1
|
Tang R, Zhang Z, Xu J, Wang W, Meng Q, Liu Y, Du Q, Liang C, Hua J, Zhang B, Yu X, Shi S. Integration of single-nucleus and exosome RNA sequencing dissected inter-cellular communication and biomarkers in pancreatic ductal adenocarcinoma. Comput Struct Biotechnol J 2024; 23:1689-1704. [PMID: 38689717 PMCID: PMC11059144 DOI: 10.1016/j.csbj.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024] Open
Abstract
Background Mounting evidence underscores the importance of cell communication within the tumor microenvironment, which is pivotal in tumor proliferation, invasion, and metastasis. Exosomes play a crucial role in cell-to-cell communication. Although single-cell RNA sequencing (scRNA-seq) provides insights into individual cell transcriptional characteristics, it falls short of comprehensively capturing exosome-mediated intercellular communication. Method We analyzed Pancreatic Ductal Adenocarcinoma (PDAC) tissues, separating supernatant and precipitate for exosome purification and single-cell nucleus suspension. We then constructed Single-nucleus RNA sequencing (snRNA-seq) and small RNA-seq libraries from these components. Our bioinformatic analysis integrated these sequences with ligand-receptor analysis and public miRNA data to map the cell communication network. Results We established intercellular communication networks using bioinformatic analysis to track exosome miRNA effects and ligand-receptor pairs. Significantly, hsa-miR-1293 emerged as a prognostic biomarker for pancreatic cancer, linked to immune evasion, increased myeloid-derived suppressor cells, and poorer prognosis. Targeting this miRNA may enhance anti-tumor immunity and improve outcomes. Conclusion Our study offers a novel approach to constructing intercellular communication networks using snRNA-seq and exosome-small RNA sequencing. By integrating miRNA tracing with ligand-receptor analysis, we illuminate the complex interactions in the pancreatic cancer microenvironment, highlighting the pivotal role of miRNAs and identifying potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zifeng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiong Du
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shangai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Si Shi
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Kadian LK, Verma D, Lohani N, Yadav R, Ranga S, Gulshan G, Pal S, Kumari K, Chauhan SS. Long non-coding RNAs in cancer: multifaceted roles and potential targets for immunotherapy. Mol Cell Biochem 2024; 479:3229-3254. [PMID: 38413478 DOI: 10.1007/s11010-024-04933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 02/29/2024]
Abstract
Cancer remains a major global health concern with high mortality rates mainly due to late diagnosis and poor prognosis. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression in human cancer, functioning through various mechanisms including as competing endogenous RNAs (ceRNAs) and indirectly regulating miRNA expression. LncRNAs have been found to have both oncogenic and tumor-suppressive roles in cancer, with the former promoting cancer cell proliferation, migration, invasion, and poor prognosis. Recent research has shown that lncRNAs are expressed in various immune cells and are involved in cancer cell immune escape and the modulation of the tumor microenvironment, thus highlighting their potential as targets for cancer immunotherapy. Targeting lncRNAs in cancer or immune cells could enhance the anti-tumor immune response and improve cancer immunotherapy outcomes. However, further research is required to fully understand the functional roles of lncRNAs in cancer and the immune system and their potential as targets for cancer immunotherapy. This review offers a comprehensive examination of the multifaceted roles of lncRNAs in human cancers, with a focus on their potential as targets for cancer immunotherapy. By exploring the intricate mechanisms underlying lncRNA-mediated regulation of cancer cell proliferation, invasion, and immune evasion, we provide insights into the diverse therapeutic applications of these molecules.
Collapse
Affiliation(s)
- Lokesh K Kadian
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Dept of Dermatology, Indiana University School of Medicine, Indianapolis, 46202, USA
| | - Deepika Verma
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neelam Lohani
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ritu Yadav
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Shalu Ranga
- Dept of Genetics, MD University, Rohtak, 124001, India
| | - Gulshan Gulshan
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Sanghapriya Pal
- Dept of Biochemistry, Maulana Azad Medical College and Associated Hospital, New Delhi, 110002, India
| | - Kiran Kumari
- Dept of Forensic Science, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Shyam S Chauhan
- Dept of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
3
|
Zhao D, Wen X, Wu J, Chen F. Photoimmunotherapy for cancer treatment based on organic small molecules: Recent strategies and future directions. Transl Oncol 2024; 49:102086. [PMID: 39181114 PMCID: PMC11387906 DOI: 10.1016/j.tranon.2024.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Photodynamic therapy (PDT) is considered as a promising anticancer approach, owning to its high efficiency and spatiotemporal selectivity. Ample evidence indicated that PDT can trigger immunogenic cell death by releasing antigens that activate immune cells to promote anti-tumor immunity. Nevertheless, the inherent nature of tumors and their complex heterogeneity often limits the efficiency of PDT, which can be overcome with a novel strategy of photo-immunotherapy (PIT) strategy. By exploring the principles of PDT induction and ICD enhancement, combined with other therapies such as chemotherapy or immune checkpoint blockade, the tailored solutions can be designed to address specific challenges of drug resistance, hypoxic conditions, and tumor immunosuppressive microenvironments (TIMEs), which enables targeted enhancement of systemic immunity to address most distant and recurrent cancers. The present article summarizes the specific strategies of PIT and discusses recent existing limitations. More importantly, we anticipate that the perspectives presented herein will help address the clinical translation challenges associated with PIT.
Collapse
Affiliation(s)
- Deming Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xin Wen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jiani Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Feihong Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
4
|
Karimi Jirandehi A, Asgari R, Keshavarz Shahbaz S, Rezaei N. Nanomedicine marvels: crafting the future of cancer therapy with innovative statin nano-formulation strategies. NANOSCALE ADVANCES 2024:d4na00808a. [PMID: 39478996 PMCID: PMC11515941 DOI: 10.1039/d4na00808a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024]
Abstract
Statins, traditionally used for managing hyperlipidemia and cardiovascular diseases, have garnered significant interest for their potential anti-cancer properties. Research indicates that statins can inhibit critical processes in cancer development, such as apoptosis, angiogenesis, and metastasis. Despite their promising anti-cancer effects, the clinical application of statins in oncology has been hampered by their inherent low solubility and bioavailability. These pharmacokinetic challenges can be effectively addressed through the use of nano-based drug delivery systems. Nano-formulations enhance the delivery and therapeutic efficacy of statins by improving their solubility, stability, and targeting ability, thus maximizing their concentration within the tumor microenvironment and minimizing systemic side effects. This review delves into the potential of nanoparticles as carriers for statins in cancer therapy. It explores the mechanisms by which statins exert their anti-cancer effects, such as through the inhibition of the mevalonate pathway, modulation of immune responses, and induction of apoptosis. Furthermore, the review examines the development of various statin-loaded nano-formulations, highlighting their advantages over conventional formulations. The novelty of this review lies in its focus on recent advancements in nanoformulations that enhance statin delivery to the tumor microenvironment. By discussing the current advancements and prospects of statin nano-formulations, this review aims to provide a comprehensive understanding of how these innovative strategies can improve cancer treatment outcomes and enhance the quality of life for patients. The integration of nanotechnology with statin therapy offers a novel approach to overcoming existing therapeutic limitations and paving the way for more effective and safer cancer treatments.
Collapse
Affiliation(s)
- Ashkan Karimi Jirandehi
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Reza Asgari
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Noncommunicable Disease, Qazvin University of Medical Sciences Qazvin Iran
- USERN Office, Qazvin University of Medical Science Qazvin Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science Tehran Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN) Tehran Iran
| |
Collapse
|
5
|
Hashemi M, Mohandesi Khosroshahi E, Tanha M, Khoushab S, Bizhanpour A, Azizi F, Mohammadzadeh M, Matinahmadi A, Khazaei Koohpar Z, Asadi S, Taheri H, Khorrami R, Ramezani Farani M, Rashidi M, Rezaei M, Fattah E, Taheriazam A, Entezari M. Targeting autophagy can synergize the efficacy of immune checkpoint inhibitors against therapeutic resistance: New promising strategy to reinvigorate cancer therapy. Heliyon 2024; 10:e37376. [PMID: 39309904 PMCID: PMC11415696 DOI: 10.1016/j.heliyon.2024.e37376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Immune checkpoints are a set of inhibitory and stimulatory molecules/mechanisms that affect the activity of immune cells to maintain the existing balance between pro- and anti-inflammatory signaling pathways and avoid the progression of autoimmune disorders. Tumor cells can employ these checkpoints to evade immune system. The discovery and development of immune checkpoint inhibitors (ICIs) was thereby a milestone in the area of immuno-oncology. ICIs stimulate anti-tumor immune responses primarily by disrupting co-inhibitory signaling mechanisms and accelerate immune-mediated killing of tumor cells. Despite the beneficial effects of ICIs, they sometimes encounter some degrees of therapeutic resistance, and thereby do not effectively act against tumors. Among multiple combination therapies have been introduced to date, targeting autophagy, as a cellular degradative process to remove expired organelles and subcellular constituents, has represented with potential capacities to overcome ICI-related therapy resistance. It has experimentally been illuminated that autophagy induction blocks the immune checkpoint molecules when administered in conjugation with ICIs, suggesting that autophagy activation may restrict therapeutic challenges that ICIs have encountered with. However, the autophagy flux can also provoke the immune escape of tumors, which must be considered. Since the conventional FDA-approved ICIs have designed and developed to target programmed cell death receptor/ligand 1 (PD-1/PD-L1) as well as cytotoxic T lymphocyte-associated molecule 4 (CTLA-4) immune checkpoint molecules, we aim to review the effects of autophagy targeting in combination with anti-PD-1/PD-L1- and anti-CTLA-4-based ICIs on cancer therapeutic resistance and tumor immune evasion.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnaz Azizi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Mohammadzadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hengameh Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan H, Feng Y, Chen ZS, Wang N. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol Cancer 2024; 23:189. [PMID: 39242496 PMCID: PMC11378508 DOI: 10.1186/s12943-024-02101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pengde Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhe-Sheng Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
7
|
Tian S, Zhong K, Yang Z, Fu J, Cai Y, Xiao M. Investigating the mechanism of tricyclic decyl benzoxazole -induced apoptosis in liver Cancer cells through p300-mediated FOXO3 activation. Cell Signal 2024; 121:111280. [PMID: 38960058 DOI: 10.1016/j.cellsig.2024.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE To investigate whether tricyclic decylbenzoxazole (TDB) regulates liver cancer cell proliferation and apoptosis through p300-mediated FOXO acetylation. METHODS Sequencing, adenovirus, and lentivirus transfection were performed in human liver cancer cell line SMMC-7721 and apoptosis was detected by Tunel, Hoechst, and flow cytometry. TEM for mitochondrial morphology, MTT for cell proliferation ability, Western blot, and PCR were used to detect protein levels and mRNA changes. RESULTS Sequencing analysis and cell experiments confirmed that TDB can promote the up-regulation of FOXO3 expression. TDB induced FOXO3 up-regulation in a dose-dependent manner, promoted the expression of p300 and Bim, and enhanced the acetylation and dephosphorylation of FOXO3, thus promoting apoptosis. p300 promotes apoptosis of cancer cells through Bim and other proteins, while HAT enhances the phosphorylation of FOXO3 and inhibits apoptosis. Overexpression of FOXO3 can increase the expression of exo-apoptotic pathways (FasL, TRAIL), endo-apoptotic pathways (Bim), and acetylation at the protein level and inhibit cell proliferation and apoptotic ability, while FOXO3 silencing or p300 mutation can partially reverse apoptosis. In tumor tissues with overexpression of FOXO3, TDB intervention can further increase the expression of p53 and caspase-9 proteins in tumor cells, resulting in loss of mitochondrial membrane integrity during apoptosis, the release of cytoplasm during signal transduction, activation of caspase-9 and synergistic inhibition of growth. CONCLUSION TDB induces proliferation inhibition and promotes apoptosis of SMMC-7721 cells by activating p300-mediated FOXO3 acetylation.
Collapse
Affiliation(s)
- Shuhong Tian
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Keyan Zhong
- Clinical Skills Experimental Teaching Center of Hainan Medical University, Haikou 571199, China
| | - Zhaoxin Yang
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Jian Fu
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Yangbo Cai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China
| | - Min Xiao
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
8
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Xu N, Wu K, La T, Cao B. Isolation and whole genomic analysis of mesophilic bacterium Pseudoglutamicibacter cumminsii in epithelial mesothelioma. Heliyon 2024; 10:e35617. [PMID: 39170262 PMCID: PMC11336841 DOI: 10.1016/j.heliyon.2024.e35617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The relationship between bacteria and tumors has been the hot spot of clinical research in recent years. Pseudoglutamicibacter cumminsii is an aerobic Gram-positive bacterium commonly found in soil. Recent studies have identified P. cumminsii in patients with cutaneous and urinary tract infections. However, little is known on its pathogenesis as well as involvement in other clinical symptoms. In this study, we first report the isolation of P. cumminsii in blood of an epithelial mesothelioma patient. The clinical and laboratory characteristics of P. cumminsii were first described and evaluated. The pure colony of P. cumminsii was then identified using automated microorganism identification system and mass spectrum. The whole genome of the newly identified strain was sequenced with third generation sequencing (TGS). The assembled genome was further annotated and analyzed. Whole genomic and comparative genomic analysis revealed that the isolated P. cumminsii strain in this study had a genome size of 2,179,930 bp and had considerable unique genes compared with strains reported in previous findings. Further phylogenetic analysis showed that this strain had divergent phylogenetic relationship with other P. cumminsii strains. Based on these results, the newly found P. cumminsii strain was named P. cumminsii XJ001 (PC1). Virulence analysis identified a total of 71 pathogenic genes with potential roles in adherence, immune modulation, nutrition/metabolism, and regulation in PC1. Functional analysis demonstrated that the annotated genes in PC1 were mainly clustered into amino acid metabolism (168 genes), carbohydrate metabolism (107 genes), cofactor and vitamin metabolisms (98 genes), and energy metabolism (68 genes). Specifically, six genes including yodJ, idh, katA, pyk, sodA, and glsA were identified within cancer pathways, and their corresponding homologous genes have been documented with precise roles in human cancer. Collectively, the above results first identified P. cumminsii in the blood of tumor patients and further provide whole genomic landscape of the newly identified PC1 strain, shedding light on future studies of bacteria in tumorigenesis.
Collapse
Affiliation(s)
- Nan Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Ting La
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Bo Cao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| |
Collapse
|
10
|
Aria H, Azizi M, Nazem S, Mansoori B, Darbeheshti F, Niazmand A, Daraei A, Mansoori Y. Competing endogenous RNAs regulatory crosstalk networks: The messages from the RNA world to signaling pathways directing cancer stem cell development. Heliyon 2024; 10:e35208. [PMID: 39170516 PMCID: PMC11337742 DOI: 10.1016/j.heliyon.2024.e35208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Cancer stem cells (CSCs) are one of the cell types that account for cancer heterogeneity. The cancer cells arrest in G0 and generate non-CSC progeny through self-renewal and pluripotency, resulting in tumor recurrence, metastasis, and resistance to chemotherapy. They can stimulate tumor relapse and re-grow a metastatic tumor. So, CSCs is a promising target for eradicating tumors, and developing an anti-CSCs therapy has been considered. In recent years competing endogenous RNA (ceRNA) has emerged as a significant class of post-transcriptional regulators that affect gene expression via competition for microRNA (miRNA) binding. Furthermore, aberrant ceRNA expression is associated with tumor progression. Recent findings show that ceRNA network can cause tumor progression through the effect on CSCs. To overcome therapeutic resistance due to CSCs, we need to improve our current understanding of the mechanisms by which ceRNAs are implicated in CSC-related relapse. Thus, this review was designed to discuss the role of ceRNAs in CSCs' function. Targeting ceRNAs may open the path for new cancer therapeutic targets and can be used in clinical research.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
11
|
Jafarinia H, Khalilimeybodi A, Barrasa-Fano J, Fraley SI, Rangamani P, Carlier A. Insights gained from computational modeling of YAP/TAZ signaling for cellular mechanotransduction. NPJ Syst Biol Appl 2024; 10:90. [PMID: 39147782 PMCID: PMC11327324 DOI: 10.1038/s41540-024-00414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024] Open
Abstract
YAP/TAZ signaling pathway is regulated by a multiplicity of feedback loops, crosstalk with other pathways, and both mechanical and biochemical stimuli. Computational modeling serves as a powerful tool to unravel how these different factors can regulate YAP/TAZ, emphasizing biophysical modeling as an indispensable tool for deciphering mechanotransduction and its regulation of cell fate. We provide a critical review of the current state-of-the-art of computational models focused on YAP/TAZ signaling.
Collapse
Affiliation(s)
- Hamidreza Jafarinia
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - Ali Khalilimeybodi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093-0411, USA
| | - Jorge Barrasa-Fano
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Stephanie I Fraley
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093-0411, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093-0411, USA.
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
12
|
Zarimeidani F, Rahmati R, Mostafavi M, Darvishi M, Khodadadi S, Mohammadi M, Shamlou F, Bakhtiyari S, Alipourfard I. Gut Microbiota and Autism Spectrum Disorder: A Neuroinflammatory Mediated Mechanism of Pathogenesis? Inflammation 2024:10.1007/s10753-024-02061-y. [PMID: 39093342 DOI: 10.1007/s10753-024-02061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication and behavior, frequently accompanied by restricted and repetitive patterns of interests or activities. The gut microbiota has been implicated in the etiology of ASD due to its impact on the bidirectional communication pathway known as the gut-brain axis. However, the precise involvement of the gut microbiota in the causation of ASD is unclear. This study critically examines recent evidence to rationalize a probable mechanism in which gut microbiota symbiosis can induce neuroinflammation through intermediator cytokines and metabolites. To develop ASD, loss of the integrity of the intestinal barrier, activation of microglia, and dysregulation of neurotransmitters are caused by neural inflammatory factors. It has emphasized the potential role of neuroinflammatory intermediates linked to gut microbiota alterations in individuals with ASD. Specifically, cytokines like brain-derived neurotrophic factor, calprotectin, eotaxin, and some metabolites and microRNAs have been considered etiological biomarkers. We have also overviewed how probiotic trials may be used as a therapeutic strategy in ASD to reestablish a healthy balance in the gut microbiota. Evidence indicates neuroinflammation induced by dysregulated gut microbiota in ASD, yet there is little clarity based on analysis of the circulating immune profile. It deems the repair of microbiota load would lower inflammatory chaos in the GI tract, correct neuroinflammatory mediators, and modulate the neurotransmitters to attenuate autism. The interaction between the gut and the brain, along with alterations in microbiota and neuroinflammatory biomarkers, serves as a foundational background for understanding the etiology, diagnosis, prognosis, and treatment of autism spectrum disorder.
Collapse
Affiliation(s)
- Fatemeh Zarimeidani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahem Rahmati
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Darvishi
- School of Aerospace and Subaquatic Medicine, Infectious Diseases & Tropical Medicine Research Center (IDTMC), AJA University of Medical Sciences, Tehran, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Shamlou
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Salar Bakhtiyari
- Feinberg Cardiovascular and Renal Research Institute, North Western University, Chicago. Illinois, USA
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcin Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
13
|
Tan Y, Zhou Y, Zhang W, Wu Z, Xu Q, Wu Q, Yang J, Lv T, Yan L, Luo H, Shi Y, Yang J. Repaglinide restrains HCC development and progression by targeting FOXO3/lumican/p53 axis. Cell Oncol (Dordr) 2024; 47:1167-1181. [PMID: 38326640 DOI: 10.1007/s13402-024-00919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
PURPOSE The recent focus on the roles of N-linked glycoproteins in carcinogenesis across various malignancies has prompted our exploration of aberrantly expressed glycoproteins responsible for HCC progression and potential therapeutic strategy. METHODS Mass spectrometry was applied to initially identify abnormally expressed glycoproteins in HCC, which was further assessed by immunohistochemistry (IHC) staining. The role of selected glycoprotein on HCC development and underlying mechanism was systematically investigated by colony formation, mouse xenograft, RNA-sequencing and western blot assays, etc. Chromatin immunoprecipitation (ChIP) and luciferase assays were performed to explore potential transcription factors (TFs) of selected glycoprotein. The regulation of repaglinide (RPG) on expression of lumican and downstream effectors was assessed by western blot and IHC, while its impact on malignant phenotypes of HCC was explored through in vitro and in vivo analyses, including a murine NASH-HCC model established using western diet and carbon tetrachloride (CCl4). RESULTS Lumican exhibited upregulation in both serum and tumor tissue, with elevated expression associated with an inferior prognosis in HCC patients. Knockdown of lumican resulted in significantly reduced growth of HCC in vitro and in vivo. Mechanically, lumican promoted HCC malignant phenotypes by inhibiting the p53/p21 signaling pathway. Forkhead Box O3 (FOXO3) was identified as the TF of lumican that transcriptionally enhanced its expression. Without silencing FOXO3, RPG blocked the binding of FOXO3 to the promoter region of lumican, thereby inhibiting the activation of lumican/p53/p21 axis. Mice treated with RPG developed fewer and smaller HCCs than those in the control group at 24 weeks after establishment. CONCLUSION Our results indicate that RPG prevented the development and progression of HCC via alteration of FOXO3/lumican/p53 axis.
Collapse
Affiliation(s)
- Yifei Tan
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
- Department of Ultrasonography, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yongjie Zhou
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Zhang
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qing Xu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiong Wu
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Jian Yang
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Lv
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Lvnan Yan
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Luo
- Department of Ultrasonography, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Yujun Shi
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Jiayin Yang
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Meng Y, Shu Z, Wang X, Hong L, Wang B, Jiang J, He K, Cao Q, Shi F, Wang H, Gong L, Diao H. Hepatitis B Virus-Mediated m6A Demethylation Increases Hepatocellular Carcinoma Stemness and Immune Escape. Mol Cancer Res 2024; 22:642-655. [PMID: 38546386 PMCID: PMC11217737 DOI: 10.1158/1541-7786.mcr-23-0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 03/26/2024] [Indexed: 07/03/2024]
Abstract
Hepatitis B viral (HBV) persistent infection plays a significant role in hepatocellular carcinoma (HCC) tumorigenesis. Many studies have revealed the pivotal roles of N6-methyladenosine (m6A) in multiple cancers, while the regulatory mechanism in stemness maintenance of HBV persistent infection-related HCC remains elusive. Here, we demonstrated that the level of m6A modification was downregulated by HBV in HBV-positive HCC, through enhanced stability of ALKBH5 mRNA. More specifically, we also identified that ALKBH5 mRNA was functionally required for the stemness maintenance and self-renewal in the HBV-positive HCC, but dispensable in HBV-negative HCC. Mechanistically, ALKBH5 demethylated the m6A modification in the 3' untranslated region of the oncogenic gene SNAI2 to prevent the recognition of YTHDF2 therewith stabilize SNAI2 transcripts, contributing to cancer stem cell traits in HBV-positive HCC. Moreover, the expression of SNAI2 reversed the suppression of stemness properties by knocking down ALKBH5. In addition, ALKBH5/SNAI2 axis accelerates tumor immune evasion through activated ligand of immune checkpoint CD155. Our study unveiled that the ALKBH5 induces m6A demethylation of the SNAI2 as a key regulator in HBV-related HCC, and identifies the function of ALKBH5/SNAI2/YTHDF2 axis in promoting the stem-like cells phenotype and immune escape during HBV infection. IMPLICATIONS HBV promotes HCC stemness maintenance through elevate m6A modification of SNAI2 in an ALKBH5-YTHDF2-dependent manner and increases the expression of the ligand of immune checkpoint CD155.
Collapse
Affiliation(s)
- Yuting Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Zheyue Shu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, P.R. China
| | - Liang Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Baohua Wang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Kangxin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Qingyi Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Fan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Hai Wang
- Department of Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
15
|
Shi F, Jiang J, Wang B, Hong L, Zhang Y, Meng Y, Zhang X, Gong L, Lin J, Diao H. Hepatitis B virus X protein promotes tumor glycolysis by downregulating lncRNA OIP5-AS1/HKDC1 in HCC. Cell Signal 2024; 119:111183. [PMID: 38636768 DOI: 10.1016/j.cellsig.2024.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide, with Hepatitis B virus (HBV) infection being the leading cause. This study aims to investigate the role of HBV in HCC pathogenesis involving glucose metabolism. Long non-coding RNA (lncRNA) OIP5-AS1 was significantly downregulated in HBV-positive HCC patients, and its low expression indicated a poor prognosis. This lncRNA was primarily localized in the cytoplasm, acting as a tumor suppressor. HBV protein X (HBx) repressed OIP5-AS1 expression by inhibiting a ligand-activated transcriptional factor peroxisome proliferator-activated receptor α (PPARα). Furthermore, mechanistic studies revealed that OIP5-AS1 inhibited tumor growth by suppressing Hexokinase domain component 1 (HKDC1)-mediated glycolysis. The expression of HKDC1 could be enhanced by transcriptional factor sterol regulatory element-binding protein 1 (SREBP1). OIP5-AS1 facilitated the ubiquitination and degradation of SREBP1 to suppress HKDC1 transcription, which inhibited glycolysis. The results suggest that lncRNA OIP5-AS1 plays an anti-oncogenic role in HBV-positive HCC via the HBx/OIP5-AS1/HKDC1 axis, providing a promising diagnostic marker and therapeutic target for HBV-positive HCC patients.
Collapse
MESH Headings
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Humans
- Carcinoma, Hepatocellular/virology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/virology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Glycolysis/genetics
- Viral Regulatory and Accessory Proteins
- Trans-Activators/metabolism
- Trans-Activators/genetics
- Hexokinase/metabolism
- Hexokinase/genetics
- Gene Expression Regulation, Neoplastic
- Animals
- Hepatitis B virus
- Male
- Cell Line, Tumor
- Down-Regulation
- Mice
- Mice, Nude
- Female
- Sterol Regulatory Element Binding Protein 1/metabolism
- Sterol Regulatory Element Binding Protein 1/genetics
- Mice, Inbred BALB C
- PPAR alpha/metabolism
- PPAR alpha/genetics
Collapse
Affiliation(s)
- Fan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Baohua Wang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Liang Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Yongting Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Yuting Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jianjun Lin
- Clinical Laboratory Department, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, PR China.
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, PR China.
| |
Collapse
|
16
|
Jangholi E, Tehran HA, Ghasemi A, Hoseinian M, Firoozi S, Ghodsi SM, Tamaddon M, Bereimipour A, Hadjighassem M. Evaluation of secretome biomarkers in glioblastoma cancer stem cells: A bioinformatics analysis. Cancer Rep (Hoboken) 2024; 7:e2080. [PMID: 38967113 PMCID: PMC11224916 DOI: 10.1002/cnr2.2080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a malignant brain tumor that frequently occurs alongside other central nervous system (CNS) conditions. The secretome of GBM cells contains a diverse array of proteins released into the extracellular space, influencing the tumor microenvironment. These proteins can serve as potential biomarkers for GBM due to their involvement in key biological processes, exploring the secretome biomarkers in GBM research represents a cutting-edge strategy with significant potential for advancing diagnostic precision, treatment monitoring, and ultimately improving outcomes for patients with this challenging brain cancer. AIM This study was aimed to investigate the roles of secretome biomarkers and their pathwayes in GBM through bioinformatics analysis. METHODS AND RESULTS Using data from the Gene Expression Omnibus and the Cancer Genome Atlas datasets-where both healthy and cancerous samples were analyzed-we used a quantitative analytical framework to identify differentially expressed genes (DEGs) and cell signaling pathways that might be related to GBM. Then, we performed gene ontology studies and hub protein identifications to estimate the roles of these DEGs after finding disease-gene connection networks and signaling pathways. Using the GEPIA Proportional Hazard Model and the Kaplan-Meier estimator, we widened our analysis to identify the important genes that may play a role in both progression and the survival of patients with GBM. In total, 890 DEGs, including 475 and 415 upregulated and downregulated were identified, respectively. Our results revealed that SQLE, DHCR7, delta-1 phospholipase C (PLCD1), and MINPP1 genes are highly expressed, and the Enolase 2 (ENO2) and hexokinase-1 (HK1) genes are low expressions. CONCLUSION Hence, our findings suggest novel mechanisms that affect the occurrence of GBM development, growth, and/or establishment and may also serve as secretory biomarkers for GBM prognosis and possible targets for therapy. So, continued research in this field may uncover new avenues for therapeutic interventions and contribute to the ongoing efforts to combat GBM effectively.
Collapse
Affiliation(s)
- Ehsan Jangholi
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
- Department of NeurosurgeryShariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Hoda Ahmari Tehran
- Department of Medical EducationQom University of Medical SciencesQomIran
| | - Afsaneh Ghasemi
- Department of Public HealthSchool of Health, Fasa University of Medical SciencesFasaIran
| | - Mohammad Hoseinian
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
| | - Sina Firoozi
- School of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Seyed Mohammad Ghodsi
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
- Department of NeurosurgeryShariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Mona Tamaddon
- Chronic Disease Research CenterEndocrinology and Metabolism Population Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Ahmad Bereimipour
- Department of Biological Sciences and BioDiscovery InstituteUniversity of North TexasDentonTexasUSA
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
17
|
Razavinia A, Razavinia A, Jamshidi Khalife Lou R, Ghavami M, Shahri F, Tafazoli A, Khalesi B, Hashemi ZS, Khalili S. Exosomes as novel tools for renal cell carcinoma therapy, diagnosis, and prognosis. Heliyon 2024; 10:e32875. [PMID: 38948044 PMCID: PMC11211897 DOI: 10.1016/j.heliyon.2024.e32875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Background Renal Cell Carcinoma (RCC) stands as a formidable challenge within the field of oncology, despite considerable research endeavors. The advanced stages of this malignancy present formidable barriers to effective treatment and management. Objective This review aims to explore the potential of exosomes in addressing the diagnostic and therapeutic challenges associated with RCC. Specifically, it investigates the role of exosomes as biomarkers and therapeutic vehicles in the context of RCC management. Methods For this review article, a comprehensive literature search was conducted using databases such as PubMed, employing relevant keywords to identify research articles pertinent to the objectives of the review. Initially, 200 articles were identified, which underwent screening to remove duplicates and assess relevance based on titles and abstracts, followed by a detailed examination of full texts. From the selected articles, relevant data were extracted and synthesized to address the review's objectives. The conclusions were drawn based on a thorough analysis of the findings. The quality was ensured through independent review and resolution of discrepancies among multiple reviewers. Results Exosomes demonstrate potential as diagnostic tools for early detection, prognosis, and treatment monitoring in RCC. Their ability to deliver various therapeutic agents, such as small interfering RNAs, lncRNAs, chemotherapeutic drugs, and immune-stimulating agents, allows for a personalized approach to RCC management. By leveraging exosome-based technologies, precision and efficacy in treatment strategies can be significantly enhanced. Conclusion Despite the promising advancements enabled by exosomes in the management of RCC, further research is necessary to refine exosome-based technologies and validate their efficacy, safety, and long-term benefits through rigorous clinical trials. Embracing exosomes as integral components of RCC diagnosis and treatment represents a significant step towards improving patient outcomes and addressing the persistent challenges posed by this malignancy in the field of oncology.
Collapse
Affiliation(s)
- Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abazar Razavinia
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roya Jamshidi Khalife Lou
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahlegha Ghavami
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Forouzan Shahri
- Department of Chemistry, Faculty of Sciences, University of Guilan, Iran
| | - Aida Tafazoli
- Department of Bacterial and Virology, Shiraz medical school, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
18
|
Gaber DM, Ibrahim SS, Awaad AK, Shahine YM, Elmallah S, Barakat HS, Khamis NI. A drug repurposing approach of Atorvastatin calcium for its antiproliferative activity for effective treatment of breast cancer: In vitro and in vivo assessment. Int J Pharm X 2024; 7:100249. [PMID: 38689601 PMCID: PMC11059436 DOI: 10.1016/j.ijpx.2024.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Breast cancer, the most common cancer among women, caused over 500,000 deaths in 2020. Conventional treatments are expensive and have severe side effects. Drug repurposing is a novel approach aiming to reposition clinically approved non-cancer drugs into newer cancer treatments. Atorvastatin calcium (ATR Ca) which is used for the treatment of hypercholesterolemia has potential to modulate cell growth and apoptosis. The study aimed at utilizing gelucire-based solid lipid nanoparticles (SLNs) and lactoferrin (Lf) as targeting ligand to enhance tumor targeting of atorvastatin calcium for effective management of breast cancer. Lf-decorated-ATR Ca-SLNs showed acceptable particle size and PDI values <200 nm and 0.35 respectively, entrapment efficiency >90% and sustained drug release profile with 78.97 ± 12.3% released after 24 h. In vitro cytotoxicity study on breast cancer cell lines (MCF-7) showed that Lf-decorated-ATR Ca-SLNs obviously improved anti-tumor activity by 2 to 2.5 folds compared to undecorated ATR Ca-SLNs and free drug. Further, In vivo study was also carried out using Ehrlich breast cancer model in mice. Caspase-3 apoptotic marker revealed superior antineoplastic and apoptosis-inducing activity in the groups treated with ATR Ca-SLNs either decorated/ undecorated with Lf in dosage 10 mg/kg/day p < 0.001 with superior activity for lactoferrin-decorated formulation.
Collapse
Affiliation(s)
- Dina M. Gaber
- Pharmaceutical Sciences Division (Pharmaceutics), College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Abu Kir Campus, Alexandria 1029, Egypt
| | - Sherihan S. Ibrahim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University Alexandria, 21311, Egypt
| | - Ashraf K. Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21514, Egypt
| | - Yasmine M. Shahine
- Department of Microbiology & Immunology, Faculty of Pharmacy, Pharos University, Alexandria 21311, Egypt
| | - Salma Elmallah
- Pharmaceutical Sciences Division (Pharmaceutical Chemistry), College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Abu Kir Campus, Alexandria 1029, Egypt
| | - Hebatallah S. Barakat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21525, Egypt
| | - Noha I. Khamis
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University, Alexandria 21311, Egypt
| |
Collapse
|
19
|
McClurg DP, Sanghera C, Mukherjee S, Fitzgerald RC, Jones CM. A systematic review of circulating predictive and prognostic biomarkers to aid the personalised use of radiotherapy in the radical treatment of patients with oesophageal cancer. Radiother Oncol 2024; 195:110224. [PMID: 38479442 DOI: 10.1016/j.radonc.2024.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The availability of circulating biomarkers that are predictive of treatment response or prognostic of overall outcome could enable the personalised and adaptive use of radiotherapy (RT) in patients with oesophageal adenocarcinoma (OAC) and squamous cell carcinoma (OSCC). METHODS A systematic review was carried out following Preferred Reporting Items for Systematic Reviews guidance. Medline, EMBASE, PubMed, Cochrane Library, CINAHL, Scopus and the Web of Science databases were searched for studies published between January 2005-February 2023 relating to circulating biomarkers evaluated in the context of neoadjuvant or definitive RT delivered for OAC/OSCC. Study quality was assessed using predefined criteria. RESULTS A total of 3012 studies were screened and 57 subsequently included, across which 61 biomarkers were reported. A majority (43/57,75.4%) of studies were of Asian origin and retrospective (40/57, 70.2%), with most (52/57, 91.2%) biomarkers reported in the context of patients with OSCC. There was marked inter-study heterogeneity in patient populations, treatment characteristics, biomarker measurement and the cut points used to define biomarker positivity. Nevertheless, there is evidence for the prognostic and predictive value of circulating tumour DNA and numerous miRNAs in OAC and OSCC, as well as for the prognostic and predictive value of circulating levels of CYFRA21.1 in OSCC. CONCLUSIONS There is consistent evidence for the potential predictive and prognostic value of a small number of biomarkers in OSCC and OAC, though these data are insufficient for translation to current clinical practice. Well-designed prospective studies are now required to validate their role in stratified and personalised RT treatment approaches.
Collapse
Affiliation(s)
- Dylan P McClurg
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Chandan Sanghera
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Somnath Mukherjee
- Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Christopher M Jones
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
Zhu Y, Zhao Y, Ning Z, Deng Y, Li B, Sun Y, Meng Z. Metabolic self-feeding in HBV-associated hepatocarcinoma centered on feedback between circulation lipids and the cellular MAPK/mTOR axis. Cell Commun Signal 2024; 22:280. [PMID: 38773448 PMCID: PMC11106961 DOI: 10.1186/s12964-024-01619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/17/2024] [Indexed: 05/23/2024] Open
Abstract
INTRODUCTION Hepatitis B Virus (HBV) is widely recognized as a "metabolic virus" that disrupts hepatic metabolic homeostasis, rendering it one of the foremost risk factors for hepatocellular carcinoma (HCC). Except for antiviral therapy, the fundamental principles underlying HBV- and HBV+ HCC have remained unchanged, limiting HCC treatment options. OBJECTIVES In this study, we aim to identify the distinctive metabolic profile of HBV-associated HCC, with the promise of identifying novel metabolic targets that confer survival advantages and ultimately impede cancer progression. METHODS We employed a comprehensive methodology to evaluate metabolic alterations systematically. Initially, we analyzed transcriptomic and proteomic data obtained from a public database, subsequently validating these findings within our test cohort at both the proteomic and transcriptomic levels. Additionally, we conducted a comprehensive analysis of tissue metabolomics profiles, lipidomics, and the activity of the MAPK and AKT signaling pathway to corroborate the abovementioned changes. RESULTS Our multi-omics approach revealed distinct metabolic dysfunctions associated with HBV-associated HCC. Specifically, we observed upregulated steroid hormone biosynthesis, primary bile acid metabolism, and sphingolipid metabolism in HBV-associated HCC patients' serum. Notably, metabolites involved in primary bile acid and sphingolipids can activate the MAPK/mTOR pathway. Tissue metabolomics and lipidomics analyses further validated the serum metabolic alterations, particularly alterations in lipid composition and accumulation of unsaturated fatty acids. CONCLUSION Our findings emphasize the pivotal role of HBV in HCC metabolism, elucidating the activation of a unique MAPK/mTOR signaling axis by primary bile acids and sphingolipids. Moreover, the hyperactive MAPK/mTOR signaling axis transduction leads to significant reprogramming in lipid metabolism within HCC cells, further triggering the activation of the MAPK/mTOR pathway in turn, thereby establishing a self-feeding circle driven by primary bile acids and sphingolipids.
Collapse
Affiliation(s)
- Ying Zhu
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yingke Zhao
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Zhouyu Ning
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yong Deng
- Department of Research and Development, Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Bing Li
- Department of Research and Development, Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, 201321, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China
| | - Yun Sun
- Department of Research and Development, Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai, 201321, China.
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, 201321, China.
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, 201321, China.
| | - Zhiqiang Meng
- Minimally invasive therapy center, Shanghai Cancer Center, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
21
|
Zakeri Z, Heiderzadeh M, Kocaarslan A, Metin E, Hosseini Karimi SN, Saghati S, Vural A, Akyoldaş G, Baysal K, Yağcı Y, Gürsoy-Özdemir Y, Taşoğlu S, Rahbarghazi R, Sokullu E. Exosomes encapsulated in hydrogels for effective central nervous system drug delivery. Biomater Sci 2024; 12:2561-2578. [PMID: 38602364 DOI: 10.1039/d3bm01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The targeted delivery of pharmacologically active molecules, metabolites, and growth factors to the brain parenchyma has become one of the major challenges following the onset of neurodegeneration and pathological conditions. The therapeutic effect of active biomolecules is significantly impaired after systemic administration in the central nervous system (CNS) because of the blood-brain barrier (BBB). Therefore, the development of novel therapeutic approaches capable of overcoming these limitations is under discussion. Exosomes (Exo) are nano-sized vesicles of endosomal origin that have a high distribution rate in biofluids. Recent advances have introduced Exo as naturally suitable bio-shuttles for the delivery of neurotrophic factors to the brain parenchyma. In recent years, many researchers have attempted to regulate the delivery of Exo to target sites while reducing their removal from circulation. The encapsulation of Exo in natural and synthetic hydrogels offers a valuable strategy to address the limitations of Exo, maintaining their integrity and controlling their release at a desired site. Herein, we highlight the current and novel approaches related to the application of hydrogels for the encapsulation of Exo in the field of CNS tissue engineering.
Collapse
Affiliation(s)
- Ziba Zakeri
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | - Morteza Heiderzadeh
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | - Azra Kocaarslan
- Chemistry Department, Faculty of Science, İstanbul Technical University, İstanbul, Turkey
| | - Ecem Metin
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atay Vural
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Neurology, School of Medicine, KoÒ« University, Istanbul 34450, Turkey
| | - Göktuğ Akyoldaş
- Department of Neurosurgery, Koç University Hospital, Istanbul 34450, Turkey
| | - Kemal Baysal
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Biochemistry, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Yusuf Yağcı
- Chemistry Department, Faculty of Science, İstanbul Technical University, İstanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Department of Neurology, School of Medicine, KoÒ« University, Istanbul 34450, Turkey
| | - Savaş Taşoğlu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Mechanical Engineering Department, School of Engineering, Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey.
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Istanbul, Sariyer, Turkey
| |
Collapse
|
22
|
Baassiri A, Ghais A, Kurdi A, Rahal E, Nasr R, Shirinian M. The molecular signature of BCR::ABLP210 and BCR::ABLT315I in a Drosophila melanogaster chronic myeloid leukemia model. iScience 2024; 27:109538. [PMID: 38585663 PMCID: PMC10995885 DOI: 10.1016/j.isci.2024.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder resulting from a balanced translocation leading to BCR::ABL1 oncogene with increased tyrosine kinase activity. Despite the advancements in the development of tyrosine kinase inhibitors (TKIs), the T315I gatekeeper point mutation in the BCR::ABL1 gene remains a challenge. We have previously reported in a Drosophila CML model an increased hemocyte count and disruption in sessile hemocyte patterns upon expression of BCR::ABL1p210 and BCR::ABL1T315I in the hemolymph. In this study, we performed RNA sequencing to determine if there is a distinct gene expression that distinguishes BCR::ABL1p210 and BCR::ABL1T315I. We identified six genes that were consistently upregulated in the fly CML model and validated in adult and pediatric CML patients and in a mouse cell line expressing BCR::ABL1T315I. This study provides a comprehensive analysis of gene signatures in BCR::ABL1p210 and BCR::ABL1T315I, laying the groundwork for targeted investigations into the role of these genes in CML pathogenesis.
Collapse
Affiliation(s)
- Amro Baassiri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Ghais
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Elias Rahal
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
23
|
Hashemi M, Daneii P, Zandieh MA, Raesi R, Zahmatkesh N, Bayat M, Abuelrub A, Khazaei Koohpar Z, Aref AR, Zarrabi A, Rashidi M, Salimimoghadam S, Entezari M, Taheriazam A, Khorrami R. Non-coding RNA-Mediated N6-Methyladenosine (m 6A) deposition: A pivotal regulator of cancer, impacting key signaling pathways in carcinogenesis and therapy response. Noncoding RNA Res 2024; 9:84-104. [PMID: 38075202 PMCID: PMC10700483 DOI: 10.1016/j.ncrna.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 06/20/2024] Open
Abstract
The emergence of RNA modifications has recently been considered as critical post-transcriptional regulations which governed gene expression. N6-methyladenosine (m6A) modification is the most abundant type of RNA modification which is mediated by three distinct classes of proteins called m6A writers, readers, and erasers. Accumulating evidence has been made in understanding the role of m6A modification of non-coding RNAs (ncRNAs) in cancer. Importantly, aberrant expression of ncRNAs and m6A regulators has been elucidated in various cancers. As the key role of ncRNAs in regulation of cancer hallmarks is well accepted now, it could be accepted that m6A modification of ncRNAs could affect cancer progression. The present review intended to discuss the latest knowledge and importance of m6A epigenetic regulation of ncRNAs including mircoRNAs, long non-coding RNAs, and circular RNAs, and their interaction in the context of cancer. Moreover, the current insight into the underlying mechanisms of therapy resistance and also immune response and escape mediated by m6A regulators and ncRNAs are discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Zahmatkesh
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrsa Bayat
- Department of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Anwar Abuelrub
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
24
|
Zhao X, Wang C, Zhao L, Tian Z. HBV DNA polymerase regulates tumor cell glycogen to enhance the malignancy of HCC cells. Hepatol Commun 2024; 8:e0387. [PMID: 38358372 PMCID: PMC10871796 DOI: 10.1097/hc9.0000000000000387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/16/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND The essential function of HBV DNA polymerase (HBV-DNA-Pol) is to initiate viral replication by reverse transcription; however, the role of HBV-DNA-Pol in HBV-associated HCC has not been clarified. Glycogen phosphorylase L (PYGL) is a critical regulator of glycogenolysis and is involved in tumorigenesis, including HCC. However, it is unknown whether HBV-DNA-Pol regulates PYGL to contribute to HCC tumorigenesis. METHODS Bioinformatic analysis, real-time quantitative PCR, western blotting, and oncology functional assays were performed to determine the contribution of HBV-DNA-Pol and PYGL to HCC development and glycolysis. The mechanisms of co-immunoprecipitation and ubiquitination were employed to ascertain how HBV-DNA-Pol upregulated PYGL. RESULTS Overexpression of HBV-DNA-Pol enhanced HCC progression in vitro and in vivo. Mechanistically, HBV-DNA-Pol interacted with PYGL and increased PYGL protein levels by inhibiting PYGL ubiquitination, which was mediated by the E3 ligase TRIM21. HBV-DNA-Pol competitively impaired the binding of PYGL to TRIM21 due to its stronger binding affinity to TRIM21, suppressing the ubiquitination of PYGL. Moreover, HBV-DNA-Pol promoted glycogen decomposition by upregulating PYGL, which led to an increased flow of glucose into glycolysis, thereby promoting HCC development. CONCLUSIONS Our study reveals a novel mechanism by which HBV-DNA-Pol promotes HCC by controlling glycogen metabolism in HCC, establishing a direct link between HBV-DNA-Pol and the Warburg effect, thereby providing novel targets for HCC treatment and drug development.
Collapse
Affiliation(s)
- Xiaoqing Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunqing Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Liqing Zhao
- Department of Pediatrics, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Zhongzheng Tian
- Shandong Agricultural Technology Extending Center, Jinan, China
| |
Collapse
|
25
|
Sheng X, Xia Z, Yang H, Hu R. The ubiquitin codes in cellular stress responses. Protein Cell 2024; 15:157-190. [PMID: 37470788 PMCID: PMC10903993 DOI: 10.1093/procel/pwad045] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Ubiquitination/ubiquitylation, one of the most fundamental post-translational modifications, regulates almost every critical cellular process in eukaryotes. Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses, from exogenous factors to cellular reactions, causing a dazzling variety of functional consequences. Various forms of ubiquitin signals generated by ubiquitylation events in specific milieus, known as ubiquitin codes, constitute an intrinsic part of myriad cellular stress responses. These ubiquitination events, leading to proteolytic turnover of the substrates or just switch in functionality, initiate, regulate, or supervise multiple cellular stress-associated responses, supporting adaptation, homeostasis recovery, and survival of the stressed cells. In this review, we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses, while discussing how stresses modulate the ubiquitin system. This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.
Collapse
Affiliation(s)
- Xiangpeng Sheng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhixiong Xia
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanting Yang
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ronggui Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
26
|
Wang Y, Li Y, Lv L, Zhu L, Hong L, Wang X, Zhang Y, Wang X, Diao H. Faecal hsa-miR-7704 inhibits the growth and adhesion of Bifidobacterium longum by suppressing ProB and aggravates hepatic encephalopathy. NPJ Biofilms Microbiomes 2024; 10:13. [PMID: 38396001 PMCID: PMC10891095 DOI: 10.1038/s41522-024-00487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Both gut microbiome and microRNAs (miRNAs) play a role in the development of hepatic encephalopathy (HE). However, the functional link between the microbiome and host-derived miRNAs in faeces remains poorly understood. In the present study, patients with HE had an altered gut microbiome and faecal miRNAs compared with patients with chronic hepatitis B. Transferring faeces and faecal miRNAs from patients with HE to the recipient mice aggravated thioacetamide-induced HE. Oral gavage of hsa-miR-7704, a host-derived miRNA highly enriched in faeces from patients with HE, aggravated HE in mice in a microbiome-dependent manner. Mechanistically, hsa-miR-7704 inhibited the growth and adhesion of Bifidobacterium longum by suppressing proB. B. longum and its metabolite acetate alleviated HE by inhibiting microglial activation and ammonia production. Our findings reveal the role of miRNA-microbiome axis in HE and suggest that faecal hsa-miR-7704 are potential regulators of HE progression.
Collapse
Affiliation(s)
- Yuchong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuyu Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liang Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China
| | - Yu Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
27
|
Dawoud MM, Elkady N, Abdelmoneum RA, Ghonaimy AS, Allam DM. The Role of P4HB and SOX4 in Prostatic Carcinoma and Their Clinical Significance. IRANIAN JOURNAL OF PATHOLOGY 2024; 19:225-235. [PMID: 39118797 PMCID: PMC11304455 DOI: 10.30699/ijp.2024.2017851.3227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/26/2024] [Indexed: 08/10/2024]
Abstract
Background & Objective Prostatic adenocarcinoma (PAC) is the second most prevalent cancer and the fifth leading cause of cancer death in men worldwide. Additionally, pathologists may face problems diagnosing it reliably and may need more than one marker. Thus, the search for new immunohistochemical biomarkers becomes mandatory. This study aims to investigate P4HB and SOX4 expression in prostatic carcinoma, their possible roles, and clinical significance. Methods This retrospective study included fifty-six cases of PAC and an equal number of nodular prostatic hyperplasia (NPH) that were immunohistochemically stained by P4HB and SOX4. The results of expression were compared between PAC and NPH cases, followed by correlations with available clinicopathological parameters. Results There was a highly significant difference between PAC and NPH regarding P4HB and SOX4 expressions in favor of PAC (both P<0.001). ROC curve analysis of the diagnostic power of P4HB showed 79% sensitivity, 76% specificity, and an area under the ROC curve of 0.845, while SOX4 showed (89%, 100%, and 0.946, respectively). P4HB and SOX4 expression showed a direct correlation (P<0.001). Moreover, the H-score of SOX4 expression showed a significant inverse relation with ERG expression (P=0.047). There was a significant correlation between P4HB and SOX4 and Gleason score (P<0.001). Moreover, P4HB expression was significantly associated with lymphovascular invasion (P=0.013), while SOX4 expression showed a significant association with perineural invasion (P=0.05). Conclusion SOX4 and P4HB seem to have diagnostic and prognostic value in PAC. While there was a direct correlation between SOX4 and P4HB, an inverse relationship between SOX4 and ERG was detected.
Collapse
Affiliation(s)
- Marwa Mohammed Dawoud
- Department of Pathology, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| | - Noha Elkady
- Department of Pathology, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| | - Rasha Adel Abdelmoneum
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| | - Ahmed S Ghonaimy
- Department of Urology, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| | - Dina Mohamed Allam
- Department of Pathology, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| |
Collapse
|
28
|
Saijo A, Ogino H, Butowski NA, Tedesco MR, Gibson D, Watchmaker PB, Okada K, Wang AS, Shai A, Salazar AM, Molinaro AM, Rabbitt JE, Shahin M, Perry A, Clarke JL, Taylor JW, Daras M, Oberheim Bush NA, Hervey-Jumper SL, Phillips JJ, Chang SM, Hilf N, Mayer-Mokler A, Keler T, Berger MS, Okada H. A combinatory vaccine with IMA950 plus varlilumab promotes effector memory T-cell differentiation in the peripheral blood of patients with low-grade gliomas. Neuro Oncol 2024; 26:335-347. [PMID: 37758193 PMCID: PMC10836773 DOI: 10.1093/neuonc/noad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Central nervous system (CNS) WHO grade 2 low-grade glioma (LGG) patients are at high risk for recurrence and with unfavorable long-term prognosis due to the treatment resistance and malignant transformation to high-grade glioma. Considering the relatively intact systemic immunity and slow-growing nature, immunotherapy may offer an effective treatment option for LGG patients. METHODS We conducted a prospective, randomized pilot study to evaluate the safety and immunological response of the multipeptide IMA950 vaccine with agonistic anti-CD27 antibody, varlilumab, in CNS WHO grade 2 LGG patients. Patients were randomized to receive combination therapy with IMA950 + poly-ICLC and varlilumab (Arm 1) or IMA950 + poly-ICLC (Arm 2) before surgery, followed by adjuvant vaccines. RESULTS A total of 14 eligible patients were enrolled in the study. Four patients received pre-surgery vaccines but were excluded from postsurgery vaccines due to the high-grade diagnosis of the resected tumor. No regimen-limiting toxicity was observed. All patients demonstrated a significant increase of anti-IMA950 CD8+ T-cell response postvaccine in the peripheral blood, but no IMA950-reactive CD8+ T cells were detected in the resected tumor. Mass cytometry analyses revealed that adding varlilumab promoted T helper type 1 effector memory CD4+ and effector memory CD8+ T-cell differentiation in the PBMC but not in the tumor microenvironment. CONCLUSION The combinational immunotherapy, including varlilumab, was well-tolerated and induced vaccine-reactive T-cell expansion in the peripheral blood but without a detectable response in the tumor. Further developments of strategies to overcome the blood-tumor barrier are warranted to improve the efficacy of immunotherapy for LGG patients.
Collapse
Affiliation(s)
- Atsuro Saijo
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Internal Medicine, Tokushima Prefecture Naruto Hospital, Tokushima, Japan
| | - Hirokazu Ogino
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Respiratory Medicine & Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Meghan R Tedesco
- Department of Neurology, University of California, San Francisco, CA, USA
| | - David Gibson
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Kaori Okada
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Albert S Wang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | | | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | - Jane E Rabbitt
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Maryam Shahin
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Arie Perry
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Mariza Daras
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Norbert Hilf
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | - Andrea Mayer-Mokler
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Tibor Keler
- Celldex Theraepeutics, Inc., Hampton, NJ, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
29
|
Mahgoub EO, Cho WC, Sharifi M, Falahati M, Zeinabad HA, Mare HE, Hasan A. Role of functional genomics in identifying cancer drug resistance and overcoming cancer relapse. Heliyon 2024; 10:e22095. [PMID: 38249111 PMCID: PMC10797146 DOI: 10.1016/j.heliyon.2023.e22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 01/23/2024] Open
Abstract
Functional genomics is an emerging field focused on elucidating the functions of genes or proteins, which can help solve challenges related to reliable cancer therapy. One of the main challenges currently faced by cancer therapy is the variations in the number of mutations in patients, leading to drug resistance and cancer relapses. Drug intrinsic or acquired resistance, is generally associated with most cancer relapses. There are advanced tools that can help identify the mutant genes in cancer tissues causing cancer drug resistance (CDR). Such tools include but are not limited to DNA and RNA sequencing as well assynthetic lethality gene screen (CRISPR)-based diagnosis. This review discusses the role of functional genomics in understanding CDR and finding tools for discovering drug target genes for cancer therapy.
Collapse
Affiliation(s)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Majid Sharifi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773947, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Hany E. Mare
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| |
Collapse
|
30
|
Babamohamadi M, Mohammadi N, Faryadi E, Haddadi M, Merati A, Ghobadinezhad F, Amirian R, Izadi Z, Hadjati J. Anti-CTLA-4 nanobody as a promising approach in cancer immunotherapy. Cell Death Dis 2024; 15:17. [PMID: 38191571 PMCID: PMC10774412 DOI: 10.1038/s41419-023-06391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
Cancer is one of the most common diseases and causes of death worldwide. Since common treatment approaches do not yield acceptable results in many patients, developing innovative strategies for effective treatment is necessary. Immunotherapy is one of the promising approaches that has been highly regarded for preventing tumor recurrence and new metastases. Meanwhile, inhibiting immune checkpoints is one of the most attractive methods of cancer immunotherapy. Cytotoxic T lymphocyte-associated protein-4 (CTLA-4) is an essential immune molecule that plays a vital role in cell cycle modulation, regulation of T cell proliferation, and cytokine production. This molecule is classically expressed by stimulated T cells. Inhibition of overexpression of immune checkpoints such as CTLA-4 receptors has been confirmed as an effective strategy. In cancer immunotherapy, immune checkpoint-blocking drugs can be enhanced with nanobodies that target immune checkpoint molecules. Nanobodies are derived from the variable domain of heavy antibody chains. These small protein fragments have evolved entirely without a light chain and can be used as a powerful tool in imaging and treating diseases with their unique structure. They have a low molecular weight, which makes them smaller than conventional antibodies while still being able to bind to specific antigens. In addition to low molecular weight, specific binding to targets, resistance to temperature, pH, and enzymes, high ability to penetrate tumor tissues, and low toxicity make nanobodies an ideal approach to overcome the disadvantages of monoclonal antibody-based immunotherapy. In this article, while reviewing the cellular and molecular functions of CTLA-4, the structure and mechanisms of nanobodies' activity, and their delivery methods, we will explain the advantages and challenges of using nanobodies, emphasizing immunotherapy treatments based on anti-CTLA-4 nanobodies.
Collapse
Affiliation(s)
- Mehregan Babamohamadi
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nastaran Mohammadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Faryadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Haddadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Merati
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Laboratory Sciences, School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farbod Ghobadinezhad
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Chamani FK, Etebari A, Hajivalili M, Mosaffa N, Jalali SA. Hypoxia and programmed cell death-ligand 1 expression in the tumor microenvironment: a review of the effects of hypoxia-induced factor-1 on immunotherapy. Mol Biol Rep 2024; 51:88. [PMID: 38183512 DOI: 10.1007/s11033-023-08947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 01/08/2024]
Abstract
One useful cancer treatment approach is activating the patient's immune response against the tumor. In this regard, immunotherapy (IT) based on immune checkpoint blockers (ICBs) has made great progress in the last two decades. Although ITs are considered a novel approach to cancer treatment and have had good results in preclinical studies, their clinical success has shown that only a small proportion of treated patients (about 20%) benefited from them. Moreover, in highly progressed tumors, almost no acceptable response could be expected. In this regard finding the key molecules that are the main players of tumor immunosuppression might be helpful in overcoming the possible burdens. Hypoxia is one of the main components of the tumor microenvironment (TME), which can create an immunosuppressive microenvironment in various ways. For example, hypoxia is one of the main factors of programmed cell death ligand-1 (PD-L1) upregulation in tumor-infiltrating Myeloid-Derived Suppressor Cells (MDSCs). Therefore, hypoxia can be targeted to increase the efficiency of Anti-PD-L1 IT and has become one of the important issues in cancer treatment strategy. In this review, we described the effect of hypoxia in the TME, on tumor progression and immune responses and the challenges created by it for IT.
Collapse
Affiliation(s)
- Fateme Khani Chamani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Etebari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Qu Z, Tian J, Sun J, Shi Y, Yu J, Zhang W, Zhuang C. Diallyl trisulfide inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung cancer via modulating gut microbiota and the PPARγ/NF-κB pathway. Food Funct 2024; 15:158-171. [PMID: 38086660 DOI: 10.1039/d3fo03914e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Smoking is the primary risk factor for developing lung cancer. Chemoprevention could be a promising strategy to reduce the incidence and mortality rates of lung cancer. Recently, we reported that A/J mice exposed to tobacco smoke carcinogens displayed the reshaping of gut microbiota. Additionally, garlic oil was found to effectively inhibit the carcinogenic effects of tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in lung tumorigenesis. Diallyl trisulfide (DATS), which is the predominant compound in garlic oil, exhibits various biological activities. To further explore the chemopreventive action and potential mechanism of DATS on lung tumorigenesis, we established a lung adenocarcinoma model in A/J mice stimulated by NNK. Subsequently, we employed multi-omics combined molecular biology technologies to clarify the mechanism. The results indicated that DATS significantly decreased the number of lung tumors in NNK induced A/J mice. Interestingly, we discovered that DATS could modulate gut microbiota, particularly increasing the abundance of F. rodentium, which has inhibitory effects on tumor growth. Mechanistically, DATS could activate the PPARγ pathway, leading to the negative regulation of the NF-κB signaling pathway and subsequent suppression of NF-κB-mediated inflammatory factors. Collectively, these findings provide support for DATS as a potential novel chemopreventive agent for tobacco carcinogen-induced lung cancer.
Collapse
Affiliation(s)
- Zhuo Qu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Jiahui Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, 409 Guangrong Road, Tianjin 300134, China
| | - Ying Shi
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Wannian Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunlin Zhuang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
33
|
Ahn M, Lee T, Kim KS, Lee S, Na K. Synergistic Approach of Antibody-Photosensitizer Conjugate Independent of KRAS-Mutation and Its Downstream Blockade Pathway in Colorectal Cancer. Adv Healthc Mater 2023; 12:e2302374. [PMID: 37722358 DOI: 10.1002/adhm.202302374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Here, a novel approach is presented to improve the efficacy of antibody-drug conjugates (ADC) by integrating antibody-mediated immunotherapy and photodynamic therapy (PDT) in a combination therapy system utilizing an antibody-photosensitizer conjugate (APC) platform based on a poloxamer polymer linker. To specifically target Kirsten rat sarcoma 2 viral oncogene homolog (KRAS)-mutated cancer cells, an antibody antiepidermal growth factor receptor (EGFR), cetuximab, with a poloxamer linker coupled with the photosensitizer chlorin e6 through click chemistry (cetuximab-maleimide-poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-chlorine e6 conjugate, CMPXC) is synthesized. CMPXC is cytotoxic upon laser treatment, achieving a 90% cell death by suppressing KRAS downstream signaling pathways associated with ERK and AKT proteins, confirmed using RNA sequencing analysis. In KRAS-mutated colorectal cancer mouse models, CMPXC significantly enhances antitumor efficacy compared with cetuximab treatment alone, resulting in an 86% reduction in tumor growth. Furthermore, CMPXC treatment leads to a 2.24- and 1.75-fold increase in dendritic and priming cytotoxic T cells, respectively, highlighting the immune-activating potential of this approach. The findings suggest that the APC platform addresses the challenges associated with ADC development and EGFR-targeted therapy, including the synergistic advantages of antibody-mediated immunotherapy and PDT.
Collapse
Affiliation(s)
- Minji Ahn
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Taebum Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Sanghee Lee
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| |
Collapse
|
34
|
Zafarani A, Razizadeh MH, Haghi A. Neutrophil extracellular traps in influenza infection. Heliyon 2023; 9:e23306. [PMID: 38144312 PMCID: PMC10746519 DOI: 10.1016/j.heliyon.2023.e23306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Despite recent progress in developing novel therapeutic approaches and vaccines, influenza is still considered a global health threat, with about half a million mortality worldwide. This disease is caused by Influenza viruses, which are known for their rapid evolution due to different genetical mechanisms that help them develop new strains with the ability to evade therapies and immunization. Neutrophils are one of the first immune effectors that act against pathogens. They use multiple mechanisms, including phagocytosis, releasing the reactive oxygen species, degranulation, and the production of neutrophil extracellular traps. Neutrophil extracellular traps are used to ensnare pathogens; however, their dysregulation is attributed to inflammatory and infectious diseases. Here, we discuss the effects of these extracellular traps in the clinical course of influenza infection and their ability to be a potential target in treating influenza infection.
Collapse
Affiliation(s)
- Alireza Zafarani
- Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Haghi
- Young Researchers & Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
35
|
Xu C, Xu H, Liu B. Head and neck squamous cell carcinoma-specific prognostic signature and drug sensitive subtypes based on programmed cell death-related genes. PeerJ 2023; 11:e16364. [PMID: 38025757 PMCID: PMC10668860 DOI: 10.7717/peerj.16364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background As a complex group of malignancies, head and neck squamous cell carcinoma (HNSC) is one of the leading causes of cancer mortality. This study aims to establish a reliable clinical classification and gene signature for HNSC prognostic prediction and precision treatments. Methods A consensus clustering analysis was performed to group HNSC patients in The Cancer Genome Atlas (TCGA) database based on genes linked to programmed cell death (PCD). Differentially expressed genes (DEGs) between subtypes were identified using the "limma" R package. The TCGA prognostic signature and PCD-related prognostic genes were found using a least absolute shrinkage and selection operator (LASSO) regression analysis and univariate Cox regression analysis. The robustness of the LASSO analysis was validated using datasets GSE65858 and GSE41613. A cell counting kit-8 (CCK-8) test, Western blot, and real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) were used to evaluate the expression and viability of prognostic genes. Results Four molecular subtypes were identified in PCD-related genes. Subtype C4 had the best prognosis and the highest immune score, while subtype C1 exhibited the most unfavorable outcomes. Three hundred shared DEGs were identified among the four subtypes, and four prognostic genes (CTLA4, CAMK2N1, PLAU and CALML5) were used to construct a TCGA-HNSC prognostic model. High-risk patients manifested poorer prognosis, more inflammatory pathway enrichment, and lower immune cell infiltration. High-risk patients were more prone to immune escape and were more likely to be resistant to Cisplatin and 5-Fluorouracil. Prognosis prediction was validated in external datasets. The expression of CTLA4, CAMK2N1, PLAU and CALML5 was enhanced in CAL-27 and SCC-25 cell lines, and CALML5 inhibited CAL-27 and SCC-25 cell viability. Conclusion This study shares novel insights into HNSC classification and provides a reliable PCD-related prognostic signature for prognosis prediction and treatment for patients with HNSC.
Collapse
Affiliation(s)
- Chengbo Xu
- Department of Otolaryngology Head and Neck Surgery, Jinhua Wenrong Hospital, Jinhua, China
| | - Hongfang Xu
- Department of Otolaryngology Head and Neck Surgery, Jinhua Wenrong Hospital, Jinhua, China
| | - Baimei Liu
- Department of Otolaryngology Head and Neck Surgery, Yongkang First People’s Hospital, Yongkang, China
| |
Collapse
|
36
|
Avşar G, Pir P. An integrated study to decipher immunosuppressive cellular communication in the PDAC environment. NPJ Syst Biol Appl 2023; 9:56. [PMID: 37945567 PMCID: PMC10636193 DOI: 10.1038/s41540-023-00320-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one the most aggressive cancers and characterized by a highly rigid and immunosuppressive tumor microenvironment (TME). The extensive cellular interactions are known to play key roles in the immune evasion, chemoresistance, and poor prognosis. Here, we used the spatial transcriptomics, scRNA-seq, and bulk RNA-seq datasets to enhance the insights obtained from each to decipher the cellular communication in the TME. The complex crosstalk in PDAC samples was revealed by the single-cell and spatial transcriptomics profiles of the samples. We show that tumor-associated macrophages (TAMs) are the central cell types in the regulation of microenvironment in PDAC. They colocalize with the cancer cells and tumor-suppressor immune cells and take roles to provide an immunosuppressive environment. LGALS9 gene which is upregulated in PDAC tumor samples in comparison to healthy samples was also found to be upregulated in TAMs compared to tumor-suppressor immune cells in cancer samples. Additionally, LGALS9 was found to be the primary component in the crosstalk between TAMs and the other cells. The widespread expression of P4HB gene and its interaction with LGALS9 was also notable. Our findings point to a profound role of TAMs via LGALS9 and its interaction with P4HB that should be considered for further elucidation as target in the combinatory immunotherapies for PDAC.
Collapse
Affiliation(s)
- Gülben Avşar
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
- Turkish Academy of Sciences, Ankara, Turkey.
| | - Pınar Pir
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
37
|
Isazadeh H, Oruji F, Shabani S, Behroozi J, Nasiri H, Isazadeh A, Akbari M. Advances in siRNA delivery approaches in cancer therapy: challenges and opportunities. Mol Biol Rep 2023; 50:9529-9543. [PMID: 37741808 DOI: 10.1007/s11033-023-08749-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 09/25/2023]
Abstract
Advancements in the clinical applications of small interfering RNA (siRNA) in cancer therapy have opened up new possibilities for precision medicine. siRNAs, as powerful genetic tools, have shown potential in targeting and suppressing the expression of specific genes associated with cancer progression. Their effectiveness has been further enhanced by incorporating them into nanoparticles, which protect siRNAs from degradation and enable targeted delivery. However, despite these promising developments, several challenges persist in the clinical translation of siRNA-based cancer therapy. This comprehensive review explores the progress and challenges associated with the clinical applications of siRNA in cancer therapy. This review highlights the use of siRNA-loaded nanoparticles as an effective delivery system for optimizing siRNA efficacy in various types of carcinomas and the potential of siRNA-based therapy as a genetic approach to overcome limitations associated with conventional chemotherapeutic agents, including severe drug toxicities and organ damage. Moreover, it emphasizes on the key challenges, including off-target effects, enzymatic degradation of siRNAs in serum, low tumor localization, stability issues, and rapid clearance from circulation that need to be addressed for successful clinical development of siRNA-based cancer therapy. Despite these challenges, the review identifies significant avenues for advancing siRNA technology from the laboratory to clinical settings. The ongoing progress in siRNA-loaded nanoparticles for cancer treatment demonstrates potential antitumor activities and safety profiles. By understanding the current state of siRNA-based therapy and addressing the existing challenges, we aim to pave the way for translating siRNA technology into effective oncologic clinics as an improved treatment options for cancer patients.
Collapse
Affiliation(s)
- Houman Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Farshid Oruji
- College of Medicine, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shima Shabani
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Javad Behroozi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Daneshghah Ave, Tabriz, Iran.
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Wang H, Zhang J. The glucose metabolic reprogramming in hepatitis B virus infection and hepatitis B virus associated diseases. J Gastroenterol Hepatol 2023; 38:1886-1891. [PMID: 37654246 DOI: 10.1111/jgh.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Hepatitis B virus (HBV) infection is closely related to viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HBV infection can reprogram metabolism processes of the host cells including glucose metabolism. The aberrant glucose metabolism may aid in viral infection and immune escape and may contribute to liver associated pathology. In this review, we discussed the interplay between HBV infection and glucose metabolism, which may provide new insights into HBV infection and pathology, novel intervention targets for HBV-related diseases.
Collapse
Affiliation(s)
- Hangle Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| |
Collapse
|
39
|
Sun L, Liu J, Bao D, Hu C, Zhao Y, Chen S. Progress in the study of FOXO3a interacting with microRNA to regulate tumourigenesis development. Front Oncol 2023; 13:1293968. [PMID: 37965449 PMCID: PMC10641706 DOI: 10.3389/fonc.2023.1293968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
FOXO3a is a protein of the forkhead box family that inhibits tumour cell growth. One of the regulatory modes affecting the role of FOXO3a is microRNA targeting and degradation of its mRNA expression, and conversely, aberrant expression of FOXO3a as a transcription factor also influences microRNA levels. We summarized the results of the regulatory interactions of twenty-five microRNAs with FOXO3a in five types of malignant tumours and found that dual microRNAs synergize with FOXO3a to inhibit breast cancer cell growth including two groups; Three individual microRNAs collaborated with FOXO3a to restrain hepatocellular carcinoma progression; Twelve individual microRNAs antagonized FOXO3a to promote the development of a single tumour cell, respectively; and five microRNAs antagonized FOXO3a to contribute to the progression of more than two types of tumours. The above findings demonstrated the tumour suppressor effect of FOXO3a, but another result revealed that miR-485-5p and miR-498 inhibited the growth of hepatocellular carcinoma cells by antagonizing FOXO3a when acting in combination with other long-stranded non-coding RNAs, respectively, suggesting that FOXO3a at this moment plays the function of promoting the tumour progression. The PI3K/AKT, Snail, VEGF-NRP1, and Wnt/β-catenin signalling pathways perform crucial roles in the above process. It is anticipated that the above studies will assist in understanding the effects of FOXO3a-MicroRNA interactions in cancer genesis and development, and provide new perspectives in the treatment of malignant tumours.
Collapse
Affiliation(s)
- Liying Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
- College of Medical Technology, Beihua University, Jilin, China
| | - Jiaqi Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Dongbo Bao
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Cheng Hu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yundong Zhao
- College of Medical Technology, Beihua University, Jilin, China
| | - Shuang Chen
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
40
|
Chen D, Aierken A, Li H, Chen R, Ren L, Wang K. Identification of subclusters and prognostic genes based on glycolysis/gluconeogenesis in hepatocellular carcinoma. Front Immunol 2023; 14:1232390. [PMID: 37881434 PMCID: PMC10597634 DOI: 10.3389/fimmu.2023.1232390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Background This study aimed to examine glycolysis/gluconeogenesis-related genes in hepatocellular carcinoma (HCC) and evaluate their potential roles in HCC progression and immunotherapy response. Methods Data analyzed in this study were collected from GSE14520, GSE76427, GSE174570, The Cancer Genome Atlas (TCGA), PXD006512, and GSE149614 datasets, metabolic pathways were collected from MSigDB database. Differentially expressed genes (DEGs) were identified between HCC and controls. Differentially expressed glycolysis/gluconeogenesis-related genes (candidate genes) were obtained and consensus clustering was performed based on the expression of candidate genes. Bioinformatics analysis was used to evaluate candidate genes and screen prognostic genes. Finally, the key results were tested in HCC patients. Results Thirteen differentially expressed glycolysis/gluconeogenesis-related genes were validated in additional datasets. Consensus clustering analysis identified two distinct patient clusters (C1 and C2) with different prognoses and immune microenvironments. Immune score and tumor purity were significantly higher in C1 than in C2, and CD4+ memory activated T cell, Tfh, Tregs, and macrophage M0 were higher infiltrated in HCC and C1 group. The study also identified five intersecting DEGs from candidate genes in TCGA, GSE14520, and GSE141198 as prognostic genes, which had a protective role in HCC patient prognosis. Compared with the control group, the prognostic genes all showed decreased expression in HCC patients in RT-qPCR and Western blot analyses. Flow cytometry verified the abnormal infiltration level of immune cells in HCC patients. Conclusion Results showed that glycolysis/gluconeogenesis-related genes were associated with patient prognosis, immune microenvironment, and response to immunotherapy in HCC. It suggests that the model based on five prognostic genes may valuable for predicting the prognosis and immunotherapy response of HCC patients.
Collapse
Affiliation(s)
- Dan Chen
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Ayinuer Aierken
- Department of Hepatobiliary Hydatid Disease, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Li
- Central Laboratory, Xinjiang Medical University, Urumqi, China
| | - Ruihua Chen
- Center of Animal Experiments, Xinjiang Medical University, Urumqi, China
| | - Lei Ren
- Department of Burns, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kai Wang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
41
|
Wei J, Wang X, Jiao K. Orthodenticle Homeobox OTX1 Promotes Papillary Thyroid Carcinoma Progression and Is a Potential Prognostic Biomarker. Genet Res (Camb) 2023; 2023:5513812. [PMID: 37780815 PMCID: PMC10539079 DOI: 10.1155/2023/5513812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid neoplasms, characterized by evidence of follicular cell differentiation. Orthodenticle homeobox 1 (OTX1) is a transcription factor which has been implicated in numerous diseases, including malignancies. The objective of this research was to explore the function of OTX1 in PTC. Immunohistochemistry (IHC) was employed to determine the protein level of OTX1 in PTC specimens. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, a xenograft model on nude mice was established to investigate in vivo effects of OTX1. Our results revealed that OTX1 was significantly upregulated within specific PTC tissues and was remarkably correlated with unfavorable clinical outcomes in PTC. Silencing OTX1 resulted in a significant inhibition in cell viability and suppressed cell proliferation. In addition, in vivo experiments demonstrated that OTX1 silencing resulted in a significant suppression of tumor growth in nude mice. Collectively, these results suggest that OTX1 may play crucial roles in promoting PTC progression.
Collapse
Affiliation(s)
- Jing Wei
- Department of Endocrinology, Xi'an Gaoxin Hospital, Xi'an 710077, China
| | - Xin Wang
- Department of Endocrinology, Tangdu Hospital, Xi'an 710038, China
| | - Kai Jiao
- Department of Endocrinology, Xi'an Gaoxin Hospital, Xi'an 710077, China
| |
Collapse
|
42
|
Ghafouri-Fard S, Shoorei H, Dong P, Poornajaf Y, Hussen BM, Taheri M, Akbari Dilmaghani N. Emerging functions and clinical applications of exosomal microRNAs in diseases. Noncoding RNA Res 2023; 8:350-362. [PMID: 37250456 PMCID: PMC10209650 DOI: 10.1016/j.ncrna.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/07/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
Exosomes are an important group of extracellular vesicles that transfer several kinds of biomolecules and facilitate cell-cell communication. The content of exosomes, particularly the amounts of microRNA (miRNAs) inside these vesicles, demonstrates a disease-specific pattern reflecting pathogenic processes and may be employed as a diagnostic and prognostic marker. miRNAs may enter recipient cells through exosomes and generate a RISC complex that can cause degradation of the target mRNAs or block translation of their corresponding proteins. Therefore, exosome-derived miRNAs constitute an important mechanism of gene regulation in recipient cells. The miRNA content of exosomes can be used as an important tool in the detection of diverse disorders, particularly cancers. This research field has an important situation in cancer diagnosis. In addition, exosomal microRNAs offer a great deal of promise in the treatment of human disorders. However, there are still certain challenges to be resolved. The most important challenges are as follow: the detection of exosomal miRNAs should be standardized, exosomal miRNAs-associated studies should be conducted in large number of clinical samples, and experiment settings and detection criteria should be consistent across different labs. The goal of this article is to present an overview of the effects of exosome-derived microRNAs on a variety of diseases, including gastrointestinal, pulmonary, neurological, and cardiovascular diseases, with a particular emphasis on malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Moldogazieva NT, Zavadskiy SP, Astakhov DV, Sologova SS, Margaryan AG, Safrygina AA, Smolyarchuk EA. Differentially expressed non-coding RNAs and their regulatory networks in liver cancer. Heliyon 2023; 9:e19223. [PMID: 37662778 PMCID: PMC10474437 DOI: 10.1016/j.heliyon.2023.e19223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
The vast majority of human transcriptome is represented by various types of small RNAs with little or no protein-coding capability referred to as non-coding RNAs (ncRNAs). Functional ncRNAs include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), which are expressed at very low, but stable and reproducible levels in a variety of cell types. ncRNAs regulate gene expression due to miRNA capability of complementary base pairing with mRNAs, whereas lncRNAs and circRNAs can sponge miRNAs off their target mRNAs to act as competitive endogenous RNAs (ceRNAs). Each miRNA can target multiple mRNAs and a single mRNA can interact with several miRNAs, thereby creating miRNA-mRNA, lncRNA-miRNA-mRNA, and circRNA-miRNA-mRNA regulatory networks. Over the past few years, a variety of differentially expressed miRNAs, lncRNAs, and circRNAs (DEMs, DELs, and DECs, respectively) have been linked to cancer pathogenesis. They can exert both oncogenic and tumor suppressor roles. In this review, we discuss the recent advancements in uncovering the roles of DEMs, DELs, and DECs and their networks in aberrant cell signaling, cell cycle, transcription, angiogenesis, and apoptosis, as well as tumor microenvironment remodeling and metabolic reprogramming during hepatocarcinogenesis. We highlight the potential and challenges in the use of differentially expressed ncRNAs as biomarkers for liver cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Sergey P. Zavadskiy
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Dmitry V. Astakhov
- Department of Biochemistry, Institute of Biodesign and Complex Systems Modelling, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Susanna S. Sologova
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Arus G. Margaryan
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Anastasiya A. Safrygina
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| | - Elena A. Smolyarchuk
- Department of Pharmacology, Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, 119991, 8 Trubetskaya str., Moscow, Russia
| |
Collapse
|
44
|
Lu X, Zhang M, Li G, Zhang S, Zhang J, Fu X, Sun F. Applications and Research Advances in the Delivery of CRISPR/Cas9 Systems for the Treatment of Inherited Diseases. Int J Mol Sci 2023; 24:13202. [PMID: 37686009 PMCID: PMC10487642 DOI: 10.3390/ijms241713202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
The rapid advancements in gene therapy have opened up new possibilities for treating genetic disorders, including Duchenne muscular dystrophy, thalassemia, cystic fibrosis, hemophilia, and familial hypercholesterolemia. The utilization of the clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system has revolutionized the field of gene therapy by enabling precise targeting of genes. In recent years, CRISPR/Cas9 has demonstrated remarkable efficacy in treating cancer and genetic diseases. However, the susceptibility of nucleic acid drugs to degradation by nucleic acid endonucleases necessitates the development of functional vectors capable of protecting the nucleic acids from enzymatic degradation while ensuring safety and effectiveness. This review explores the biomedical potential of non-viral vector-based CRISPR/Cas9 systems for treating genetic diseases. Furthermore, it provides a comprehensive overview of recent advances in viral and non-viral vector-based gene therapy for genetic disorders, including preclinical and clinical study insights. Additionally, the review analyzes the current limitations of these delivery systems and proposes avenues for developing novel nano-delivery platforms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengying Sun
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (X.L.); (M.Z.); (G.L.); (S.Z.); (J.Z.); (X.F.)
| |
Collapse
|
45
|
Grasso G, Colella F, Forciniti S, Onesto V, Iuele H, Siciliano AC, Carnevali F, Chandra A, Gigli G, Del Mercato LL. Fluorescent nano- and microparticles for sensing cellular microenvironment: past, present and future applications. NANOSCALE ADVANCES 2023; 5:4311-4336. [PMID: 37638162 PMCID: PMC10448310 DOI: 10.1039/d3na00218g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 08/29/2023]
Abstract
The tumor microenvironment (TME) demonstrates distinct hallmarks, including acidosis, hypoxia, reactive oxygen species (ROS) generation, and altered ion fluxes, which are crucial targets for early cancer biomarker detection, tumor diagnosis, and therapeutic strategies. Various imaging and sensing techniques have been developed and employed in both research and clinical settings to visualize and monitor cellular and TME dynamics. Among these, ratiometric fluorescence-based sensors have emerged as powerful analytical tools, providing precise and sensitive insights into TME and enabling real-time detection and tracking of dynamic changes. In this comprehensive review, we discuss the latest advancements in ratiometric fluorescent probes designed for the optical mapping of pH, oxygen, ROS, ions, and biomarkers within the TME. We elucidate their structural designs and sensing mechanisms as well as their applications in in vitro and in vivo detection. Furthermore, we explore integrated sensing platforms that reveal the spatiotemporal behavior of complex tumor cultures, highlighting the potential of high-resolution imaging techniques combined with computational methods. This review aims to provide a solid foundation for understanding the current state of the art and the future potential of fluorescent nano- and microparticles in the field of cellular microenvironment sensing.
Collapse
Affiliation(s)
- Giuliana Grasso
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Francesco Colella
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
- Department of Mathematics and Physics ''Ennio De Giorgi", University of Salento c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Stefania Forciniti
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Helena Iuele
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Anna Chiara Siciliano
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
- Department of Mathematics and Physics ''Ennio De Giorgi", University of Salento c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Federica Carnevali
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
- Department of Mathematics and Physics ''Ennio De Giorgi", University of Salento c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Anil Chandra
- Centre for Research in Pure and Applied Sciences, Jain (Deemed-to-be-university) Bangalore Karnataka 560078 India
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
- Department of Mathematics and Physics ''Ennio De Giorgi", University of Salento c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| |
Collapse
|
46
|
Zhang MH, Yuan YF, Liu LJ, Wei YX, Yin WY, Zheng LZY, Tang YY, Lv Z, Zhu F. Dysregulated microRNAs as a biomarker for diagnosis and prognosis of hepatitis B virus-associated hepatocellular carcinoma. World J Gastroenterol 2023; 29:4706-4735. [PMID: 37664153 PMCID: PMC10473924 DOI: 10.3748/wjg.v29.i31.4706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with a high incidence and fatality rate worldwide. Hepatitis B virus (HBV) infection is one of the most important risk factors for its occurrence and development. Early detection of HBV-associated HCC (HBV-HCC) can improve clinical decision-making and patient outcomes. Biomarkers are extremely helpful, not only for early diagnosis, but also for the development of therapeutics. MicroRNAs (miRNAs), a subset of non-coding RNAs approximately 22 nucleotides in length, have increasingly attracted scientists' attention due to their potential utility as biomarkers for cancer detection and therapy. HBV profoundly impacts the expression of miRNAs potentially involved in the development of hepatocarcinogenesis. In this review, we summarize the current progress on the role of miRNAs in the diagnosis and treatment of HBV-HCC. From a molecular standpoint, we discuss the mechanism by which HBV regulates miRNAs and investigate the exact effect of miRNAs on the promotion of HCC. In the near future, miRNA-based diagnostic, prognostic, and therapeutic applications will make their way into the clinical routine.
Collapse
Affiliation(s)
- Ming-He Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yu-Feng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Li-Juan Liu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yu-Xin Wei
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wan-Yue Yin
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Lan-Zhuo-Yin Zheng
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ying-Ying Tang
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhao Lv
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
47
|
Biglari N, Soltani-Zangbar MS, Mohammadian J, Mehdizadeh A, Abbasi K. ctDNA as a novel and promising approach for cancer diagnosis: a focus on hepatocellular carcinoma. EXCLI JOURNAL 2023; 22:752-780. [PMID: 37720239 PMCID: PMC10502204 DOI: 10.17179/excli2023-6277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/26/2023] [Indexed: 09/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent forms of cancer worldwide. Therefore, it is essential to diagnose and treat HCC patients promptly. As a novel discovery, circulating tumor DNA (ctDNA) can be used to analyze the tumor type and the cancer location. Additionally, ctDNA assists the cancer stage determination, which enables medical professionals to provide patients with the most appropriate treatment. This review will discuss the HCC-related mutated genes diagnosed by ctDNA. In addition, we will introduce the different and the most appropriate ctDNA diagnosis approaches based on the facilities.
Collapse
Affiliation(s)
- Negin Biglari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Mohammadian
- School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Abbasi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Zhang Y, Hong L, Li X, Li Y, Zhang X, Jiang J, Shi F, Diao H. M1 macrophage-derived exosomes promote autoimmune liver injury by transferring long noncoding RNA H19 to hepatocytes. MedComm (Beijing) 2023; 4:e303. [PMID: 37398637 PMCID: PMC10310975 DOI: 10.1002/mco2.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023] Open
Abstract
Exosomes mediate intercellular communication by transmitting active molecules. The function of long noncoding RNA (lncRNA) H19 in autoimmune liver injury is unclear. Concanavalin A (ConA)-induced liver injury is well-characterized immune-mediated hepatitis. Here, we showed that lncRNA H19 expression was increased in the liver after ConA treatment, accompanied by increased exosome secretion. Moreover, injection of AAV-H19 aggravated ConA-induced hepatitis, with an increase in hepatocyte apoptosis. However, GW4869, an exosome inhibitor, alleviated ConA-induced liver injury and inhibited the upregulation of lncRNA H19. Intriguingly, lncRNA H19 expression in the liver was significantly downregulated, after macrophage depletion. Importantly, the lncRNA H19 was primarily expressed in type I macrophage (M1) and encapsulated in M1-derived exosomes. Furthermore, H19 was transported from M1 to hepatocytes via exosomes, and exosomal H19 dramatically induced hepatocytes apoptosis both in vitro and vivo. Mechanistically, H19 upregulated the transcription of hypoxia-inducible factor-1 alpha (HIF-1α), which accumulated in the cytoplasm and mediated hepatocyte apoptosis by upregulating p53. M1-derived exosomal lncRNA H19 plays a pivotal role in ConA-induced hepatitis through the HIF-1α-p53 signaling pathway. These findings identify M1 macrophage-derived exosomal H19 as a novel target for the treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
- Yongting Zhang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Liang Hong
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Xuehui Li
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Yuyu Li
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Xujun Zhang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Fan Shi
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Hongyan Diao
- State Key Laboratory for Diagnosis & Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseaseCollaborative Innovation Center for Diagnosis & Treatment of Infectious DiseasesThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
49
|
Mottaghi-Dastjerdi N, Ghorbani A, Montazeri H, Guzzi PH. A systems biology approach to pathogenesis of gastric cancer: gene network modeling and pathway analysis. BMC Gastroenterol 2023; 23:248. [PMID: 37482618 PMCID: PMC10364406 DOI: 10.1186/s12876-023-02891-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) ranks among the most common malignancies worldwide. This study aimed to find critical genes/pathways in GC pathogenesis. METHODS Gene interactions were analyzed, and the protein-protein interaction network was drawn. Then enrichment analysis of the hub genes was performed and network cluster analysis and promoter analysis of the hub genes were done. Age/sex analysis was done on the identified genes. RESULTS Eleven hub genes in GC were identified in the current study (ATP5A1, ATP5B, ATP5D, MT-ATP8, COX7A2, COX6C, ND4, ND6, NDUFS3, RPL8, and RPS16), mostly involved in mitochondrial functions. There was no report on the ATP5D, ND6, NDUFS3, RPL8, and RPS16 in GC. Our results showed that the most affected processes in GC are the metabolic processes, and the oxidative phosphorylation pathway was considerably enriched which showed the significance of mitochondria in GC pathogenesis. Most of the affected pathways in GC were also involved in neurodegenerative diseases. Promoter analysis showed that negative regulation of signal transduction might play an important role in GC pathogenesis. In the analysis of the basal expression pattern of the selected genes whose basal expression presented a change during the age, we found that a change in age may be an indicator of changes in disease insurgence and/or progression at different ages. CONCLUSIONS These results might open up new insights into GC pathogenesis. The identified genes might be novel diagnostic/prognostic biomarkers or potential therapeutic targets for GC. This work, being based on bioinformatics analysis act as a hypothesis generator that requires further clinical validation.
Collapse
Affiliation(s)
- Negar Mottaghi-Dastjerdi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Hamed Montazeri
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
50
|
Li X, Liu D, Wang Y, Chen Y, Wang C, Lin Z, Tian L. PHF5A as a new OncoTarget and therapeutic prospects. Heliyon 2023; 9:e18010. [PMID: 37483794 PMCID: PMC10362332 DOI: 10.1016/j.heliyon.2023.e18010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
PHF5A (PHD-finger domain protein 5A) is a highly conserved protein comprised of 110 amino acids that belong to PHD zinc finger proteins and is ubiquitously expressed in entire eukaryotic nuclei from yeast to man. PHF5A is an essential component of the SF3B splicing complex regulating protein-protein or protein-DNA interactions; particularly involved in pre-mRNA splicing. Besides its basic spliceosome-associated attributes encompassing the regulation of alternative splicing of specific genes, PHF5A also plays a pivotal role in cell cycle regulation and morphological development of cells along with their differentiation into particular tissues/organs, DNA damage repair, maintenance of pluripotent embryonic stem cells (CSCs) embryogenesis and regulation of chromatin-mediated transcription. Presently identification of spliceosome and non-spliceosome-associated attributes of PHF5A needs great attention based on its key involvement in the pathogenesis of cancer malignancies including the prognosis of lung adenocarcinoma, endometrial adenocarcinoma, breast, and colorectal cancer. PHF5A is an essential splicing factor or cofactor actively participating as an oncogenic protein in tumorigenesis via activation of downstream signaling pathway attributed to its regulation of dysregulated splicing or abnormal alternative splicing of targeted genes. Further, the participation of PHF5A in regulating the growth of cancer stem cells might not be ignored. The current review briefly overviews the structural and functional attributes of PHF5A along with its hitherto described role in the propagation of cancer malignancies and its future concern as a potential therapeutic target for cancer management/treatment.
Collapse
Affiliation(s)
- Xiaojiang Li
- Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Dalong Liu
- Department of Orthopedics, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yun Wang
- Department of Thoracic Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yu Chen
- Department of Orthopedics, LiaoYuanCity TCM Hospital, LiaoYuan, 136200, China
| | - Chenyang Wang
- Department of Orthopedics, LiaoYuanCity TCM Hospital, LiaoYuan, 136200, China
| | - Zhicheng Lin
- Department of Internal Medicine, Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Lin Tian
- Department of Lung Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| |
Collapse
|