1
|
Xu K, Shao J, Cai K, Liu Q, Li X, Yan F, Huang R, Hou Y, Shi Y. Abnormalities in copper status associated with diminished ovarian reserve: A case-control and cross-sectional study. Int J Gynaecol Obstet 2025; 168:292-299. [PMID: 39056541 DOI: 10.1002/ijgo.15798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE This study aimed to illustrate the copper status of diminished ovarian reserve in Chinese women, especially the effects of copper, ceruloplasmin, non-ceruloplasmin-bound copper (NCC) and CuZn superoxide dismutase (SOD1). METHODS This case-control, cross-sectional investigation included women with diminished ovarian reserve (DOR group, n = 35) and matched normal ovarian reserve (NOR group, n = 35). The serum levels of copper, ceruloplasmin, NCC, SOD1, follicle-stimulating hormone, luteinizing hormone, estradiol, testosterone, and anti-Müllerian hormone were tested and analyzed. RESULTS The serum copper concentrations (60.88%), NCC (54.75%) and SOD1 (54.75%) in the DOR group were significantly higher than those in the NOR group (all P < 0.001), and the concentrations of the three markers were higher in most subgroups (P < 0.001). The correlation analysis verified the correlation between copper status and impaired ovarian function. Additionally, linear regression analysis showed that NCC and SOD1 levels were negatively correlated with anti-Müllerian hormone (P < 0.05 or 0.001). CONCLUSION Our exploration found significant increases in copper, NCC and SOD1 levels in DOR and suggests a possible link. Copper status is expected to serve as the predictive marker for DOR.
Collapse
Affiliation(s)
- Ke Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Shao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kaixuan Cai
- Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, China
| | - Qinyang Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiyu Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Huang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yao Hou
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yun Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Ren X, Yao B, Zhou X, Nie P, Xu S, Wang M, Li P. Caulerpin alleviates cyclophosphamide-induced ovarian toxicity by modulating macrophage-associated granulosa cell senescence during breast cancer chemotherapy. Int Immunopharmacol 2024; 143:113513. [PMID: 39486187 DOI: 10.1016/j.intimp.2024.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
For fertility preservation, preventing chemotherapy-induced premature ovarian insufficiency (POI) in patients with breast cancer is challenging. Our previous study suggested that caulerpin, a marine indole alkaloid, exerts antitumor effects on breast cancer cells. However, the potential effects of caulerpin on ovarian tissues remain unknown. In the present study, xenograft tumors derived from the MDA-MB-231 breast cancer cell line were established in a female BALB/c nude mouse model. Cyclophosphamide (CTX) alone caused remarkable ovarian damage, including irregular estrous cycles, follicle loss, and reduced expression of anti-Mullerian hormone (AMH) and follicle-stimulating hormone receptor (FSHR), whereas ovarian toxicity was largely reduced after caulerpin treatment in mice and in vitro. The gene signature of the ovaries of CTX-treated tumor-bearing mice revealed differentially expressed genes (DEGs) that regulate two important processes, namely, macrophage polarization and cellular senescence, as well as the activation of the p53/NF-κB signaling pathway. In vitro, CTX induced M1 macrophage polarization in THP-1 cells, which was accompanied by activation of the p53/NF-κB signaling pathway. Additionally, senescence was upregulated in the ovaries of CTX-treated tumor-bearing mice and in granulosa cells (GCs) cocultured with THP-1 cells exposed to LPS/IFN-γ, characterized by increased activity of senescence-associated β-galactosidase (SAβG), increased ROS levels and elevated levels of senescence-related markers (p53, p21 and p38MAPK). Furthermore, caulerpin or a p53 inhibitor (pifithrin-α) modulated CTX-induced M1 polarization in macrophages, thereby delaying GC senescence. These findings demonstrated that caulerpin contributes to alleviating CTX-induced ovarian toxicity by modulating M1 macrophage polarization through the p53/NF-κB signaling pathway, which promotes the senescence of GCs by inducing ROS production.Thus, caulerpin may be a potential therapeutic strategy for breast cancer patients.
Collapse
Affiliation(s)
- Xinyi Ren
- Department of Pathology, Jinan University School of Medicine, Guangzhou 510632, China
| | - Bo Yao
- Department of Pathology, Jinan University School of Medicine, Guangzhou 510632, China
| | - Xubing Zhou
- Department of Pathology, Jinan University School of Medicine, Guangzhou 510632, China
| | - Ping Nie
- Department of Pathology, Jinan University School of Medicine, Guangzhou 510632, China
| | - Shihai Xu
- Department of Chemistry, College of Chemistry and Material Science, Jinan University, Guangzhou 510632, China.
| | - Minghua Wang
- Department of Pathology, Longgang District People's Hospital, Shenzhen 518172, China.
| | - Ping Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
3
|
Isola JVV, Biswas S, Jayarathne H, Hubbart CR, Hense JD, Matsuzaki S, Kinter MT, Humphries KM, Ocañas SR, Sadagurski M, Stout MB. Canagliflozin treatment prevents follicular exhaustion and attenuates hallmarks of ovarian aging in genetically heterogenous mice. GeroScience 2024:10.1007/s11357-024-01465-w. [PMID: 39672978 DOI: 10.1007/s11357-024-01465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
Ovarian aging is characterized by declines in follicular reserve and the emergence of mitochondrial dysfunction, reactive oxygen species production, inflammation, and fibrosis, which eventually results in menopause. Menopause is associated with increased systemic aging and the development of numerous comorbidities; therefore, the attenuation of ovarian aging could also delay systemic aging processes in women. Recent work has established that the anti-diabetic drug Canagliflozin (Cana), a sodium-glucose transporter 2 inhibitor, elicits benefits on aging-related outcomes, likely through the modulation of nutrient-sensing pathways and metabolic homeostasis. Given that nutrient-sensing pathways play a critical role in controlling primordial follicle activation, we sought to determine if chronic Cana administration would delay ovarian aging and curtail the emergence of pathological hallmarks associated with reproductive senescence. We found that mice receiving Cana maintained their ovarian reserve through 12 months of age, which was associated with declines in primordial follicles FoxO3a phosphorylation, a marker of activation, when compared to the age-matched controls. Furthermore, Cana treatment led to decreased collagen, lipofuscin, and T cell accumulation at 12 months of age. Whole ovary transcriptomic and proteomic analyses revealed subtle improvements, predominantly in mitochondrial function and the regulation of cellular proliferation. Pathway analyses of the transcriptomic data revealed a downregulation in cell proliferation and mitochondrial dysfunction signatures, with an upregulation of oxidative phosphorylation. Pathway analyses of the proteomic data revealed declines in signatures associated with PI3K/AKT activity and lymphocyte accumulation. Collectively, we demonstrate that Cana treatment can delay ovarian aging in mice and could potentially have efficacy for delaying ovarian aging in women.
Collapse
Affiliation(s)
- José V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Subhasri Biswas
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Hashan Jayarathne
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
| | - Chase R Hubbart
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Jessica D Hense
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Michael T Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Sarah R Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Marianna Sadagurski
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Tan L, Zhong MM, Zhao YQ, Feng Y, Ye Q, Hu J, Ou-Yang ZY, Chen NX, Su XL, Zhang Q, Liu Q, Yuan H, Wang MY, Feng YZ, Guo Y. The role of circulating polyunsaturated fatty acids in mediating the effect of BMI on leukocyte telomere length: analysis using Mendelian randomization. Nutr Metab (Lond) 2024; 21:104. [PMID: 39639361 PMCID: PMC11619204 DOI: 10.1186/s12986-024-00882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND polyunsaturated fatty acids (PUFAs) are a category of fatty acids that contain omega-3 and omega-6 fatty acids, which constitute a substantial portion of the Western diet and are vital for maintaining human wellness. The extent to which circulating PUFAs influence the effects of BMI on leukocyte telomere length (LTL) is unknown. Additionally, the impact of circulating PUFA on LTL remains controversial in observational studies. METHODS Using publicly accessible datasets, a genome-wide association study (GWAS) was carried out to determine genetic association estimates for BMI, circulating PUFAs, and LTL. The circulating PUFAs considered were omega-3 PUFAs (i.e., docosahexaenoic acid (DHA) and total omega-3 PUFAs) and omega-6 PUFAs (i.e., linoleic acid (LA) and total omega-6 PUFAs). Two-sample Mendelian randomization (MR) was used to investigate the causal relationships between BMI and PUFA with LTL. Additionally, we examined whether certain PUFA mediate the impact of BMI on LTL. RESULTS None of the evidence supported a causal effect of genetically predicted DHA and total omega-3 PUFA on LTL (DHA: β = 0.001, 95% CI: -0.023 to 0.026, p = 0.926; total omega-3 PUFA: β = 0.008, 95% CI: -0.013 to 0.029, p = 0.466). After conducting sensitivity analyses to account for various models of horizontal pleiotropy, the causal association between higher levels of LA and longer LTL persisted (β = 0.034, 95% CI 0.016 to 0.052, p < 0.001). Adjusting for LA in genetics reduced the effect of BMI on LTL from β = -0.039 (95% CI: -0.058 to -0.020, p < 0.001) to -0.034 (95% CI: -0.054 to -0.014, p < 0.001). CONCLUSIONS This MR study indicates that an increase in genetically predicted circulating LA levels is associated with longer LTL. Additionally, it appears that circulating LA levels play a role in mediating some of the impact that BMI has on LTL.
Collapse
Grants
- 202208043514 The Hunan Provincial Health Commission
- 202208043514 The Hunan Provincial Health Commission
- 202208043514 The Hunan Provincial Health Commission
- 202208043514 The Hunan Provincial Health Commission
- 202208043514 The Hunan Provincial Health Commission
- 202208043514 The Hunan Provincial Health Commission
- 202208043514 The Hunan Provincial Health Commission
- 202208043514 The Hunan Provincial Health Commission
- 202208043514 The Hunan Provincial Health Commission
- 202208043514 The Hunan Provincial Health Commission
- 202208043514 The Hunan Provincial Health Commission
- 202208043514 The Hunan Provincial Health Commission
- 202208043514 The Hunan Provincial Health Commission
- 202208043514 The Hunan Provincial Health Commission
- 202208043514 The Hunan Provincial Health Commission
- (81800788 and 81773339) the National Natural Science Foundation of China
- (81800788 and 81773339) the National Natural Science Foundation of China
- (81800788 and 81773339) the National Natural Science Foundation of China
- (81800788 and 81773339) the National Natural Science Foundation of China
- (81800788 and 81773339) the National Natural Science Foundation of China
- (81800788 and 81773339) the National Natural Science Foundation of China
- (81800788 and 81773339) the National Natural Science Foundation of China
- (81800788 and 81773339) the National Natural Science Foundation of China
- (81800788 and 81773339) the National Natural Science Foundation of China
- (81800788 and 81773339) the National Natural Science Foundation of China
- (81800788 and 81773339) the National Natural Science Foundation of China
- (81800788 and 81773339) the National Natural Science Foundation of China
- (81800788 and 81773339) the National Natural Science Foundation of China
- (81800788 and 81773339) the National Natural Science Foundation of China
- (81800788 and 81773339) the National Natural Science Foundation of China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (2017WK2041 and 2018SK52511) the Science and Technology Department of Hunan Province, China
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
- (kq2202403 and kq2202412) the Natural Science Foundation of Changsha City
Collapse
Affiliation(s)
- Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Meng-Mei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ning-Xin Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao-Lin Su
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qian Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hui Yuan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Min-Yuan Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Lakshmanan M, Saini M, Nune M. Exploring the innovative application of cerium oxide nanoparticles for addressing oxidative stress in ovarian tissue regeneration. J Ovarian Res 2024; 17:241. [PMID: 39633503 PMCID: PMC11619646 DOI: 10.1186/s13048-024-01566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
The female reproductive system dysfunction considerably affects the overall health of women and children on a global scale. Over the decade, the incidence of reproductive disorders has become a significant source of suffering for women. Infertility in women may be caused by a range of acquired and congenital abnormalities. Ovaries play a central role in the female reproductive function. Any defect in the normal functioning of these endocrine organs causes health issues and reproductive challenges extending beyond infertility, as the hormones interact with other tissues and biological processes in the body. The complex pathophysiology of ovarian disorders makes it a multifactorial disease. The key etiological factors associated with the diseases include genetic factors, hormonal imbalance, environmental and lifestyle factors, inflammatory conditions, oxidative stress, autoimmune diseases, metabolic factors, and age. Oxidative stress is a major contributor to disease development and progression affecting the oocyte quality, fertilization, embryo development, and implantation. The choice of treatment for ovarian disorders varies among individuals and has associated complications. Reproductive tissue engineering holds great promise for overcoming the challenges associated with the current therapeutic approach to tissue regeneration. Furthermore, incorporating nanotechnology into tissue engineering could offer an efficient treatment strategy. This review provides an overview of incorporating antioxidant nanomaterials for engineering ovarian tissue to address the disease recurrence and associated pathophysiology. Cerium oxide nanoparticles (CeO2 NPs) are prioritized for evaluation primarily due to their antioxidant properties. In conclusion, the review explores the potential applications of CeO2 NPs for effective and clinically significant ovarian tissue regeneration.
Collapse
Affiliation(s)
- Maya Lakshmanan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Monika Saini
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Balough JL, Dipali SS, Velez K, Kumar TR, Duncan FE. Hallmarks of female reproductive aging in physiologic aging mice. NATURE AGING 2024; 4:1711-1730. [PMID: 39672896 DOI: 10.1038/s43587-024-00769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
The female reproductive axis is one of the first organ systems to age, which has consequences for fertility and overall health. Here, we provide a comprehensive overview of the biological process of female reproductive aging across reproductive organs, tissues and cells based on research with widely used physiologic aging mouse models, and describe the mechanisms that underpin these phenotypes. Overall, aging is associated with dysregulation of the hypothalamic-pituitary-ovarian axis, perturbations of the ovarian stroma, reduced egg quantity and quality, and altered uterine morphology and function that contributes to reduced capacity for fertilization and impaired embryo development. Ultimately, these age-related phenotypes contribute to altered pregnancy outcomes and adverse consequences in offspring. Conserved mechanisms of aging, as well as those unique to the reproductive system, underlie these phenotypes. The knowledge of such mechanisms will lead to development of therapeutics to extend female reproductive longevity and support endocrine function and overall health.
Collapse
Affiliation(s)
- Julia L Balough
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| | - Shweta S Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca E Duncan
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA.
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
7
|
Sasani MT, Mahmoodi M, Mehranjani MS. The effect of vitamin C on the recovery of activity and survival of autografted ovaries through inhibition of oxidation and inflammation. Tissue Cell 2024; 91:102564. [PMID: 39293137 DOI: 10.1016/j.tice.2024.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Ovarian tissue autografting is a valuable clinical option to help restore fertility in women with cancer. However, many follicles are lost due to ischemia-reperfusion (IR) injury, which depletes follicles after grafting. We aimed to investigate the effect of vitamin C, an antioxidant with anti-apoptotic and anti-inflammatory properties, on improving the structure and function of autografted ovaries in mice. Thirty-six female NMRI mice (4-5 weeks old) were divided into three groups of 12: control (no grafting), autograft + vitamin C (50 mg/kg/day intraperitoneally), and autograft + saline (100 µl/day/animal, intraperitoneally). After the ovarian autografting and before the start of the experiment, each group was further divided into 7-day and 28-day subgroups. Seven days after ovary autografting, serum levels of malondialdehyde (MDA), total antioxidant capacity (TAC), and inflammatory factors were measured. On day 28, ovarian histology, DNA fragmentation, and estradiol and progesterone levels were assessed. Results were analyzed using one-way ANOVA and Tukey's test, with significance set at p<0.05. In the autograft + vitamin C group, there were significant increases in the mean total volume of the ovary, cortex (p<0.05), medulla, number of follicles, and levels of IL-10, progesterone, estradiol, and TAC (p<0.001), compared to the autograft group. Conversely, the rate of apoptosis and serum levels of MDA, IL-6, and TNF-α were notably reduced in the autograft + vitamin C group (p<0.001). These results suggest that vitamin C can significantly enhance the recovery of autografted ovaries through its antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Maedeh Talesh Sasani
- Department of Biology, Faculty of Science, Arak University, Arak 3848177584, Iran
| | - Monireh Mahmoodi
- Department of Biology, Faculty of Science, Arak University, Arak 3848177584, Iran.
| | | |
Collapse
|
8
|
Ma Y, Nong W, Zhong O, Liu K, Lei S, Wang C, Chen X, Lei X. Nicotinamide mononucleotide improves the ovarian reserve of POI by inhibiting NLRP3-mediated pyroptosis of ovarian granulosa cells. J Ovarian Res 2024; 17:236. [PMID: 39593096 PMCID: PMC11590476 DOI: 10.1186/s13048-024-01534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/09/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a common clinical problem, but there is currently no effective treatment. NLRP3 inflammasome-induced pyroptosis is thought to be a possible mechanism of POI. Nicotinamide mononucleotide (NMN) has a certain anti-inflammatory effect, providing a promising approach for the treatment of POI. METHODS Thirty female Sprague Dawley rats were randomly divided into a control group (n = 10) and a POI group (n = 20). Cyclophosphamide (CTX) was administered for 2 weeks to induce POI. Then the POI group was divided into two groups: the CTX-POI group (n = 10), which was given saline; and the CTX-POI + NMN group (n = 10), which was given NMN at a dose of 500 mg/kg/day for 21 consecutive days. At the end of the study, the serum hormone concentrations of each group were determined, and each group was subjected to biochemical, histopathological, and immunohistochemical analyses. In the in vitro experiment, cell pyroptosis was simulated by using lipopolysaccharide (LPS) and nigricin (Nig), and then KGN cells were treated with NMN, MCC950, and AGK2, and the levels of Nicotinamide adenine dinucleotide (NAD+) and inflammatory factors Interleukin-18(IL-18) and Interleukin-1β(IL-1β) in the cell supernatants were detected, and the levels of pyroptosis-related factors in the cells were determined. RESULTS In POI rats, NMN treatments can improve blood hormone levels and partially improve the number of follicles, enhance ovarian reserve function and ovarian index.The evidence is that the increase in NAD+ levels and the activation of SIRT2 expression can reduce the expression of NLRP3, Gasdermin D (GSDMD), Caspase-1, IL-18, and IL-1β in the ovary. CONCLUSION NMN improves CTX-induced POI by inhibiting NLRP3-mediated pyroptosis, providing a new therapeutic strategy and drug target for clinical POI patients.
Collapse
Affiliation(s)
- Yue Ma
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Weihua Nong
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Department of Obstetrics and Gynecology, Department of Reproductive Medicine Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Ou Zhong
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Ke Liu
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Siyuan Lei
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Chen Wang
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China
| | - Xi Chen
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China.
| | - Xiaocan Lei
- Institute of Clinical Anatomy & Reproductive Medicine, Department of Histology and Embryology Hengyang Medical School, University of South China Hengyang, 421001, Hunan, China.
| |
Collapse
|
9
|
Liang H, Wu S, Zhang Z, Khan MZ, Zhan Y, Zhu M, Wang S, Liu W, Wang C, Cao G, Han Y. Establishment of a mouse model of ovarian oxidative stress induced by hydrogen peroxide. Front Vet Sci 2024; 11:1484388. [PMID: 39568483 PMCID: PMC11576385 DOI: 10.3389/fvets.2024.1484388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Oxidative stress, resulting from environmental changes, significantly affects female fertility. Developing a mouse model to study oxidative stress lays the groundwork for research into human reproductive health and livestock fertility. Materials and methods In this study, we established and evaluated an oxidative stress model by administering hydrogen peroxide (H2O2) to mice. ICR mice of similar age (7-8 weeks old) and average body weight (31.58 ± 1.12 g) were randomly assigned to four groups (A, B, C, and D). Group A served as the control and was injected with a saline solution, while groups B, C, and D received saline solutions containing 0.75%, 1.50%, and 3.0% H2O2, respectively, over one week. We measured the body weights of all mice before and after the experimental period. Results and discussion Our findings showed that the average body weight of mice in groups A and B increased, while groups C and D experienced weight loss. Group C showed a significantly lower average weight gain compared to groups A and B, and group D exhibited an even more pronounced reduction in weight gain. Although group D had a high mortality rate, there was no significant difference in mortality rates among groups B, C, and D. Serum malondialdehyde (MDA) content increased with higher concentrations of H2O2, with a significant difference noted between groups C and A. Catalase (CAT) activity in group B was significantly higher than in group A, while superoxide dismutase (SOD) activity in group C was notably elevated compared to groups A and B. Conversely, glutathione peroxidase (GSH-Px) activity in group C was significantly lower than in both group A and group B. Hematoxylin and eosin (HE) staining revealed changes in ovarian morphology and follicle dynamics. The percentage of atretic follicles in group C was significantly higher than in the control group, and group D had a significantly lower total number of healthy follicles compared to the untreated group. Increased H2O2 content resulted in a reduction of ovary size and an irregular appearance in group D. Conclusion Based on our findings, treatment with 1.50% H2O2 effectively established an oxidative stress model in mice within 1 week. This model serves as a valuable reference for future clinical studies on oxidative stress and reproductive disorders in female animals and humans.
Collapse
Affiliation(s)
- Huili Liang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Shuaishuai Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Zhenwei Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Muhammad Zahoor Khan
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Yandong Zhan
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Mingxia Zhu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Shoushan Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Guiling Cao
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Ying Han
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
10
|
Moustakli E, Zikopoulos A, Skentou C, Katopodis P, Domali E, Potiris A, Stavros S, Zachariou A. Impact of Reductive Stress on Human Infertility: Underlying Mechanisms and Perspectives. Int J Mol Sci 2024; 25:11802. [PMID: 39519353 PMCID: PMC11547078 DOI: 10.3390/ijms252111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Antioxidants have a well-established effect on general health and are essential in preventing oxidative damage to cells by scavenging free radicals. Free radicals are thought to be neutralized by these substances, which include polyphenols, β-carotene, and vitamins C and E, reducing cellular damage. On the other hand, recent data indicates that consuming excessive amounts of antioxidants may have side effects. Apoptosis and cell signaling are two beneficial physiological processes that are affected by excessive supplementation. Other negative effects include paradoxical enhancement of oxidative stress and unbalanced cellular redox potential. Overdosing on particular antioxidants has been associated with increased medication interactions, cancer progression, and fatality risks. Additionally, the complex impacts they may have on fertility might be both useful and adverse, depending on the quantity and duration of usage. This review delves into the dual role of antioxidants and emphasizes the importance of employing antioxidants in moderation. Antioxidant overconsumption may disrupt the oxidative balance necessary for normal sperm and oocyte function, which is one of the potential negative effects of antioxidants on fertility in both males and females that are also investigated. Although modest usage of antioxidants is generally safe and useful, high levels of antioxidants can upset hormonal balance, impair sperm motility, and negatively impact the outcomes of assisted reproductive technologies (ART). The findings emphasize the need to use antioxidant supplements in a balanced way, the importance of further research to optimize their use in fertility treatments, and the importance of supporting reproductive health to avoid adverse effects.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital Barrack Rd, Exeter EX 25 DW, UK;
| | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Periklis Katopodis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (S.S.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (S.S.)
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
11
|
He Y, Ye R, Peng Y, Pei Q, Wu L, Wang C, Ni W, Li M, Zhang Y, Yao M. Photobiomodulation ameliorates ovarian aging by alleviating oxidative stress and inflammation damage and improving mitochondrial function. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113024. [PMID: 39276447 DOI: 10.1016/j.jphotobiol.2024.113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Ovarian aging is a serious clinical concern. Few safe and effective methods are currently available to improve ovarian functions. Photobiomodulation (PBM) is a safe and noninvasive physical therapy that can modulate a series of biological processes. Recently, several studies have noted its potential to improve the function of ovary and reproductive cells. However, the effects of PBM treatment on natural ovarian aging remain unclear. In this study, we used a naturally reproductive aging mouse model to observe the effect of PBM on ovarian function. Young and aged female ICR mice were treated with or without PBM for 2 months. PBM was performed using a semiconductor InGaAlP laser emitting at 650 nm (80 mW, 6.7 mW/cm2 for 5 or 10 min, resulting in a dose of 2 or 4 J/cm2, respectively). After treatment, the effects of PBM and its role in oxidative stress, inflammation, and mitochondrial function were investigated. We found that PBM (4 J/cm2) effectively recovered the levels of sex hormones, increased the number of primordial and growing follicles, improved angiogenesis, and decreased cell apoptosis in naturally aged mice. Moreover, PBM reduced oxidative stress, inhibited chronic ovarian inflammation, and improved mitochondrial function in aged ovaries. Similar protective effects of PBM were observed in a hydrogen peroxide-induced oxidative stress model of human granulosa cell line (KGN) in vitro. Increased cell viability, cell proliferation, hormone secretion, mitochondrial membrane potential, and adenosine triphosphate levels and decreased apoptosis and oxidative stress were detected in KGN cells after PBM treatment. Collectively, this study suggest that PBM treatment is beneficial for restoring ovarian function in naturally reproductive aging mice and has a significant protective effect against oxidative stress damage in KGN cells. The mechanisms underlying the benefits of PBM in ovarian aging include antioxidant stress, reduction of inflammation, and preservation of mitochondrial function. Therefore, this study emphasizes the potential of PBM as a therapeutic intervention to ameliorate ovarian aging.
Collapse
Affiliation(s)
- Yu He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rongan Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yinbo Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qing Pei
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Wu
- Shanghai Institute of Laser Technology, Shanghai 200233, China
| | - Caixia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wei Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yiqiu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
12
|
Cai XF, Wang BY, Zhao JM, Nian MX, Lin QC, Huang JF. Association of sleep disturbances with diminished ovarian reserve in women undergoing infertility treatment. Sci Rep 2024; 14:26279. [PMID: 39487261 PMCID: PMC11530423 DOI: 10.1038/s41598-024-78123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
With an aging population seeking infertility treatment, diminished ovarian reserve (DOR) is a prevalent indication for assisted reproductive technology (ART). This study aims to investigate the relationship between sleep parameters and DOR among women attending an infertility clinic. Methods We consecutively enrolled women attending an infertility clinic from July 2020 to June 2021. Participants completed the Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale(ESS), and STOP-Bang Questionnaire to assess self-reported sleep quality. DOR-related indices including antral follicle count, anti-Müllerian hormone(AMH), follicle-stimulating hormone (FSH) were evaluated. A total of 979 women were enrolled, with 148 classified into the DOR group and 831 in the non-DOR group. The DOR group was notably older compared to the non-DOR group. Analysis showed that the DOR group exhibited significantly shorter sleep onset latency (p = 0.001) and shorter total sleep duration (p = 0.014) compared to the non-DOR group. Logistic regression analysis identified age, PSQI-sleep latency, and PSQI score as independent factors associated with an increased risk of DOR(all p < 0.05). Furthermore, stratified analysis by age group revealed that snoring and PSQI-sleep latency were particularly notable risk factors for DOR among women aged 35 years and older (OR = 2.489, p = 0.040; OR = 2.007, p = 0.008, respectively). Our study highlights that shorter sleep onset latency and shorter total sleep duration may be associated with DOR among women undergoing ART treatments. Particularly noteworthy, snoring and sleep latency were identified as additional risk factors for DOR among women aged 35 years and older.
Collapse
Affiliation(s)
- Xue-Fen Cai
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Bi-Ying Wang
- Department of respiratory and critical care medicine, Institute of Respiratory Disease, First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fujian Provincial Sleep-disordered Breathing Clinic Center, Fuzhou, China
- Department of Respiratory and Critical Care Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Jian-Ming Zhao
- Department of respiratory and critical care medicine, Institute of Respiratory Disease, First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fujian Provincial Sleep-disordered Breathing Clinic Center, Fuzhou, China
- Department of Respiratory and Critical Care Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Mei-Xin Nian
- Department of respiratory and critical care medicine, Institute of Respiratory Disease, First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fujian Provincial Sleep-disordered Breathing Clinic Center, Fuzhou, China
- Department of Respiratory and Critical Care Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Qi-Chang Lin
- Department of respiratory and critical care medicine, Institute of Respiratory Disease, First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fujian Provincial Sleep-disordered Breathing Clinic Center, Fuzhou, China.
- Department of Respiratory and Critical Care Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, People's Republic of China.
| | - Jie-Feng Huang
- Department of respiratory and critical care medicine, Institute of Respiratory Disease, First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fujian Provincial Sleep-disordered Breathing Clinic Center, Fuzhou, China.
- Department of Respiratory and Critical Care Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
13
|
Shafie A, Aleyasin A, Saffari M, Saedi M, Rostami S, Rezayi S, Mohammadi SD, Amidi F. Astaxanthin improves assisted reproductive technology outcomes in poor ovarian responders through alleviating oxidative stress, inflammation, and apoptosis: a randomized clinical trial. J Ovarian Res 2024; 17:212. [PMID: 39482765 PMCID: PMC11526544 DOI: 10.1186/s13048-024-01537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Poor ovarian response (POR) to controlled ovarian stimulation (COS) remains challenging, especially in advanced-age women with diminished ovarian reserve, resulting in low live birth rates. Many patients prefer to conceive with their eggs, underscoring the need for improved treatments. This study explores astaxanthin potential as a COS adjuvant to improve ovarian response and assisted reproductive technology (ART) outcomes, considering its impact on oxidative stress (OS), inflammation, and apoptosis, which are key factors in POR. METHODS In this randomized, triple-blind, placebo-controlled trial, 60 infertile POR patients from POSEIDON Group 4 (the poorest prognosis category, age > 35 and poor ovarian reserve (anti-müllerian hormone < 1.2 ng/ml or antral follicle count < 5) undergoing intracytoplasmic sperm injection were enrolled. Patients were assigned to receive either 12 mg/day AST or placebo for eight weeks. All patients underwent a gonadotropin-releasing hormone antagonist regimen for COS. ART outcomes were compared between groups. Blood serum and follicular fluid (FF) were analyzed for OS markers (superoxide dismutase [SOD], total antioxidant capacity [TAC], and malondialdehyde [MDA]), and pro-inflammatory cytokines (interleukin-6 [IL-6], interleukin-8 [IL-8], and vascular endothelial growth factor [VEGF]) via enzyme-linked immunosorbent assay kits, and cell-free DNA [cfDNA] (apoptotic marker) via ALU quantitative polymerase chain reaction. RESULTS After the intervention, the AST group exhibited a significant elevation in serum (P = 0.013) and TAC (P = 0.030), accompanied by a significant reduction in serum MDA (P = 0.005). No significant differences between AST and placebo groups were observed in OS markers in FF. AST group showed significant reductions in the serum IL-6 (P < 0.001), IL-8 (P = 0.001), and VEGF (P = 0.002) levels following AST therapy. In the AST group, FF levels of IL-6 (P = 0 < 001), IL-8 (P = 0.036), VEGF (P = 0.006), and cfDNA (P < 0.001) were significantly lower than in the placebo group. Between-group comparisons showed significant differences in the alterations of serum SOD (P = 0.027), IL-6 (P < 0.001), and IL-8 (P = 0.035) levels between AST and placebo groups. The AST group showed significant increases in the number of retrieved oocytes (P = 0.003), MII oocytes (P = 0.004), frozen embryos (P = 0.037), and high-quality embryos (P = 0.014) compared to the placebo group. CONCLUSION AST shows promise as a COS adjuvant therapy, potentially enhancing some ART outcomes in POR through alleviating OS, inflammation, and apoptosis. TRIAL REGISTRATION Clinical trial registration number: IRCT20230223057510N1, URL: https://irct.behdasht.gov.ir/trial/68870 , registration date: 2023 March 16.
Collapse
Affiliation(s)
- Anahid Shafie
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, P.O. Box: 1461884513, Tehran, Iran
| | - Ashraf Aleyasin
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Obstetrics and Gynecology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saffari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saedi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, P.O. Box: 1461884513, Tehran, Iran
| | - Sahar Rostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, P.O. Box: 1461884513, Tehran, Iran
- Department of Obstetrics and Gynecology, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeede Rezayi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, P.O. Box: 1461884513, Tehran, Iran
| | - Seyed Danial Mohammadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, P.O. Box: 1461884513, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, P.O. Box: 1461884513, Tehran, Iran.
- Department of Obstetrics and Gynecology, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Li Z, Liang Y, Wang Y, Lin Y, Zeng L, Zhang Y, Zhu L. Zuogui Pills alleviate cyclophosphamide-induced ovarian aging by reducing oxidative stress and restoring the stemness of oogonial stem cells through the Nrf2/HO-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118505. [PMID: 38945466 DOI: 10.1016/j.jep.2024.118505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuogui Pill (ZGP) is a traditional herbal formula of Chinese Medicine with a long history of use in alleviating ovarian aging. AIM OF THE STUDY To examine the impact of ZGP on oxidative stress and the stemness of oogonial stem cells (OSCs) in cyclophosphamide (CTX)-induced ovarian aging, as well as its molecular mechanisms involving the nuclear factor erythroid 2-related factor 2 (Nrf2, NFE2L2)/heme oxygenase-1 (HO-1, Hmox1) pathway. MATERIALS AND METHODS Female Sprague-Dawley (SD) rats were randomly divided into seven groups: control, model (CTX), estradiol valerate (EV, 0.103 mg/kg), ZGP-L (low dose Zuogui Pill, 1.851 g/kg), ZGP-H (high dose Zuogui Pill, 3.702 g/kg), ML385 (30 mg/kg), and ML385+ZGP-L. After CTX modeling, the EV, ZGP-L, ZGP-H, and ML385+ZGP-L groups were treated by gavage for 8 weeks, while the ML385 and ML385+ZGP-L groups were administered the Nrf2 antagonist ML385 twice a week. OSCs were isolated after modeling and then treated with drug serum containing 10% ZGP or 10 μM ML385. The general conditions of the rats, including body weight, ovarian weight/body weight ratio, and estrous cycle, were observed. Ovarian ultrastructure, follicle and corpus luteum counts were assessed via hematoxylin and eosin (H&E) staining. Serum hormone levels were measured using enzyme-linked immunosorbent assay (ELISA). Nrf2/HO-1 pathway, stem cell, germ cell, and cell cycle biomarkers were analyzed by qPCR and Western blot. Cell viability was assessed by cell counting kit-8 (CCK-8) assay. Oxidative stress biomarkers were evaluated using flow cytometry and assay kits. Immunofluorescence was employed to detect and locate OSCs in the ovary, quantify the average fluorescence intensity, and identify OSCs. RESULTS After ZGP treatment, rats with CTX-induced ovarian aging exhibited improved general condition, increased body weight, higher total ovarian weight to body weight ratio, and a restoration of the estrous cycle similar to the control group. Serum levels of estradiol (E2) and follicle stimulating hormone (FSH), two sex hormones, were also improved. Ovarian ultrastructure and follicle count at all stages showed improvement. Moreover, the viability and proliferation capacity of OSCs were enhanced following ZGP intervention. The Nrf2/HO-1 pathway was found to be down-regulated in CTX-induced aging ovarian OSCs. However, ZGP reversed this effect by activating the expression of Nrf2, HO-1, and NAD(P)H oxidoreductase 1 (NQO1), increasing the activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reducing the accumulation of malonaldehyde (MDA) and reactive oxygen species (ROS), thus restoring resistance to oxidative stress. Additionally, ZGP improved the cell cycle of OSCs, up-regulated the expression of Cyclin D1 and Cyclin E1, restored cell stemness, promoted proliferation, enhanced the expression of cell stemness markers octamer-binding transcription factor 4 (Oct4) and mouse VASA homolog (MVH), and down-regulated the expression of P21, thereby inhibiting apoptosis. The therapeutic effects of ZGP against oxidative stress and restoration of cell stemness were attenuated following inhibition of the Nrf2 signaling pathway using ML385. CONCLUSIONS ZGP protected against CTX-induced ovarian aging by restoring normal ovarian function, alleviating oxidative stress in aging OSCs, promoting OSCs proliferation, and restoring their stemness in rats, possibly through regulating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Zuang Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yunyi Liang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yixuan Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuewei Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lihua Zeng
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ling Zhu
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Wang Y, Liu S, Gan F, Xiong D, Zhang X, Zheng Z. Melatonin levels and embryo quality in IVF patients with diminished ovarian reserve: a comparative study. Reprod Biol Endocrinol 2024; 22:127. [PMID: 39415216 PMCID: PMC11481365 DOI: 10.1186/s12958-024-01296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Melatonin, a hormone found in various bodily fluids and cells, is known for its potent antioxidative, anti-apoptotic, and endocrine regulatory properties. This study aimed to analyze melatonin levels in patients with diminished ovarian reserve (DOR) and its impact on embryo quality. METHODS We enrolled 85 women who were undergoing in vitro fertilization or intracytoplasmic sperm injection procedures, including normal ovarian reserve (NOR, n = 27), pathological DOR (DOR-Path, n = 25), and physiological DOR (DOR-Phy, n = 33). Melatonin levels in patient serum and follicular fluid were assessed using ELISA, and correlations between melatonin levels and indicators of embryo quality were examined. RESULTS Our findings indicate that melatonin levels in the follicular fluid and basal serum of the DOR-Path and DOR-Phy groups were lower compared to the NOR group (P < 0.05). However, no significant differences in melatonin levels were found between the DOR-Path and DOR-Phy groups (P > 0.05). Additionally, the concentration of melatonin in the follicular fluid of the NOR group was significantly higher than in their serum (P < 0.001). Lastly, a significant correlation was discovered between melatonin levels in serum and follicular fluid and parameters of ovarian reserve and embryonic development (P < 0.05). CONCLUSIONS Melatonin levels in DOR patients may impact embryo quality, offering insights into potential DOR pathogenesis and opportunities to enhance treatment outcomes in these patients.
Collapse
Affiliation(s)
- Yingying Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
- Department of Medical Laboratory and Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Shangjie Liu
- Department of Medical Laboratory and Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Feifei Gan
- Department of Medical Laboratory and Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Dan Xiong
- Department of Medical Laboratory and Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Xiuming Zhang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
- Department of Medical Laboratory and Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China.
| | - Zhou Zheng
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China.
- Department of Medical Laboratory and Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
16
|
Kavarthapu R, Lou H, Pham T, Do H, Soliman ME, Badger T, Balasubramanian R, Huyhn V, De La Luz Sierra M, Yano Maher JC, Gomez-Lobo V. Single-nucleus and spatial transcriptomics of paediatric ovary: Molecular insights into the dysregulated signalling pathways underlying premature ovarian insufficiency in classic galactosemia. Clin Transl Med 2024; 14:e70043. [PMID: 39440457 DOI: 10.1002/ctm2.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Classic galactosemia (CG) is an inborn error of galactose metabolism caused by mutations in the GALT gene. Premature ovarian insufficiency (POI) is a later complication that affects 80% of women with CG due to a significant decline in ovarian reserve (primordial follicle pool). The definite mechanisms underlying the early onset of POI in CG patients are not fully understood. METHODS In this study, we performed single-nucleus RNA sequencing (snRNA-seq) and spatial transcriptomics on ovary tissue biopsies from prepubertal girls diagnosed with CG to investigate dynamic changes in gene expression and altered signalling pathways in granulosa cells, oocytes, and stromal cells. RESULTS We generated single-nucleus and spatial transcriptomics atlas of human ovaries from prepubertal girls diagnosed with and without CG. snRNA-seq profiling of the paediatric ovary revealed a diverse ovarian microenvironment with seven distinct major cell types. Our transcriptomic analysis revealed an increase in the expression of several endoplasmic reticulum stress and oxidative stress associated genes, which can promote apoptosis of granulosa cells in CG. PTEN/PI3K/AKT signalling, which is crucial for primordial follicle activation and survival was dysregulated as supported by upregulated PTEN transcripts and a significant reduction in phospho-AKT levels in the granulosa cells and oocytes. We also found a marked increase in expression of phospho-H2A.X, LC3A/B and CASP9 in the primordial follicles of CG ovaries suggesting DNA damage, autophagy, and accelerated follicular atresia. Furthermore, we noticed genes participating in extracellular matrix organisation, integrin and gap junction signalling, essential for structural support of the ovarian stroma were profoundly altered. CONCLUSIONS Our findings provide molecular insights into the dysregulated cellular signalling pathways essential for primordial follicle growth and survival that can explain the etiology of POI in CG patients. This study has implications in the development of future therapeutic interventions to preserve ovarian function and promote female reproductive health. HIGHLIGHTS Created a comprehensive single-nucleus transcriptomic atlas and spatial landscape of paediatric ovary tissue from prepubertal girls diagnosed with classic galactosemia (CG). Our transcriptomic analysis revealed activation of genes associated with ER-stress signalling, oxidative stress response and ATM signalling/DNA damage response as shown by significant increase in expression of p-EIF2A, p-H2A.X and LC3A/B in the primordial follicles of CG ovary. PTEN/PI3K/AKT signalling pathways was dysregulated evidenced by a significant reduction in phospho-AKT expression in the primordial follicles of CG ovary, suggesting impaired follicle activation and survival.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Hong Lou
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Thang Pham
- BioTuring Inc, San Diego, California, USA
| | - Han Do
- BioTuring Inc, San Diego, California, USA
| | - Mary E Soliman
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Taylor Badger
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Ramya Balasubramanian
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Victoria Huyhn
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Maria De La Luz Sierra
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Jacqueline C Yano Maher
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
- Division of Pediatric and Adolescent Gynecology, Children's National Hospital, Washington, District of Columbia, USA
| | - Veronica Gomez-Lobo
- Division of Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
- Division of Pediatric and Adolescent Gynecology, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
17
|
Jiang C, Chen Z, Xiong H, Yang X, Liao W, Chen G, Huang C, Zhu G, Yu H, Ma L. Lycium barbarum berry extract improves female fertility against aging-related oxidative stress in the ovary. Food Funct 2024; 15:9779-9795. [PMID: 39224078 DOI: 10.1039/d4fo02720e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Reproductive aging in female mammals is characterized by ovarian senescence, leading to a significant fertility decline. Lycium barbarum berry, or goji berry, is a food and medicine that appears in various formulas for treating infertility in traditional Chinese medicine. We investigated the function of an aqueous extract of Lycium barbarum berry (LB extract) to improve health status, fertility, and offspring development during female aging. Aged female mice were supplemented with LB extract, and its effects on fertility, locomotor activity, and offspring development were assessed. The results demonstrated that LB extract significantly increased pregnancy and live birth rates in naturally aged female mice. It also effectively improved aged animals' locomotor activity. Moreover, LB extract promoted the growth and development of offspring delivered from the aged animals and reduced the offspring's anxiety. During aging, fertility-related hormones gradually decline. However, the decline of anti-Müllerian hormone (AMH) and estradiol (E2) in the serum of aged mice was restored by LB extract supplementation. Immunohistochemical analysis revealed that the levels of oxidation and the inflammatory IL-6 in intra-ovarian cells were reduced by LB extract, while the antioxidant-associated proteins peroxiredoxin 4 (PRDX4) and nuclear factor erythroid 2-related factor 2 (NRF2) were increased. Bioinformatics analysis revealed a decline in egg PRDX4 expression with age across various species. This suggests that the antioxidant function protected by LB extract through PRDX4 may consistently promote fertility enhancement by improving ovarian function across different species. Importantly, LB extract did not induce significant adverse effects on aged female mice and their offspring. These findings highlight the potential of LB as a protective agent against ovarian oxidative stress, which preserves ovarian function and improves fertility rates in naturally senescent females.
Collapse
Affiliation(s)
- Chenyu Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Ziyu Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Haoming Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Xiao Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Weilin Liao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Geer Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Guoyuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Haijie Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Lijuan Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| |
Collapse
|
18
|
Demyashkin G, Vadyukhin M, Murtazalieva Z, Pugacheva E, Schekin V, Bimurzaeva M, Pesegova S, Shegay P, Kaprin A. Novel Molecular Mechanisms Underlying the Ameliorative Effect of Platelet-Rich Plasma against Electron Radiation-Induced Premature Ovarian Failure. Int J Mol Sci 2024; 25:10115. [PMID: 39337598 PMCID: PMC11432445 DOI: 10.3390/ijms251810115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Radiotherapy is one of the risk factors for radiation-induced premature ovarian failure and infertility in cancer patients. The development of methods for ovarian radioprotection remains relevant. Moreover, electrons are a little-studied and promising method of radiation with the least toxic effect on normal tissues. The assessment of intracellular mechanisms regulating the protective effects of leukocyte-poor platelet-rich plasma in a model of radiation-induced premature ovarian failure caused by electron irradiation. Wistar rats were divided into four groups, namely a control group, irradiation group (electron exposure), irradiation + leukocyte-poor platelet-rich plasma group, and only leukocyte-poor platelet-rich plasma group. Fragments of ovaries were removed and hormonal, oxidant, histological, and morphometric studies were carried out. The cell cycle of ovarian follicles and the inflammatory and vascular response were assessed using immunohistochemistry. The activity of MAPK, ERK, and PI3K pathways was also assessed using the RT-qPCR. We found that electron irradiation causes a decrease in the functional activity of the ovaries and the death of follicular cells through apoptosis. The administration of LP-PRP led to a partial restoration of the cytokine balance. In addition, minor ovarian damage and mild inflammation were observed in this group. Leukocyte-poor platelet-rich plasma components have anti-inflammatory, angiogenetic, and radioprotective effects, reducing the activation of the NOX4, caspase and cytokine cascades, and inflammatory response severity through the MAPK/p38/JNK signaling pathway. This leads to the induction of endogenous antioxidant protection, the repair of post-radiation follicular damage, and slowing down the development of radiation-induced premature ovarian failure after electron irradiation.
Collapse
Affiliation(s)
- Grigory Demyashkin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, Sechenov University, Trubetskaya St., 8/2, 119991 Moscow, Russia
| | - Matvey Vadyukhin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Zaira Murtazalieva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, Sechenov University, Trubetskaya St., 8/2, 119991 Moscow, Russia
| | - Ekaterina Pugacheva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, Sechenov University, Trubetskaya St., 8/2, 119991 Moscow, Russia
| | - Vladimir Schekin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia (RUDN University), Miklouho-Maclay St., 6, 117198 Moscow, Russia
| | - Makka Bimurzaeva
- Laboratory of Histology and Immunohistochemistry, Institute of Translational Medicine and Biotechnology, Sechenov University, Trubetskaya St., 8/2, 119991 Moscow, Russia
| | - Svetlana Pesegova
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia (RUDN University), Miklouho-Maclay St., 6, 117198 Moscow, Russia
| | - Petr Shegay
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
| | - Andrey Kaprin
- Department of Digital Oncomorphology, National Medical Research Centre of Radiology, 2nd Botkinsky Pass., 3, 125284 Moscow, Russia
- Department of Urology and Operative Nephrology, Peoples' Friendship University of Russia (RUDN University), Miklouho-Maclay St., 6, 117198 Moscow, Russia
| |
Collapse
|
19
|
Amargant F, Magalhaes C, Pritchard MT, Duncan FE. Systemic low-dose anti-fibrotic treatment attenuates ovarian aging in the mouse. GeroScience 2024:10.1007/s11357-024-01322-w. [PMID: 39285140 DOI: 10.1007/s11357-024-01322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
The female reproductive system is one of the first to age in humans, resulting in infertility and endocrine disruptions. The aging ovary assumes a fibro-inflammatory milieu which negatively impacts gamete quantity and quality as well as ovulation. Here, we tested whether the systemic delivery of anti-inflammatory (Etanercept) or anti-fibrotic (Pirfenidone) drugs attenuates ovarian aging in mice. We first evaluated the ability of these drugs to decrease the expression of fibro-inflammatory genes in primary ovarian stromal cells treated with a pro-fibrotic or a pro-inflammatory stimulus. Whereas Etanercept did not block Tnf expression in ovarian stromal cells, Pirfenidone significantly reduced Col1a1 expression. We then tested Pirfenidone in vivo where the drug was delivered systemically via mini-osmotic pumps for 6 weeks. Pirfenidone mitigated the age-dependent increase in ovarian fibrosis without impacting overall health parameters. Ovarian function was improved in Pirfenidone-treated mice as evidenced by increased follicle and corpora lutea number, AMH levels, and improved estrous cyclicity. Transcriptomic analysis revealed that Pirfenidone treatment resulted in an upregulation of reproductive function-related genes at 8.5 months and a downregulation of inflammatory genes at 12 months of age. These findings demonstrate that reducing the fibroinflammatory ovarian microenvironment improves ovarian function, thereby supporting modulating the ovarian environment as a therapeutic avenue to extend reproductive longevity.
Collapse
Affiliation(s)
- Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Carol Magalhaes
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics and Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
20
|
Tatone C, Di Emidio G, Battaglia R, Di Pietro C. Building a Human Ovarian Antioxidant ceRNA Network "OvAnOx": A Bioinformatic Perspective for Research on Redox-Related Ovarian Functions and Dysfunctions. Antioxidants (Basel) 2024; 13:1101. [PMID: 39334761 PMCID: PMC11428640 DOI: 10.3390/antiox13091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The ovary is a major determinant of female reproductive health. Ovarian functions are mainly related to the primordial follicle pool, which is gradually lost with aging. Ovarian aging and reproductive dysfunctions share oxidative stress as a common underlying mechanism. ROS signaling is essential for normal ovarian processes, yet it can contribute to various ovarian disorders when disrupted. Therefore, balance in the redox system is crucial for proper ovarian functions. In the present study, by focusing on mRNAs and ncRNAs described in the ovary and taking into account only validated ncRNA interactions, we built an ovarian antioxidant ceRNA network, named OvAnOx ceRNA, composed of 5 mRNAs (SOD1, SOD2, CAT, PRDX3, GR), 10 miRNAs and 5 lncRNAs (XIST, FGD5-AS1, MALAT1, NEAT1, SNHG1). Our bioinformatic analysis indicated that the components of OvAnOx ceRNA not only contribute to antioxidant defense but are also involved in other ovarian functions. Indeed, antioxidant enzymes encoded by mRNAs of OvAnOx ceRNA operate within a regulatory network that impacts ovarian reserve, follicular dynamics, and oocyte maturation in normal and pathological conditions. The OvAnOx ceRNA network represents a promising tool to unravel the complex dialog between redox potential and ovarian signaling pathways involved in reproductive health, aging, and diseases.
Collapse
Affiliation(s)
- Carla Tatone
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.T.); (G.D.E.)
| | - Giovanna Di Emidio
- Department of Life, Health and Experimental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.T.); (G.D.E.)
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, 95123 Catania, Italy;
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
21
|
Ding Z, Shao G, Li M. Regulatory Mechanism of Autophagy in Premature Ovarian Failure. Cell Biochem Funct 2024; 42:e4122. [PMID: 39256962 DOI: 10.1002/cbf.4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Premature ovarian failure (POF) is intricately linked to cellular fates such as senescence, apoptosis, and impaired granulosa cell (GC) differentiation, each of which contributes to ovarian dysfunction and follicular depletion. Autophagy is essential in preventing POF by maintaining cellular homeostasis through the degradation and recycling of damaged organelles and proteins, thereby preserving ovarian function and preventing follicular depletion. Recent studies have revealed that the targeted regulation and disruption of autophagy through various molecular mechanisms ultimately lead to the pathogenesis of POF. In this review, we provide a comprehensive analysis of the disruption in regulatory mechanisms of autophagy contributing to POF. Specifically, we elucidate the molecular mechanisms that can be targeted to restore autophagy homeostasis, offering therapeutic potential for the treatment of POF.
Collapse
Affiliation(s)
- Ziwen Ding
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Genbao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Mingyang Li
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
22
|
Eid BG, Binmahfouz LS, Shaik RA, Bagher AM, Sirwi A, Abdel-Naim AB. Icariin inhibits cisplatin-induced ovarian toxicity via modulating NF-κB and PTEN/AKT/mTOR/AMPK axis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03395-y. [PMID: 39212737 DOI: 10.1007/s00210-024-03395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Cisplatin (CP) is a highly effective broad-spectrum chemotherapeutic agent for several solid tumors. However, its clinical use is associated with ovarian toxicity. Icariin (ICA) is a bioactive flavonoid of Epimedium brevicornum with reported protective activities against inflammation, oxidative stress and ovarian failure. This study aimed to explore the protective effects of ICA against CP-associated ovarian toxicity in rats. Rats were randomized into five groups and treated for 17 days: control, ICA (10 mg/kg/day, for 17 days. p.o.), CP (6 mg/kg, i.p. on days 7 and 14), CP + ICA (CP 6 mg/kg i.p. on days 7 and 14 and ICA 5 mg/kg p.o. daily), and CP + ICA (CP 6 mg/kg i.p. on days 7 and 14 and ICA 10 mg/kg p.o. daily). Our results indicated that ICA effectively improved ovarian reserve as indicated by attenuating CP-induced histolopathological changes and enhancing serum anti-müllerian hormone (AMH). Furthermore, co-administration of ICA with CP showed restoration of the oxidant-anti-oxidant balance in ovarian tissues, evidenced by decreased malondialdehyde (MDA) concentrations and elevated superoxide dismutase (SOD) and catalase (CAT) activities. Also, ICA suppressed ovarian inflammation as evidenced by down-regulation of the expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and nuclear factor kappa B (NF-κB). ICA inhibited ovarian apoptosis in CP-treated rats by down-regulation of CASP3 and Bax and up-regulation of Bcl-2 mRNA expression. Further, ICA enhanced PTEN, p-AKT, p-mTOR, and p-AMPKα expression. In conclusion, ICA possesses a protective activity against CP-induced ovarian toxicity in rats by exhibiting antioxidant, antiinflammatory, anti-apoptotic activities and modulating NF-κB expression and PTEN/AKT/mTOR/AMPK axis in ovarian tissues.
Collapse
Affiliation(s)
- Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Lenah S Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Rasheed A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
23
|
Wróblewski M, Wróblewska W, Sobiesiak M. The Role of Selected Elements in Oxidative Stress Protection: Key to Healthy Fertility and Reproduction. Int J Mol Sci 2024; 25:9409. [PMID: 39273356 PMCID: PMC11395468 DOI: 10.3390/ijms25179409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Oxidative stress and its relationship to fertility and reproduction is a topic of interest in medicine, especially in the context of the effects of trace elements and micronutrients. Oxidative stress occurs when there is an excess of free radicals in the body, which can lead to cell and tissue damage. Free radicals are reactive oxygen species (ROS) that can be formed as a result of normal metabolic processes, as well as under the influence of external factors such as environmental pollution, UV radiation, and diet. Oxidative stress has a significant impact on fertility. In men, it can lead to DNA damage in sperm, which can result in reduced semen quality, reduced sperm motility and increased numbers of defective sperm, and free radical damage to sperm cell membranes causing a reduction in the number of available sperm. In women, oxidative stress can affect the quality of female reproductive cells, which can lead to problems with their maturation and with embryo implantation in the uterus and can also affect ovarian function and disrupt hormonal regulation of the menstrual cycle. A proper balance of trace elements and micronutrients is key to protecting against oxidative stress and maintaining reproductive health. Supplementation with appropriate elements such as zinc, selenium, copper, manganese, chromium, and iron can help reduce oxidative stress and improve fertility. This work discusses the effects of selected elements on oxidative stress parameters specifically in terms of fertility and reproduction.
Collapse
Affiliation(s)
- Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Weronika Wróblewska
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Marta Sobiesiak
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
24
|
Tan C, Huang S, Xu L, Zhang T, Yuan X, Li Z, Chen M, Chen C, Yan Q. Cross-talk between oxidative stress and lipid metabolism regulators reveals molecular clusters and immunological characterization in polycystic ovarian syndrome. Lipids Health Dis 2024; 23:248. [PMID: 39143634 PMCID: PMC11325768 DOI: 10.1186/s12944-024-02237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Changes in the oxidative stress and lipid metabolism (OSLM) pathways play important roles in polycystic ovarian syndrome (PCOS) pathogenesis and development. Consequently, a systematic analysis of genes related to OSLM was conducted to identify molecular clusters and explore new biomarkers that are helpful for the diagnostic of PCOS. METHODS Gene expression and clinical data from 22 PCOS women and 14 normal women were obtained from the GEO database (GSE34526, GSE95728, and GSE106724). Consensus clustering identified OSLM-related molecular clusters, and WGCNA revealed co-expression patterns. The immune microenvironment was quantitatively assessed utilizing the CIBERSORT algorithm. Multiple machine learning models and connectivity map analyses were subsequently applied to explore potential biomarkers for PCOS, and nomograms were employed to develop a predictive multigene model of PCOS. Finally, the OSLM status of PCOS and the hub genes expression profiles were preliminarily verified using TUNEL, qRT‒PCR, western blot, and IHC assays in a PCOS mouse model. RESULTS 19 differential expression genes (DEGs) related to OSLM were identified. Based on 19 DEGs that were strongly influenced by OSLM, PCOS patients were stratified into two distinct clusters, designated Cluster 1 and Cluster 2. Distinct differences in the immune cell proportions existed in normal and two PCOS clusters. The random forest showed the best results, with the least cross-entropy and the utmost AUC (cross-entropy: 0.111 AUC: 0.960). Among the 19 OSLM-related genes, CXCR1, ACP5, CEACAM3, S1PR4, and TCF7 were identified by a Bayesian network and had a good fit with PCOS disease risk by the nomogram (AUC: 0.990 CI: 0.968-1.000). TUNEL assays revealed more severe DNA damage within the ovarian granule cells of PCOS mice than in those of normal mice (P < 0.001). The RNA and protein expression levels of the five hub genes were significantly elevated in PCOS mice, which was consistent with the results of the bioinformatics analyses. CONCLUSION A novel predictive model was constructed for PCOS patients and five hub genes were identified as potential biomarkers to offer novel insights into clinical diagnostic strategies for PCOS.
Collapse
Affiliation(s)
- Cuiyu Tan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Shuqiang Huang
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Liying Xu
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Tongtong Zhang
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Xiaojun Yuan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Zhihong Li
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Miaoqi Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Cairong Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
- Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| | - Qiuxia Yan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
- Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| |
Collapse
|
25
|
Shang Y, Song N, He R, Wu M. Antioxidants and Fertility in Women with Ovarian Aging: A Systematic Review and Meta-Analysis. Adv Nutr 2024; 15:100273. [PMID: 39019217 PMCID: PMC11345374 DOI: 10.1016/j.advnut.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
Ovarian aging is a major factor for female subfertility. Multiple antioxidants have been applied in different clinical scenarios, but their effects on fertility in women with ovarian aging are still unclear. To address this, a meta-analysis was performed to evaluate the effectiveness and safety of antioxidants on fertility in women with ovarian aging. A total of 20 randomized clinical trials with 2617 participants were included. The results showed that use of antioxidants not only significantly increased the number of retrieved oocytes and high-quality embryo rates but also reduced the dose of gonadotropin, contributing to higher clinical pregnancy rates. According to the subgroup analysis of different dose settings, better effects were more pronounced with lower doses; in terms of antioxidant types, coenzyme Q10 (CoQ10) tended to be more effective than melatonin, myo-inositol, and vitamins. When compared with placebo or no treatment, CoQ10 showed more advantages, whereas small improvements were observed with other drugs. In addition, based on subgroup analysis of CoQ10, the optimal treatment regimen of CoQ10 for improving pregnancy rate was 30 mg/d for 3 mo before the controlled ovarian stimulation cycle, and women with diminished ovarian reserve clearly benefited from CoQ10 treatment, especially those aged <35 y. Our study suggests that antioxidant consumption is an effective and safe complementary therapy for women with ovarian aging. Appropriate antioxidant treatment should be offered at a low dose according to the patient's age and ovarian reserve. This study was registered at PROSPERO as CRD42022359529.
Collapse
Affiliation(s)
- Yujie Shang
- School of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China; Hubei Shizhen Laboratory, Wuhan, China; School of Basic Medical Sciences, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Nannan Song
- Liyang Branch of Jiangsu Provincial Hospital of Chinese Medicine, Changzhou, China
| | - Ruohan He
- Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghua Wu
- School of Basic Medical Sciences, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
26
|
Sirotkin AV, Fabová Z, Loncová B, Bauerová M, Harrath AH. The adipokines progranulin and omentin can directly regulate feline ovarian granulosa cell functions. Res Vet Sci 2024; 175:105321. [PMID: 38843689 DOI: 10.1016/j.rvsc.2024.105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/17/2024]
Abstract
The aim of the present study was to determine the effects of the adipokines progranulin and omentin on the basic functions of feline ovarian cells. For this purpose, we investigated the effects of the addition of progranulin and omentin (0, 0.1, 1, or 10 ng/ml) on the proliferation (accumulation of PCNA and cyclin B1), apoptosis (accumulation of Bax and caspase 3) and progesterone release of cultured feline ovarian granulosa cells by quantitative immunocytochemistry and enzyme-linked immunosorbent assays (ELISAs). Both progranulin and omentin increased cell proliferation and decreased apoptosis. Both progranulin and omentin promoted progesterone release. The present findings demonstrate that the adipokines progranulin and omentin can directly regulate basic feline ovarian cell functions.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia.
| | - Zuzana Fabová
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Barbora Loncová
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Maria Bauerová
- Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Ammar OF, Massarotti C, Mincheva M, Sharma K, Liperis G, Herraiz S, Rodríguez-Nuevo A, Zambelli F, Mihalas BP, Fraire-Zamora JJ. Oxidative stress and ovarian aging: from cellular mechanisms to diagnostics and treatment. Hum Reprod 2024; 39:1582-1586. [PMID: 38670545 DOI: 10.1093/humrep/deae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Indexed: 04/28/2024] Open
Affiliation(s)
- Omar F Ammar
- IVF Department, Ar-Razzi Hospital, Ramadi, Iraq
- Department of Obstetrics and Gynaecology, College of Medicine, University of Anbar, Ramadi, Iraq
| | - Claudia Massarotti
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- DINOGMI Department, University of Genova, Genova, Italy
| | | | - Kashish Sharma
- HealthPlus Fertility Center, HealthPlus Network of Specialty Centers, Abu Dhabi, United Arab Emirates
| | - George Liperis
- Westmead Fertility Centre, Institute of Reproductive Medicine, University of Sydney, Westmead, NSW, Australia
- Embryorigin Fertility Centre, Larnaca, Cyprus
| | - Sonia Herraiz
- IVIRMA Global Research Alliance, IVI Foundation-IIS la Fe, Valencia, Spain
| | - Aida Rodríguez-Nuevo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Bettina P Mihalas
- The Oocyte Biology Research Unit, Discipline of Women's Health, School of Clinical Medicine, Faculty of Medicine and Health, The University of NSW Sydney, Randwick, NSW, Australia
| | | |
Collapse
|
28
|
Liu F, He J, Chen X, Liu R, Li F, Geng Y, Dai Y, Zhang Y, Wang Y, Mu X. Maternal Administration of Acetaminophen Affects Meiosis Through its Metabolite NAPQI Targeting SIRT7 in Fetal Oocytes. Antioxid Redox Signal 2024; 41:93-109. [PMID: 38062739 DOI: 10.1089/ars.2023.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Aim: Acetaminophen (APAP) is clinically recommended as analgesic and antipyretic among pregnant women. However, accumulating laboratory evidence shows that the use of APAP during pregnancy may alter fetal development. Since fetal stage is a susceptible window for early oogenesis, we aim to assess the potential effects of maternal administration of APAP on fetal oocytes. Results: Pregnant mice at 14.5 dpc (days post-coitus) were orally administered with APAP (50 and 150mg/kg.bw/day) for 3 days; meanwhile, 14.5 dpc ovaries were collected and cultured with APAP or its metabolite N-acetyl-p-benzoquinone imine (NAPQI; 5 and 15 μM) for 3 days. It showed that APAP caused meiotic aberrations in fetal oocytes through its metabolite NAPQI, including meiotic prophase I (MPI) progression delay and homologous recombination defects. Co-treatment with nicotinamide (NAM) or nicotinamide riboside chloride (NRC), nicotinamide adenine dinucleotide (NAD+) supplements, efficiently restored the MPI arrest, whereas the addition of the inhibitor of sirtuin 7 (SIRT7) invalidated the effect of the NAD+ supplement. In addition, RNA sequencing revealed distorted transcriptomes of fetal ovaries treated with NAPQI. Furthermore, the fecundity of female offspring was affected, exhibiting delayed primordial folliculogenesis and puberty onset, reduced levels of ovarian hormones, and impaired developmental competence of MII oocytes. Innovation: These findings provide the first known demonstration that NAPQI, converted from maternal administration of APAP, disturbs meiotic process of fetal oocytes and further impairs female fecundity in adulthood. The concomitant oral dosing with NAM further supports the benefits of NAD+ supplements on oogenesis. Conclusion: Short-term administration of APAP to pregnant mouse caused meiotic aberrations in fetal oocytes by its metabolite NAPQI, whereas co-treatment with NAD+ supplement efficiently relieves the adverse effects by interacting with SIRT7.
Collapse
Affiliation(s)
- Fangfei Liu
- Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
| | - Junlin He
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Ronglu Liu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Yanqing Geng
- Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
| | - Yuhan Dai
- Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
| | - Yan Zhang
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Yingxiong Wang
- Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
| | - Xinyi Mu
- Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
29
|
Chen Y, Zhang J, Tian Y, Xu X, Wang B, Huang Z, Lou S, Kang J, Zhang N, Weng J, Liang Y, Ma W. Iron accumulation in ovarian microenvironment damages the local redox balance and oocyte quality in aging mice. Redox Biol 2024; 73:103195. [PMID: 38781731 PMCID: PMC11145558 DOI: 10.1016/j.redox.2024.103195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Accumulating oxidative damage is a primary driver of ovarian reserve decline along with aging. However, the mechanism behind the imbalance in reactive oxygen species (ROS) is not yet fully understood. Here we investigated changes in iron metabolism and its relationship with ROS disorder in aging ovaries of mice. We found increased iron content in aging ovaries and oocytes, along with abnormal expression of iron metabolic proteins, including heme oxygenase 1 (HO-1), ferritin heavy chain (FTH), ferritin light chain (FTL), mitochondrial ferritin (FTMT), divalent metal transporter 1 (DMT1), ferroportin1(FPN1), iron regulatory proteins (IRP1 and IRP2) and transferrin receptor 1 (TFR1). Notably, aging oocytes exhibited enhanced ferritinophagy and mitophagy, and consistently, there was an increase in cytosolic Fe2+, elevated lipid peroxidation, mitochondrial dysfunction, and augmented lysosome activity. Additionally, the ovarian expression of p53, p21, p16 and microtubule-associated protein tau (Tau) were also found to be upregulated. These alterations could be phenocopied with in vitro Fe2+ administration in oocytes from 2-month-old mice but were alleviated by deferoxamine (DFO). In vivo application of DFO improved ovarian iron metabolism and redox status in 12-month-old mice, and corrected the alterations in cytosolic Fe2+, ferritinophagy and mitophagy, as well as related degenerative changes in oocytes. Thereby in the whole, DFO delayed the decline in ovarian reserve and significantly increased the number of superovulated oocytes with reduced fragmentation and aneuploidy. Together, our findings suggest that aging-related disturbance in ovarian iron homeostasis contributes to excessive ROS production and that iron chelation may improve ovarian redox status, and efficiently delay the decline in ovarian reserve and oocyte quality in aging mice. These data propose a novel intervention strategy for preserving the ovarian reserve function in elderly women.
Collapse
Affiliation(s)
- Ye Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ying Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiangning Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Bicheng Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ziqi Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shuo Lou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jingyi Kang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ningning Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuanjing Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
30
|
Amargant F, Vieira C, Pritchard MT, Duncan FE. Systemic low-dose anti-fibrotic treatment attenuates ovarian aging in the mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600035. [PMID: 38979191 PMCID: PMC11230292 DOI: 10.1101/2024.06.21.600035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The female reproductive system is one of the first to age in humans, resulting in infertility and endocrine disruptions. The aging ovary assumes a fibro-inflammatory milieu which negatively impacts gamete quantity and quality as well as ovulation. Here we tested whether the systemic delivery of anti-inflammatory (Etanercept) or anti-fibrotic (Pirfenidone) drugs attenuates ovarian aging in mice. We first evaluated the ability of these drugs to decrease the expression of fibro-inflammatory genes in primary ovarian stromal cells. Whereas Etanercept did not block Tnf expression in ovarian stromal cells, Pirfenidone significantly reduced Col1a1 expression. We then tested Pirfenidone in vivo where the drug was delivered systemically via mini-osmotic pumps for 6-weeks. Pirfenidone mitigated the age-dependent increase in ovarian fibrosis without impacting overall health parameters. Ovarian function was improved in Pirfenidone-treated mice as evidenced by increased follicle and corpora lutea number, AMH levels, and improved estrous cyclicity. Transcriptomic analysis revealed that Pirfenidone treatment resulted in an upregulation of reproductive function-related genes at 8.5 months and a downregulation of inflammatory genes at 12 months of age. These findings demonstrate that reducing the fibroinflammatory ovarian microenvironment improves ovarian function, thereby supporting modulating the ovarian environment as a therapeutic avenue to extend reproductive longevity.
Collapse
Affiliation(s)
- Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Carol Vieira
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics and Institute for Reproductive and Developmental Sciences University of Kansas Medical Center, Kansas City, KS, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
31
|
Wang ZH, Wang ZJ, Liu HC, Wang CY, Wang YQ, Yue Y, Zhao C, Wang G, Wan JP. Targeting mitochondria for ovarian aging: new insights into mechanisms and therapeutic potential. Front Endocrinol (Lausanne) 2024; 15:1417007. [PMID: 38952389 PMCID: PMC11215021 DOI: 10.3389/fendo.2024.1417007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Ovarian aging is a complex process characterized by a decline in oocyte quantity and quality, directly impacting fertility and overall well-being. Recent researches have identified mitochondria as pivotal players in the aging of ovaries, influencing various hallmarks and pathways governing this intricate process. In this review, we discuss the multifaceted role of mitochondria in determining ovarian fate, and outline the pivotal mechanisms through which mitochondria contribute to ovarian aging. Specifically, we emphasize the potential of targeting mitochondrial dysfunction through innovative therapeutic approaches, including antioxidants, metabolic improvement, biogenesis promotion, mitophagy enhancement, mitochondrial transfer, and traditional Chinese medicine. These strategies hold promise as effective means to mitigate age-related fertility decline and preserve ovarian health. Drawing insights from advanced researches in the field, this review provides a deeper understanding of the intricate interplay between mitochondrial function and ovarian aging, offering valuable perspectives for the development of novel therapeutic interventions aimed at preserving fertility and enhancing overall reproductive health.
Collapse
Affiliation(s)
- Zi-Han Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen-Jing Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China
| | - Huai-Chao Liu
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen-Yu Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu-Qi Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yang Yue
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guoyun Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ji-Peng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
32
|
Kim MR, Kim DI, Park SY, Kang HJ, Park SD, Lee JH. The Protective Role of Magnoliae Flos in Preventing Ovotoxicity and Managing Ovarian Function: An In Vitro and In Vivo Study. Int J Mol Sci 2024; 25:6456. [PMID: 38928161 PMCID: PMC11203778 DOI: 10.3390/ijms25126456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Magnoliae Flos (MF) is a medicinal herb widely employed in traditional medicine for relieving sinusitis, allergic rhinitis, headaches, and toothaches. Here, we investigated the potential preventive effects of MF extract (MFE) against 4-vinylcyclohexene diepoxide (VCD)-induced ovotoxicity in ovarian cells and a mouse model of premature ovarian insufficiency (POI). The cytoprotective effects of MFE were assessed using CHO-K1 or COV434 cells. In vivo, B6C3F1 female mice were intraperitoneally injected with VCD for two weeks to induce POI, while MFE was orally administered for four weeks, beginning one week before VCD administration. VCD led to a significant decline in the viabilities of CHO-K1 and COV434 cells and triggered excessive reactive oxygen species (ROS) production and apoptosis specifically in CHO-K1 cells. However, pretreatment with MFE effectively prevented VCD-induced cell death and ROS generation, while also activating the Akt signaling pathway. In vivo, MFE increased relative ovary weights, follicle numbers, and serum estradiol and anti-Müllerian hormone levels versus controls under conditions of ovary failure. Collectively, our results demonstrate that MFE has a preventive effect on VCD-induced ovotoxicity through Akt activation. These results suggest that MFE may have the potential to prevent and manage conditions such as POI and diminished ovarian reserve.
Collapse
Affiliation(s)
- Mi Ra Kim
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea; (M.R.K.); (D.-I.K.); (S.Y.P.)
| | - Dong-Il Kim
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea; (M.R.K.); (D.-I.K.); (S.Y.P.)
| | - Sung Yun Park
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea; (M.R.K.); (D.-I.K.); (S.Y.P.)
| | - Hyo Jin Kang
- Department of Biomedical Laboratory Science, Honam University, Gwangju 62399, Republic of Korea;
| | - Sun-Dong Park
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea; (M.R.K.); (D.-I.K.); (S.Y.P.)
| | - Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Republic of Korea; (M.R.K.); (D.-I.K.); (S.Y.P.)
| |
Collapse
|
33
|
Su C, Zhang R, Zhang X, Feng X, Wu Q, Gao Y, Hao J, Mu YL. Honghua Xiaoyao tablet combined with estradiol improves ovarian function in D-galactose-induced aging mice by reducing apoptosis and affecting the release of reproductive hormones: an in vivo study. Front Pharmacol 2024; 15:1394941. [PMID: 38903998 PMCID: PMC11187083 DOI: 10.3389/fphar.2024.1394941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Context: It is very necessary to delay ovarian aging and prevent age-related health problems. The active ingredient in Honghua Xiaoyao tablet (HHXYT) has the effects of anti-oxidation, anti-inflammation, immune regulation and so on. Objective: To explore the effect and mechanism of Honghua Xiaoyao tablet on aging model mice. Materials and methods: The aging model was established by intraperitoneal injection of D-galactose in model mice. The mice in the HHXYT-L,M,H group were given 0.3 g/kg, 0.6 g/kg and 1.2 g/kg Honghua Xiaoyao tablet suspension respectively, and the HHXYT-M + E2 group was given 0.6 g/kg HHXYT +0.13 mg/kg estradiol valerate for 30 days. In this study, ELISA, HE, Western blot, IH and TUNEL were used. Results: HHXYT + E2 can improve the gonadal index, estrous cycle of aging mice. In HHXYT-M + E2 group, the level of FSH and LH decreased, while E2 and AMH increased significantly. The number of growing follicles in HHXYT-M + E2 group increased, which was better than that of HHXYT alone. Western blot results showed that HHXYT-M + E2 group decreased the expression of Bax, cleaved-Parp, cleaved-Casp-3 and CytC molecules and increased the expression of Bcl-2 in ovarian tissue. FSHR expression decreased in model group and increased in HHXYT group. TUNEL staining showed that the number of apoptotic cells in HHXYT group was reduced, and the HHXYT-M + E2 group was the most significantly. Discussion and conclusion: HHXYT can improve the level of sex hormones and increase the number of growing follicles in aging mice. HHXYT-M + E2 group has the best effect, and its mechanism may be related to reducing ovarian granulosa cell apoptosis.
Collapse
Affiliation(s)
- Chan Su
- Department of Gynecology, Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
- Department of Gynecology, Taiyuan Maternal and Child Health Hospital, Taiyuan, China
| | - Ruihong Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Xiujuan Zhang
- Department of Gynecology, Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoning Feng
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Qiong Wu
- The Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiwei Gao
- The Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Hao
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Yu-lan Mu
- Department of Gynecology, Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
34
|
Lyu W, Li DF, Li SY, Hu H, Zhou JY, Wang L. Gut microbiota modulation: a narrative review on a novel strategy for prevention and alleviation of ovarian aging. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38835159 DOI: 10.1080/10408398.2024.2361306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The global rise in life expectancy corresponds with a delay in childbearing age among women. Ovaries, seen as the chronometers of female physiological aging, demonstrate features of sped up aging, evidenced by the steady decline in both the quality and quantity of ovarian follicles from birth. The multifaceted pathogenesis of ovarian aging has kindled intensive research interest from the biomedical and pharmaceutical sectors. Novel studies underscore the integral roles of gut microbiota in follicular development, lipid metabolism, and hormonal regulation, forging a nexus with ovarian aging. In this review, we outline the role of gut microbiota in ovarian function (follicular development, oocyte maturation, and ovulation), compile and present gut microbiota alterations associated with age-related ovarian aging. We also discuss potential strategies for alleviating ovarian aging from the perspective of gut microbiota, such as fecal microbiota transplantation and probiotics.
Collapse
Affiliation(s)
- Wei Lyu
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA
| | - De-Feng Li
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Shu-Ying Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Hua Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Jian-Yun Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Ling Wang
- Clinical Medical Research Center, The Second Affiliated Hospital of Army Military Medical University, Chongqing, China
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
35
|
Duan H, Yang S, Yang S, Zeng J, Yan Z, Zhang L, Ma X, Dong W, Zhang Y, Zhao X, Hu J, Xiao L. The mechanism of curcumin to protect mouse ovaries from oxidative damage by regulating AMPK/mTOR mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155468. [PMID: 38471315 DOI: 10.1016/j.phymed.2024.155468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/19/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Oxidative stress is considered the main cause of granulosa cell apoptosis in ovarian disease. Curcumin has various biological roles, but its potential role in protecting granulosa cells from oxidative damage remains unidentified. PURPOSE The study revealed the protective effect of curcumin on granulosa cell survival under oxidative stress, and explored its mode of action. STUDY DESIGN The protective effect of curcumin on oxidative stress-induced ovarian cell apoptosis was evaluated in vivo and in vitro, and the role of autophagy and AMPK/mTOR signaling pathway in this process was also demonstrated. METHODS First, mice were injected to 3-nitropropionic acid (3-NPA, 20 mg/kg/day) for 14 consecutive days to establish the ovarian oxidative stress model, at same time, curcumin (50, 100, 200 mg/kg/day) was given orally. Thereafter, functional changes, cell apoptosis, and autophagy in ovarian tissue were evaluated by hematoxylin-eosin staining, enzyme-linked immunosorbent assay, western blotting, TUNEL assays, and transmission electron microscopy. Finally, oxidative stress model of granulosa cells was established with H2O2in vitro and treated with curcumin. The underlying mechanisms of curcumin to protect the apoptosis under oxidative stress in vitro were determined using western blotting and TUNEL assays. RESULTS In our study, after curcumin treatment, the mouse ovarian function disorder under 3-nitropropionic acid-induced oxidative stress recovered significantly, and ovarian cell apoptosis decreased. H2O2 induced granulosa cell apoptosis in vitro, and curcumin antagonized this process. Autophagy contributes to tissue and cell survival under stress. We therefore examined the role of autophagy in this process. According to the in vivo and in vitro results, curcumin restored autophagy under oxidative stress. The autophagy inhibitor (chloroquine) exhibited the same effect as curcumin, whereas the autophagy activator (rapamycin) antagonized the effect of curcumin. In addition, the study found that the AMPK/mTOR pathway plays a crucial role in curcumin- mediated autophagy to protect against oxidative stress-induced apoptosis. CONCLUSION Our findings for the first time systematically revealed a new mechanism through which curcumin protects ovarian granulosa cells from oxidative stress-induced damage through AMPK/mTOR-mediated autophagy and suggested that it can be a new therapeutic direction for female ovarian diseases.
Collapse
Affiliation(s)
- Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Shanshan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, Gansu, China.
| | - Longfei Xiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Animal Science and Technology College, Beijing University of Agriculture, 102206, Beijing, China.
| |
Collapse
|
36
|
Salvaleda-Mateu M, Rodríguez-Varela C, Labarta E. Do Popular Diets Impact Fertility? Nutrients 2024; 16:1726. [PMID: 38892663 PMCID: PMC11174414 DOI: 10.3390/nu16111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Infertility affects 15% of the population in developed countries, and its prevalence is increasing. Fertility can be influenced by different factors. Although key factors like maternal age cannot be changed, there is growing evidence that other modifiable factors, such as diet, can have an impact on fertility. Diet has become increasingly important in recent years for a number of reasons: the new trend toward a healthy lifestyle, the higher prevalence of certain digestive disorders, a lack of time that leads people to consume more prepared and processed food, and personal choice to not eat meat, among others. To meet these needs, several diets have recently become popular, such as the Mediterranean diet, known as the gold standard of health; the DASH diet, known for preventing hypertension; the Western diet, characterized by processed food; the ketogenic diet, characterized by low carbohydrate intake; and the vegetarian diet, which is the choice for people who do not eat meat or animal by-products. Diets present a unique composition characterized by the presence or absence of specific nutrients, which have also been associated with male and female fertility individually. This review assesses the impact of these diets and of macro- and micronutrients on both female and male fertility.
Collapse
Affiliation(s)
| | | | - Elena Labarta
- Human Reproduction Department, IVI RMA Valencia, 46015 Valencia, Spain; (C.R.-V.); (E.L.)
| |
Collapse
|
37
|
Lin LT, Li CJ, Chern CU, Lin PH, Lin PW, Chen YC, Tsai HW, Tsui KH. Intravascular Laser Blood Irradiation (ILIB) Enhances Antioxidant Activity and Energy Metabolism in Aging Ovaries. J Pers Med 2024; 14:551. [PMID: 38929772 PMCID: PMC11205042 DOI: 10.3390/jpm14060551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Ovarian aging is characterized by the accumulation of free radicals, leading to tissue damage and affecting reproductive health. Intravascular laser irradiation of blood (ILIB, using a low-energy He-Ne laser) is known for its efficacy in treating vascular-related diseases by reducing free radicals and inflammation. However, its impact on ovarian aging remains unexplored. This study aimed to investigate the effects of ILIB on oxidative stress and energy metabolism in aging ovaries. METHODS Genetic analysis was conducted on 75 infertile patients with aging ovaries, divided into ILIB-treated and control (CTRL) groups. Patients underwent two courses of laser treatment, and clinical parameters were evaluated. Cumulus cells were collected for the genetic analysis of oxeiptosis, glycolysis, and the tricarboxylic acid (TCA) cycle. RESULTS The analysis of gene expression patterns revealed intriguing findings in ILIB-treated patients compared to the untreated group. Notably, ILIB treatment resulted in significant upregulation of oxeiptosis-related genes AIFM1 and NRF2, suggesting a potential protective effect against oxidative stress-induced cell death. Furthermore, ILIB treatment led to a downregulation of glycolysis-associated gene hexokinase 2 (HK2), indicating a shift away from anaerobic metabolism, along with an increase in PDHA levels, indicative of enhanced mitochondrial function. Consistent with these changes, ILIB-treated patients exhibited elevated expression of the key TCA cycle genes citrate synthase (CS), succinate dehydrogenase complex subunit A (SDHA), and fumarate hydratase (FH), signifying improved energy metabolism. CONCLUSION The findings from this study underscore the potential of ILIB as a therapeutic strategy for mitigating ovarian aging. By targeting oxidative stress and enhancing energy metabolism, ILIB holds promise for preserving ovarian function and reproductive health in aging individuals. Further research is warranted to elucidate the underlying mechanisms and optimize the application of ILIB in clinical settings, with the ultimate goal of improving fertility outcomes in women experiencing age-related ovarian decline.
Collapse
Affiliation(s)
- Li-Te Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei 112, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chyi-Uei Chern
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Pei-Hsuan Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Po-Wen Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Yu-Chen Chen
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Hsiao-Wen Tsai
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei 112, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
38
|
Liang Y, Shi Y, Guo R, Xu C, Fu M, Shen J, Gao X, Li W, Qin K. Wine- and stir-frying processing of Cuscutae Semen enhance its ability to alleviate oxidative stress and apoptosis via the Keap 1-Nrf2/HO-1 and PI3K/AKT pathways in H 2O 2-challenged KGN human granulosa cell line. BMC Complement Med Ther 2024; 24:189. [PMID: 38750475 PMCID: PMC11094956 DOI: 10.1186/s12906-024-04491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Cuscutae Semen (CS) has been prescribed in traditional Chinese medicine (TCM) for millennia as an aging inhibitor, an anti-inflammatory agent, a pain reliever, and an aphrodisiac. Its three main forms include crude Cuscutae Semen (CCS), wine-processed CS (WCS), and stir-frying-processed CS (SFCS). Premature ovarian insufficiency (POI) is a globally occurring medical condition. The present work sought a highly efficacious multi-target therapeutic approach against POI with minimal side effects. Finally, it analyzed the relative differences among CCS, WCS and SFCS in terms of their therapeutic efficacy and modes of action against H2O2-challenged KGN human granulosa cell line. METHODS In this study, ultrahigh-performance liquid chromatography (UPLC)-Q-ExactiveTM Orbitrap-mass spectrometry (MS), oxidative stress indices, reactive oxygen species (ROS), Mitochondrial membrane potential (MMP), real-time PCR, Western blotting, and molecular docking were used to investigate the protective effect of CCS, WCS and SFCS on KGN cells oxidative stress and apoptosis mechanisms. RESULTS The results confirmed that pretreatment with CCS, WCS and SFCS reduced H2O2-induced oxidative damage, accompanied by declining ROS levels and malondialdehyde (MDA) accumulation in the KGN cells. CCS, WCS and SFCS upregulated the expression of antioxidative levels (GSH, GSH/GSSG ratio, SOD, T-AOC),mitochondrial membrane potential (MMP) and the relative mRNA(Nrf2, Keap1, NQO-1, HO-1, SOD-1, CAT). They inhibited apoptosis by upregulating Bcl-2, downregulating Bax, cleaved caspase-9, and cleaved caspase-3, and lowering the Bax/Bcl-2 ratio. They also exerted antioxidant efficacy by partially activating the PI3K/Akt and Keap1-Nrf2/HO-1 signaling pathways. CONCLUSIONS The results of the present work demonstrated the inhibitory efficacy of CCS, WCS and SFCS against H2O2-induced oxidative stress and apoptosis in KGN cells and showed that the associated mechanisms included Keap1-Nrf2/HO-1 activation, P-PI3K upregulation, and P-Akt-mediated PI3K-Akt pathway induction.
Collapse
Affiliation(s)
- Yusha Liang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yun Shi
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Rong Guo
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Changli Xu
- Department of Pharmacy, Xinyi People's Hospital, Xinyi Jiangsu, 221400, China
| | - Mian Fu
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jinyang Shen
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xun Gao
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Weidong Li
- Engineering Research Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Kunming Qin
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
39
|
Werner L, van der Schouw YT, de Kat AC. A systematic review of the association between modifiable lifestyle factors and circulating anti-Müllerian hormone. Hum Reprod Update 2024; 30:262-308. [PMID: 38402486 DOI: 10.1093/humupd/dmae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/21/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Levels of anti-Müllerian hormone (AMH) are known to be associated with lifestyle determinants such as smoking and oral contraception (OC) use. When measuring AMH in clinical practice, it is essential to know which factors may influence circulating levels or ovarian reserve in general. OBJECTIVE AND RATIONALE To date, there is no systematic review or summarizing consensus of the nature and magnitude of the relation between AMH and modifiable lifestyle factors. The purpose of this review was to systematically assess the evidence on association of lifestyle behaviors with circulating AMH levels. SEARCH METHODS We performed a pre-registered systematic review of publications in Embase and PubMed on the lifestyle factors BMI, smoking, OC use, alcohol consumption, caffeine consumption, physical activity, and waist-hip ratio (WHR) in relation to circulating AMH levels up to 1 November 2023. The search strategy included terms such as 'Anti-Mullerian hormone', 'lifestyle', and 'women'. Studies were considered eligible if the association between at least one of the lifestyle factors of interest and AMH was assessed in adult women. The quality of included studies was assessed using the Study Quality Assessment Tools of the National Heart, Lung, and Blood Institute. The results were presented as ranges of the most frequently used association measure for studies that found a significant association in the same direction. OUTCOMES A total of 15 072 records were identified, of which 65 studies were eligible for inclusion, and 66.2% of the studies used a cross-sectional design. The majority of studies investigating BMI, smoking, OC use, and physical activity reported significant inverse associations with AMH levels. For WHR, alcohol, and caffeine use, the majority of studies did not find an association with AMH. For all determinants, the effect measures of the reported associations were heterogeneous. The mean difference in AMH levels per unit increase in BMI ranged from -0.015 to -0.2 ng/ml in studies that found a significant inverse association. The mean difference in AMH levels for current smokers versus non-smokers ranged from -0.4 to -1.1 ng/ml, and -4% to -44%, respectively. For current OC use, results included a range in relative mean differences in AMH levels of -17% to -31.1%, in addition to a decrease of 11 age-standardized percentiles, and an average decrease of 1.97 ng/ml after 9 weeks of OC use. Exercise interventions led to a decrease in AMH levels of 2.8 pmol/l to 13.2 pmol/l after 12 weeks in women with polycystic ovary syndrome or a sedentary lifestyle. WIDER IMPLICATIONS Lifestyle factors are associated with differences in AMH levels and thus should be taken into account when interpreting individual AMH measurements. Furthermore, AMH levels can be influenced by the alteration of lifestyle behaviors. While this can be a helpful tool for clinical and lifestyle counseling, the nature of the relation between the observed differences in AMH and the true ovarian reserve remains to be assessed. REGISTRATION NUMBER PROSPERO registration ID: CRD42022322575.
Collapse
Affiliation(s)
- Lotte Werner
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annelien C de Kat
- Department of Reproductive Medicine and Gynecology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
40
|
Zhang Y, Li X, Liu R, Huang X, Yang Y, Yuan J, Zhang Y, Sun J, Bai W. Protective effect of bioactive components from Rubi fructus against oxidative damage in human ovarian granulosa cells induced by 2,2-azobis (2-methylpropionamidine) dihydrochloride. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4425-4437. [PMID: 38349056 DOI: 10.1002/jsfa.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Diminished ovarian reserve has a serious impact on female reproduction with an increasing incidence every year. An important cause of this is oxidative stress. Rubi fructus, a traditional medicinal and edible plant, has shown therapeutic effects against gynecological diseases. Vanillic acid, isoquercitrin, kaempferol-3-O-rutinoside, kaempferol-3-O-sophoroside, oleanolic acid, tormentic acid, tiliroside, and ellagic acid are the major bioactive components in R. fructus. However, studies involved in the effectiveness and mechanism of these components in oxidative stress-induced ovarian dysfunction are scarce. RESULTS In this study, the protective mechanisms of the bioactive components were evaluated in human ovarian granulosa cells. Isoquercitrin was significantly superior to other bioactive components in relieving damage in human ovarian granulosa cells induced by 2,2-azobis (2-methylpropionamidine) dihydrochloride, considering enhanced cell viability, reduced reactive oxygen species accumulation, and improved mitochondrial membrane potential level. Isoquercitrin protected human ovarian granulosa cells from oxidative stress by regulating the enzyme activity of glutathione peroxidase, inhibiting cell apoptosis, improving the expression of genes related to oxidative stress, and ameliorating heme oxygenase 1 protein expression. CONCLUSION Isoquercitrin, a bioactive component in R. fructus, has a significant protective effect on oxidative damage induced by 2,2-azobis (2-methylpropionamidine) dihydrochloride in human ovarian granulosa cells, providing evidence for its potential application in protecting ovarian function. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Xin Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Yiting Yang
- Infinitus (China) Company Ltd., Guangzhou, China
| | | | - Ying Zhang
- Infinitus (China) Company Ltd., Guangzhou, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
41
|
Li X, Luan T, Wei Y, Zhang J, Zhao C, Ling X. The association between triglyceride glucose-body Mass Index and in vitro fertilization outcomes in women with polycystic ovary syndrome: a cohort study. J Ovarian Res 2024; 17:90. [PMID: 38671507 PMCID: PMC11055342 DOI: 10.1186/s13048-024-01416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) is a common reproductive disorder that frequently affects fertility. The TyG-BMI (Triglyceride glucose-body mass) index is a newly explored parameter that may be linked to reproductive results in individuals with PCOS. Nevertheless, its connection with outcomes in In Vitro Fertilization (IVF) procedures remains uncertain. METHODS This study included a total of 966 females who underwent IVF treatments for PCOS. At the baseline, the participants were categorized into four groups according to the quartiles of TyG-BMI measured prior to oocyte retrieval. Subsequently, the study compared the differences in clinical and laboratory outcomes among these four groups. RESULTS Patients in higher TyG-BMI quartiles exhibited a decreased number of retrieved oocytes, 2PN embryos, and available/high-quality embryos (P < 0.05 for Q1-Q4). Additionally, the multivariable regression analysis revealed that individuals in the top quartile of TyG-BMI had a lower count of accessible embryos (β = -0.224, P = 0.257) and a decreased number of high-quality embryos (β = -0.352, P = 0.028) in comparison to those in the lowest quartile. Nevertheless, there were no notable variances detected in the rates of pregnancy or live births among these quartiles. Furthermore, a linear correlation was noted between the TyG-BMI index and the quantity of accessible embryos (P-non-linear = 0.6, P-overall < 0.001), along with high-quality embryos (P-nonlinear = 0.026, P-overall = 0.006). In contrast, there was no notable linear correlation found between the TyG-BMI index and the available embryo rate (P-nonlinear = 0.60, P-overall = 0.8). CONCLUSIONS The results of this research emphasize the notable correlation between TyG-BMI and IVF results in females diagnosed with PCOS. The interplay of insulin resistance and disorders of lipid metabolism may indeed play a pivotal role in influencing the assisted reproductive outcomes of patients with PCOS. Considering these findings, TyG-BMI proves to be a valuable indicator for exploring this potential association.
Collapse
Affiliation(s)
- Xin Li
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Mochou Road, Qinhuai District, Nanjing, JiangSu, China
| | - Ting Luan
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Yi Wei
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Mochou Road, Qinhuai District, Nanjing, JiangSu, China
| | - JuanJuan Zhang
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Mochou Road, Qinhuai District, Nanjing, JiangSu, China
| | - Chun Zhao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Mochou Road, Qinhuai District, Nanjing, JiangSu, China.
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Mochou Road, Qinhuai District, Nanjing, JiangSu, China.
| |
Collapse
|
42
|
Meng F, Zhang Y, Du J, Li N, Qiao X, Yao Y, Zhao T, Wu D, Peng F, Wang D, Yang S, Shi J, Liu R, Zhou W, Hao A. Nicotinamide mononucleotide maintains cytoskeletal stability and fortifies mitochondrial function to mitigate oocyte damage induced by Triocresyl phosphate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116264. [PMID: 38564869 DOI: 10.1016/j.ecoenv.2024.116264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Triocresyl phosphate (TOCP) was commonly used as flame retardant, plasticizer, lubricant, and jet fuel additive. Studies have shown adverse effects of TOCP on the reproductive system. However, the potential harm brought by TOCP, especially to mammalian female reproductive cells, remains a mystery. In this study, we employed an in vitro model for the first time to investigate the effects of TOCP on the maturation process of mouse oocytes. TOCP exposure hampered the meiotic division process, as evidenced by a reduction in the extrusion of the first polar body from oocytes. Subsequent research revealed the disruption of the oocyte cell cytoskeleton induced by TOCP, resulting in abnormalities in spindle organization, chromosome alignment, and actin filament distribution. This disturbance further extended to the rearrangement of organelles within oocytes, particularly affecting the mitochondria. Importantly, after TOCP treatment, mitochondrial function in oocytes was impaired, leading to oxidative stress, DNA damage, cell apoptosis, and subsequent changes of epigenetic modifications. Supplementation with nicotinamide mononucleotide (NMN) alleviated the harmful effects of TOCP. NMN exerted its mitigating effects through two fundamental mechanisms. On one hand, NMN conferred stability to the cell cytoskeleton, thereby supporting nuclear maturation. On the other hand, NMN enhanced mitochondrial function within oocytes, reducing the excess reactive oxygen species (ROS), restoring meiotic division abnormalities caused by TOCP, preventing oocyte DNA damage, and suppressing epigenetic changes. These findings not only enhance our understanding of the molecular basis of TOCP induced oocyte damage but also offer a promising avenue for the potential application of NMN in optimizing reproductive treatment strategies.
Collapse
Affiliation(s)
- Fei Meng
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanan Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Naigang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinghui Qiao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Yao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tiantian Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Peng
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongshuang Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuang Yang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaming Shi
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruoxi Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
43
|
Sirotkin AV, Fabová Z, Loncová B, Bauerová M, Halim Harrath A. The adipokines progranulin and omentin - novel regulators of basic ovarian cell functions. Reprod Biol Endocrinol 2024; 22:38. [PMID: 38575956 PMCID: PMC10993585 DOI: 10.1186/s12958-024-01215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024] Open
Abstract
The present study aimed to examine the effects of progranulin and omentin on basic ovarian cell functions. For this purpose, we investigated the effects of the addition of progranulin and omentin (0, 0.1, 1, or 10 ng/ml) on the viability, proliferation, apoptosis and steroidogenesis of cultured rabbit ovarian granulosa cells. To determine the importance of the interrelationships between granulosa cells and theca cells, we compared the influence of progranulin and omentin on progesterone and estradiol release in cultured granulosa cells and ovarian fragments containing both granulosa cells and theca cells. Cell viability, proliferation, cytoplasmic apoptosis and release of progesterone and estradiol were measured by Cell Counting Kit-8 (CCK-8), BrdU incorporation, cell death detection, and ELISA. Both progranulin and omentin increased granulosa cell viability and proliferation and decreased apoptosis. Progranulin increased progesterone release by granulosa cells but reduced progesterone output by ovarian fragments. Progranulin decreased estradiol release by granulosa cells but increased it in ovarian fragments. Omentin reduced progesterone release in both models. Omentin reduced estradiol release by granulosa cells but promoted this release in ovarian fragments. The present observations are the first to demonstrate that progranulin and omentin can be direct regulators of basic ovarian cell functions. Furthermore, the differences in the effects of these adipokines on steroidogenesis via granulosa and ovarian fragments indicate that these peptides could target both granulosa and theca cells.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Faculty of Natural Sciences, Constantine the Philosopher University, Tr. A. Hlinku 1, Nitra, 949 74, Slovakia.
| | - Zuzana Fabová
- Faculty of Natural Sciences, Constantine the Philosopher University, Tr. A. Hlinku 1, Nitra, 949 74, Slovakia
| | - Barbora Loncová
- Faculty of Natural Sciences, Constantine the Philosopher University, Tr. A. Hlinku 1, Nitra, 949 74, Slovakia
| | - Maria Bauerová
- Faculty of Natural Sciences, Constantine the Philosopher University, Tr. A. Hlinku 1, Nitra, 949 74, Slovakia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Kapper C, Oppelt P, Ganhör C, Gyunesh AA, Arbeithuber B, Stelzl P, Rezk-Füreder M. Minerals and the Menstrual Cycle: Impacts on Ovulation and Endometrial Health. Nutrients 2024; 16:1008. [PMID: 38613041 PMCID: PMC11013220 DOI: 10.3390/nu16071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The role of minerals in female fertility, particularly in relation to the menstrual cycle, presents a complex area of study that underscores the interplay between nutrition and reproductive health. This narrative review aims to elucidate the impacts of minerals on key aspects of the reproductive system: hormonal regulation, ovarian function and ovulation, endometrial health, and oxidative stress. Despite the attention given to specific micronutrients in relation to reproductive disorders, there is a noticeable absence of a comprehensive review focusing on the impact of minerals throughout the menstrual cycle on female fertility. This narrative review aims to address this gap by examining the influence of minerals on reproductive health. Each mineral's contribution is explored in detail to provide a clearer picture of its importance in supporting female fertility. This comprehensive analysis not only enhances our knowledge of reproductive health but also offers clinicians valuable insights into potential therapeutic strategies and the recommended intake of minerals to promote female reproductive well-being, considering the menstrual cycle. This review stands as the first to offer such a detailed examination of minerals in the context of the menstrual cycle, aiming to elevate the understanding of their critical role in female fertility and reproductive health.
Collapse
Affiliation(s)
- Celine Kapper
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| | - Peter Oppelt
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
- Department for Gynaecology, Obstetrics and Gynaecological Endocrinology, Kepler University Hospital, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Clara Ganhör
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- Clinical Research Institute for Cardiovascular and Metabolic Diseases, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Ayberk Alp Gyunesh
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| | - Barbara Arbeithuber
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| | - Patrick Stelzl
- Department for Gynaecology, Obstetrics and Gynaecological Endocrinology, Kepler University Hospital, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Marlene Rezk-Füreder
- Experimental Gynaecology, Obstetrics and Gynaecological Endocrinology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria; (C.K.); (P.O.); (B.A.)
| |
Collapse
|
45
|
Cai M, Li Q, Cao Y, Huang Y, Yao H, Zhao C, Wang J, Zhu H. Quercetin activates autophagy to protect rats ovarian granulosa cells from H 2O 2-induced aging and injury. Eur J Pharmacol 2024; 966:176339. [PMID: 38272342 DOI: 10.1016/j.ejphar.2024.176339] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Autophagy is closely related to the aging of various organ systems, including ovaries. Quercetin has a variety of biological activities, including potential regulation of autophagy. However, whether quercetin-regulated autophagy activity affects the process of ovarian aging and injury has not been clarified yet. This study explores whether quercetin can resist H2O2-induced aging and injury of granulosa cells by regulating autophagy and its related molecular mechanisms in vitro experiments. The cell viability, endocrine function, cell aging, and apoptosis were detected to evaluate the effects of quercetin and autophagy regulators like 3-methyladenine and rapamycin. The levels of autophagy markers Atg5, Atg12, Atg16L, Lc3B II/I, and Beclin1 were determined by Western blot to assess the effects of quercetin, 3-methyladenine and rapamycin on autophagy. Our results showed quercetin resisted H2O2-induced granulosa cell aging and injury by activating protective autophagy. The treatment of 3-methyladenine and rapamycin confirmed the protective function of autophagy in H2O2-induced granulosa cells. 3-methyladenine treatment inhibited the expression of autophagy markers Atg5, Atg12, Atg16L, Lc3B II/I, and Beclin1 and abolished the positive effects on cell viability, estradiol secretion, and cell apoptosis activated by quercetin. In conclusion, quercetin activates autophagy by upregulating the expression of autophagy-related proteins to resist H2O2-induced aging and injury, which is crucial for stabilizing the function of granulosa cells under oxidative injury conditions and delaying aging. This study may explain the protective effects of quercetin on ovarian aging and injury from the perspective of regulating autophagy.
Collapse
Affiliation(s)
- Minghui Cai
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Qiuyuan Li
- Department of Physiology, Harbin Medical University, Harbin, China; Department of Physiology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Cao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yujia Huang
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Haixu Yao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Chen Zhao
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Jiao Wang
- Department of Physiology, Harbin Medical University, Harbin, China.
| | - Hui Zhu
- Department of Physiology, Harbin Medical University, Harbin, China.
| |
Collapse
|
46
|
Talepoor AG, Doroudchi M. Regulatory RNAs in immunosenescence. Immun Inflamm Dis 2024; 12:e1209. [PMID: 38456619 PMCID: PMC10921898 DOI: 10.1002/iid3.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Immunosenescence is a multifactorial stress response to different intrinsic and extrinsic insults that cause immune deterioration and is accompanied by genomic or epigenomic perturbations. It is now widely recognized that genes and proteins contributing in the process of immunosenescence are regulated by various noncoding (nc) RNAs, including microRNAs (miRNAs), long ncRNAs, and circular RNAs. AIMS This review article aimed to evaluate the regulatore RNAs roles in the process of immunosenescence. METHODS We analyzed publications that were focusing on the different roles of regulatory RNAs on the several aspects of immunosenescence. RESULTS In the immunosenescence setting, ncRNAs have been found to play regulatory roles at both transcriptional and post-transcriptional levels. These factors cooperate to regulate the initiation of gene expression programs and sustaining the senescence phenotype and proinflammatory responses. CONCLUSION Immunosenescence is a complex process with pivotal alterations in immune function occurring with age. The extensive network that drive immunosenescence-related features are are mainly directed by a variety of regulatory RNAs such as miRNAs, lncRNAs, and circRNAs. Latest findings about regulation of senescence by ncRNAs in the innate and adaptive immune cells as well as their role in the immunosenescence pathways, provide a better understanding of regulatory RNAs function in the process of immunosenescence.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
- Autoimmune Diseases Research CenterUniversity of Medical SciencesShirazIran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
47
|
Mohammadi N, Hemmati M, Motlagh B, Biyabani A. Betaine postpones hyperglycemia-related senescence in ovarian and testicular cells: Involvement of RAGE and β-galactosidase. Cell Biochem Funct 2024; 42:e3973. [PMID: 38488483 DOI: 10.1002/cbf.3973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024]
Abstract
The structural and functional disorders of the testis and ovary are one of the main complications of hyperglycemia. Betaine is a trimethyl glycine with antioxidant, antidiabetic, and anti-inflammatory potential. The aim of this study is to investigate the potential of betaine on the expression of aging and oxidative stress markers in ovarian and testicular cells under hyperglycemic conditions. Testicular and ovarian cells were subjected to four different conditions, including normal glucose and hyperglycemia, with or without betaine (5 mM). The cells with hyperglycemia saw an increase in malondialdehyde (MDA), methylglyoxal (MGO), expression of a receptor for AGE, and aging-related genes (β-GAL), and a decrease in the activity of antioxidant enzymes including catalase, glutathione peroxidase, and superoxide dismutase. The treatment with betaine, in contrast, decreased the amount of MGO and MDA, and also downregulated aging-related signaling. Although hyperglycemia induces senescence in testicular and ovarian cells, the use of betaine may have a protective effect against the cell senescence, which may be useful in the management of infertility.
Collapse
Affiliation(s)
- Neda Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Hemmati
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrouz Motlagh
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arezou Biyabani
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
48
|
Liu XY, Zhang M, Gu XL, Deng YL, Liu C, Miao Y, Wu Y, Li CR, Zeng JY, Li YJ, Liu AX, Zhu JQ, Li YF, Liu CJ, Zeng Q. Urinary biomarkers of drinking-water disinfection byproducts in relation to diminished ovarian reserve risk: A case-control study from the TREE cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168729. [PMID: 38007137 DOI: 10.1016/j.scitotenv.2023.168729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/05/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Disinfection byproducts (DBPs) as ovarian toxicants have been documented in toxicological studies. However, no human studies have explored the effects of exposure to DBPs on diminished ovarian reserve (DOR). OBJECTIVE To assess whether urinary biomarkers of exposure to drinking-water DBPs were associated with DOR risk. METHODS A total of 311 women undergoing assisted reproductive technology were diagnosed with DOR in the Tongji Reproductive and Environmental (TREE) cohort from December 2018 to August 2021. The cases were matched to the controls with normal ovarian reserve function by age in a ratio of 1:1. Urinary trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were quantified as biomarkers of drinking-water DBP exposures. The conditional logistic regression and restricted cubic spline (RCS) were used to explore urinary biomarkers of drinking-water DBP exposures in associations with the risk of DOR. RESULTS Elevated urinary DCAA levels were associated with higher DOR risk [adjusted odds ratio (OR) = 1.87; 95 % confidence interval (CI): 1.16, 3.03 for the highest vs. lowest quartiles; P for trend = 0.016]. The association was confirmed in the RCS model, with a linear dose-response curve (P for overall association = 0.029 and P for non-linear association = 0.708). The subgroup analysis by age and body mass index (BMI) showed that urinary DCAA in association with DOR risk was observed among women ≥35 years old and leaner women (BMI < 24 kg/m2), but the group differences were not statistically significant. Moreover, a U-shaped dose-response curve between urinary TCAA and DOR risk was estimated in the RCS model (P for overall association = 0.011 and P for non-linear association = 0.004). CONCLUSIONS Exposure to drinking-water DBPs may contribute to the risk of DOR among women undergoing assisted reproductive technology.
Collapse
Affiliation(s)
- Xiao-Ying Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Li Gu
- Liuzhou Center for Disease Control and Prevention, Liuzhou, Guangxi, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Cheng-Ru Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang-Juan Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - A-Xue Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jin-Qin Zhu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu-Feng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, PR China
| | - Chang-Jiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
49
|
Liu K, Zhang L, Xu X, Xiao L, Wen J, Zhang H, Zhao S, Qiao D, Bai J, Liu Y. The Antioxidant Salidroside Ameliorates the Quality of Postovulatory Aged Oocyte and Embryo Development in Mice. Antioxidants (Basel) 2024; 13:248. [PMID: 38397846 PMCID: PMC10886307 DOI: 10.3390/antiox13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Postovulatory aging is known to impair the oocyte quality and embryo development due to oxidative stress in many different animal models, which reduces the success rate or pregnancy rate in human assisted reproductive technology (ART) and livestock timed artificial insemination (TAI), respectively. Salidroside (SAL), a phenylpropanoid glycoside, has been shown to exert antioxidant and antitumor effects. This study aimed to investigate whether SAL supplementation could delay the postovulatory oocyte aging process by alleviating oxidative stress. Here, we show that SAL supplementation decreases the malformation rate and recovers mitochondrial dysfunction including mitochondrial distribution, mitochondrial membrane potential (ΔΨ) and ATP content in aged oocytes. In addition, SAL treatment alleviates postovulatory aging-caused oxidative stress such as higher reactive oxygen species (ROS) level, lower glutathione (GSH) content and a reduced expression of antioxidant-related genes. Moreover, the cytoplasmic calcium ([Ca2+]c) and mitochondrial calcium ([Ca2+]mt) of SAL-treated oocytes return to normal levels. Notably, SAL suppresses the aging-induced DNA damage, early apoptosis and improves spindle assembly in aged oocytes, ultimately elevating the embryo developmental rates and embryo quality. Finally, the RNA-seq and confirmatory experience showed that SAL promotes protective autophagy in aged oocytes by activating the MAPK pathway. Taken together, our research suggests that supplementing SAL is an effective and feasible method for preventing postovulatory aging and preserving the oocyte quality, which potentially contributes to improving the successful rate of ART or TAI.
Collapse
Affiliation(s)
- Kexiong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Luyao Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Junhui Wen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Hanbing Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Shuxin Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Dongliang Qiao
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| |
Collapse
|
50
|
Oh J, Hong S, Ko SH, Kim HS. Evaluation of Antioxidant Effects of Pumpkin ( Cucurbita pepo L.) Seed Extract on Aging- and Menopause-Related Diseases Using Saos-2 Cells and Ovariectomized Rats. Antioxidants (Basel) 2024; 13:241. [PMID: 38397839 PMCID: PMC10886273 DOI: 10.3390/antiox13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Aging and menopause are associated with oxidative stress and inflammation. Here, we evaluated the antioxidant properties of pumpkin (Cucurbita pepo L.) seed extract and assessed its ameliorative effects on aging- and menopause-related diseases using Saos-2 cells and ovariectomized rats. The seed extract had bioactive components that exhibited antioxidant activity. The extract increased the alkaline phosphatase (ALP) activity of Saos-2 cells. The oral administration of the extract to ovariectomized rats for 12 weeks decreased their body weight, fat weight, and cardiac risk indices. It also contributed to reductions in the levels of reactive oxygen species, oxidative stress, and inflammation, as assessed by measuring the serum levels of malondialdehyde and analyzing gene expression in rats. Furthermore, the administration of the extract also promoted an enhancement of the transcription of nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase-1 (Ho-1), and catalase (Cat), involved in antioxidant activity; endothelial nitric oxide synthase (eNos), involved in vasculoprotective activity; and PR/SET domain 16 (Prdm16) and peroxisome proliferator-activated receptor-gamma coactivator (Pgc1α), involved in brown adipogenesis and thermogenesis. Our results using ovariectomized rats show that pumpkin seed extract may have ameliorative effects on menopause-related diseases by increasing ALP activity, evaluating the antioxidant system, ameliorating oxidative stress and thermogenesis, and enhancing lipid profiles.
Collapse
Affiliation(s)
| | | | - Seong-Hee Ko
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Hyun-Sook Kim
- Department of Food and Nutrition, College of Human Ecology, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| |
Collapse
|