1
|
Kameda T, Sugihara T, Obinata D, Oshima M, Yamada Y, Kimura N, Takayama K, Inoue S, Takahashi S, Fujimura T. Androgen receptor and osteoglycin gene expression predicting prognosis of metastatic prostate cancer. Sci Rep 2024; 14:30654. [PMID: 39730360 DOI: 10.1038/s41598-024-74443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/26/2024] [Indexed: 12/29/2024] Open
Abstract
This study aimed to identify the predictive factors associated with the oncological outcomes of metastatic hormone-sensitive prostate cancer-related genes. A nomogram for predicting prostate cancer-specific survival (CSS) was constructed based on biopsy samples obtained from 103 patients with metastatic hormone-sensitive prostate cancer. We analyzed the association between clinical data and mRNA expression levels. The nomogram was externally validated in another cohort (n = 50) by using a concordance index. Based on the cutoff value, determined by a receiver operating characteristic analysis, longer CSS was observed in the high osteoglycin and androgen receptor expression level groups (> 1.133 and > 0.00; median CSS, 85.3 vs. 52.7 months, p = 0.045, and 69.1 vs. 32.1 months, p = 0.034, respectively), compared with that of the low expression level groups. The nomogram predicting CSS included hemoglobin (≥ 13.7 g/dL or < 13.7 g/dL), serum albumin (≥ 3.1 g/dL or < 3.1 g/dL), serum lactate dehydrogenase (≥ 222 IU/L or < 222 IU/L), total Japan Cancer of the Prostate Risk Assessment score, androgen receptor expression level, and osteoglycin expression level. The concordance indices for the internal and external validations were 0.664 and 0.798, respectively. In this study, a nomogram that integrated the expression levels of androgen receptors and osteoglycin to predict CSS in metastatic hormone-sensitive prostate cancer was established.
Collapse
Affiliation(s)
- Tomohiro Kameda
- Department of Urology, Jichi Medical University, 3311-1 Yakushiji Shimotsuke, Tochigi, 329-0498, Japan
| | - Toru Sugihara
- Department of Urology, Jichi Medical University, 3311-1 Yakushiji Shimotsuke, Tochigi, 329-0498, Japan.
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Masashi Oshima
- Department of Urology, Sano Kosei General Hospital, Sano, Tochigi, Japan
| | - Yuta Yamada
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoki Kimura
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Tetsuya Fujimura
- Department of Urology, Jichi Medical University, 3311-1 Yakushiji Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
2
|
Xi H, Chen X, Wang X, Jiang F, Niu D. Role of programmed cell death in mammalian ovarian follicular atresia. J Steroid Biochem Mol Biol 2024; 247:106667. [PMID: 39725276 DOI: 10.1016/j.jsbmb.2024.106667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Programmed cell death (PCD) is a fundamental process in the development process of organisms, including apoptosis, autophagy, ferroptosis, and pyroptosis. In mammalian ovaries, 99 % of follicles undergo atresia, while only 1 % mature and ovulate, which limits the reproductive efficiency of mammals. The PCD process is closely related to the regulation of follicle development and atresia. Recently, an increasing number of studies have reported that autophagy, pyroptosis, and ferroptosis of PCD are involved in regulating granulosa cell apoptosis and follicular atresia. Granulosa cell apoptosis is a hallmark of follicular atresia. Therefore, an understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of follicular atresia. This review summarizes recent work on apoptosis, autophagy, pyroptosis, and ferroptosis of PCD that affect granulosa cell survival and follicular atresia, and further elucidating the mechanisms of follicular atresia and providing new directions for improving the reproductive capacity of humans and animals.
Collapse
Affiliation(s)
- Huaming Xi
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Xinyu Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Xianglong Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Feng Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| | - Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
He Y, Wang Y, Wang X, Deng S, Wang D, Huang Q, Lyu G. Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization. Front Endocrinol (Lausanne) 2024; 15:1431200. [PMID: 39735641 PMCID: PMC11671271 DOI: 10.3389/fendo.2024.1431200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a complex endocrine disorder with various contributing factors. Understanding the molecular mechanisms underlying PCOS is essential for developing effective treatments. This study aimed to identify hub genes and investigate potential molecular mechanisms associated with PCOS through a combination of bioinformatics analysis and Mendelian randomization (MR). Methods This study employed bioinformatics analysis in conjunction with MR methods using publicly available databases to identify hub genes. We employed complementary MR methods, including inverse-variance weighted (IVW), to determine the causal relationship between the hub genes and PCOS. Sensitivity analyses were performed to ensure results reliability. Enrichment analysis and immune infiltration analysis were further conducted to assess the role and mechanisms of hub genes in the development of PCOS. Additionally, we validated hub gene expression in both an animal model and serum samples from PCOS patients using qRT-PCR. Results IVW analysis revealed significant associations between 10 hub genes and the risk of PCOS: CD93 [P= 0.004; OR 95%CI= 1.150 (1.046, 1.264)], CYBB [P= 0.013; OR 95%CI= 1.650 (1.113,2.447)], DOCK8 [P= 0.048; OR 95%CI= 1.223 (1.002,1.494)], IRF1 [P= 0.036; OR 95%CI= 1.343 (1.020,1.769)], MBOAT1 [P= 0.033; OR 95%CI= 1.140 (1.011,1.285)], MYO1F [P= 0.012; OR 95%CI= 1.325 (1.065,1.649)], NLRP1 [P= 0.020; OR 95%CI= 1.143 (1.021,1.280)], NOD2 [P= 0.002; OR 95%CI= 1.139 (1.049,1.237)], PIK3R1 [P= 0.040; OR 95%CI= 1.241 (1.010,1.526)], PTER [P= 0.015; OR 95%CI= 0.923 (0.866,0.984)]. No heterogeneity and pleiotropy were observed. Hub genes mainly enriched in positive regulation of cytokine production and TNF signaling pathway, and exhibited positive or negative correlations with different immune cells in individuals with PCOS. qRT-PCR validation in both the rat model and patient serum samples confirmed hub gene expression trends consistent with our combined analysis results. Conclusions Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.
Collapse
Affiliation(s)
- Yifang He
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yanli Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiali Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Departments of Medical Imaging, Quanzhou Medical College, Quanzhou, China
| | - Shuangping Deng
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Dandan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingqing Huang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Guorong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
4
|
Zanjirband M, Nasr-Esfahani MH, Curtin NJ, Drew Y, Sharma Saha S, Adibi P, Lunec J. A Systematic Review of the Molecular Mechanisms Involved in the Association Between PCOS and Endometrial and Ovarian Cancers. J Cell Mol Med 2024; 28:e70312. [PMID: 39720923 DOI: 10.1111/jcmm.70312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), a major cause of female infertility, affects 4%-20% of reproductive-age women. Metabolic and hormonal alterations are key features of PCOS, potentially raising the risk of endometrial (EC) and ovarian (OVCA) cancers. This systematic review aims to summarise the proposed molecular mechanisms involved in the association between PCOS and EC or OVCA. This is achieved by conducting a thorough literature review and utilising specific search terms to identify all relevant studies published in English from 2010 to December 2022. PRISMA was followed, and the protocol was registered on PROSPERO (CRD42022375461). The QUADAS-2 tool and Review Manager Software were employed to evaluate study quality and risk of bias respectively. Forty-five eligible studies were selected with molecular signatures based on genomic, transcriptomic, metabolomic, proteomic and epigenetic analyses. Genes and their products deregulated in EC and/or OVCA were identified, including BRCA1, MLH1, NQO1 and ESR1, which were also deregulated in PCOS. Serum levels of IGF1, IGFBP1, SREBP1 and visfatin in women with PCOS were also identified as potential biomarkers of enhanced EC risk. Salusin-β serum levels in individuals with PCOS were identified as a potential biomarker for increased risk of OVCA. Gene signature-based drug repositioning identified several drug candidates: metformin, fenofibrate, fatostatin, melatonin, resveratrol and quercetin, some already established and prescribed for PCOS. In conclusion, this study provides a strong basis for further research to confirm the identified molecular signatures and associated causal links for potential therapeutic prevention strategies for EC and OVCA in women with PCOS.
Collapse
Affiliation(s)
- M Zanjirband
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - M H Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - N J Curtin
- Translational and Clinical Research Institute, Newcastle University Cancer Centre, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Y Drew
- BC Cancer Vancouver and University of British Columbia, Vancouver, British Columbia, Canada
| | - S Sharma Saha
- Translational and Clinical Research Institute, Newcastle University Cancer Centre, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - P Adibi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - J Lunec
- Biosciences Institute, Newcastle University Cancer Centre, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
5
|
Yang Z, Zhou C, Jin L, Pan J. Identification of CCR7 as a potential biomarker in polycystic ovary syndrome through transcriptome sequencing and integrated bioinformatics. Genomics 2024; 117:110968. [PMID: 39608739 DOI: 10.1016/j.ygeno.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder, yet its mechanisms remain elusive. This study employed transcriptome sequencing on granulosa cells from 5 PCOS women and 5 controls, followed by bioinformatic analyses. We identified 684 mRNAs and 167 lncRNAs with significant differential expression. Gene Ontology and KEGG analyses highlighted enrichment in immune and inflammatory responses among these genes. Through CytoHubba plug-in and three machine learning algorithms, CCR7 was identified as the hub gene of PCOS, further validated through analysis of GSE65746, GSE34526 and a cohort of eighty subjects (40 PCOS and 40 controls). Furthermore, a competing endogenous RNA network targeting CCR7 was constructed. Immune infiltration analysis unveiled a significant decrease in monocyte infiltration in PCOS women, with CCR7 expression positively correlated to naïve B cells. Our findings suggest CCR7 and related molecules play a crucial role in the pathogenesis of PCOS, potentially serving as biomarkers for the disorder.
Collapse
Affiliation(s)
- Zuwei Yang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengliang Zhou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Zhou S, Zhang Q, Xu J, Xiang R, Dong X, Zhou X, Liu Z. CAP superfamily proteins in human: a new target for cancer therapy. Med Oncol 2024; 41:306. [PMID: 39499355 DOI: 10.1007/s12032-024-02548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The CAP (Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1) superfamily proteins (CAP proteins) are found in all kingdoms of life. The cysteine-rich secreted proteins are prevalent in human organs and tissues and serve as critical signaling molecules within cells, regulating a wide range of biochemical processes in the human body. Due to their involvement in numerous biological processes, CAP proteins have recently attracted significant attention, particularly in the context of tumorigenesis and cancer therapy. This review summarizes the expression patterns and roles of CAP proteins in various cancers. Additionally, it analyzes the mechanisms by which CAP proteins affect cancer cell proliferation and survival, regulate epithelial-mesenchymal transition, influence drug resistance, and regulate epigenetics. The review reveals that CAP proteins play distinct roles in various signaling pathways, such as the MAPK, PI3K-Akt, and p53 pathways, which are crucial for tumor progression. Furthermore, this review summarizes the tumor-inhibiting function of CAP proteins and their potential as cancer biomarkers. These findings suggest that CAP proteins represent a promising new target for innovative cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shenao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiawei Xu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ruiqi Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaoping Dong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
7
|
Kong FS, Huang P, Chen JH, Ma Y. The Novel Insight of Gut Microbiota from Mouse Model to Clinical Patients and the Role of NF-κB Pathway in Polycystic Ovary Syndrome. Reprod Sci 2024; 31:3323-3333. [PMID: 38653859 DOI: 10.1007/s43032-024-01562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Polycystic Ovary Syndrome (PCOS) is a metabolic disorder characterized by hyperandrogenism and related symptoms in women of reproductive age. Emerging evidence suggests that chronic low-grade inflammation plays a significant role in the development of PCOS. The gut microbiota, a complex bacterial ecosystem, has been extensively studied for various diseases, including PCOS, while the underlying mechanisms are not fully understood. This review comprehensively summarizes the changes in gut microbiota and metabolites observed in PCOS and their potential association with the condition. Additionally, we discuss the role of abnormal nuclear factor κB signaling in the pathogenesis of PCOS. These findings offer valuable insights into the mechanisms of PCOS and may pave the way for the development of control and therapeutic strategies for this condition in clinical practice. By bridging the gap between mouse models and clinical patients, this review contributes to a better understanding of the interplay between gut microbiota and inflammation in PCOS, thus paving new ways for future investigations and interventions.
Collapse
Affiliation(s)
- Fan-Sheng Kong
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Panwang Huang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China.
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China.
| | - Yaping Ma
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
8
|
Zhang X, Zhu L, Ma C, Zhao SN, Zhao CY, Sun H. Translocase of Outer Mitochondrial Membrane 40, as a Promising Biomarker for the Diagnosis of Polycystic Ovary Syndrome and Pan-Cancer. Reprod Sci 2024; 31:3569-3582. [PMID: 39060752 PMCID: PMC11527956 DOI: 10.1007/s43032-024-01652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a metabolic disease that affects the reproductive system, and its pathogenesis remains unresolved. Through the application of bioinformatics and molecular biology techniques, this study has identified a significant association between translocase of outer mitochondrial membrane 40 (TOMM40) and both PCOS and pan-cancers. The selection of PCOS biomarkers included TOMM40, which we found to be significantly decreased in the PCOS group both in vitro and in vivo, using molecular biology methods such as Western Blot as well as immunohistochemistry. Over-expression TOMM40 can rescue the effect on apoptosis rate and proliferation suppression induced by DHEA in KGN cells. TOMM40 as a biomarker for the diagnosis of PCOS. The pan-cancer analysis revealed an association between elevated TOMM40 expression in Uterine Corpus Endometrial Carcinoma and an unfavorable prognosis, while increased TOMM40 expression in six tumor types was linked to a favorable prognosis. Therefore, TOMM40 can be regarded as a promising biomarker for diagnosing both PCOS and pan-cancer.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Lin Zhu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal- Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - ChenHao Ma
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, NO.194, BaoJian Street, Nan Gang District, Harbin, Heilongjiang, 150081, P. R. China
| | - Shu-Ning Zhao
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, NO.194, BaoJian Street, Nan Gang District, Harbin, Heilongjiang, 150081, P. R. China
| | - Chu-Yue Zhao
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, NO.194, BaoJian Street, Nan Gang District, Harbin, Heilongjiang, 150081, P. R. China
| | - Hui Sun
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, NO.194, BaoJian Street, Nan Gang District, Harbin, Heilongjiang, 150081, P. R. China.
| |
Collapse
|
9
|
Wang T, Zhang L, Gao W, Liu Y, Yue F, Ma X, Liu L. Transcriptome-wide N6-methyladenosine modification profiling of long non-coding RNAs in patients with recurrent implantation failure. BMC Med Genomics 2024; 17:251. [PMID: 39394578 PMCID: PMC11470675 DOI: 10.1186/s12920-024-02013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024] Open
Abstract
N6-methyladenosine (m6A) is involved in most biological processes and actively participates in the regulation of reproduction. According to recent research, long non-coding RNAs (lncRNAs) and their m6A modifications are involved in reproductive diseases. In the present study, using m6A-modified RNA immunoprecipitation sequencing (m6A-seq), we established the m6A methylation transcription profiles in patients with recurrent implantation failure (RIF) for the first time. There were 1443 significantly upregulated m6A peaks and 425 significantly downregulated m6A peaks in RIF. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that genes associated with differentially methylated lncRNAs are involved in the p53 signalling pathway and amino acid metabolism. The competing endogenous RNA network revealed a regulatory relationship between lncRNAs, microRNAs and messenger RNAs. We verified the m6A methylation abundances of lncRNAs by using m6A-RNA immunoprecipitation (MeRIP)-real-time polymerase chain reaction. This study lays a foundation for further exploration of the potential role of m6A modification in the pathogenesis of RIF.
Collapse
Affiliation(s)
- Ting Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China
| | - Lili Zhang
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Wenxin Gao
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Yidan Liu
- The Basic Medical Sciences College of Lanzhou University, Lanzhou, Gansu, China
| | - Feng Yue
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Xiaoling Ma
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China
| | - Lin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, Gansu, China.
- The Reproductive Center, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China.
- The Basic Medical Sciences College of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
10
|
Dong S, Liu Y, Yang Z. Transcription factor YY1 adversely governs ovarian granulosa cell growth in PCOS by transcription activation-mediated CDKN1C upregulation. Funct Integr Genomics 2024; 24:171. [PMID: 39317806 DOI: 10.1007/s10142-024-01448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women of childbearing age, making it imperative to explore more biomarkers for PCOS. Furthermore, previous studies have reported that cyclin dependent kinase inhibitor 1 C (CDKN1C) might be associated with PCOS progression. However, the molecular mechanism of CDKN1C involved in PCOS is poorly defined. METHODS CDKN1C and Yin-Yang-1 (YY1) expression levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay. Cell viability, proliferation, cell cycle progression, and cell apoptosis were analyzed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. Caspase 3 activity was examined using a commercial kit. Binding between YY1 and CDKN1C promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. RESULTS CDKN1C and YY1 were highly expressed in PCOS granulosa cells (GCs). Furthermore, CDKN1C silencing could promote cell proliferation and cell cycle process and repress cell apoptosis in human ovarian granulosa cell line KGN cells. For mechanistic analysis, YY1 is directly bound to the promoter of CDKN1C and transcriptional-regulated CDKN1C expression. CONCLUSION YY1-activated CDKN1C might block KGN cell proliferation and induce cell apoptosis, providing a possible therapeutic target for PCOS treatment.
Collapse
Affiliation(s)
- Shitao Dong
- Department of Reproductve Medical, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan Distyrict, Zunyi, 563000, China
| | - Youbin Liu
- Department of Reproductve Medical, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan Distyrict, Zunyi, 563000, China
| | - Zhimin Yang
- Department of Reproductve Medical, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan Distyrict, Zunyi, 563000, China.
| |
Collapse
|
11
|
Li X, Lin S, Yang X, Chen C, Cao S, Zhang Q, Ma J, Zhu G, Zhang Q, Fang Q, Zheng C, Liang W, Wu X. When IGF-1 Meets Metabolic Inflammation and Polycystic Ovary Syndrome. Int Immunopharmacol 2024; 138:112529. [PMID: 38941670 DOI: 10.1016/j.intimp.2024.112529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder associated with insulin resistance (IR) and hyperandrogenaemia (HA). Metabolic inflammation (MI), characterized by a chronic low-grade inflammatory state, is intimately linked with chronic metabolic diseases such as IR and diabetes and is also considered an essential factor in the development of PCOS. Insulin-like growth factor 1 (IGF-1) plays an essential role in PCOS pathogenesis through its multiple functions in regulating cell proliferation metabolic processes and reducing inflammatory responses. This review summarizes the molecular mechanisms by which IGF-1, via MI, participates in the onset and progression of PCOS, aiming to provide insights for studies and clinical treatment of PCOS.
Collapse
Affiliation(s)
- Xiushen Li
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China; Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Sailing Lin
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Xiaolu Yang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Can Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Shu Cao
- Xin'an Academy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qi Zhang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Jingxin Ma
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Guli Zhu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Qi Zhang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Qiongfang Fang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China.
| | - Xueqing Wu
- Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Abu-Zaid A, Baradwan S, Alyafi M, Al Baalharith M, Alsehaimi SO, Alsabban M, Alsharif SA, Alqarni SMS, Albelwi H, Jamjoom MZ, Saleh SAK, Adly HM, Alomar O, Salem H. Association between polycystic ovary syndrome and the risk of malignant gynecologic cancers (ovarian, endometrial, and cervical): A population-based study from the U.S.A. National Inpatient Sample 2016-2019. Eur J Obstet Gynecol Reprod Biol 2024; 299:283-288. [PMID: 38941743 DOI: 10.1016/j.ejogrb.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE This study aimed to systematically examine the relationship between polycystic ovary syndrome and ovarian, endometrial, and cervical cancers using the National Inpatient Sample (NIS) database. METHODS We utilized the International Classification of Diseases (ICD-10) system to identify relevant codes from the NIS database (2016-2019). Univariate and multivariable regression analyses (adjusted age, race, hospital region, hospital teaching status, income Zip score, smoking, alcohol use, and hormonal replacement therapy) were conducted to evaluate association between PCOS and gynecologic cancers. Results were summarized as odds ratio (OR) with 95% confidence intervals (CI). RESULTS Overall, 15,024,965 patients were analyzed, of whom 56,183 and 14,968,782 patients were diagnosed with and without PCOS, respectively. Among the patients diagnosed with gynecologic cancers (n = 91,599), there were 286 with PCOS and 91,313 without PCOS. Univariate analysis revealed that PCOS was significantly associated with higher risk of endometrial cancer (OR = 1.39, 95 % CI [1.18-1.63], p < 0.0001), but lower risk of ovarian cancer (OR = 0.55, 95 % CI [0.45-0.67], p < 0.0001) and cervical cancer (OR = 0.68, 95 % CI [0.51-0.91], p = 0.009). In contrast, after Bonferroni correction, multivariable analysis depicted that PCOS remained significantly associated with higher risk of endometrial cancer (OR = 3.90, 95 % CI [4.32-4.59], p < 0.0001). There was no significant correlation between PCOS and risk of ovarian cancer (OR = 1.09, 95 % CI [0.89-1.34], p = 0.409) and cervical cancer (OR = 0.83, 95 % CI [0.62-1.11], p = 0.218). CONCLUSION This first-ever NIS analysis showed that patients with PCOS exhibited unique gynecologic cancer risk profiles, with higher risk for endometrial cancer, and no significant risk for ovarian or cervical cancers.
Collapse
Affiliation(s)
- Ahmed Abu-Zaid
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Saeed Baradwan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammad Alyafi
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maha Al Baalharith
- Department of Obstetrics and Gynecology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Saud Owaimer Alsehaimi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohannad Alsabban
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saud Abdullah Alsharif
- Department of Obstetrics and Gynecology, College of Medicine, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Saad M S Alqarni
- Department of Obstetrics and Gynecology, King Faisal Armed Forces Hospital, Khamis Mushait, Saudi Arabia
| | - Hedaya Albelwi
- Department of Obstetrics and Gynecology, National Guard Hospital, Riyadh, Saudi Arabia
| | - Mohammed Ziad Jamjoom
- Department of Obstetrics and Gynecology, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Saleh A K Saleh
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Heba M Adly
- Department of Community Medicine and Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Osama Alomar
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hany Salem
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Wolde T, Bhardwaj V, Reyad-ul-Ferdous M, Qin P, Pandey V. The Integrated Bioinformatic Approach Reveals the Prognostic Significance of LRP1 Expression in Ovarian Cancer. Int J Mol Sci 2024; 25:7996. [PMID: 39063239 PMCID: PMC11276689 DOI: 10.3390/ijms25147996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
A hyperactive tumour microenvironment (TME) drives unrestricted cancer cell survival, drug resistance, and metastasis in ovarian carcinoma (OC). However, therapeutic targets within the TME for OC remain elusive, and efficient methods to quantify TME activity are still limited. Herein, we employed an integrated bioinformatics approach to determine which immune-related genes (IRGs) modulate the TME and further assess their potential theragnostic (therapeutic + diagnostic) significance in OC progression. Using a robust approach, we developed a predictive risk model to retrospectively examine the clinicopathological parameters of OC patients from The Cancer Genome Atlas (TCGA) database. The validity of the prognostic model was confirmed with data from the International Cancer Genome Consortium (ICGC) cohort. Our approach identified nine IRGs, AKT2, FGF7, FOS, IL27RA, LRP1, OBP2A, PAEP, PDGFRA, and PI3, that form a prognostic model in OC progression, distinguishing patients with significantly better clinical outcomes in the low-risk group. We validated this model as an independent prognostic indicator and demonstrated enhanced prognostic significance when used alongside clinical nomograms for accurate prediction. Elevated LRP1 expression, which indicates poor prognosis in bladder cancer (BLCA), OC, low-grade gliomas (LGG), and glioblastoma (GBM), was also associated with immune infiltration in several other cancers. Significant correlations with immune checkpoint genes (ICGs) highlight the potential importance of LRP1 as a biomarker and therapeutic target. Furthermore, gene set enrichment analysis highlighted LRP1's involvement in metabolism-related pathways, supporting its prognostic and therapeutic relevance also in BLCA, OC, low-grade gliomas (LGG), GBM, kidney cancer, OC, BLCA, kidney renal clear cell carcinoma (KIRC), stomach adenocarcinoma (STAD), and stomach and oesophageal carcinoma (STES). Our study has generated a novel signature of nine IRGs within the TME across cancers, that could serve as potential prognostic predictors and provide a valuable resource to improve the prognosis of OC.
Collapse
Affiliation(s)
- Tesfaye Wolde
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
| | - Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Md. Reyad-ul-Ferdous
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (T.W.); (M.R.-u.-F.)
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| |
Collapse
|
14
|
Li X, Gao B, Gao B, Li X, Xia X. Transcriptome profiling reveals dysregulation of inflammatory and protein synthesis genes in PCOS. Sci Rep 2024; 14:16596. [PMID: 39025980 PMCID: PMC11258128 DOI: 10.1038/s41598-024-67461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
To analyze the differential expression genes of polycystic ovary syndrome (PCOS), clarify their functions and pathways, as well as the protein-protein interaction network, identify HUB genes, and explore the pathological mechanism. PCOS microarray datasets were screened from the GEO database. Common differentially expressed genes (co-DEGs) were obtained using GEO2R and Venn analysis. Enrichment and pathway analyses were conducted using the DAVID online tool, with results presented in bubble charts. Protein-protein interaction analysis was performed using the STRING tool. HUB genes were identified using Cytoscape software and further interpreted with the assistance of the GeneCards database. A total of two sets of co-DEGs (108 and 102), key proteins (15 and 55), and hub genes (10 and 10) were obtained. The co-DEGs: (1) regulated inflammatory responses and extracellular matrix, TNF, and IL-17 signaling pathways; (2) regulated ribosomes and protein translation, ribosome and immune pathways. The key proteins: (1) regulated inflammation, immunity, transcription, matrix metabolism, proliferation/differentiation, energy, and repair; (2) regulated ubiquitination, enzymes, companion proteins, respiratory chain components, and fusion proteins. The Hub genes: (1) encoded transcription factors and cytokines, playing vital roles in development and proliferation; (2) encoded ribosomes and protein synthesis, influencing hormone and protein synthesis, associated with development and infertility. The dysregulated expression of inflammation and protein synthesis genes in PCOS may be the key mechanism underlying its onset and progression.
Collapse
Affiliation(s)
- Xilian Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Biao Gao
- Teaching and Research Support Center, Naval Medical University, Shanghai, 200433, China.
| | - Bingsi Gao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xian Xia
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| |
Collapse
|
15
|
Zhang R, Liu Y, Li W, Wang P, Liu Z, Wen Y, Chu M, Wang L. A mutation in LPAR2 activates the miR-939-5p-LPAR2-PI3K/AKT axis to regulate the proliferation and apoptosis of granulosa cells in sheep. Theriogenology 2024; 219:1-10. [PMID: 38368704 DOI: 10.1016/j.theriogenology.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Lysophosphatidic acid receptor-2 (LPAR2) is a G protein-coupled receptor, which is involved in various physiological processes such as cell development, proliferation, and apoptosis, and is thought to play an important role in follicular development and reproduction. There is evidence that miRNA recognition elements (MRE) in the gene 3'UTR often contain single nucleotide polymorphisms (SNPs) that can alter the binding affinity of the target miRNA, leading to dysregulation of gene expression. In this study, we detected a SNP in LPAR2 3 'UTR (rs410670692, c.*701C > T) in 384 small-tailed Han sheep using Sequenom MassARRAY®SNP genotyping. Association analysis showed that the SNP was significantly associated with litter size. Then, the effect of LPAR2 rs410670692 mutation on gene expression in sheep hosts was studied by molecular biotechnology. The results showed that the expression of LPAR2 in the TT genotype was significantly higher than that in the CC genotype, which confirmed the existence of rs410670692, a functional SNP, in LPAR2 3'UTR. We then used bioinformatics methods and double luciferase reporter gene assay to predict and confirm LPAR2 SNP rs410670692 as the direct targeting regulatory element of miR-939-5p. Cell transfection experiments further found that SNP rs410670692 down-regulated the mRNA and protein levels of LPAR2 by influencing the binding of miR-939-5p. To understand the function and mechanism of miR-939-5p in sheep granulosa cells (GCs), we conducted cell proliferation and apoptosis experiments which showed inhibited GCs proliferation along with promoted GCs apoptosis upon overexpression of miR-939-5p. Moreover, overexpression of miR-939-5p promotes apoptosis of granulosa cells by blocking the LPAR2-dependent PI3K/Akt signaling pathway. In conclusion, these results indicate that the SNP rs410670692 of LPAR2 is related to the litter size of small-tailed cold sheep, and miR-939-5p can act as a regulatory element binding to the C mutation of rs410670692 to regulate the expression of LPAR2, affect the development of GCs, and thus indirectly affect the litter size of sheep. These studies provide evidence for the involvement of LPAR2 polymorphism in sheep reproduction and are expected to provide new insights into the molecular genetic mechanisms of litter size traits in sheep.
Collapse
Affiliation(s)
- Runan Zhang
- Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China; State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Wentao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Peng Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Ziyi Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuliang Wen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
16
|
Shen HH, Zhang YY, Wang XY, Li MY, Liu ZX, Wang Y, Ye JF, Wu HH, Li MQ. Validation of mitochondrial biomarkers and immune dynamics in polycystic ovary syndrome. Am J Reprod Immunol 2024; 91:e13847. [PMID: 38661639 DOI: 10.1111/aji.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
PROBLEM Polycystic ovary syndrome (PCOS), a prevalent endocrine-metabolic disorder, presents considerable therapeutic challenges due to its complex and elusive pathophysiology. METHOD OF STUDY We employed three machine learning algorithms to identify potential biomarkers within a training dataset, comprising GSE138518, GSE155489, and GSE193123. The diagnostic accuracy of these biomarkers was rigorously evaluated using a validation dataset using area under the curve (AUC) metrics. Further validation in clinical samples was conducted using PCR and immunofluorescence techniques. Additionally, we investigate the complex interplay among immune cells in PCOS using CIBERSORT to uncover the relationships between the identified biomarkers and various immune cell types. RESULTS Our analysis identified ACSS2, LPIN1, and NR4A1 as key mitochondria-related biomarkers associated with PCOS. A notable difference was observed in the immune microenvironment between PCOS patients and healthy controls. In particular, LPIN1 exhibited a positive correlation with resting mast cells, whereas NR4A1 demonstrated a negative correlation with monocytes in PCOS patients. CONCLUSION ACSS2, LPIN1, and NR4A1 emerge as PCOS-related diagnostic biomarkers and potential intervention targets, opening new avenues for the diagnosis and management of PCOS.
Collapse
Affiliation(s)
- Hui-Hui Shen
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Yang-Yang Zhang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xuan-Yu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Meng-Ying Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Zhen-Xing Liu
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Ying Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Jiang-Feng Ye
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hui-Hua Wu
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
| | - Ming-Qing Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Bai L, Gao X, Guo Y, Gong J, Li Y, Huang H, Liu X. Prediction of shared gene signatures and biological mechanisms between polycystic ovary syndrome and asthma: Based on weighted gene coexpression network analysis. Int J Gynaecol Obstet 2024; 165:155-168. [PMID: 38055328 DOI: 10.1002/ijgo.15253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/04/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Several clinical studies have shown an association between polycystic ovary syndrome (PCOS) and asthma; however, the molecular link between these conditions remains unclear. In this study, we conducted a reanalysis and repurposing of existing databases in order to depict the common key genes, related signaling pathways, and similarity of the immune microenvironment between PCOS and asthma. METHODS PCOS and asthma data sets were downloaded, and common signal pathways were identified by using gene set enrichment analysis. Identified common susceptibility genes were explored by intersecting the weighted gene coexpression network analysis module genes for both diseases. Then, we performed protein-protein interaction, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses of the common susceptibility genes. Finally, we analyzed the immune environment of PCOS and asthma. RESULTS We identified five hub genes, namely, MMP9, CDC42, CD44, CD19, and BCL2L1, and uncovered that these five hub genes showed a tendency to be upregulated in both PCOS and asthma and possessed good diagnostic ability. In addition, we revealed that both PCOS and asthma were significantly enriched in the FcεRI-mediated signaling pathway. Moreover, we found that both PCOS and asthma exhibited infiltration of similar types of immune cells, such as monocytes, suggesting that the two diseases have similar pathological features. CONCLUSION PCOS and asthma share common causative genes with a similar immune environment. Taken together, we uncovered previously unsuspected traits for comprehensive diagnosis and treatment of PCOS and asthma in the future.
Collapse
Affiliation(s)
- Lilian Bai
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueli Gao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yanyan Guo
- Department of Obstetrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junxing Gong
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yuchen Li
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinmei Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Raulo K, Qazi S. Identification of Key Genes Associated with Polycystic Ovarian Syndrome and Endometrial and Ovarian Cancer through Bioinformatics. J Hum Reprod Sci 2024; 17:81-93. [PMID: 39091436 PMCID: PMC11290717 DOI: 10.4103/jhrs.jhrs_44_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/13/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS), a common endocrine disorder, is linked to increased risks of endometrial cancer (EC) and ovarian cancer (OC). Our study utilises bioinformatics analysis to identify shared gene signatures and elucidate biological processes between EC and OC and PCOS. Aim The objective of this research is to unveil the common molecular landscape shared by PCOS and EC and OC. Settings and Design An observational computational bioinformatics analysis. Materials and Methods Gene expression profiles for PCOS (GSE199225), EC (GSE215413) and OC (GSE174670) were obtained from the Gene Expression Omnibus database. Hub genes were identified through functional enrichment analysis and protein-protein interaction. Drug identification analyses were employed to find drugs targeting the hub genes. Results Key hub genes linking PCOS and EC includes RECQL4, RAD54L, ATR, CHTF18, WDHD1, CDT1, PLK1, PKMYT1, RAD18 and RPL3; for PCOS and OC, they include HMOX1, TXNRD1, NQO1, GCLC, GSTP1, PRDX1, SOD1, GPX3, BOP1 and BYSL. Gene Ontology analysis revealed DNA metabolic process in PCOS and EC, while in PCOS and OC, it identified the removal of superoxide radicals. Kyoto Encyclopaedia of Genes and Genomes pathway analysis highlighted cell cycle in PCOS and EC and hepatocellular carcinoma in PCOS and OC. Potential drugs for PCOS and EC include quercetin, calcitriol and testosterone; for PCOS and OC, eugenol and 1-chloro-2,4-dinitrobenzene are identified. Conclusion These findings offer insights into potential therapeutic targets and pathways linking PCOS with EC and OC, enhancing our understanding of the molecular mechanisms involved in these associations.
Collapse
Affiliation(s)
- Karishma Raulo
- Department of Cancer Biology, Quick is Cool Aitele Research LLP, Bihar, India
| | - Sahar Qazi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Zhao P, Meng D, Hu Z, Liang Y, Feng Y, Sun T, Cheng L, Zheng X, Li H. Intra-sample reversed pairs based on differentially ranked genes reveal biosignature for ovarian cancer. Comput Biol Med 2024; 172:108208. [PMID: 38484696 DOI: 10.1016/j.compbiomed.2024.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/26/2024]
Abstract
Ovarian cancer, a major gynecological malignancy, often remains undetected until advanced stages, necessitating more effective early screening methods. Existing biomarker based on differential genes often suffers from variations in clinical practice. To overcome the limitations of absolute gene expression values including batch effects and biological heterogeneity, we introduced a pairwise biosignature leveraging intra-sample differentially ranked genes (DRGs) and machine learning for ovarian cancer detection across diverse cohorts. We analyzed ten cohorts comprising 872 samples with 796 ovarian cancer and 76 normal. Our method, DRGpair, involves three stages: intra-sample ranking differential analysis, reversed gene pair analysis, and iterative LASSO regression. We identified four DRG pairs, demonstrating superior diagnostic performance compared to current state-of-the-art biomarkers and differentially expressed genes in seven independent cohorts. This rank-based approach not only reduced computational complexity but also enhanced the specificity and effectiveness of biomarkers, revealing DRGs as promising candidates for ovarian cancer detection and offering a scalable model adaptable to varying cohort characteristics.
Collapse
Affiliation(s)
- Pengfei Zhao
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Dian Meng
- School of Computing and Information Technology, Great Bay University, Guangdong, China
| | - Zunkai Hu
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yining Liang
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Yating Feng
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Tongjie Sun
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Lixin Cheng
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Xubin Zheng
- School of Computing and Information Technology, Great Bay University, Guangdong, China; Great Bay Institute for Advanced Study, Guangdong, China
| | - Haili Li
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China.
| |
Collapse
|
20
|
Zheng CY, Yu YX, Bai X. Polycystic ovary syndrome and related inflammation in radiomics; relationship with patient outcome. Semin Cell Dev Biol 2024; 154:328-333. [PMID: 36933953 DOI: 10.1016/j.semcdb.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/19/2023]
Abstract
Polycystic ovary syndrome (PCOS) refers to a condition that often has 'poly' liquid containing sacks around ovaries. It affects reproductive-aged females giving rise to menstrual and related reproductive issues. PCOS is marked by hormonal imbalance often resulting in hyperandrogenism. Inflammation is now considered a central manifestation of this disease with several inflammatory biomarkers such as TNF-α, C-reactive protein and Interleukins-6/18 found to be particularly elevated in PCOS patients. Diagnosis is often late, and MRI-based diagnosis, along with blood-based analyses, are still the best bet for a definitive diagnosis. Radiomics also offers several advantages and should be exploited to the maximum. The mechanisms of PCOS onset and progression are not very well known but pituitary dysfunction and elevated gonadotrophin releasing hormone resulting in high levels of luteinizing hormone are indicative of an activated hypothalamic-pituitary-ovarian axis in PCOS. A number of studies have also identified signaling pathways such as PI3K/Akt, NF-κB and STAT in PCOS etiology. The links of these signaling pathways to inflammation further underline the importance of inflammation in PCOS, which needs to be resolved for improving patient outcomes.
Collapse
Affiliation(s)
- Chun-Yang Zheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, No. 83, Zhongshan Road, Heping District, Shenyang 110000, Liaoning Province, China
| | - Yue-Xin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Xue Bai
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, No. 5, Guangrong Street, Heping District, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
21
|
Gao Y, Qi Y, Shen Y, Zhang Y, Wang D, Su M, Liu X, Wang A, Zhang W, He C, Yang J, Dai M, Wang H, Cai H. Signatures of tumor-associated macrophages correlate with treatment response in ovarian cancer patients. Aging (Albany NY) 2024; 16:207-225. [PMID: 38175687 PMCID: PMC10817412 DOI: 10.18632/aging.205362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
Ovarian cancer (OC) ranks as the second leading cause of death among gynecological cancers. Numerous studies have indicated a correlation between the tumor microenvironment (TME) and the clinical response to treatment in OC patients. Tumor-associated macrophages (TAMs), a crucial component of the TME, exert influence on invasion, metastasis, and recurrence in OC patients. To delve deeper into the role of TAMs in OC, this study conducted an extensive analysis of single-cell data from OC patients. The aim is to develop a new risk score (RS) to characterize the response to treatment in OC patients to inform clinical treatment. We first identified TAM-associated genes (TAMGs) in OC patients and examined the protein and mRNA expression levels of TAMGs by Western blot and PCR experiments. Additionally, a scoring system for TAMGs was constructed, successfully categorizing patients into high and low RS subgroups. Remarkably, significant disparities were observed in immune cell infiltration and immunotherapy response between the high and low RS subgroups. The findings revealed that patients in the high RS group had a poorer prognosis but displayed greater sensitivity to immunotherapy. Another important finding was that patients in the high RS subgroup had a higher IC50 for chemotherapeutic agents. Furthermore, further experimental investigations led to the discovery that THEMIS2 could serve as a potential target in OC patients and is associated with EMT (epithelial-mesenchymal transition). Overall, the TAMGs-based scoring system holds promise for screening patients who would benefit from therapy and provides valuable information for the clinical treatment of OC.
Collapse
Affiliation(s)
- Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Yuwen Qi
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Yin Shen
- Department of Integrative Ultrasound Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaxing Zhang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Dandan Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Min Su
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Xuelian Liu
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Anjin Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Wenwen Zhang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Can He
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Junyuan Yang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Mengyuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|
22
|
Pant P, Chitme H, Sircar R, Prasad R, Prasad HO. Differential Gene Expression Analysis of Human Ovarian Follicular Cumulus and Mural Granulosa Cells Under the Influence of Insulin in IVF Ovulatory Women and Polycystic Ovary Syndrome Patients Through Network Analysis. Endocr Res 2024; 49:22-45. [PMID: 37874895 DOI: 10.1080/07435800.2023.2272629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is a commonly occurring reproductive disorder among the reproductive-aged women. Its global occurrence varies based on diagnostic guidelines, ethnicities, and locations of concern. Insulin resistance (IR) is commonly observed around 65-70% of women diagnosed with PCOS, representing a prevalent association. Consequently, the study was designed with an objective of illustrating the effect of insulin on mural and cumulus granulosa cells (GCs) of PCOS patients in comparison to normal ovulating women. METHODOLOGY This study is a case-control design, wherein a total of 80 participants were recruited meeting criterion of inclusion and exclusion, divided into 8 groups with each group consisting of 10 samples. The process involves the isolation and culturing of mural granulosa cells (MGC) and cumulus granulosa cells (CGC) with and without exposure to insulin. The proteins released by untreated GCs and insulin-treated GCs were extracted, and complex protein mixtures were digested with trypsin, followed by tandem mass spectrometry analysis and data processing using bioinformatics. RESULTS We found 595 proteins in both control and PCOS samples, of which 310 were contributed by MGCs and 285 by CGCs. The PCOS MGCs expressed 20%, both the normal MGCs and CGCs have equal representation of 16% by each, whereas the PCOS CGCs proteins contributed 15% of the total of the proteomic expression. However, the poor expression observed with the Insulin exposure, the Insulin treated PCOS CGCs contributes 13%, PCOS MGCs contributes 8%. The normal MGCs upon the Insulin treatment give 8% then and there only 4% of proteins expressed by normal CGCs after Insulin treatment. The Venn analysis widened on their precise expression topographies. The examination of strings exhibited important protein-protein interaction pathways. CONCLUSION This is a pioneering investigation aimed to establish the link between hyperinsulinemia in localized follicular GCs and PCOS mechanisms by comparing them to control group. The examination of various attributes, mechanisms, and traits shown by genes and proteins in individuals with PCOS compared to control populations, alongside the investigation of the dynamics of these genes and proteins following exposure to insulin, holds promise for the formulation of novel hypotheses and strategies in the identification of new biomarkers.
Collapse
Affiliation(s)
- Pankaj Pant
- Faculty of Pharmacy, DIT University, Dehradun, India
| | | | - Reema Sircar
- Gynaecology, Indira IVF Hospital, Dehradun, India
| | - Ritu Prasad
- Gynaecology, Morpheus Prasad International Hospital, Dehradun, India
| | - Hari Om Prasad
- Gynaecology, Morpheus Prasad International Hospital, Dehradun, India
| |
Collapse
|
23
|
Ruan D, Wen J, Fang F, Lei Y, Zhao Z, Miao Y. Ferroptosis in epithelial ovarian cancer: a burgeoning target with extraordinary therapeutic potential. Cell Death Discov 2023; 9:434. [PMID: 38040696 PMCID: PMC10692128 DOI: 10.1038/s41420-023-01721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/15/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is universally acknowledged as a terrifying women killer for its high mortality. Recent research advances support that ferroptosis, an emerging iron-dependent type of regulated cell death (RCD) triggered by the excessive accumulation of lipid peroxides probably possesses extraordinary therapeutic potential in EOC therapy. Herein, we firstly provide a very concise introduction of ferroptosis. Special emphasis will be put on the ferroptosis's vital role in EOC, primarily covering its role in tumorigenesis and progression of EOC, the capability of reversing chemotherapy resistance, and the research and development of related therapeutic strategies. Furthermore, the construction of ferroptosis-related prognostic prediction systems, and mechanisms of ferroptosis resistance in EOC are also discussed. Finally, we propose and highlight several important yet unanswered problems and some future research directions in this field.
Collapse
Affiliation(s)
- Danhua Ruan
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu, 610041, Sichuan Province, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Fei Fang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yuqin Lei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Zhiwei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yali Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, West China Campus, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
24
|
Liu S, Zhao X, Meng Q, Li B. Screening of potential biomarkers for polycystic ovary syndrome and identification of expression and immune characteristics. PLoS One 2023; 18:e0293447. [PMID: 37883387 PMCID: PMC10602247 DOI: 10.1371/journal.pone.0293447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) seriously affects the fertility and health of women of childbearing age. We look forward to finding potential biomarkers for PCOS that can aid clinical diagnosis. METHODS We acquired PCOS and normal granulosa cell (GC) expression profiles from the Gene Expression Omnibus (GEO) database. After data preprocessing, differentially expressed genes (DEGs) were screened by limma package, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Gene Set Enrichment Analysis (GSEA) were performed. Recursive feature elimination (RFE) algorithm and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis were used to acquire feature genes as potential biomarkers. Time-dependent receiver operator characteristic curve (ROC curve) and Confusion matrix were used to verify the classification performance of biomarkers. Then, the expression characteristics of biomarkers in PCOS and normal cells were analyzed, and the insulin resistance (IR) score of samples was computed by ssGSEA. Immune characterization of biomarkers was evaluated using MCP counter and single sample gene set enrichment analysis (ssGSEA). Finally, the correlation between biomarkers and the scores of each pathway was assessed. RESULTS We acquired 93 DEGs, and the enrichment results indicated that most of DEGs in PCOS group were significantly enriched in immune-related biological pathways. Further screening results indicated that JDP2 and HMOX1 were potential biomarkers. The area under ROC curve (AUC) value and Confusion matrix of the two biomarkers were ideal when separated and combined. In the combination, the training set AUC = 0.929 and the test set AUC = 0.917 indicated good diagnostic performance of the two biomarkers. Both biomarkers were highly expressed in the PCOS group, and both biomarkers, which should be suppressed in the preovulation phase, were elevated in PCOS tissues. The IR score of PCOS group was higher, and the expression of JDP2 and HMOX1 showed a significant positive correlation with IR score. Most immune cell scores and immune infiltration results were significantly higher in PCOS. Comprehensive analysis indicated that the two biomarkers had strong correlation with immune-related pathways. CONCLUSION We acquired two potential biomarkers, JDP2 and HMOX1. We found that they were highly expressed in the PCOS and had a strong positive correlation with immune-related pathways.
Collapse
Affiliation(s)
- Shuang Liu
- The Reproductive Laboratory, Shenyang Jinghua Hospital, Shenyang, China
| | - Xuanpeng Zhao
- The Reproductive Laboratory, Shenyang Jinghua Hospital, Shenyang, China
| | - Qingyan Meng
- The Reproductive Laboratory, Shenyang Jinghua Hospital, Shenyang, China
| | - Baoshan Li
- The Reproductive Laboratory, Shenyang Jinghua Hospital, Shenyang, China
| |
Collapse
|
25
|
Li Z, Cai H, Zheng J, Chen X, Liu G, Lv Y, Ye H, Cai G. Mitochondrial-related genes markers that predict survival in patients with head and neck squamous cell carcinoma affect immunomodulation through hypoxia, glycolysis, and angiogenesis pathways. Aging (Albany NY) 2023; 15:10347-10369. [PMID: 37796226 PMCID: PMC10599748 DOI: 10.18632/aging.205081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Mitochondria play a crucial role in the occurrence and development of tumors. We used mitochondria-related genes for consistent clustering to identify three stable molecular subtypes of head and neck squamous cell carcinoma (HNSCC) with different prognoses, mutations, and immune characteristics. Significant differences were observed in clinical characteristics, immune microenvironment, immune cell infiltration, and immune cell scores. TP53 was the most significantly mutated; cell cycle-related pathways and tumorigenesis-related pathways were activated in different subtypes. Risk modeling was conducted using a multifactor stepwise regression method, and nine genes were identified as mitochondria-related genes affecting prognosis (DKK1, EFNB2, ITGA5, AREG, EPHX3, CHGB, P4HA1, CCND1, and JCHAIN). Risk score calculations revealed significant differences in prognosis, immune cell scores, immune cell infiltration, and responses to conventional chemotherapy drugs. Glycolysis, angiogenesis, hypoxia, and tumor-related pathways were positively correlated with the RiskScore. Clinical samples were subjected to qPCR to validate the results. In this work, we constructed a prognostic model based on the mitochondrial correlation score, which well reflects the risk and positive factors for the prognosis of patients with HNSCC. This model can be used to guide individualized adjuvant and immunotherapy in patients with HNSCC.
Collapse
Affiliation(s)
- Zhonghua Li
- Department of Otolaryngology Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Haoxi Cai
- School of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| | - Jinyang Zheng
- Department of Pathology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Xun Chen
- Department of Oral Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Guancheng Liu
- Department of Otolaryngology Head and Neck Surgery, The Hospital Affiliated of Guilin Medical College, Guilin 541000, China
| | - Yunxia Lv
- Department of Thyroid Surgery, The Second Affiliated Hospital to Nanchang University, Nanchang 330006, China
| | - Hui Ye
- Haicang Hospital Affiliated of Xiamen Medical College, Xiamen 361026, China
| | - Gengming Cai
- Haicang Hospital Affiliated of Xiamen Medical College, Xiamen 361026, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou 361026, China
- The Graduate School of Fujian Medical University, Fuzhou 361026, China
| |
Collapse
|
26
|
Xie Y, Chen S, Guo Z, Tian Y, Hong X, Feng P, Xie Q, Yu Q. Down-regulation of Lon protease 1 lysine crotonylation aggravates mitochondrial dysfunction in polycystic ovary syndrome. MedComm (Beijing) 2023; 4:e396. [PMID: 37817894 PMCID: PMC10560969 DOI: 10.1002/mco2.396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent reproductive endocrine disorder, with metabolic abnormalities and ovulation disorders. The post-translational modifications (PTMs) are functionally relevant and strengthen the link between metabolism and cellular functions. Lysine crotonylation is a newly identified PTM, the function of which in PCOS has not yet been reported. To explore the molecular mechanisms of crotonylation involved in the abnormalities of metabolic homeostasis and oocyte maturation in PCOS, by using liquid chromatography-tandem mass spectrometry analysis, we constructed a comprehensive map of crotonylation modifications in ovarian tissue of PCOS-like mouse model established by dehydroepiandrosterone induction. The crotonylation levels of proteins involved in metabolic processes were significantly decreased in PCOS ovaries compared to control samples. Further investigation showed that decrotonylation of Lon protease 1 (LONP1) at lysine 390 was associated with mitochondrial dysfunction in PCOS. Moreover, LONP1 crotonylation levels in PCOS were correlated with ovarian tissue oxidative stress levels, androgen levels, and oocyte development. Consistently, down-regulation of LONP1 and LONP1 crotonylation levels were also observed in the blood samples of PCOS patients. Collectively, our study revealed a mechanism by which the decrotonylation of LONP1 may attenuate its activity and alter follicular microenvironment to affect oocyte maturation in PCOS.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Shuwen Chen
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Zaixin Guo
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Ying Tian
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Xinyu Hong
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Penghui Feng
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Qiu Xie
- Department of Medical Research CenterState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Qi Yu
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| |
Collapse
|
27
|
Zhang Y, Zhao T, Hu L, Xue J. Integrative Analysis of Core Genes and Biological Process Involved in Polycystic Ovary Syndrome. Reprod Sci 2023; 30:3055-3070. [PMID: 37171773 DOI: 10.1007/s43032-023-01259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disordered disease, affecting the function of the ovaries in women of reproductive age. However, there are limited curative therapies for PCOS due to lack of reliable candidates. Hence, this study aimed to identify hub pathogenic genes and potential therapeutic targets for PCOS using bioinformatics tools. We obtained the expression profiles of 29 PCOS samples and 24 normal samples from three Gene Expression Omnibus (GEO) datasets. Then, the differentially expressed genes (DEGs) were screened, which were subjected to functional enrichment analyses. Moreover, we found 30 ferroptosis-related genes out of the 89 DEGs. Among the top 10 significant ferroptosis-related DEGs, 8 genes showed good predictive performance. We constructed interaction network of top three ferroptosis-related DEGs (SLC38A1, ACO1, DDIT3). Finally, real-time PCR was performed to test the relative expression of these genes. In conclusions, we have identified ferroptosis-related DEGs as core genes and potential therapeutic targets of PCOS based on comprehensive bioinformatics analysis. The findings are conducive to understanding of the pathogenesis of PCOS and paving the way towards curative therapies.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China
| | - Tianyi Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Lishuang Hu
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China
| | - Juan Xue
- Department of Obstetrics and Gynecology, Yan'an University Affiliated Hospital, No. 43 North Street, Baota District, Yan'an, 716000, Shaanxi, People's Republic of China.
| |
Collapse
|
28
|
Liu M, Wu K, Wu Y. The emerging role of ferroptosis in female reproductive disorders. Biomed Pharmacother 2023; 166:115415. [PMID: 37660655 DOI: 10.1016/j.biopha.2023.115415] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023] Open
Abstract
Iron, as an essential trace element for the organism, is vital for maintaining the organism's health. Excessive iron can promote reactive oxygen species (ROS) accumulation, thus damaging cells and tissues. Ferroptosis is a novel form of programmed cell death distinguished by iron overload and lipid peroxidation, which is unique from autophagy, apoptosis and necrosis, more and more studies are focusing on ferroptosis. Recent evidence suggests that ferroptosis is associated with the development of female reproductive disorders (FRDs), including polycystic ovary syndrome (PCOS), premature ovarian insufficiency (POI), endometriosis (EMs), ovarian cancer (OC), preeclampsia (PE) and spontaneous abortion (SA). Pathways and genes associated with ferroptosis may participate in processes that regulate granulosa cell proliferation and secretion, oocyte development, ovarian reserve function, early embryonic development and placental oxidative stress. However, its exact mechanism has not been fully revealed. Therefore, our review systematically elaborates the occurrence mechanism of ferroptosis and its research progress in the development of FRDs, with a view to providing literature references for clinical targeting of ferroptosis -related pathways and regulatory factors for the management of FRDs.
Collapse
Affiliation(s)
- Min Liu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China; Department of Gynecology, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Keming Wu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China; Department of Gynecology, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| |
Collapse
|
29
|
Yin S, Li Z, Yang F, Guo H, Zhao Q, Zhang Y, Yin Y, Wu X, He J. A Comprehensive Genomic Analysis of Chinese Indigenous Ningxiang Pigs: Genomic Breed Compositions, Runs of Homozygosity, and Beyond. Int J Mol Sci 2023; 24:14550. [PMID: 37833998 PMCID: PMC10572203 DOI: 10.3390/ijms241914550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Ningxiang pigs are a renowned indigenous pig breed in China, known for their meat quality, disease resistance, and environmental adaptability. In recent decades, consumer demand for meats from indigenous breeds has grown significantly, fueling the selection and crossbreeding of Ningxiang pigs (NXP). The latter has raised concerns about the conservation and sustainable use of Ningxiang pigs as an important genetic resource. To address these concerns, we conducted a comprehensive genomic study using 2242 geographically identified Ningxiang pigs. The estimated genomic breed composition (GBC) suggested 2077 pigs as purebred Ningxiang pigs based on a ≥94% NXP-GBC cut-off. The remaining 165 pigs were claimed to be crosses, including those between Duroc and Ningxiang pigs and between Ningxiang and Shaziling pigs, and non-Ningxiang pigs. Runs of homozygosity (ROH) were identified in the 2077 purebred Ningxiang pigs. The number and length of ROH varied between individuals, with an average of 32.14 ROH per animal and an average total length of 202.4 Mb per animal. Short ROH (1-5 Mb) was the most abundant, representing 66.5% of all ROH and 32.6% of total ROH coverage. The genomic inbreeding estimate was low (0.089) in purebred Ningxiang pigs compared to imported western pig breeds. Nine ROH islands were identified, pinpointing candidate genes and QTLs associated with economic traits of interest, such as reproduction, carcass and growth traits, lipid metabolism, and fat deposition. Further investigation of these ROH islands and candidate genes is anticipated to better understand the genomics of Ningxiang pigs.
Collapse
Affiliation(s)
- Shishu Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Zhi Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Fang Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Haimin Guo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Qinghua Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Pigs) of the Ministry of Agriculture and Rural Affairs, Changsha 410128, China;
| | - Yulong Yin
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Pigs) of the Ministry of Agriculture and Rural Affairs, Changsha 410128, China;
- Animal Nutrition Genome and Germplasm Innovation Research Center, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Laboratory of Animal Nutrition Physiology and Metabolism, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
| | - Xiaolin Wu
- Council on Dairy Cattle Breeding, Bowie, MD 20716, USA
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Jun He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.Y.); (Z.L.); (F.Y.); (H.G.); (Q.Z.); (Y.Z.)
- Key Laboratory for Evaluation and Utilization of Livestock and Poultry Resources (Pigs) of the Ministry of Agriculture and Rural Affairs, Changsha 410128, China;
| |
Collapse
|
30
|
Luan T, Yang X, Kuang G, Wang T, He J, Liu Z, Gong X, Wan J, Li K. Identification and Analysis of Neutrophil Extracellular Trap-Related Genes in Osteoarthritis by Bioinformatics and Experimental Verification. J Inflamm Res 2023; 16:3837-3852. [PMID: 37671131 PMCID: PMC10476866 DOI: 10.2147/jir.s414452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
Background Osteoarthritis (OA) is a common joint disease with long-term pain and dysfunction that negatively affects the quality of life of patients. Neutrophil extracellular traps (NETs), consisting of DNA, proteins and cytoplasm, are released by neutrophils and play an important role in a variety of diseases. However, the relationship between OA and NETs is unclear. Methods In our study, we used bioinformatics to explore the relationship between OA and NETs and the potential biological markers. GSE55235, GSE55457, GSE117999 and GSE98918 were downloaded from the Gene Expression Omnibus (GEO) database for subsequent analysis.After differential analysis of OA expression matrices, intersection with NET-related genes (NRGs) was taken to identify Differentially expressed NRGs (DE-NRGs) in OA processes. Evaluation of immune cell infiltration by ssGSEA and CIBERSORT algorithm. The GSVA method was used to analyze the activity changes of Neutrophils pathway, Neutrophil degranulation and Neutrophil granule constituents pathway. Results Based on RandomForest (RF), Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) learning algorithms, five core genes (CRISPLD2, IL1B, SLC25A37, MMP9, and TLR7) were identified to construct an OA-related nomogram model for predicting OA progression. ROC curve results for these genes validated the nomogram's reliability. Correlation analysis, functional enrichment, and drug predictions were performed for the core genes. TLR7 emerged as a key focus due to its high importance ranking in RF and SVM-RFE analyses. Gene Set Enrichment Analysis (GSEA) revealed a strong association between TLR7 and the Neutrophil extracellular trap pathway. Expression of core genes was demonstrated in mice OA models and human OA samples. TLR7 expression in ATDC5 cell line was significantly higher than control after TNFα induction, along with increased IL6 and MMP13. Conclusion TLR7 may be related to NETs and affects OA.
Collapse
Affiliation(s)
- Tiankuo Luan
- Department of Anatomy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xian Yang
- Department of Pharmacology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ge Kuang
- Department of Anatomy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ting Wang
- Department of Orthopedics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jiaming He
- Department of Anatomy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhibo Liu
- Department of Orthopedics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ke Li
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
31
|
Kong FS, Lu Z, Zhou Y, Lu Y, Ren CY, Jia R, Zeng B, Huang P, Wang J, Ma Y, Chen JH. Transcriptome analysis identification of A-to-I RNA editing in granulosa cells associated with PCOS. Front Endocrinol (Lausanne) 2023; 14:1170957. [PMID: 37547318 PMCID: PMC10401594 DOI: 10.3389/fendo.2023.1170957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/06/2023] [Indexed: 08/08/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a complex, multifactor disorder in women of reproductive age worldwide. Although RNA editing may contribute to a variety of diseases, its role in PCOS remains unclear. Methods A discovery RNA-Seq dataset was obtained from the NCBI Gene Expression Omnibus database of granulosa cells from women with PCOS and women without PCOS (controls). A validation RNA-Seq dataset downloaded from the European Nucleotide Archive Databank was used to validate differential editing. Transcriptome-wide investigation was conducted to analyze adenosine-to-inosine (A-to-I) RNA editing in PCOS and control samples. Results A total of 17,395 high-confidence A-to-I RNA editing sites were identified in 3,644 genes in all GC samples. As for differential RNA editing, there were 545 differential RNA editing (DRE) sites in 259 genes with Nucleoporin 43 (NUP43), Retinoblastoma Binding Protein 4 (RBBP4), and leckstrin homology-like domain family A member 1 (PHLDA) showing the most significant three 3'-untranslated region (3'UTR) editing. Furthermore, we identified 20 DRE sites that demonstrated a significant correlation between editing levels and gene expression levels. Notably, MIR193b-365a Host Gene (MIR193BHG) and Hook Microtubule Tethering Protein 3 (HOOK3) exhibited significant differential expression between PCOS and controls. Functional enrichment analysis showed that these 259 differentially edited genes were mainly related to apoptosis and necroptosis pathways. RNA binding protein (RBP) analysis revealed that RNA Binding Motif Protein 45 (RBM45) was predicted as the most frequent RBP binding with RNA editing sites. Additionally, we observed a correlation between editing levels of differential editing sites and the expression level of the RNA editing enzyme Adenosine Deaminase RNA Specific B1 (ADARB1). Moreover, the existence of 55 common differentially edited genes and nine differential editing sites were confirmed in the validation dataset. Conclusion Our current study highlighted the potential role of RNA editing in the pathophysiology of PCOS as an epigenetic process. These findings could provide valuable insights into the development of more targeted and effective treatment options for PCOS.
Collapse
Affiliation(s)
- Fan-Sheng Kong
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Zijing Lu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuan Zhou
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yinghua Lu
- Department of Reproductive Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruofan Jia
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Beilei Zeng
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Panwang Huang
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jihong Wang
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yaping Ma
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| |
Collapse
|
32
|
Wang X, Kong X, Feng X, Jiang DS. Effects of DNA, RNA, and Protein Methylation on the Regulation of Ferroptosis. Int J Biol Sci 2023; 19:3558-3575. [PMID: 37497000 PMCID: PMC10367552 DOI: 10.7150/ijbs.85454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Ferroptosis is a form of programmed cell death characterized by elevated intracellular ferrous ion levels and increased lipid peroxidation. Since its discovery and characterization in 2012, considerable progress has been made in understanding the regulatory mechanisms and pathophysiological functions of ferroptosis. Recent findings suggest that numerous organ injuries (e.g., ischemia/reperfusion injury) and degenerative pathologies (e.g., aortic dissection and neurodegenerative disease) are driven by ferroptosis. Conversely, insufficient ferroptosis has been linked to tumorigenesis. Furthermore, a recent study revealed the effect of ferroptosis on hematopoietic stem cells under physiological conditions. The regulatory mechanisms of ferroptosis identified to date include mainly iron metabolism, such as iron transport and ferritinophagy, and redox systems, such as glutathione peroxidase 4 (GPX4)-glutathione (GSH), ferroptosis-suppressor-protein 1 (FSP1)-CoQ10, FSP1-vitamin K (VK), dihydroorotate dehydrogenase (DHODH)-CoQ, and GTP cyclohydrolase 1 (GCH1)-tetrahydrobiopterin (BH4). Recently, an increasing number of studies have demonstrated the important regulatory role played by epigenetic mechanisms, especially DNA, RNA, and protein methylation, in ferroptosis. In this review, we provide a critical analysis of the molecular mechanisms and regulatory networks of ferroptosis identified to date, with a focus on the regulatory role of DNA, RNA, and protein methylation. Furthermore, we discuss some debated findings and unanswered questions that should be the foci of future research in this field.
Collapse
Affiliation(s)
- Xiancan Wang
- Department of Cardiovascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Xianghai Kong
- Department of Intervention & Vascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and echnology, Wuhan, 430014, Hubei, China
| | - Xin Feng
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| |
Collapse
|
33
|
Chen C, Jiang X, Ding C, Sun X, Wan L, Wang C. Downregulated lncRNA HOTAIR ameliorates polycystic ovaries syndrome via IGF-1 mediated PI3K/Akt pathway. Gynecol Endocrinol 2023; 39:2227280. [PMID: 37356454 DOI: 10.1080/09513590.2023.2227280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
OBJECTIVE Polycystic ovarian syndrome (PCOS) is a common disorder that leads to infertility in reproductive-aged females. HOTAIR is highly expressed in various gynecological diseases and is associated with a poor prognosis. We aimed to explore the role of HOTAIR in PCOS. METHODS First, PCOS rats were induced using dehydroepiandrosterone and then treated with si-HOTAIR. Next, HOTAIR mRNA expression and serum hormone levels were detected. HE staining was applied to observe estrus cycle, ovarian morphology and count the number of follicles. Apoptosis in the ovary was detected by TUNEL. Thereafter, ovarian granulosa cells (GCs) were isolated from PCOS rats, transfected with si-HOTAIR and treated with LY294002 (Akt inhibitor) or IGF-1. CCK-8 and flow cytometry assays were used to evaluate cell viability and apoptosis. IGF-1, apoptosis- and PI3K/Akt pathway-associated protein expressions in ovary and GCs were also detected. RESULTS In in vivo experiments, si-HOTAIR decreased serum T, E2 and LH levels but increased FSH level, restored estrus cycle, ovarian morphology and inhibited apoptosis of ovary in PCOS rats. Meanwhile, in vitro assays showed that si-HOTAIR upregulated the viability but inhibited the apoptosis of PCOS GCs. Furthermore, both in vivo and in vitro assays revealed that si-HOTAIR increased Bcl-2 expression but suppressed Bax, Bad, IGF-1 expressions and PI3K, AKT phosphorylation. However, the aforementioned effects of si-HOTAIR in vitro were further enhanced by LY294002 and partially reversed by IGF-1. CONCLUSIONS HOTAIR knockdown improved PCOS, and the mechanism may relate to IGF-1-mediated PI3K/Akt pathway, indicating HOTAIR may be a novel therapeutic target for PCOS.
Collapse
Affiliation(s)
- Chunyue Chen
- Department of Reproductive Medicine, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Xuejuan Jiang
- Department of Reproductive Medicine, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Caifei Ding
- Department of Reproductive Medicine, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Xin Sun
- Department of Reproductive Medicine, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Lingyi Wan
- Department of Reproductive Medicine, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| | - Chenye Wang
- Department of Reproductive Medicine, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, China
| |
Collapse
|
34
|
Ullah A, Wang MJ, Wang YX, Shen B. CXC chemokines influence immune surveillance in immunological disorders: Polycystic ovary syndrome and endometriosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166704. [PMID: 37001703 DOI: 10.1016/j.bbadis.2023.166704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Reproductive health is a worldwide challenge, but it is of particular significance to women during their reproductive age. Several female reproductive problems, including polycystic ovary syndrome (PCOS) and endometriosis, affect about 10 % of women and have a negative impact on their health, fertility, and quality of life. Small, chemotactic, and secreted cytokines are CXC chemokines. Both PCOS and endometriosis demonstrate dysregulation of CXC chemokines, which are critical to the development and progression of both diseases. Recent research has shown that both in humans and animals, CXC chemokines tend to cause inflammation. It has also been found that CXC chemokines are necessary for promoting angiogenesis and inflammatory responses. CXC chemokine overexpression is frequently associated with poor survival and prognosis. CXC chemokine levels in PCOS and endometriosis patients impact their circumstances significantly. Hence, CXC chemokines have significant potential as diagnostic and prognostic biomarkers and therapeutic targets. The molecular mechanisms through which CXC chemokines promote inflammation and the development of PCOS and endometriosis are currently unknown. This article will discuss the functions of CXC chemokines in the promotion, development, and therapy of PCOS and endometriosis, as well as future research directions. The current state and future prospects of CXC chemokine -based therapeutic strategies in the management of PCOS and endometriosis are also highlighted.
Collapse
|
35
|
Kicińska AM, Maksym RB, Zabielska-Kaczorowska MA, Stachowska A, Babińska A. Immunological and Metabolic Causes of Infertility in Polycystic Ovary Syndrome. Biomedicines 2023; 11:1567. [PMID: 37371662 PMCID: PMC10295970 DOI: 10.3390/biomedicines11061567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Infertility has been recognized as a civilizational disease. One of the most common causes of infertility is polycystic ovary syndrome (PCOS). Closely interrelated immunometabolic mechanisms underlie the development of this complex syndrome and lead to infertility. The direct cause of infertility in PCOS is ovulation and implantation disorders caused by low-grade inflammation of ovarian tissue and endometrium which, in turn, result from immune and metabolic system disorders. The systemic immune response, in particular the inflammatory response, in conjunction with metabolic disorders, insulin resistance (IR), hyperadrenalism, insufficient secretion of progesterone, and oxidative stress lead not only to cardiovascular diseases, cancer, autoimmunity, and lipid metabolism disorders but also to infertility. Depending on the genetic and environmental conditions as well as certain cultural factors, some diseases may occur immediately, while others may become apparent years after an infertility diagnosis. Each of them alone can be a significant factor contributing to the development of PCOS and infertility. Further research will allow clinical management protocols to be established for PCOS patients experiencing infertility so that a targeted therapy approach can be applied to the factor underlying and driving the "vicious circle" alongside symptomatic treatment and ovulation stimulation. Hence, therapy of fertility for PCOS should be conducted by interdisciplinary teams of specialists as an in-depth understanding of the molecular relationships and clinical implications between the immunological and metabolic factors that trigger reproductive system disorders is necessary to restore the physiology and homeostasis of the body and, thus, fertility, among PCOS patients.
Collapse
Affiliation(s)
- Aleksandra Maria Kicińska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Radoslaw B. Maksym
- 1st Department of Obstetrics and Gynecology, Centre for Postgraduate Medical Education, ul. Żelazna 90, 02-004 Warsaw, Poland;
| | - Magdalena A. Zabielska-Kaczorowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland
| | - Aneta Stachowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Anna Babińska
- Department of Endocrinology and Internal Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
36
|
Fahs D, Salloum D, Nasrallah M, Ghazeeri G. Polycystic Ovary Syndrome: Pathophysiology and Controversies in Diagnosis. Diagnostics (Basel) 2023; 13:diagnostics13091559. [PMID: 37174950 PMCID: PMC10177792 DOI: 10.3390/diagnostics13091559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/16/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex and heterogeneous disorder that commonly affects women in the reproductive age group. The disorder has features that propose a blend of functional reproductive disorders, such as anovulation and hyperandrogenism, and metabolic disorders, such as hyperglycemia, hypertension, and obesity in women. Until today, the three implemented groups of criteria for the diagnosis of PCOS are from the National Institutes of Health (NIH) in the 1990s, Rotterdam 2003, and the Androgen Excess Polycystic Ovary Syndrome 2009 criteria. Currently, the most widely utilized criteria are the 2003 Rotterdam criteria, which validate the diagnosis of PCOS with the incidence of two out of the three criteria: hyperandrogenism (clinical and/or biochemical), irregular cycles, and polycystic ovary morphology. Currently, the anti-Müllerian hormone in serum is introduced as a substitute for the follicular count and is controversially emerging as an official polycystic ovarian morphology/PCOS marker. In adolescents, the two crucial factors for PCOS diagnosis are hyperandrogenism and irregular cycles. Recently, artificial intelligence, specifically machine learning, is being introduced as a promising diagnostic and predictive tool for PCOS with minimal to zero error that would help in clinical decisions regarding early management and treatment. Throughout this review, we focused on the pathophysiology, clinical features, and diagnostic challenges in females with PCOS.
Collapse
Affiliation(s)
- Duaa Fahs
- Department of Obstetrics and Gynecology, Faculty of Medicine, American University of Beirut Medical Center, Beirut P.O. Box 113-6044, Lebanon
| | - Dima Salloum
- Department of Obstetrics and Gynecology, Faculty of Medicine, American University of Beirut Medical Center, Beirut P.O. Box 113-6044, Lebanon
| | - Mona Nasrallah
- Division of Endocrinology and Metabolism, Faculty of Medicine, American University of Beirut Medical Center, Beirut P.O. Box 113-6044, Lebanon
| | - Ghina Ghazeeri
- Department of Obstetrics and Gynecology, Faculty of Medicine, American University of Beirut Medical Center, Beirut P.O. Box 113-6044, Lebanon
| |
Collapse
|
37
|
Huang E, Chen L. RNA N 6-methyladenosine modification in female reproductive biology and pathophysiology. Cell Commun Signal 2023; 21:53. [PMID: 36894952 PMCID: PMC9996912 DOI: 10.1186/s12964-023-01078-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/12/2023] [Indexed: 03/11/2023] Open
Abstract
Gene expression and posttranscriptional regulation can be strongly influenced by epigenetic modifications. N6-methyladenosine, the most extensive RNA modification, has been revealed to participate in many human diseases. Recently, the role of RNA epigenetic modifications in the pathophysiological mechanism of female reproductive diseases has been intensively studied. RNA m6A modification is involved in oogenesis, embryonic growth, and foetal development, as well as preeclampsia, miscarriage, endometriosis and adenomyosis, polycystic ovary syndrome, premature ovarian failure, and common gynaecological tumours such as cervical cancer, endometrial cancer, and ovarian cancer. In this review, we provide a summary of the research results of m6A on the female reproductive biology and pathophysiology in recent years and aim to discuss future research directions and clinical applications of m6A-related targets. Hopefully, this review will add to our understanding of the cellular mechanisms, diagnostic biomarkers, and underlying therapeutic strategies of female reproductive system diseases. Video Abstract.
Collapse
Affiliation(s)
- Erqing Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
38
|
Fan G, Liu M, Liu J, Huang Y. The initiator of neuroexcitotoxicity and ferroptosis in ischemic stroke: Glutamate accumulation. Front Mol Neurosci 2023; 16:1113081. [PMID: 37033381 PMCID: PMC10076579 DOI: 10.3389/fnmol.2023.1113081] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Glutamate plays an important role in excitotoxicity and ferroptosis. Excitotoxicity occurs through over-stimulation of glutamate receptors, specifically NMDAR, while in the non-receptor-mediated pathway, high glutamate concentrations reduce cystine uptake by inhibiting the System Xc-, leading to intracellular glutathione depletion and resulting in ROS accumulation, which contributes to increased lipid peroxidation, mitochondrial damage, and ultimately ferroptosis. Oxidative stress appears to crosstalk between excitotoxicity and ferroptosis, and it is essential to maintain glutamate homeostasis and inhibit oxidative stress responses in vivo. As researchers work to develop natural compounds to further investigate the complex mechanisms and regulatory functions of ferroptosis and excitotoxicity, new avenues will be available for the effective treatment of ischaemic stroke. Therefore, this paper provides a review of the molecular mechanisms and treatment of glutamate-mediated excitotoxicity and ferroptosis.
Collapse
Affiliation(s)
- Genhao Fan
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Huang,
| |
Collapse
|
39
|
Tan Z, Huang H, Sun W, Li Y, Jia Y. Current progress of ferroptosis study in ovarian cancer. Front Mol Biosci 2022; 9:966007. [PMID: 36090052 PMCID: PMC9458863 DOI: 10.3389/fmolb.2022.966007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Tumors are the leading cause of death all over the world, among which ovarian cancer ranks the third in gynecological malignancies. The current treatment for ovarian cancer is liable to develop chemotherapy resistance and high recurrence rate, in which a new strategy is demanded. Ferroptosis, a newly discovered manner of regulatory cell death, is shown to be induced by massive iron-dependent accumulation of lipid reactive oxygen species. With the in-depth study of ferroptosis, its associated mechanism with various tumors is gradually elucidated, including ovarian tumor, which probably promotes the application of ferroptosis in treating ovarian cancer. To this end, this review will focus on the history and current research progress of ferroptosis, especially its regulation mechanism, and its potential application as a novel treatment strategy for ovarian cancer.
Collapse
|
40
|
Xi X, Cao T, Qian Y, Wang H, Ju S, Chen Y, Chen T, Yang J, Liang B, Hou S. CDC20 is a novel biomarker for improved clinical predictions in epithelial ovarian cancer. Am J Cancer Res 2022; 12:3303-3317. [PMID: 35968331 PMCID: PMC9360218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC), a common tumor of the female reproductive system, ranks first in fatalities among gynecological malignancies. Most patients find tumors at late stage and have extremely poor prognoses, which necessitates improvements in early detection. This study applied bioinformatic methods to identify potential biomarkers of EOC. First, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on differentially expressed genes (DEGs) and hub genes, and a protein-protein interaction (PPI) network was constructed. The network of hub genes was analyzed using GeneMANIA, and an analysis of biological processes was constructed with BINGO. Lastly, hub genes were analyzed for EOC-related oncology using the Oncomine and TCGA databases, and the cBioPortal online platform. Overall, cell division cycle 20 (CDC20) was identified as a key gene in EOC. Short hairpin RNA (shRNA) was used to silence CDC20 to explore its effects on EOC cell proliferation, apoptosis and SRY-related HMG-box 2 (SOX2) expression. DEGs were enriched in pathways related to cell cycle signaling, cancer, progesterone-mediated oocyte maturation, Wnt signaling and P53 signaling. Analysis revealed high expression of CDC20 in EOC tissues and a correlation with histology and tumor grade. CDC20 levels are highest in serous adenocarcinoma, when compared to ovarian clear cell carcinoma, ovarian endometrioid carcinoma and mucinous adenocarcinoma. High CDC20 expression within the tumor is associated with poor EOC prognosis. After silencing CDC20, EOC cell proliferation and migration decreased, apoptosis increased, and SOX2 expression decreased. In conclusion, CDC20 is likely a key biomarker of EOC and may act as an upstream regulator of SOX2 to mediate the SOX2 signaling in the progression of EOC. Future application of CDC20 analysis to early detection may improve prognosis, and it has the potential to be a therapeutic target.
Collapse
Affiliation(s)
- Xiaoxue Xi
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Tianyue Cao
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Yonghong Qian
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Huiling Wang
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Songwen Ju
- Central Laboratory, Nanjing Medica University Affiliated Suzhou HospitalSuzhou 215128, Jiangsu, China
| | - Youguo Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Ting Chen
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Jian Yang
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Biaoquan Liang
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Shunyu Hou
- Department of Obstetrics and Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| |
Collapse
|