H, Zhang X, Yu R, Liu X. Dual blockade of EGFR and PI3K signaling pathways offers a therapeutic strategy for glioblastoma. Cell Commun Signal 2023; 21:363. [PMID: 38115126 PMCID: PMC10729576 DOI: 10.1186/s12964-023-01400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a devastating disease that lacks effective drugs for targeted therapy. Previously, we found that the third-generation epidermal growth factor receptor (EGFR) inhibitor AZD-9291 persistently blocked the activation of the ERK pathway but had no inhibitory effect on the phosphoinositide 3-kinase (PI3K)/Akt pathway. Given that the PI3K inhibitor GDC-0084 is being evaluated in phase I/II clinical trials of GBM treatment, we hypothesized that combined inhibition of the EGFR/ERK and PI3K/Akt pathways may have a synergistic effect in the treatment of GBM. METHODS The synergistic effects of cotreatment with AZD-9291 and GDC-0084 were validated using cell viability assays in GBM and primary GBM cell lines. Moreover, the underlying inhibitory mechanisms were assessed through colony formation, EdU proliferation, and cell cycle assays, as well as RNA-seq analyses and western blot. The therapeutic effects of the drug combination on tumor growth and survival were investigated in mice bearing tumors using subcutaneously or intracranially injected LN229 xenografts. RESULTS Combined treatment with AZD-9291 and GDC-0084 synergistically inhibited the proliferation and clonogenic survival, as well as induced cell cycle arrest of GBM cells and primary GBM cells, compared to monotherapy. Moreover, AZD-9291 plus GDC-0084 combination therapy significantly inhibited the growth of subcutaneous tumors and orthotopic brain tumor xenografts, thus prolonging the survival of tumor-bearing mice. More importantly, the combination of AZD-9291 and GDC-0084 simultaneously blocked the activation of the EGFR/MEK/ERK and PI3K/AKT/mTOR signaling pathways, thereby exerting significant antitumor activity. CONCLUSION Our findings demonstrate that the combined blockade of the EGFR/MEK/ERK and PI3K/AKT/mTOR pathways is more effective against GBM than inhibition of each pathway alone, both in vitro and in vivo. Our results suggest that AZD-9291 combined with GDC-0084 may be considered as a potential treatment strategy in future clinical trials. Video Abstract.
Collapse
Affiliation(s)
- Tongxuan Guo
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Changyong Wu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junhao Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiefeng Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guoxi Li
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongyan Jiang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
16
|
Sarkar S, Deyoung T, Ressler H, Chandler W. Brain Tumors: Development, Drug Resistance, and Sensitization - An Epigenetic Approach. Epigenetics 2023; 18:2237761. [PMID: 37499114 PMCID: PMC10376921 DOI: 10.1080/15592294.2023.2237761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
In this article, we describe contrasting developmental aspects of paediatric and adult brain tumours. We hypothesize that the formation of cancer progenitor cells, for both paediatric and adult, could be due to epigenetic events. However, the progression of adult brain tumours selectively involves more mutations compared to paediatric tumours. We further discuss epigenetic switches, comprising both histone modifications and DNA methylation, and how they can differentially regulate transcription and expression of oncogenes and tumour suppressor genes. Next, we summarize the currently available therapies for both types of brain tumours, explaining the merits and failures leading to drug resistance. We analyse different mechanisms of drug resistance and the role of epigenetics in this process. We then provide a rationale for combination therapy, which includes epigenetic drugs. In the end, we postulate a concept which describes how a combination therapy could be initiated. The timing, doses, and order of individual drug regimens will depend on the individual case. This type of combination therapy will be part of a personalized medicine which will differ from patient to patient.
Collapse
Affiliation(s)
- Sibaji Sarkar
- Division of Biotechnology, Quincy College, Quincy, MA, USA
- Division of Biology, STEM, MBC College, Wellesley, MA, USA
- Division of Biology, STEM, RC College Boston, Boston, MA, USA
| | - Tara Deyoung
- Division of Biotechnology, Quincy College, Quincy, MA, USA
| | - Hope Ressler
- Division of Biology, STEM, MBC College, Wellesley, MA, USA
| | | |
Collapse
|
17
|
Schatz J, Ladinig A, Fietkau R, Putz F, Gaipl US, Frey B, Derer A. Normofractionated irradiation and not temozolomide modulates the immunogenic and oncogenic phenotype of human glioblastoma cell lines. Strahlenther Onkol 2023; 199:1140-1151. [PMID: 36480032 PMCID: PMC10673751 DOI: 10.1007/s00066-022-02028-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/06/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor, with an overall poor prognosis after diagnosis. Conventional treatment includes resection, chemotherapy with temozolomide (TMZ), and concomitant radiotherapy (RT). The recent success of immunotherapy approaches in other tumor entities, particularly with immune checkpoint inhibitors, could not be clinically transferred to GBM treatment so far. Therefore, preclinical analyses of the expression of both immune-suppressive and immune-stimulatory checkpoint molecules following treatment of human glioblastoma cells with RT and/or temozolomide is needed to design feasible radio(chemo)immunotherapy trials for GBM in the future. METHODS Five human glioblastoma cell lines (H4, HROG-06, U118, U138, U251) were analyzed regarding their clonogenic survival and cell death forms after chemotherapy (CT) with TMZ and/or normofractionated RT (5 × 2 Gy) via multicolor flow cytometry. Further, the tumor cell surface expression of immune-activating (OX40L, CD137L, CD70, and ICOSL) and immune-suppressive (PD-L1, PD-L2, HVEM) checkpoint molecules and of an oncogenic molecule (EGFR) were measured via multicolor flow cytometry after CT and RT alone or after RCT. RESULTS Normofractionated RT and not TMZ was the trigger of induction of predominantly necrosis in the glioblastoma cells. Notably, clonogenicity did not correlate with cell death induction by RT. The basal expression level of immune-suppressive PD-L1, PD-L2, and HVEM varied in the analyzed glioblastoma cells. RT, but not TMZ, resulted in a significant upregulation of PD-L1 and PD-L2 in all tumor cells investigated. Also, the expression of HVEM was increased after RT in most of the GBM cell lines. In contrast, normofractionated RT individually modulated expression of the stimulating immune checkpoint molecules CD70, CD137L, OX40L, and ICOSL1. The oncogenic factor EGFR was significantly increased by irradiation in all examined cell lines, albeit to a different extent. None of the investigated molecules were downregulated after the treatments. CONCLUSION Normofractionated radiotherapy modulates the immunogenic as well as the oncogenic phenotype of glioblastoma cells, partly individually. Therefore, not only PD-L1 and PD-L2, but also other immunogenic molecules expressed on the surface of glioblastoma cells could serve as targets for immune checkpoint blockade in combination with RT in the future.
Collapse
Affiliation(s)
- Julia Schatz
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstr. 27, 91054, Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Alexandra Ladinig
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstr. 27, 91054, Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstr. 27, 91054, Erlangen, Germany.
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstr. 27, 91054, Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Anja Derer
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstr. 27, 91054, Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
18
|
Begagić E, Pugonja R, Bečulić H, Čeliković A, Tandir Lihić L, Kadić Vukas S, Čejvan L, Skomorac R, Selimović E, Jaganjac B, Juković-Bihorac F, Jusić A, Pojskić M. Molecular Targeted Therapies in Glioblastoma Multiforme: A Systematic Overview of Global Trends and Findings. Brain Sci 2023; 13:1602. [PMID: 38002561 PMCID: PMC10669565 DOI: 10.3390/brainsci13111602] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
This systematic review assesses current molecular targeted therapies for glioblastoma multiforme (GBM), a challenging condition with limited treatment options. Using PRISMA methodology, 166 eligible studies, involving 2526 patients (61.49% male, 38.51% female, with a male-to-female ratio of 1.59/1), were analyzed. In laboratory studies, 52.52% primarily used human glioblastoma cell cultures (HCC), and 43.17% employed animal samples (mainly mice). Clinical participants ranged from 18 to 100 years, with 60.2% using combined therapies and 39.8% monotherapies. Mechanistic categories included Protein Kinase Phosphorylation (41.6%), Cell Cycle-Related Mechanisms (18.1%), Microenvironmental Targets (19.9%), Immunological Targets (4.2%), and Other Mechanisms (16.3%). Key molecular targets included Epidermal Growth Factor Receptor (EGFR) (10.8%), Mammalian Target of Rapamycin (mTOR) (7.2%), Vascular Endothelial Growth Factor (VEGF) (6.6%), and Mitogen-Activated Protein Kinase (MEK) (5.4%). This review provides a comprehensive assessment of molecular therapies for GBM, highlighting their varied efficacy in clinical and laboratory settings, ultimately impacting overall and progression-free survival in GBM management.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Ragib Pugonja
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
- Department of General Medicine, Primary Health Care Center, Nikole Šubića Zrinjskog bb., 72260 Busovača, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of General Medicine, Primary Health Care Center, Nikole Šubića Zrinjskog bb., 72260 Busovača, Bosnia and Herzegovina
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Amila Čeliković
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Lejla Tandir Lihić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Samra Kadić Vukas
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Lejla Čejvan
- Department of General Medicine, School of Medicine, Unversity of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (E.B.)
| | - Rasim Skomorac
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
- Department of Surgery, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Edin Selimović
- Department of Surgery, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Belma Jaganjac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (B.J.)
| | - Fatima Juković-Bihorac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina; (B.J.)
- Department of Pathology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
- Department of Pathology, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Aldin Jusić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 76, 72000 Zenica, Bosnia and Herzegovina
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| |
Collapse
|
19
|
Martija AA, Krauß A, Bächle N, Doth L, Christians A, Krunic D, Schneider M, Helm D, Will R, Hartmann C, Herold-Mende C, von Deimling A, Pusch S. EMP3 sustains oncogenic EGFR/CDK2 signaling by restricting receptor degradation in glioblastoma. Acta Neuropathol Commun 2023; 11:177. [PMID: 37936247 PMCID: PMC10629159 DOI: 10.1186/s40478-023-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
Epithelial membrane protein 3 (EMP3) is an N-glycosylated tetraspanin with a putative trafficking function. It is highly expressed in isocitrate dehydrogenase-wild-type glioblastoma (IDH-wt GBM), and its high expression correlates with poor survival. However, the exact trafficking role of EMP3 and how it promotes oncogenic signaling in GBM remain unclear. Here, we show that EMP3 promotes EGFR/CDK2 signaling by regulating the trafficking and enhancing the stability of EGFR. BioID2-based proximity labeling revealed that EMP3 interacts with endocytic proteins involved in the vesicular transport of EGFR. EMP3 knockout (KO) enhances epidermal growth factor (EGF)-induced shuttling of EGFR into RAB7 + late endosomes, thereby promoting EGFR degradation. Increased EGFR degradation is rescued by the RAB7 negative regulator and novel EMP3 interactor TBC1D5. Phosphoproteomic and transcriptomic analyses further showed that EMP3 KO converges into the inhibition of the cyclin-dependent kinase CDK2 and the repression of EGFR-dependent and cell cycle transcriptional programs. Phenotypically, EMP3 KO cells exhibit reduced proliferation rates, blunted mitogenic response to EGF, and increased sensitivity to the pan-kinase inhibitor staurosporine and the EGFR inhibitor osimertinib. Furthermore, EGFR-dependent patient-derived glioblastoma stem cells display a transcriptomic signature consistent with reduced CDK2 activity, as well as increased susceptibility to CDK2 inhibition upon EMP3 knockdown. Lastly, using TCGA data, we showed that GBM tumors with high EMP3 expression have increased total and phosphorylated EGFR levels. Collectively, our findings demonstrate a novel EMP3-dependent mechanism by which EGFR/CDK2 activity is sustained in GBM. Consequently, EMP3's stabilizing effect provides an additional layer of tumor cell resistance against targeted kinase inhibition.
Collapse
Affiliation(s)
- Antoni Andreu Martija
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alexandra Krauß
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Natalie Bächle
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Laura Doth
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Arne Christians
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
- Canopy Biosciences, Bruker Nano Group, Hannover, Germany
| | - Damir Krunic
- Light Microscopy Facility, DKFZ, Heidelberg, Germany
| | | | - Dominic Helm
- Proteomics Core Facility, DKFZ, Heidelberg, Germany
| | - Rainer Will
- Cellular Tools Core Facility, DKFZ, Heidelberg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Andreas von Deimling
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Pusch
- Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
20
|
Ge M, Zhu Y, Wei M, Piao H, He M. Improving the efficacy of anti-EGFR drugs in GBM: Where we are going? Biochim Biophys Acta Rev Cancer 2023; 1878:188996. [PMID: 37805108 DOI: 10.1016/j.bbcan.2023.188996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
The therapies targeting mutations of driver genes in cancer have advanced into clinical trials for a variety of tumors. In glioblastoma (GBM), epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene, and targeting EGFR has been widely investigated as a promising direction. However, the results of EGFR pathway inhibitors have not been satisfactory. Limited blood-brain barrier (BBB) permeability, drug resistance, and pathway compensation mechanisms contribute to the failure of anti-EGFR therapies. This review summarizes recent research advances in EGFR-targeted therapy for GBM and provides insight into the reasons for the unsatisfactory results of EGFR-targeted therapy. By combining the results of preclinical studies with those of clinical trials, we discuss that improved drug penetration across the BBB, the use of multi-target combinations, and the development of peptidomimetic drugs under the premise of precision medicine may be promising strategies to overcome drug resistance in GBM.
Collapse
Affiliation(s)
- Manxi Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Yan Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, China.
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| |
Collapse
|
21
|
Hu L, Shi J, Shen D, Zhai X, Liang D, Wang J, Xie C, Xia Z, Cui J, Liu F, Du S, Meng S, Piao H. Osimertinib induces paraptosis and TRIP13 confers resistance in glioblastoma cells. Cell Death Discov 2023; 9:333. [PMID: 37669963 PMCID: PMC10480197 DOI: 10.1038/s41420-023-01632-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
The efficacy of osimertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor, has been evaluated in glioblastoma (GBM) through preclinical and clinical trials. However, the underlying mechanism of osimertinib-induced GBM cell death and the underlying resistance mechanism to osimertinib remains unclear. Here, we demonstrate that Osimertinib induces paraptosis in GBM cells, as evidenced by the formation of cytoplasmic vacuoles, accumulation of ubiquitinated proteins, and upregulation of endoplasmic reticulum (ER) stress markers like CHOP. Additionally, neither apoptosis nor autophagy was involved in the osimertinib-induced cell death. RNAseq analysis revealed ER stress was the most significantly downregulated pathway upon exposure to osimertinib. Consistently, pharmacologically targeting the PERK-eIF2α axis impaired osimertinib-induced paraptosis. Notably, we show that the expression of thyroid receptor-interacting protein 13 (TRIP13), an AAA+ATPase, alleviated osimertinib-triggered paraptosis, thus conferring resistance. Intriguingly, MK-2206, an AKT inhibitor, downregulated TRIP13 levels and synergized with Osimertinib to suppress TRIP13-induced high GBM cell growth in vitro and in vivo. Together, our findings reveal a novel mechanism of action associated with the anti-GBM effects of osimertinib involving ER stress-regulated paraptosis. Furthermore, we identify a TRIP13-driven resistance mechanism against Osimertinib in GBM and offer a combination strategy using MK-2206 to overcome such resistance.
Collapse
Affiliation(s)
- Lulu Hu
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
- Department of Laboratory Medicine, Affiliated Qingdao Central Hospital, Qingdao University, 266000, Qingdao, China
| | - Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Dachuan Shen
- Department of Oncology, Affliated Zhongshan Hospital of Dalian University, 116001, Dalian, China
| | - Xingyue Zhai
- Clinical Nutrition Department, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Jing Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Chunrui Xie
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Zhiyu Xia
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Jing Cui
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Feng Liu
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China.
| |
Collapse
|
22
|
Vaz-Salgado MA, Villamayor M, Albarrán V, Alía V, Sotoca P, Chamorro J, Rosero D, Barrill AM, Martín M, Fernandez E, Gutierrez JA, Rojas-Medina LM, Ley L. Recurrent Glioblastoma: A Review of the Treatment Options. Cancers (Basel) 2023; 15:4279. [PMID: 37686553 PMCID: PMC10487236 DOI: 10.3390/cancers15174279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Glioblastoma is a disease with a poor prognosis. Multiple efforts have been made to improve the long-term outcome, but the 5-year survival rate is still 5-10%. Recurrence of the disease is the usual way of progression. In this situation, there is no standard treatment. Different treatment options can be considered. Among them would be reoperation or reirradiation. There are different studies that have assessed the impact on survival and the selection of patients who may benefit most from these strategies. Chemotherapy treatments have also been considered in several studies, mainly with alkylating agents, with data mostly from phase II studies. On the other hand, multiple studies have been carried out with target-directed treatments. Bevacizumab, a monoclonal antibody with anti-angiogenic activity, has demonstrated activity in several studies, and the FDA has approved it for this indication. Several other TKI drugs have been evaluated in this setting, but no clear benefit has been demonstrated. Immunotherapy treatments have been shown to be effective in other types of tumors, and several studies have evaluated their efficacy in this disease, both immune checkpoint inhibitors, oncolytic viruses, and vaccines. This paper reviews data from different studies that have evaluated the efficacy of different forms of relapsed glioblastoma.
Collapse
Affiliation(s)
- Maria Angeles Vaz-Salgado
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - María Villamayor
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Víctor Albarrán
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Víctor Alía
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Pilar Sotoca
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Jesús Chamorro
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Diana Rosero
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Ana M. Barrill
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Mercedes Martín
- Radiotherapy Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.M.); (E.F.)
| | - Eva Fernandez
- Radiotherapy Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.M.); (E.F.)
| | - José Antonio Gutierrez
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| | - Luis Mariano Rojas-Medina
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| | - Luis Ley
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| |
Collapse
|
23
|
Guo T, Wu C, Zhou L, Zhang J, Wang W, Shen Y, Zhang L, Niu M, Zhang X, Yu R, Liu X. Preclinical evaluation of Mito-LND, a targeting mitochondrial metabolism inhibitor, for glioblastoma treatment. J Transl Med 2023; 21:532. [PMID: 37550679 PMCID: PMC10405494 DOI: 10.1186/s12967-023-04332-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/08/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a brain tumor with the highest level of malignancy and the worst prognosis in the central nervous system. Mitochondrial metabolism plays a vital role in the occurrence and development of cancer, which provides critical substances to support tumor anabolism. Mito-LND is a novel small-molecule inhibitor that can selectively inhibit the energy metabolism of tumor cells. However, the therapeutic effect of Mito-LND on GBM remains unclear. METHODS The present study evaluated the inhibitory effect of Mito-LND on the growth of GBM cells and elucidated its potential mechanism. RESULTS The results showed that Mito-LND could inhibit the survival, proliferation and colony formation of GBM cells. Moreover, Mito-LND induced cell cycle arrest and apoptosis. Mechanistically, Mito-LND inhibited the activity of mitochondrial respiratory chain complex I and reduced mitochondrial membrane potential, thus promoting ROS generation. Importantly, Mito-LND could inhibit the malignant proliferation of GBM by blocking the Raf/MEK/ERK signaling pathway. In vivo experiments showed that Mito-LND inhibited the growth of GBM xenografts in mice and significantly prolonged the survival time of tumor-bearing mice. CONCLUSION Taken together, the current findings support that targeting mitochondrial metabolism may be as a potential and promising strategy for GBM therapy, which will lay the theoretical foundation for further clinical trials on Mito-LND in the future.
Collapse
Affiliation(s)
- Tongxuan Guo
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Changyong Wu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingni Zhou
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junhao Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanzhou Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Shen
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ludong Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingshan Niu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
24
|
Li XP, Guo ZQ, Wang BF, Zhao M. EGFR alterations in glioblastoma play a role in antitumor immunity regulation. Front Oncol 2023; 13:1236246. [PMID: 37601668 PMCID: PMC10436475 DOI: 10.3389/fonc.2023.1236246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the most frequently altered gene in glioblastoma (GBM), which plays an important role in tumor development and anti-tumor immune response. While current molecular targeted therapies against the EGFR signaling pathway and its downstream key molecules have not demonstrated favorable clinical outcomes in GBM. Whereas tumor immunotherapies, especially immune checkpoint inhibitors, have shown durable antitumor responses in many cancers. However, the clinical efficacy is limited in patients carrying EGFR alterations, indicating that EGFR signaling may involve tumor immune response. Recent studies reveal that EGFR alterations not only promote GBM cell proliferation but also influence immune components in the tumor microenvironment (TME), leading to the recruitment of immunosuppressive cells (e.g., M2-like TAMs, MDSCs, and Tregs), and inhibition of T and NK cell activation. Moreover, EGFR alterations upregulate the expression of immunosuppressive molecules or cytokines (such as PD-L1, CD73, TGF-β). This review explores the role of EGFR alterations in establishing an immunosuppressive TME and hopes to provide a theoretical basis for combining targeted EGFR inhibitors with immunotherapy for GBM.
Collapse
Affiliation(s)
| | | | - Bao-Feng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Pai MGJ, Biswas D, Verma A, Srivastava S. A proteome-level view of brain tumors for a better understanding of novel diagnosis, prognosis, and therapy. Expert Rev Proteomics 2023; 20:381-395. [PMID: 37970632 DOI: 10.1080/14789450.2023.2283498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION Brain tumors are complex and heterogeneous malignancies with significant challenges in diagnosis, prognosis, and therapy. Proteomics, the large-scale study of proteins and their functions, has emerged as a powerful tool to comprehensively investigate the molecular mechanisms underlying brain tumor regulation. AREAS COVERED This review explores brain tumors from a proteomic standpoint, highlighting recent progress and insights gained through proteomic methods. It delves into the proteomic techniques employed and underscores potential biomarkers for early detection, prognosis, and treatment planning. Recent PubMed Central proteomic studies (2017-present) are discussed, summarizing findings on altered protein expression, post-translational changes, and protein interactions. This sheds light on brain tumor signaling pathways and their significance in innovative therapeutic approaches. EXPERT OPINION Proteomics offers immense potential for revolutionizing brain tumor diagnosis and therapy. To unlock its full benefits, further translational research is crucial. Combining proteomics with other omics data enhances our grasp of brain tumors. Validating and translating proteomic biomarkers are vital for better patient results. Challenges include tumor complexity, lack of curated proteomic databases, and the need for collaboration between researchers and clinicians. Overcoming these challenges requires investment in technology, data sharing, and translational research.
Collapse
Affiliation(s)
- Medha Gayathri J Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ayushi Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
26
|
Boylan J, Byers E, Kelly DF. The Glioblastoma Landscape: Hallmarks of Disease, Therapeutic Resistance, and Treatment Opportunities. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i6.3994. [PMID: 38107346 PMCID: PMC10723753 DOI: 10.18103/mra.v11i6.3994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Malignant brain tumors are aggressive and difficult to treat. Glioblastoma is the most common and lethal form of primary brain tumor, often found in patients with no genetic predisposition. The median life expectancy for individuals diagnosed with this condition is 6 months to 2 years and there is no known cure. New paradigms in cancer biology implicate a small subset of tumor cells in initiating and sustaining these incurable brain tumors. Here, we discuss the heterogenous nature of glioblastoma and theories behind its capacity for therapy resistance and recurrence. Within the cancer landscape, cancer stem cells are thought to be both tumor initiators and major contributors to tumor heterogeneity and therapy evasion and such cells have been identified in glioblastoma. At the cellular level, disruptions in the delicate balance between differentiation and self-renewal spur transformation and support tumor growth. While rapidly dividing cells are more sensitive to elimination by traditional treatments, glioblastoma stem cells evade these measures through slow division and reversible exit from the cell cycle. At the molecular level, glioblastoma tumor cells exploit several signaling pathways to evade conventional therapies through improved DNA repair mechanisms and a flexible state of senescence. We examine these common evasion techniques while discussing potential molecular approaches to better target these deadly tumors. Equally important, the presented information encourages the idea of augmenting conventional treatments with novel glioblastoma stem cell-directed therapies, as eliminating these harmful progenitors holds great potential to modulate tumor recurrence.
Collapse
Affiliation(s)
- Jack Boylan
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth Byers
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
27
|
Muzyka L, Goff NK, Choudhary N, Koltz MT. Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. Int J Mol Sci 2023; 24:10456. [PMID: 37445633 DOI: 10.3390/ijms241310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Gliomas are the most common brain tumor in adults, and molecularly targeted therapies to treat gliomas are becoming a frequent topic of investigation. The current state of molecular targeted therapy research for adult-type diffuse gliomas has yet to be characterized, particularly following the 2021 WHO guideline changes for classifying gliomas using molecular subtypes. This systematic review sought to characterize the current state of molecular target therapy research for adult-type diffuse glioma to better inform scientific progress and guide next steps in this field of study. A systematic review was conducted in accordance with PRISMA guidelines. Studies meeting inclusion criteria were queried for study design, subject (patients, human cell lines, mice, etc.), type of tumor studied, molecular target, respective molecular pathway, and details pertaining to the molecular targeted therapy-namely the modality, dose, and duration of treatment. A total of 350 studies met the inclusion criteria. A total of 52 of these were clinical studies, 190 were laboratory studies investigating existing molecular therapies, and 108 were laboratory studies investigating new molecular targets. Further, a total of 119 ongoing clinical trials are also underway, per a detailed query on clinicaltrials.gov. GBM was the predominant tumor studied in both ongoing and published clinical studies as well as in laboratory analyses. A few studies mentioned IDH-mutant astrocytomas or oligodendrogliomas. The most common molecular targets in published clinical studies and clinical trials were protein kinase pathways, followed by microenvironmental targets, immunotherapy, and cell cycle/apoptosis pathways. The most common molecular targets in laboratory studies were also protein kinase pathways; however, cell cycle/apoptosis pathways were the next most frequent target, followed by microenvironmental targets, then immunotherapy pathways, with the wnt/β-catenin pathway arising in the cohort of novel targets. In this systematic review, we examined the current evidence on molecular targeted therapy for adult-type diffuse glioma and discussed its implications for clinical practice and future research. Ultimately, published research falls broadly into three categories-clinical studies, laboratory testing of existing therapies, and laboratory identification of novel targets-and heavily centers on GBM rather than IDH-mutant astrocytoma or oligodendroglioma. Ongoing clinical trials are numerous in this area of research as well and follow a similar pattern in tumor type and targeted pathways as published clinical studies. The most common molecular targets in all study types were protein kinase pathways. Microenvironmental targets were more numerous in clinical studies, whereas cell cycle/apoptosis were more numerous in laboratory studies. Immunotherapy pathways are on the rise in all study types, and the wnt/β-catenin pathway is increasingly identified as a novel target.
Collapse
Affiliation(s)
- Logan Muzyka
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nicolas K Goff
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nikita Choudhary
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Michael T Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| |
Collapse
|
28
|
Jiang Y, Huang C, Huang Y, Long L, Wu G, Guo F, Huang C, Liu S, Zhu Z, Wu S, Li Z, Zhang J, Wan S. A Novel and Highly Selective Epidermal Growth Factor Receptor Inhibitor, SMUZ106, for the Treatment of Glioblastoma. Pharmaceutics 2023; 15:pharmaceutics15051501. [PMID: 37242743 DOI: 10.3390/pharmaceutics15051501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Targeting the epidermal growth factor receptor (EGFR) is one of the potential ways to treat glioblastoma (GBM). In this study, we investigate the anti-GBM tumor effects of the EGFR inhibitor SMUZ106 in both in vitro and in vivo conditions. The effects of SMUZ106 on the growth and proliferation of GBM cells were explored through MTT and clone formation experiments. Additionally, flow cytometry experiments were conducted to study the effects of SMUZ106 on the cell cycle and apoptosis of GBM cells. The inhibitory activity and selectivity of SMUZ106 to the EGFR protein were proved by Western blotting, molecular docking, and kinase spectrum screening methods. We also conducted a pharmacokinetic analysis of SMUZ106 hydrochloride following i.v. or p.o. administration to mice and assessed the acute toxicity level of SMUZ106 hydrochloride following p.o. administration to mice. Subcutaneous and orthotopic xenograft models of U87MG-EGFRvIII cells were established to assess the antitumor activity of SMUZ106 hydrochloride in vivo. SMUZ106 could inhibit the growth and proliferation of GBM cells, especially for the U87MG-EGFRvIII cells with a mean IC50 value of 4.36 μM. Western blotting analyses showed that compound SMUZ106 inhibits the level of EGFR phosphorylation in GBM cells. It was also shown that SMUZ106 targets EGFR and presents high selectivity. In vivo, the absolute bioavailability of SMUZ106 hydrochloride was 51.97%, and its LD50 exceeded 5000 mg/kg. SMUZ106 hydrochloride significantly inhibited GBM growth in vivo. Furthermore, SMUZ106 inhibited the activity of U87MG-resistant cells induced by temozolomide (TMZ) (IC50: 7.86 μM). These results suggest that SMUZ106 hydrochloride has the potential to be used as a treatment method for GBM as an EGFR inhibitor.
Collapse
Affiliation(s)
- Ying Jiang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Chunhui Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Yaqi Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Lifan Long
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Guowu Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Fengqiu Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Chuan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Siming Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Zhengguang Zhu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Shaoyu Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Zhonghuang Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
29
|
Salerno S, Barresi E, Baglini E, Poggetti V, Da Settimo F, Taliani S. Target-Based Anticancer Indole Derivatives for the Development of Anti-Glioblastoma Agents. Molecules 2023; 28:molecules28062587. [PMID: 36985576 PMCID: PMC10056347 DOI: 10.3390/molecules28062587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and frequent primary brain tumor, with a poor prognosis and the highest mortality rate. Currently, GBM therapy consists of surgical resection of the tumor, radiotherapy, and adjuvant chemotherapy with temozolomide. Consistently, there are poor treatment options and only modest anticancer efficacy is achieved; therefore, there is still a need for the development of new effective therapies for GBM. Indole is considered one of the most privileged scaffolds in heterocyclic chemistry, so it may serve as an effective probe for the development of new drug candidates against challenging diseases, including GBM. This review analyzes the therapeutic benefit and clinical development of novel indole-based derivatives investigated as promising anti-GBM agents. The existing indole-based compounds which are in the pre-clinical and clinical stages of development against GBM are reported, with particular reference to the most recent advances between 2013 and 2022. The main mechanisms of action underlying their anti-GBM efficacy, such as protein kinase, tubulin and p53 pathway inhibition, are also discussed. The final goal is to pave the way for medicinal chemists in the future design and development of novel effective indole-based anti-GBM agents.
Collapse
|
30
|
Ko A, Hasanain M, Oh YT, D'Angelo F, Sommer D, Frangaj B, Tran S, Bielle F, Pollo B, Paterra R, Mokhtari K, Soni RK, Peyre M, Eoli M, Papi L, Kalamarides M, Sanson M, Iavarone A, Lasorella A. LZTR1 Mutation Mediates Oncogenesis through Stabilization of EGFR and AXL. Cancer Discov 2023; 13:702-723. [PMID: 36445254 DOI: 10.1158/2159-8290.cd-22-0376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
LZTR1 is the substrate-specific adaptor of a CUL3-dependent ubiquitin ligase frequently mutated in sporadic and syndromic cancer. We combined biochemical and genetic studies to identify LZTR1 substrates and interrogated their tumor-driving function in the context of LZTR1 loss-of-function mutations. Unbiased screens converged on EGFR and AXL receptor tyrosine kinases as LZTR1 interactors targeted for ubiquitin-dependent degradation in the lysosome. Pathogenic cancer-associated mutations of LZTR1 failed to promote EGFR and AXL degradation, resulting in dysregulated growth factor signaling. Conditional inactivation of Lztr1 and Cdkn2a in the mouse nervous system caused tumors in the peripheral nervous system including schwannoma-like tumors, thus recapitulating aspects of schwannomatosis, the prototype tumor predisposition syndrome sustained by LZTR1 germline mutations. Lztr1- and Cdkn2a-deleted tumors aberrantly accumulated EGFR and AXL and exhibited specific vulnerability to EGFR and AXL coinhibition. These findings explain tumorigenesis by LZTR1 inactivation and offer therapeutic opportunities to patients with LZTR1-mutant cancer. SIGNIFICANCE EGFR and AXL are substrates of LZTR1-CUL3 ubiquitin ligase. The frequent somatic and germline mutations of LZTR1 in human cancer cause EGFR and AXL accumulation and deregulated signaling. LZTR1-mutant tumors show vulnerability to concurrent inhibition of EGFR and AXL, thus providing precision targeting to patients affected by LZTR1-mutant cancer. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Aram Ko
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Mohammad Hasanain
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Young Taek Oh
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Danika Sommer
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Brulinda Frangaj
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Suzanne Tran
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Laboratory of Neuropathology, Paris, France
| | - Franck Bielle
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Laboratory of Neuropathology, Paris, France
| | - Bianca Pollo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rosina Paterra
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Karima Mokhtari
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
| | - Rajesh Kumar Soni
- Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Matthieu Peyre
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
| | - Marica Eoli
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Papi
- The Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Michel Kalamarides
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
| | - Marc Sanson
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
- Onconeurotek Tumor Bank, Brain and Spinal Cord Institute ICM, 75013 Paris, France
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
- Department of Neurology, Columbia University Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| |
Collapse
|
31
|
Zhang C, Wang Z, Shi Y, Yu B, Song Y. Recent advances of LSD1/KDM1A inhibitors for disease therapy. Bioorg Chem 2023; 134:106443. [PMID: 36857932 DOI: 10.1016/j.bioorg.2023.106443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023]
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A) dysregulation is closely associated with the pathological processes of various diseases, especially hematologic malignancies. Significant progresses have been made in the field of LSD1-targeted drug discovery. Nine LSD1 inhibitors including tranylcypromine, ORY-1001, ORY-2001, GSK-2879552, IMG-7289, INCB059872, TAK-418, CC-90011 and SP-2577 have entered clinical stage for disease treatment as either mono- or combinational therapy. This review updates LSD1 inhibitors reported during 2022. Design strategies, structure-activity relationship studies, binding model analysis and modes of action are highlighted. In particular, the unique multiple-copies binding mode of quinazoline derivatives paves new ways for the development of reversible LSD1 inhibitors by blocking the substrate entrance. The design strategy of clinical candidate TAK-418 also provides directions for further optimization of novel irreversible LSD1 inhibitors with low hematological side effects. The influence of the stereochemistry on the potency against LSD1 and its homolog LSD2 is briefly discussed. Finally, the challenges and prospects of LSD1-targeted drug discovery are also given.
Collapse
Affiliation(s)
- Chaofeng Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhiyuan Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuting Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
32
|
Wang W, Wu F, Mohammadniaei M, Zhang M, Li Y, Sun Y, Tang BZ. Genetically edited T-cell membrane coated AIEgen nanoparticles effectively prevents glioblastoma recurrence. Biomaterials 2023; 293:121981. [PMID: 36580721 DOI: 10.1016/j.biomaterials.2022.121981] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Glioblastoma stem cells (GSCs) are subpopulations of tumor-initiating cells responsible for glioblastoma (GBM) tumorigenesis and recurrence. Dual inhibition of vascular endothelium and GSCs is still a challenge due to their different pathological features. Here we present a combined all-in-control strategy to realize a local photothermal therapy (PTT). We designed T-cell-mimic nanoparticles with aggregation-induced emission (AIE) characteristics by coating the genetically engineered T cell membrane (CM) onto AIE nanoparticles (CM@AIE NPs). The CM shell was designed against CD133 and epidermal growth factor receptor (EGFR) which provides the possibility to target both GBM cells and GSCs for cancer therapy. CM@AIE NPs can serve as the tight junction (TJ) modulators to trigger an intracellular signaling cascade, causing TJ disruption and actin cytoskeleton reorganization to allow CM@AIE NPs to cross the blood-brain barrier (BBB) silently. The 980 nm excitation-triggered PTT can completely inhibit tumorigenesis and recurrence. The combination of CM-coating nanotechnology and genetic editing technique can inspire further development of synergetic techniques for preventing GBM recurrence.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Fan Wu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Mohsen Mohammadniaei
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Ming Zhang
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark.
| | - Yuanyuan Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
33
|
Kim TW, Lee HG. 6-Shogaol Overcomes Gefitinib Resistance via ER Stress in Ovarian Cancer Cells. Int J Mol Sci 2023; 24:ijms24032639. [PMID: 36768961 PMCID: PMC9916959 DOI: 10.3390/ijms24032639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
In women, ovary cancer is already the fifth leading cause of mortality worldwide. The use of cancer therapies, such as surgery, radiotherapy, and chemotherapy, may be a powerful anti-cancer therapeutic strategy; however, these therapies still have many problems, including resistance, toxicity, and side effects. Therefore, natural herbal medicine has the potential to be used for cancer therapy because of its low toxicity, fewer side effects, and high success. This study aimed to investigate the anti-cancer effect of 6-shogaol in ovarian cancer cells. 6-shogaol induces ER stress and cell death via the reduction in cell viability, the increase in LDH cytotoxicity, caspase-3 activity, and Ca2+ release, and the upregulation of GRP78, p-PERK, p-eIF2α, ATF-4, CHOP, and DR5. Moreover, 6-shogaol treatment medicates endoplasmic reticulum (ER) stress and cell death by upregulating Nox4 and releasing ROS. The knockdown of Nox4 in ovarian cancer cells inhibits ER stress and cell death by blocking the reduction in cell viability and the enhancement of LDH cytotoxicity, caspase-3 activity, Ca2+, and ROS release. In gefitinib-resistant ovarian cancer cells, A2780R and OVCAR-3R, 6-shogaol/gefitinib overcomes gefitinib resistance by inhibiting EMT phenomena such as the reduction in E-cadherin, and the increase in N-cadherin, vimentin, Slug, and Snail. Therefore, our results suggest that 6-shogaol exerts a potential anti-cancer effect in ovarian cancer and combination treatment with 6-shogaol and gefitinib may provide a novel anti-tumor therapeutic strategy in gefitinib-resistant ovarian cancer.
Collapse
Affiliation(s)
- Tae Woo Kim
- Department of Biopharmaceutical Engineering, Dongguk University-WISE, Gyeongju 38066, Republic of Korea
- Correspondence:
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
34
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang Z, Zheng Y, Zhang R, Yu J, Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct Target Ther 2023; 8:8. [PMID: 36596785 PMCID: PMC9810702 DOI: 10.1038/s41392-022-01260-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Brain tumors, although rare, contribute to distinct mortality and morbidity at all ages. Although there are few therapeutic options for brain tumors, enhanced biological understanding and unexampled innovations in targeted therapies and immunotherapies have considerably improved patients' prognoses. Nonetheless, the reduced response rates and unavoidable drug resistance of currently available treatment approaches have become a barrier to further improvement in brain tumor (glioma, meningioma, CNS germ cell tumors, and CNS lymphoma) treatment. Previous literature data revealed that several different signaling pathways are dysregulated in brain tumor. Importantly, a better understanding of targeting signaling pathways that influences malignant behavior of brain tumor cells might open the way for the development of novel targeted therapies. Thus, there is an urgent need for a more comprehensive understanding of the pathogenesis of these brain tumors, which might result in greater progress in therapeutic approaches. This paper began with a brief description of the epidemiology, incidence, risk factors, as well as survival of brain tumors. Next, the major signaling pathways underlying these brain tumors' pathogenesis and current progress in therapies, including clinical trials, targeted therapies, immunotherapies, and system therapies, have been systemically reviewed and discussed. Finally, future perspective and challenges of development of novel therapeutic strategies in brain tumor were emphasized.
Collapse
Affiliation(s)
- Shenglan Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lan
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weichunbai Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
35
|
Wu C, Shen Y, Shi L, Zhang J, Guo T, Zhou L, Wang W, Zhang X, Yu R, Liu X. UBA1 inhibition contributes radiosensitization of glioblastoma cells via blocking DNA damage repair. Front Pharmacol 2023; 14:1073929. [PMID: 36959858 PMCID: PMC10027716 DOI: 10.3389/fphar.2023.1073929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor with high mortality and recurrence rate. Radiotherapy and chemotherapy after surgery are the main treatment options available for GBM. However, patients with glioblastoma have a grave prognosis. The major reason is that most GBM patients are resistant to radiotherapy. UBA1 is considered an attractive potential anti-tumor therapeutic target and a key regulator of DNA double-strand break repair and genome replication in human cells. Therefore, we hypothesized that TAK-243, the first-in-class UBA1 inhibitor, might increase GBM sensitivity to radiation. The combined effect of TAK-243 and ionizing radiation on GBM cell proliferation, and colony formation ability was detected using CCK-8, colony formation, and EdU assays. The efficacy of TAK-243 combined with ionizing radiation for GBM was further evaluated in vivo, and the mechanism of TAK-243 sensitizing radiotherapy was preliminarily discussed. The results showed that TAK-243, in combination with ionizing radiation, significantly inhibited GBM cell proliferation, colony formation, cell cycle arrest in the G2/M phase, and increased the proportion of apoptosis. In addition, UBA1 inhibition by TAK-243 substantially increased the radiation-induced γ-H2AX expression and impaired the recruitment of the downstream effector molecule 53BP1. Therefore, TAK-243 inhibited the radiation-induced DNA double-strand break repair and thus inhibited the growth of GBM cells. Our results provided a new therapeutic strategy for improving the radiation sensitivity of GBM and laid a theoretical foundation and experimental basis for further clinical trials.
Collapse
Affiliation(s)
- Changyong Wu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Shen
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Shi
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of general surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junhao Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tongxuan Guo
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingni Zhou
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanzhou Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Rutong Yu, ; Xuejiao Liu,
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Rutong Yu, ; Xuejiao Liu,
| |
Collapse
|
36
|
Tyrosine Kinase Inhibitors for Glioblastoma Multiforme: Challenges and Opportunities for Drug Delivery. Pharmaceutics 2022; 15:pharmaceutics15010059. [PMID: 36678688 PMCID: PMC9863099 DOI: 10.3390/pharmaceutics15010059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with high mortality rates. Due to its invasiveness, heterogeneity, and incomplete resection, the treatment is very challenging. Targeted therapies such as tyrosine kinase inhibitors (TKIs) have great potential for GBM treatment, however, their efficacy is primarily limited by poor brain distribution due to the presence of the blood-brain barrier (BBB). This review focuses on the potential of TKIs in GBM therapy and provides an insight into the reasons behind unsuccessful clinical trials of TKIs in GBM despite the success in treating other cancer types. The main section is dedicated to the use of promising drug delivery strategies for targeted delivery to brain tumors. Use of brain targeted delivery strategies can help enhance the efficacy of TKIs in GBM. Among various drug delivery approaches used to bypass or cross BBB, utilizing nanocarriers is a promising strategy to augment the pharmacokinetic properties of TKIs and overcome their limitations. This is because of their advantages such as the ability to cross BBB, chemical stabilization of drug in circulation, passive or active targeting of tumor, modulation of drug release from the carrier, and the possibility to be delivered via non-invasive intranasal route.
Collapse
|
37
|
Pasqualetti F, Rizzo M, Franceschi S, Lessi F, Paiar F, Buffa FM. New perspectives in liquid biopsy for glioma patients. Curr Opin Oncol 2022; 34:705-712. [PMID: 36093876 DOI: 10.1097/cco.0000000000000902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Gliomas are the most common primary tumors of the central nervous system. They are characterized by a disappointing prognosis and ineffective therapy that has shown no substantial improvements in the past 20 years. The lack of progress in treating gliomas is linked with the inadequacy of suitable tumor samples to plan translational studies and support laboratory developments. To overcome the use of tumor tissue, this commentary review aims to highlight the potential for the clinical application of liquid biopsy (intended as the study of circulating biomarkers in the blood), focusing on circulating tumor cells, circulating DNA and circulating noncoding RNA. RECENT FINDINGS Thanks to the increasing sensitivity of sequencing techniques, it is now possible to analyze circulating nucleic acids and tumor cells (liquid biopsy). SUMMARY Although studies on the use of liquid biopsy are still at an early stage, the potential clinical applications of liquid biopsy in the study of primary brain cancer are many and have the potential to revolutionize the approach to neuro-oncology, and importantly, they offer the possibility of gathering information on the disease at any time during its history.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Department of Oncology, University of Oxford, Oxford, UK
- Radiation Oncology Unit, Pisa University Hospital
| | - Milena Rizzo
- Noncoding RNA group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa
| | | | | | | | - Francesca M Buffa
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Computing Sciences, Bocconi University, Milan, Italy
| |
Collapse
|
38
|
Hintzen G, Dulat HJ, Rajkovic E. Engaging innate immunity for targeting the epidermal growth factor receptor: Therapeutic options leveraging innate immunity versus adaptive immunity versus inhibition of signaling. Front Oncol 2022; 12:892212. [PMID: 36185288 PMCID: PMC9518002 DOI: 10.3389/fonc.2022.892212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a key player in the normal tissue physiology and the pathology of cancer. Therapeutic approaches have now been developed to target oncogenic genetic aberrations of EGFR, found in a subset of tumors, and to take advantage of overexpression of EGFR in tumors. The development of small-molecule inhibitors and anti-EGFR antibodies targeting EGFR activation have resulted in effective but limited treatment options for patients with mutated or wild-type EGFR-expressing cancers, while therapeutic approaches that deploy effectors of the adaptive or innate immune system are still undergoing development. This review discusses EGFR-targeting therapies acting through distinct molecular mechanisms to destroy EGFR-expressing cancer cells. The focus is on the successes and limitations of therapies targeting the activation of EGFR versus those that exploit the cytotoxic T cells and innate immune cells to target EGFR-expressing cancer cells. Moreover, we discuss alternative approaches that may have the potential to overcome limitations of current therapies; in particular the innate cell engagers are discussed. Furthermore, this review highlights the potential to combine innate cell engagers with immunotherapies, to maximize their effectiveness, or with unspecific cell therapies, to convert them into tumor-specific agents.
Collapse
|
39
|
Matsui JK, Perlow HK, Ritter AR, Upadhyay R, Raval RR, Thomas EM, Beyer SJ, Pillainayagam C, Goranovich J, Ong S, Giglio P, Palmer JD. Small Molecules and Immunotherapy Agents for Enhancing Radiotherapy in Glioblastoma. Biomedicines 2022; 10:biomedicines10071763. [PMID: 35885067 PMCID: PMC9313399 DOI: 10.3390/biomedicines10071763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor that is associated with a poor prognosis and quality of life. The standard of care has changed minimally over the past two decades and currently consists of surgery followed by radiotherapy (RT), concomitant and adjuvant temozolomide, and tumor treating fields (TTF). Factors such as tumor hypoxia and the presence of glioma stem cells contribute to the radioresistant nature of GBM. In this review, we discuss the current treatment modalities, mechanisms of radioresistance, and studies that have evaluated promising radiosensitizers. Specifically, we highlight small molecules and immunotherapy agents that have been studied in conjunction with RT in clinical trials. Recent preclinical studies involving GBM radiosensitizers are also discussed.
Collapse
Affiliation(s)
- Jennifer K. Matsui
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Haley K. Perlow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.K.P.); (A.R.R.); (R.U.); (R.R.R.); (E.M.T.); (S.J.B.)
| | - Alex R. Ritter
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.K.P.); (A.R.R.); (R.U.); (R.R.R.); (E.M.T.); (S.J.B.)
| | - Rituraj Upadhyay
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.K.P.); (A.R.R.); (R.U.); (R.R.R.); (E.M.T.); (S.J.B.)
| | - Raju R. Raval
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.K.P.); (A.R.R.); (R.U.); (R.R.R.); (E.M.T.); (S.J.B.)
| | - Evan M. Thomas
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.K.P.); (A.R.R.); (R.U.); (R.R.R.); (E.M.T.); (S.J.B.)
| | - Sasha J. Beyer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.K.P.); (A.R.R.); (R.U.); (R.R.R.); (E.M.T.); (S.J.B.)
| | - Clement Pillainayagam
- Department of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (C.P.); (J.G.); (S.O.); (P.G.)
| | - Justin Goranovich
- Department of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (C.P.); (J.G.); (S.O.); (P.G.)
| | - Shirley Ong
- Department of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (C.P.); (J.G.); (S.O.); (P.G.)
| | - Pierre Giglio
- Department of Neuro-Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (C.P.); (J.G.); (S.O.); (P.G.)
| | - Joshua D. Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.K.P.); (A.R.R.); (R.U.); (R.R.R.); (E.M.T.); (S.J.B.)
- Correspondence:
| |
Collapse
|
40
|
Rallis KS, George AM, Wozniak AM, Bigogno CM, Chow B, Hanrahan JG, Sideris M. Molecular Genetics and Targeted Therapies for Paediatric High-grade Glioma. Cancer Genomics Proteomics 2022; 19:390-414. [PMID: 35732328 PMCID: PMC9247880 DOI: 10.21873/cgp.20328] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
Brain tumours are the leading cause of paediatric cancer-associated death worldwide. High-grade glioma (HGG) represents a main cause of paediatric brain tumours and is associated with poor prognosis despite surgical and chemoradiotherapeutic advances. The molecular genetics of paediatric HGG (pHGG) are distinct from those in adults, and therefore, adult clinical trial data cannot be extrapolated to children. Compared to adult HGG, pHGG is characterised by more frequent mutations in PDGFRA, TP53 and recurrent K27M and G34R/V mutations on histone H3. Ongoing trials are investigating novel targeted therapies in pHGG. Promising results have been achieved with BRAF/MEK and PI3K/mTOR inhibitors. Combination of PI3K/mTOR, EGFR, CDK4/6, and HDAC inhibitors are potentially viable options. Inhibitors targeting the UPS proteosome, ADAM10/17, IDO, and XPO1 are more novel and are being investigated in early-phase trials. Despite preclinical and clinical trials holding promise for the discovery of effective pHGG treatments, several issues persist. Inadequate blood-brain barrier penetration, unfavourable pharmacokinetics, dose-limiting toxicities, long-term adverse effects in the developing child, and short-lived duration of response due to relapse and resistance highlight the need for further improvement. Future pHGG management will largely depend on selecting combination therapies which work synergistically based on a sound knowledge of the underlying molecular target pathways. A systematic investigation of multimodal therapy with chemoradiotherapy, surgery, target agents and immunotherapy is paramount. This review provides a comprehensive overview of pHGG focusing on molecular genetics and novel targeted therapies. The diagnostics, genetic discrepancies with adults and their clinical implications, as well as conventional treatment approaches are discussed.
Collapse
Affiliation(s)
- Kathrine S Rallis
- Barts Cancer Institute, Queen Mary University of London, London, U.K.;
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Alan Mathew George
- Liverpool School of Medicine, University of Liverpool, Liverpool, U.K
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, U.K
| | - Anna Maria Wozniak
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Carola Maria Bigogno
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Barbara Chow
- UCL Cancer Institute, University College London, London, U.K
- GKT School of Medicine, King's College London, London, U.K
| | | | - Michail Sideris
- Women's Health Research Unit, Queen Mary University of London, London, U.K
| |
Collapse
|
41
|
Huang W, Zou L, Hao Z, Wang B, Mao F, Duan Q, Guo D. S645C Point Mutation Suppresses Degradation of EGFR to Promote Progression of Glioblastoma. Front Oncol 2022; 12:904383. [PMID: 35814475 PMCID: PMC9259983 DOI: 10.3389/fonc.2022.904383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background The tightly controlled activity of EGFR is important for the homeostasis of self-renewal of human tissue. Mutations in the extracellular domain of EGFR are frequent and function as a novel mechanism for oncogenic EGFR activation in GBM, and impact the response of patients to small-molecule inhibitors. Methods We constructed glioblastoma cell lines stably expressing wild-type EGFR and the mutant of EGFR S645C. We detected cell growth in vitro and in vivo. We evaluated the anti-tumor activity and effectiveness of gefitinib and osimertinib in cells. Results In the present study, we identified an oncogenic substituted mutation of EGFR—S645C. The mutation can promote the proliferation and colony formation of glioblastoma in vitro and in vivo. Mechanistically, the EGFR S645C mutation potentially changes the formation of hydrogen bonds within dimerized EGFR and inhibits the degradation of EGFR to prolong downstream signaling. The mutation induces resistance to gefitinib but presents an opportunity for osimertinib treatment. Conclusion The study indicated a novel oncogenic mutation and advises on the precise treatment of individual patients with the EGFR S645C mutation.
Collapse
Affiliation(s)
- Wenda Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Qiuhong Duan,
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Qiuhong Duan,
| |
Collapse
|
42
|
Wyss J, Frank NA, Soleman J, Scheinemann K. Novel Pharmacological Treatment Options in Pediatric Glioblastoma-A Systematic Review. Cancers (Basel) 2022; 14:2814. [PMID: 35681794 PMCID: PMC9179254 DOI: 10.3390/cancers14112814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Pediatric glioblastoma (GBM) is an aggressive central nervous system tumor in children that has dismal prognosis. Standard of care is surgery with subsequent irradiation and temozolomide. We aimed to outline currently available data on novel pharmacological treatments for pediatric GBM. METHODS We conducted a systematic literature search in PubMed and Embase, including reports published in English from 2010 to 2021. We included randomized trials, cohort studies and case series. Phase I trials were not analyzed. We followed PRISMA guidelines, assessed the quality of the eligible reports using the Newcastle-Ottawa scale (NOS) and the RoB-2 tool and registered the protocol on PROSPERO. RESULTS We included 6 out of 1122 screened reports. All six selected reports were prospective, multicenter phase II trials (five single-arm and one randomized controlled trial). None of the investigated novel treatment modalities showed any benefit regarding overall or progression free survival. CONCLUSIONS To date, the role of pharmacological approaches regarding pediatric GBM remains unclear, since no novel treatment approach could provide a significant impact on overall or progression free survival. Further research should aim to combine different treatment strategies in large international multicenter trials with central comprehensive diagnostics regarding subgrouping. These novel treatment approaches should include targeted and immunotherapeutic treatments, potentially leading to a more successful outcome.
Collapse
Affiliation(s)
- Johanna Wyss
- Division of Oncology-Hematology, Department of Pediatrics, Kantonsspital Aarau, 5001 Aarau, Switzerland;
- Division of Pediatric Oncology-Hematology, University Children’s Hospital of Basel, 4056 Basel, Switzerland
| | - Nicole Alexandra Frank
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (N.A.F.); (J.S.)
| | - Jehuda Soleman
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (N.A.F.); (J.S.)
- Department of Pediatric Neurosurgery, University Children’s Hospital of Basel, 4056 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - Katrin Scheinemann
- Division of Oncology-Hematology, Department of Pediatrics, Kantonsspital Aarau, 5001 Aarau, Switzerland;
- Department of Health Sciences and Medicine, University of Lucerne, 6002 Lucerne, Switzerland
- Department of Pediatrics, McMaster University Hamilton, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
43
|
Targeting Glioblastoma Stem Cells to Overcome Chemoresistance: An Overview of Current Therapeutic Strategies. Biomedicines 2022; 10:biomedicines10061308. [PMID: 35740330 PMCID: PMC9220281 DOI: 10.3390/biomedicines10061308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor. The current standard approach in GBM is surgery, followed by treatment with radiation and temozolomide (TMZ); however, GBM is highly resistant to current therapies, and the standard of care has not been revised over the last two decades, indicating an unmet need for new therapies. GBM stem cells (GSCs) are a major cause of chemoresistance due to their ability to confer heterogeneity and tumorigenic capacity. To improve patient outcomes and survival, it is necessary to understand the properties and mechanisms underlying GSC chemoresistance. In this review, we describe the current knowledge on various resistance mechanisms of GBM to therapeutic agents, with a special focus on TMZ, and summarize the recent findings on the intrinsic and extrinsic mechanisms of chemoresistance in GSCs. We also discuss novel therapeutic strategies, including molecular targeting, autophagy inhibition, oncolytic viral therapy, drug repositioning, and targeting of GSC niches, to eliminate GSCs, from basic research findings to ongoing clinical trials. Although the development of effective therapies for GBM is still challenging, this review provides a better understanding of GSCs and offers future directions for successful GBM therapy.
Collapse
|
44
|
Afonso M, Brito MA. Therapeutic Options in Neuro-Oncology. Int J Mol Sci 2022; 23:5351. [PMID: 35628161 PMCID: PMC9140894 DOI: 10.3390/ijms23105351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
One of the biggest challenges in neuro-oncology is understanding the complexity of central nervous system tumors, such as gliomas, in order to develop suitable therapeutics. Conventional therapies in malignant gliomas reconcile surgery and radiotherapy with the use of chemotherapeutic options such as temozolomide, chloroethyl nitrosoureas and the combination therapy of procarbazine, lomustine and vincristine. With the unraveling of deregulated cancer cell signaling pathways, targeted therapies have been developed. The most affected signaling pathways in glioma cells involve tyrosine kinase receptors and their downstream pathways, such as the phosphatidylinositol 3-kinases (PI3K/AKT/mTOR) and mitogen-activated protein kinase pathways (MAPK). MAPK pathway inhibitors include farnesyl transferase inhibitors, Ras kinase inhibitors and mitogen-activated protein extracellular regulated kinase (MEK) inhibitors, while PI3K/AKT/mTOR pathway inhibitors are divided into pan-inhibitors, PI3K/mTOR dual inhibitors and AKT inhibitors. The relevance of the immune system in carcinogenesis has led to the development of immunotherapy, through vaccination, blocking of immune checkpoints, oncolytic viruses, and adoptive immunotherapy using chimeric antigen receptor T cells. In this article we provide a comprehensive review of the signaling pathways underlying malignant transformation, the therapies currently used in the treatment of malignant gliomas and further explore therapies under development, including several ongoing clinical trials.
Collapse
Affiliation(s)
- Mariana Afonso
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Maria Alexandra Brito
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
- Research Institute for Medicines (iMed), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
45
|
GRP78 blockade overcomes intrinsic resistance to UBA1 inhibitor TAK-243 in glioblastoma. Cell Death Dis 2022; 8:133. [PMID: 35347123 PMCID: PMC8960808 DOI: 10.1038/s41420-022-00950-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/27/2022] [Accepted: 03/15/2022] [Indexed: 01/03/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant primary brain tumor of the central nervous system. Despite continuous progression in treatment options for GBM like surgery, radiotherapy, and chemotherapy, this disease still has a high rate of recurrence. The endoplasmic reticulum (ER) stress pathway is associated with chemotherapeutic drug resistance. The UBA1 inhibitor TAK-243 can induce strong ER stress. However, the sensitivity of TAK-243 varies greatly in different tumor cells. This study evaluated the antitumor effects of the GRP78 inhibitor, HA15, combined with TAK-243 on GBM in the preclinical models. HA15 synergistically enhanced the sensitivity of GBM cells to TAK-243. When compared with TAK-243 monotherapy, HA15 combined with TAK-243 significantly inhibited GBM cell proliferation. It also induced G2/M-phase arrest in the cell cycle. In vivo studies showed that HA15 combined with TAK-243 significantly inhibited the growth of intracranial GBM and prolonged survival of the tumor-bearing mice. Mechanistically, HA15 and TAK-243 synergistically activated the PERK/ATF4 and IRE1α/XBP1 signaling axes, thereby eventually activating PARP and the Caspase families, which induced cell apoptosis. Our data provided a new strategy for improving the sensitivity of GBM to TAK-243 treatment and experimental basis for further clinical trials to evaluate this combination therapy.
Collapse
|
46
|
Wang X, Zhang C, Zhang X, Wang J, Zhao L, Zhao D, Cheng M. Design, synthesis and biological evaluation of 2-aminopyrimidine-based LSD1 inhibitors. Bioorg Chem 2022; 121:105699. [PMID: 35219044 DOI: 10.1016/j.bioorg.2022.105699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/08/2022] [Accepted: 02/19/2022] [Indexed: 12/25/2022]
Abstract
AZD9291, with excellent pharmaceutical properties, has been reported to have certain LSD1 inhibitory activity. Therefore, we carried out structural optimization based on the AZD9291 skeleton to increase the LSD1 inhibitory potential of the compound. Then, a series of 2-aminopyrimidine derivatives were designed and synthesized as LSD1 inhibitors, and their structure-activity relationships were studied. The most promising compound, X43, with an IC50 of 0.89 μM showed remarkable LSD1 selectivity not only to EGFRwt (>100-fold) but also to MAO-A/B (>50-fold). Further studies showed that X43 inhibited LSD1 activity and induced the apoptosis of A549 cells in a dose-dependent manner. Meanwhile, compound X43 showed a superior ability to inhibit the proliferation of A549 and THP-1 cells, with IC50 values of 1.62 μM and 1.21 μM, respectively. Then, analyses of the stability of human liver microsomes, CYP inhibition and in vivo pharmacokinetics in rats showed that X43 had favorable profiles in vitro and in vivo and the potential for further study. Our findings suggested that a 2-aminopyrimidine-based LSD1 inhibitor deserves further investigation as a treatment for LSD1-overexpressing cancer.
Collapse
Affiliation(s)
- Xinran Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing 102488, China
| | - Cai Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chaoyang District, Beijing 102488, China
| | - Xiangyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jiming Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Liyu Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| |
Collapse
|
47
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 2022; 21:39. [PMID: 35135556 PMCID: PMC8822752 DOI: 10.1186/s12943-022-01513-z] [Citation(s) in RCA: 355] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Collapse
Affiliation(s)
- Keyang Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Weijie Ye
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjing Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
48
|
Pucko EB, Ostrowski RP. Inhibiting CK2 among Promising Therapeutic Strategies for Gliomas and Several Other Neoplasms. Pharmaceutics 2022; 14:331. [PMID: 35214064 PMCID: PMC8877581 DOI: 10.3390/pharmaceutics14020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
In gliomas, casein kinase 2 (CK2) plays a dominant role in cell survival and tumour invasiveness and is upregulated in many brain tumours. Among CK2 inhibitors, benzimidazole and isothiourea derivatives hold a dominant position. While targeting glioma tumour cells, they show limited toxicity towards normal cells. Research in recent years has shown that these compounds can be suitable as components of combined therapies with hyperbaric oxygenation. Such a combination increases the susceptibility of glioma tumour cells to cell death via apoptosis. Moreover, researchers planning on using any other antiglioma investigational pharmaceutics may want to consider using these agents in combination with CK2 inhibitors. However, different compounds are not equally effective when in such combination. More research is needed to elucidate the mechanism of treatment and optimize the treatment regimen. In addition, the role of CK2 in gliomagenesis and maintenance seems to have been challenged recently, as some compounds structurally similar to CK2 inhibitors do not inhibit CK2 while still being effective at reducing glioma viability and invasion. Furthermore, some newly developed inhibitors specific for CK2 do not appear to have strong anticancer properties. Further experimental and clinical studies of these inhibitors and combined therapies are warranted.
Collapse
Affiliation(s)
| | - Robert P. Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland;
| |
Collapse
|
49
|
Liu H, Qiu W, Sun T, Wang L, Du C, Hu Y, Liu W, Feng F, Chen Y, Sun H. Therapeutic strtegies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds. Acta Pharm Sin B 2021; 12:1781-1804. [PMID: 35847506 PMCID: PMC9279645 DOI: 10.1016/j.apsb.2021.12.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/02/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common aggressive malignant tumor in brain neuroepithelial tumors and remains incurable. A variety of treatment options are currently being explored to improve patient survival, including small molecule inhibitors, viral therapies, cancer vaccines, and monoclonal antibodies. Among them, the unique advantages of small molecule inhibitors have made them a focus of attention in the drug discovery of glioblastoma. Currently, the most used chemotherapeutic agents are small molecule inhibitors that target key dysregulated signaling pathways in glioblastoma, including receptor tyrosine kinase, PI3K/AKT/mTOR pathway, DNA damage response, TP53 and cell cycle inhibitors. This review analyzes the therapeutic benefit and clinical development of novel small molecule inhibitors discovered as promising anti-glioblastoma agents by the related targets of these major pathways. Meanwhile, the recent advances in temozolomide resistance and drug combination are also reviewed. In the last part, due to the constant clinical failure of targeted therapies, this paper reviewed the research progress of other therapeutic methods for glioblastoma, to provide patients and readers with a more comprehensive understanding of the treatment landscape of glioblastoma.
Collapse
|
50
|
Varricchio A, Ramesh SA, Yool AJ. Novel Ion Channel Targets and Drug Delivery Tools for Controlling Glioblastoma Cell Invasiveness. Int J Mol Sci 2021; 22:ijms222111909. [PMID: 34769339 PMCID: PMC8584308 DOI: 10.3390/ijms222111909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Abstract
Comprising more than half of all brain tumors, glioblastoma multiforme (GBM) is a leading cause of brain cancer-related deaths worldwide. A major clinical challenge is presented by the capacity of glioma cells to rapidly infiltrate healthy brain parenchyma, allowing the cancer to escape control by localized surgical resections and radiotherapies, and promoting recurrence in other brain regions. We propose that therapies which target cellular motility pathways could be used to slow tumor dispersal, providing a longer time window for administration of frontline treatments needed to directly eradicate the primary tumors. An array of signal transduction pathways are known to be involved in controlling cellular motility. Aquaporins (AQPs) and voltage-gated ion channels are prime candidates as pharmacological targets to restrain cell migration in glioblastoma. Published work has demonstrated AQPs 1, 4 and 9, as well as voltage-gated potassium, sodium and calcium channels, chloride channels, and acid-sensing ion channels are expressed in GBM and can influence processes of cell volume change, extracellular matrix degradation, cytoskeletal reorganization, lamellipodial and filopodial extension, and turnover of cell-cell adhesions and focal assembly sites. The current gap in knowledge is the identification of optimal combinations of targets, inhibitory agents, and drug delivery systems that will allow effective intervention with minimal side effects in the complex environment of the brain, without disrupting finely tuned activities of neuro-glial networks. Based on published literature, we propose that co-treatments using AQP inhibitors in addition to other therapies could increase effectiveness, overcoming some limitations inherent in current strategies that are focused on single mechanisms. An emerging interest in nanobodies as drug delivery systems could be instrumental for achieving the selective delivery of combinations of agents aimed at multiple key targets, which could enhance success in vivo.
Collapse
Affiliation(s)
- Alanah Varricchio
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Sunita A. Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia;
| | - Andrea J. Yool
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
- Correspondence:
| |
Collapse
|