1
|
Ye H, Wu L, Liu YM, Zhang JX, Hu HT, Dong ML, Ren J. Wogonin attenuates septic cardiomyopathy by suppressing ALOX15-mediated ferroptosis. Acta Pharmacol Sin 2025:10.1038/s41401-025-01547-1. [PMID: 40205009 DOI: 10.1038/s41401-025-01547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
Septic cardiomyopathy (SCM), a severe complication in sepsis, significantly increases the mortality of septic patients. Ferroptosis, an iron-regulated cell death, has been implicated in the development of SCM. Wogonin, a flavonoid from the root of the skullcap, exhibits anti-inflammatory, anti-allergic, and anti-apoptotic activities. In this study, we investigated the effects of wogonin on SCM and associated cardiomyocyte ferroptosis. Cecal ligation and puncture (CLP) surgery was performed in mice to establish a SCM model. Wogonin (20, 40 and 60 mg·kg-1, i.p.) was administered 2 h prior to CLP surgery. We showed that wogonin pretreatment dose-dependently mitigated CLP-induced cardiac dysfunction, myocardial damage, and deranged cardiomyocyte contractility. Furthermore, wogonin pretreatment ameliorated cardiac inflammation, oxidative stress, and mitochondrial dysfunction in CLP-challenged mice. We demonstrated that wogonin exerted the cardioprotective effects through suppressing cardiomyocyte ferroptosis both in vivo and in vitro. We revealed that wogonin directly bound to and inhibited ALOX15 (arachidonic acid 15-lipoxygenase), a lipoxygenase that governed the oxidation of polyunsaturated fatty acids to initiate ferroptosis. Pharmacological inhibition of ALOX15 using a specific inhibitor ML351 (10 mg·kg-1·d-1, i.p. for 7 days prior to CLP surgery) markedly diminished cardiac abnormalities and cardiomyocyte ferroptosis in CLP-challenged mice. In LPS-challenged HL-1 cardiomyocytes, overexpression of ALOX15 or supplement of its downstream metabolite 15-HpETE (1 μM) diminished the anti-ferroptotic effects of wogonin. Our results demonstrate that wogonin protects against SCM through inhibition of ALOX15-meditated ferroptosis.
Collapse
Affiliation(s)
- Hua Ye
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Burns & Plastic and Wound Repair, Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Lin Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yan-Mei Liu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Jun-Xia Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
| | - Huan-Tao Hu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mao-Long Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Burns, Tongren Hospital of Wuhan University & Wuhan Third Hospital, Wuhan, 430060, China.
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
2
|
Chen D, Liang X, Zhang L, Zhang J, Gao L, Yan D, Zuo K, Guo H, Du S, Liu J. E3 Ubiquitin Ligase FBXO32 Promotes LPS-Induced Cardiac Injury by Regulating ANXA1/PI3K/AKT Signaling. Inflammation 2025:10.1007/s10753-025-02273-w. [PMID: 40126756 DOI: 10.1007/s10753-025-02273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/26/2025]
Abstract
Sepsis-induced cardiomyopathy (SIC) is a severe complication of sepsis. Therefore, understanding SIC pathogenesis and developing new therapeutic targets are of great significance. This study investigated the role of F-box-only protein 32 (FBXO32) in SIC pathogenesis. LPS-induced cardiac injury models were established in rats and H9c2 cells using lipopolysaccharide. The effects of FBXO32 on myocardial apoptosis and mitochondrial structure and function were determined using electron microscopy, reactive oxygen species detection, and JC-1 staining. The molecular mechanism was elucidated using western blotting and co-immunoprecipitation. The results showed elevated FBXO32 expression in both in vivo and in vitro LPS-induced cardiac injury models. Fbxo32 knockdown alleviated apoptosis and mitochondrial and cardiac dysfunction. Mechanistic analysis revealed that FBXO32 promoted ubiquitination and degradation of annexin A1 (ANXA1), inhibiting the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) pathways. Rescue experiments demonstrated that Anxa1 knockdown reversed the effects of Fbxo32 knockdown. This study suggests that FBXO32 exacerbates LPS-induced cardiac injury progression by mediating ANXA1 ubiquitination and inhibiting the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- De Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Xuan Liang
- Department of Allergy, Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, Gansu Province, China
| | - Lei Zhang
- Department of Intensive Care Unit, Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, Gansu Province, China
| | - Jingjing Zhang
- Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, Gansu Province, China
| | - Lina Gao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Dong Yan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - Kun Zuo
- Department of Intensive Care Unit, Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, Gansu Province, China
| | - Hong Guo
- Department of Intensive Care Unit, Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, Gansu Province, China
| | - Song Du
- Department of Intensive Care Unit, Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, Gansu Province, China
| | - Jian Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China.
- Department of Intensive Care Unit, Gansu Provincial Maternity and Child-Care Hospital/Gansu Provincial Central Hospital, Lanzhou, Gansu Province, China.
| |
Collapse
|
3
|
Liu Z, Li F, Li N, Chen Y, Chen Z. MicroRNAs as regulators of cardiac dysfunction in sepsis: pathogenesis and diagnostic potential. Front Cardiovasc Med 2025; 12:1517323. [PMID: 40041174 PMCID: PMC11876399 DOI: 10.3389/fcvm.2025.1517323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Sepsis, a life-threatening condition arising from an uncontrolled immune response to infection, can lead to organ dysfunction, with severe inflammation potentially causing multiple organ failures. Sepsis-induced cardiac dysfunction (SIMD) is a common and severe complication of sepsis, significantly increasing patient mortality. Understanding the pathogenesis of SIMD is crucial for improving treatment, and microRNAs (miRNAs) have emerged as important regulators in this process. Methods A comprehensive literature search was conducted in PubMed, Science Direct, and Embase databases up to September 2024. The search terms included ["miRNA" or "microRNA"] and ["Cardiac" or "Heart"] and ["Sepsis" or "Septic"], with the language limited to English. After initial filtering by the database search engine, Excel software was used to further screen references. Duplicate articles, those without abstracts or full texts, and review/meta-analyses or non-English articles were excluded. Finally, 106 relevant research articles were included for data extraction and analysis. Results The pathogenesis of SIMD is complex and involves mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis and pyroptosis, dysregulation of myocardial calcium homeostasis, myocardial inhibitory factors, autonomic nervous regulation disorders, hemodynamic changes, and myocardial structural alterations. miRNAs play diverse roles in SIMD. They are involved in regulating the above-mentioned pathological processes. Discussion Although significant progress has been made in understanding the role of miRNAs in SIMD, there are still challenges. Some studies on the pathogenesis of SIMD have limitations such as small sample sizes and failure to account for confounding factors. Research on miRNAs also faces issues like inconsistent measurement techniques and unclear miRNA-target gene relationships. Moreover, the translation of miRNA-based research into clinical applications is hindered by problems related to miRNA stability, delivery mechanisms, off-target effects, and long-term safety. In conclusion, miRNAs play a significant role in the pathogenesis of SIMD and have potential as diagnostic biomarkers. Further research is needed to overcome existing challenges and fully exploit the potential of miRNAs in the diagnosis and treatment of SIMD.
Collapse
Affiliation(s)
- Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feiyang Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yong Chen
- Department of Critical Care Medicine, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
4
|
Cai K, Luo Y, Chen H, Dong Y, Su Y, Lin C, Cai C, Shi Y, Lin S, Lian G, Lin Z, Feng S. Integrative omics analysis identifies biomarkers of septic cardiomyopathy. PLoS One 2024; 19:e0310412. [PMID: 39546466 PMCID: PMC11567565 DOI: 10.1371/journal.pone.0310412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 11/17/2024] Open
Abstract
Septic Cardiomyopathy (SCM) is a syndrome of acute cardiac dysfunction in septic patients, unrelated to cardiac ischemia. Multiomics studies including transcriptomics and proteomics have provided new insights into the mechanisms of SCM. In here, a rat model of SCM was established by intraperitoneal injection of lipopolysaccharide (LPS). Biomarkers of SCM were characterized via a multi-omics analysis. The differentially expressed (DE) mRNAs predominantly appeared in pathways linked to the immune response, inflammatory response, and the complement and coagulation cascades, while DE proteins were mainly enriched in pathways associated with the complement and coagulation cascades. On this basis, the integrated analysis was performed between transcriptome and proteome. The potential biomarkers were further verified by RT-qPCR and WB. The current proteotranscriptomic research has furnished a valuable dataset and fresh perspectives that will enhance our comprehension of the development of SCM. This, in turn, is expected to expedite the formulation of novel approaches for the prevention and management of SCM in patients.
Collapse
Affiliation(s)
- Kexin Cai
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
| | - Yuqing Luo
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
| | - Hongyin Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
| | - Yanfang Dong
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
| | - Yunyun Su
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
| | - Chen Lin
- Department of Emergency, The Third Affiliated People’s Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Chuanqi Cai
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
| | - Yikbin Shi
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
| | - Siming Lin
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Department of Emergency, The Third Affiliated People’s Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhihong Lin
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Department of Emergency, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, China
| | - Shaodan Feng
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou, China
- Department of Emergency, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fujian, Fuzhou, China
| |
Collapse
|
5
|
Xing Y, Tian T, Zhang X, Yang D, Zhang C, Wang M, Wang Y, Luo T, Wang Z, Wang H, Li H. ENDOGENOUS β 3 -ADRENERGIC RECEPTOR ACTIVATION ALLEVIATES SEPSIS-INDUCED CARDIOMYOCYTE APOPTOSIS VIA PI3K/AKT SIGNALING PATHWAY. Shock 2024; 61:915-923. [PMID: 38662592 DOI: 10.1097/shk.0000000000002354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT β 3 -adrenergic receptor (β 3 -AR) has been proposed as a new therapy for several myocardial diseases. However, the effect of β 3 -AR activation on sepsis-induced myocardial apoptosis is unclear. Here, we investigated the effect of β 3 -AR activation on the cardiomyocyte apoptosis and cardiac dysfunction in cecal ligation and puncture (CLP)-operated rats and lipopolysaccharide (LPS)-treated cardiomyocytes. We found that β 3 -AR existed both in adult rat ventricular myocytes (ARVMs) and H9c2 cells. The expression of β 3 -AR was upregulated in LPS-treated ARVMs and the heart of CLP rats. Pretreatment with β 3 -AR agonist, BRL37344, inhibited LPS-induced cardiomyocyte apoptosis and caspase-3, -8, and -9 activation in ARVMs. BRL37344 also reduced apoptosis and increased the protein levels of PI3K, p-Akt Ser473 and p-eNOS Ser1177 in LPS-treated H9c2 cells. Inhibition of PI3K using LY294002 abolished the inhibitory effect of BRL37344 on LPS-induced caspase-3, -8, and -9 activation in H9c2 cells. Furthermore, administration of β 3 -AR antagonist, SR59230A (5 mg/kg), significantly decreased the maximum rate of left ventricular pressure rise (+dP/dt) in CLP-induced septic rats. SR59230A not only increased myocardial apoptosis, reduced p-Akt Ser473 and Bcl-2 contents, but also increased mitochondrial Bax, cytoplasm cytochrome c, cleaved caspase-9, and cleaved caspase-3 levels of the myocardium in septic rats. These results suggest that endogenous β 3 -AR activation alleviates sepsis-induced cardiomyocyte apoptosis via PI3K/Akt signaling pathway and maintains intrinsic myocardial systolic function in sepsis.
Collapse
Affiliation(s)
- Yun Xing
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Tian Tian
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Xue Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Duomeng Yang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Chanjuan Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Miao Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Yiyang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Tao Luo
- Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zhi Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Odnoshivkina JG, Averin AS, Khakimov IR, Trusov NA, Trusova DA, Petrov AM. The mechanism of 25-hydroxycholesterol-mediated suppression of atrial β1-adrenergic responses. Pflugers Arch 2024; 476:407-421. [PMID: 38253680 DOI: 10.1007/s00424-024-02913-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
25-Hydroxycholesterol (25HC) is a biologically active oxysterol, whose production greatly increases during inflammation by macrophages and dendritic cells. The inflammatory reactions are frequently accompanied by changes in heart regulation, such as blunting of the cardiac β-adrenergic receptor (AR) signaling. Here, the mechanism of 25HC-dependent modulation of responses to β-AR activation was studied in the atria of mice. 25HC at the submicromolar levels decreased the β-AR-mediated positive inotropic effect and enhancement of the Ca2+ transient amplitude, without changing NO production. Positive inotropic responses to β1-AR (but not β2-AR) activation were markedly attenuated by 25HC. The depressant action of 25HC on the β1-AR-mediated responses was prevented by selective β3-AR antagonists as well as inhibitors of Gi protein, Gβγ, G protein-coupled receptor kinase 2/3, or β-arrestin. Simultaneously, blockers of protein kinase D and C as well as a phosphodiesterase inhibitor did not preclude the negative action of 25HC on the inotropic response to β-AR activation. Thus, 25HC can suppress the β1-AR-dependent effects via engaging β3-AR, Gi protein, Gβγ, G protein-coupled receptor kinase, and β-arrestin. This 25HC-dependent mechanism can contribute to the inflammatory-related alterations in the atrial β-adrenergic signaling.
Collapse
Affiliation(s)
- Julia G Odnoshivkina
- Kazan State Medical University, 49 Butlerova St, Kazan, RT, Russia, 420012
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, RT, Russia, 420111
| | - Alexey S Averin
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center of Biological Research", Pushchino Branch, Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Ildar R Khakimov
- Kazan State Medical University, 49 Butlerova St, Kazan, RT, Russia, 420012
| | - Nazar A Trusov
- Kazan State Medical University, 49 Butlerova St, Kazan, RT, Russia, 420012
| | - Diliara A Trusova
- Kazan State Medical University, 49 Butlerova St, Kazan, RT, Russia, 420012
| | - Alexey M Petrov
- Kazan State Medical University, 49 Butlerova St, Kazan, RT, Russia, 420012.
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, RT, Russia, 420111.
- Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420008.
| |
Collapse
|
7
|
Liu AB, Li SJ, Yu YY, Zhang JF, Ma L. Current insight on the mechanisms of programmed cell death in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2023; 11:1309719. [PMID: 38161332 PMCID: PMC10754983 DOI: 10.3389/fcell.2023.1309719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, leading to life-threatening organ dysfunction. It is a high-fatality condition associated with a complex interplay of immune and inflammatory responses that can cause severe harm to vital organs. Sepsis-induced myocardial injury (SIMI), as a severe complication of sepsis, significantly affects the prognosis of septic patients and shortens their survival time. For the sake of better administrating hospitalized patients with sepsis, it is necessary to understand the specific mechanisms of SIMI. To date, multiple studies have shown that programmed cell death (PCD) may play an essential role in myocardial injury in sepsis, offering new strategies and insights for the therapeutic aspects of SIMI. This review aims to elucidate the role of cardiomyocyte's programmed death in the pathophysiological mechanisms of SIMI, with a particular focus on the classical pathways, key molecules, and signaling transduction of PCD. It will explore the role of the cross-interaction between different patterns of PCD in SIMI, providing a new theoretical basis for multi-target treatments for SIMI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Fan Y, Guan B, Xu J, Zhang H, Yi L, Yang Z. Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother 2023; 167:115493. [PMID: 37734261 DOI: 10.1016/j.biopha.2023.115493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Sepsis, a life-threatening dysregulated status of the host response to infection, can cause multiorgan dysfunction and mortality. Sepsis places a heavy burden on the cardiovascular system due to the pathological imbalance of hyperinflammation and immune suppression. Myocardial injury and cardiac dysfunction caused by the aberrant host responses to pathogens can lead to cardiomyopathy, one of the most critical complications of sepsis. However, many questions about the specific mechanisms and characteristics of this complication remain to be answered. The causes of sepsis-induced cardiac dysfunction include abnormal cardiac perfusion, myocardial inhibitory substances, autonomic dysfunction, mitochondrial dysfunction, and calcium homeostasis dysregulation. The fight between the host and pathogens acts as the trigger for sepsis-induced cardiomyopathy. Pyroptosis, a form of programmed cell death, plays a critical role in the progress of sepsis. Toll-like receptors (TLRs) act as pattern recognition receptors and participate in innate immune pathways that recognize damage-associated molecular patterns as well as pathogen-associated molecular patterns to mediate pyroptosis. Notably, pyroptosis is tightly associated with cardiac dysfunction in sepsis and septic shock. In line with these observations, induction of TLR-mediated pyroptosis may be a promising therapeutic approach to treat sepsis-induced cardiomyopathy. This review focuses on the potential roles of TLR-mediated pyroptosis in sepsis-induced cardiomyopathy, to shed light on this promising therapeutic approach, thus helping to prevent and control septic shock caused by cardiovascular disorders and improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Yixuan Fan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Jianxing Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Liang Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhixu Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Wu S, Liao J, Hu G, Yan L, Su X, Ye J, Zhang C, Tian T, Wang H, Wang Y. Corilagin alleviates LPS-induced sepsis through inhibiting pyroptosis via targeting TIR domain of MyD88 and binding CARD of ASC in macrophages. Biochem Pharmacol 2023; 217:115806. [PMID: 37714273 DOI: 10.1016/j.bcp.2023.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Sepsis is a dysregulated systemic inflammatory response caused by infection that leads to multiple organ injury and high mortality without effective treatment. Corilagin, a natural polyphenol extracted from traditional Chinese herbs, exhibits strong anti-inflammatory properties. However, the role for Corilagin in lipopolysaccharide (LPS)-induced sepsis and the molecular mechanisms underlying this process have not been completely explored. Here we determine the effect of Corilagin on LPS-treated mice and use a screening approach integrating surface plasmon resonance with liquid chromatography-tandem mass spectrometry (SPR-LC-MS/MS) to further explore the therapeutic target of Corilagin. We discovered that Corilagin significantly prolonged the survival time of septic mice, attenuated the multi-organ injury and the expression of pyroptosis-related proteins in tissues of LPS-treated mice. In vitro studies revealed that Corilagin inhibited pyroptosis and NLRP3 inflammasome activation in LPS-treated macrophages followed with ATP stimulation, as reflected by decreased levels of GSDMD-NT and activated caspase-1, and reduced ASC specks formation. Mechanistically, Corilagin alleviated the formation of ASC specks and blocked the interaction of ASC and pro-caspase1 by competitively binding with the caspase recruitment domain (CARD) of ASC. Additionally, Corilagin interrupted the TLR4-MyD88 interaction through targeting TIR domain of MyD88, leading to the inhibition of NF-κB activation and NLRP3 production. In addition, Corilagin downregulated genes associated with several inflammatory responses and inflammasome-related signaling pathways in LPS-stimulated macrophages. Overall, our results indicate that the inhibitory effect of Corilagin on pyroptosis through targeting TIR domain of MyD88 and binding the CARD domain of ASC in macrophages plays an essential role in protection against LPS-induced sepsis.
Collapse
Affiliation(s)
- Senquan Wu
- Department of Respiratory and Critical Care Medicine, Dongguan People's Hospital, Dongguan 523059, China; Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jia Liao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guodong Hu
- Department of Respiratory and Critical Care Medicine, Dongguan People's Hospital, Dongguan 523059, China
| | - Liang Yan
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xingyu Su
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jiezhou Ye
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chanjuan Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tian Tian
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Yiyang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Yang Q, Kong T, Bao Z, Yang S, Chen X, Zheng J, Xiong X, Wen D, Zhang Z. Association between the β-blocker use and patients with sepsis: a cohort study. Front Med (Lausanne) 2023; 10:1272871. [PMID: 37964887 PMCID: PMC10641384 DOI: 10.3389/fmed.2023.1272871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Objective This study aimed to assess whether β-blockers are associated with mortality in patients with sepsis. Method We conducted a retrospective cohort study of patients with sepsis using the Medical Information Market for Intensive Care (MIMIC)-IV and the emergency intensive care unit (eICU) databases. The primary outcome was the in-hospital mortality rate. The propensity score matching (PSM) method was adopted to reduce confounder bias. Subgroup and sensitivity analyses were performed to test the stability of the conclusions. Results We included a total of 61,751 patients with sepsis, with an overall in-hospital mortality rate of 15.3% in MIMIC-IV and 13.6% in eICU. The inverse probability-weighting model showed that in-hospital mortality was significantly lower in the β-blockers group than in the non-β-blockers group [HR = 0.71, 95% CI: 0.66-0.75, p < 0.001 in MIMIC-IV, and HR = 0.48, 95% CI: 0.45-0.52, p < 0.001 in eICU]. In subgroups grouped according to sex, age, heart rate, APSIII, septic shock, and admission years, the results did not change. Conclusion β-blocker use is associated with lower in-hospital mortality in patients with sepsis, further randomized trials are required to confirm this association.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Deliang Wen
- Department of Critical Care, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | |
Collapse
|
11
|
Chai Z, Ma T, Li Y, Chen Q, Kang Y, Sun J, Peng T, Wang N, Yu C, Wang L, Hou X, Wang W, Wang Y. Inhibition of inflammatory factor TNF-α by ferrostatin-1 in microglia regulates necroptosis of oligodendrocyte precursor cells. Neuroreport 2023; 34:583-591. [PMID: 37384932 PMCID: PMC10309108 DOI: 10.1097/wnr.0000000000001928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/17/2023] [Indexed: 07/01/2023]
Abstract
OBJECTIVE Inflammation of the surrounding environment is a major reason causing loss or injury of oligodendrocyte precursor cells (OPCs) in myelin-associated diseases. Lipopolysaccharide-activated microglia can release various inflammatory factors such as tumor necrosis factor-α (TNF-α). One of the ways of OPC death is necroptosis, which can be triggered by TNF-α, a death receptor ligand, by activating receptor-interacting protein kinase 1 (RIPK1)/RIPK3/mixed lineage kinase domain-like protein (MLKL) signaling pathway. This study investigated whether inhibiting microglia ferroptosis can decrease TNF-α release to alleviate OPC necroptosis. METHODS Lipopolysaccharide and Fer-1 stimulate BV2 cells. The expressions of GPX4 and TNF-α were detected by western blot and quantitative real-time PCR; malondialdehyde, glutathione, iron, and reactive oxygen species were measured by the assay kits. After lipopolysaccharide stimulation of BV2 cells, the supernatant was taken to culture OPC. The protein expression levels of RIPK1, p-RIPK1, RIPK3, p-RIPK3, MLKL, and p-MLKL were detected by western blot. RESULTS Lipopolysaccharide administration could induce ferroptosis in microglia by decreasing ferroptosis marker GPX4, while ferroptosis inhibitor Fer-1 could significantly increase GPX4 level. Fer-1 prevented oxidative stress and iron concentration elevation and alleviated mitochondrial damage in lipopolysaccharide-induced BV2 cells. The results revealed that Fer-1 downregulated the release of lipopolysaccharide-induced TNF-α in microglia and attenuated OPC necroptosis by significantly decreasing the expression levels of RIPK1, p-RIPK1, MLKL, p-MLKL, RIPK3, and p-RIPK3. CONCLUSION Fer-1 may be a potential agent for inhibiting inflammation and treating myelin-related diseases.
Collapse
Affiliation(s)
- Zhi Chai
- Department of Physiology and Neurobiology, Basic Medical School of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia
- Department of Clinical Laboratory, Xi’an Daxing Hospital, Xi’an
| | - Teng Ma
- Department of Physiology and Neurobiology, Basic Medical School of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia
| | - Yunhong Li
- Department of Physiology and Neurobiology, Basic Medical School of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia
- Scientific Technology Center of Ningxia Medical University
| | - Qiuyuan Chen
- Department of Physiology and Neurobiology, Basic Medical School of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia
| | - Yali Kang
- Department of Physiology and Neurobiology, Basic Medical School of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia
| | - Jinping Sun
- Department of Physiology and Neurobiology, Basic Medical School of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia
| | - Tao Peng
- Department of Physiology and Neurobiology, Basic Medical School of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia
| | - Nina Wang
- Department of Physiology and Neurobiology, Basic Medical School of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia
| | - Chengjun Yu
- Department of Physiology and Neurobiology, Basic Medical School of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia
| | - Lijuan Wang
- Department of Physiology and Neurobiology, Basic Medical School of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia
| | - Xiaolin Hou
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wei Wang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yin Wang
- Department of Physiology and Neurobiology, Basic Medical School of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia
| |
Collapse
|
12
|
Chen LR, Wang XX, Zhang XM, Wang HX. CD1d-dependent natural killer T-cells inactivation aggravates sepsis-induced myocardial injury via T lymphocytes infiltration and IL-6 production in mice. Int Immunopharmacol 2023; 120:110256. [PMID: 37182446 DOI: 10.1016/j.intimp.2023.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Myocardial edema mediated by endothelial dysfunction plays an important role in sepsis-induced cardiomyopathy (SIC); however, its mechanism is unclear. The current study aimed to provide evidence on the cardioprotection of CD1d-dependent natural killer T (NKT) cells and clarify the possible mechanism in a mouse model of sepsis. Wild-type (WT) and CD1d-dependent NKT-cells inactivation (CD1dko) mice were subjected to sepsis induced by intraperitoneal injection of lipopolysaccharide (LPS). The NKT-cells number and CD1d expression were both increased in the hearts and blood of WT mice after LPS treatment. Compared with WT mice, CD1dko mice exhibited remarkably accelerated LPS-induced mortality, cardiac dysfunction, myocardial injury, endothelial apoptosis, microvascular damage, microvascular permeability and cardiac edema. Mechanistically, CD1d deficiency further increased LPS-induced accumulation of T lymphocytes in the myocardium and upregulation of IL-6 protein levels. Administration of an IL-6 neutralizing antibody to CD1dko mice improved cardiac dysfunction, myocardial injury and edema induced by LPS. Our study identified that CD1d-dependent NKT-cells inactivation exacerbated SIC via T lymphocytes infiltration and IL-6 production. Hence, activation of CD1d-dependent NKT cells may be a potential candidate strategy for SIC treatment.
Collapse
Affiliation(s)
- Li-Rui Chen
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiao-Xiao Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiao-Man Zhang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hong-Xia Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Cardiovascular Diseases and Related Metabolic Dysfunction, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
13
|
Liao J, Su X, Wang M, Jiang L, Chen X, Liu Z, Tang G, Zhou L, Li H, Lv X, Yin J, Wang H, Wang Y. The E3 ubiquitin ligase CHIP protects against sepsis-induced myocardial dysfunction by inhibiting NF-κB-mediated inflammation via promoting ubiquitination and degradation of karyopherin-α 2. Transl Res 2023; 255:50-65. [PMID: 36400309 DOI: 10.1016/j.trsl.2022.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Cardiac dysfunction has been recognized as a major contributor to mortality in sepsis, which is closely associated with inflammatory reactions. The carboxy terminus of Hsc70-interacting protein (CHIP), a U-box E3 ubiquitin ligase, defends against cardiac injury caused by other factors, but its role in sepsis-induced cardiac dysfunction has yet to be determined. The present study was designed to investigate the effects of CHIP on cardiac dysfunction caused by sepsis and the molecular mechanisms underlying these processes. We discovered that the CHIP level decreased gradually in the heart at different time points after septic model construction. The decline in CHIP expression of lipopolysaccharide (LPS)-stimulated cardiomyocytes was related to c-Jun activation that inhibited the transcription of CHIP. Functional biology experiments indicated that CHIP bound directly to karyopherin-α 2 (KPNA2) and promoted its degradation through polyubiquitination in cardiomyocytes. CHIP overexpression in cardiomyocytes obviously inhibited LPS-initiated release of TNF-α and IL-6 by promoting KPNA2 degradation, reducing NF-κB translocation into the nucleus. Consistent with the in vitro results, data obtained from animal experiments indicated that septic transgenic mice with heart-specific CHIP overexpression showed a weaker proinflammatory response and reduced cardiac dysfunction than septic control mice. Furthermore, we found that the therapeutic effect of compound YL-109 on cardiac dysfunction in septic mice was due to the upregulation of myocardial CHIP expression. These findings demonstrated that sepsis-initiated the activation of c-Jun suppressed CHIP transcription. CHIP directly promoted ubiquitin-mediated degradation of KPNA2, which reduced the production of proinflammatory cytokines by inhibiting the translocation of NF-κB from the cytoplasm into the nucleus in myocardium, thereby attenuating sepsis-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jia Liao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xingyu Su
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Miao Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xi Chen
- Department of Cardiology, Zhuhai People's Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Zixi Liu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Guoqing Tang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Li Zhou
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia
| | - Hongmei Li
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiuxiu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jun Yin
- Department of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia
| | - Huadong Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Zhao H, Yin Y, Lin T, Wang W, Gong L. Administration of serotonin and norepinephrine reuptake inhibitors tends to have less ocular surface damage in a chronic stress-induced rat model of depression than selective serotonin reuptake inhibitors. Exp Eye Res 2023; 231:109486. [PMID: 37080380 DOI: 10.1016/j.exer.2023.109486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Depressed patients who medicate with selective serotonin reuptake inhibitors (SSRIs) often report ocular dryness. Epidemiological studies have found that serotonin and norepinephrine reuptake inhibitors (SNRIs) are not risk factors for dry eye in depressed patients. However, the effect of SNRIs on the ocular surface is unknown. A depression rat model was induced by chronic unpredictable mild stress (CUMS), and SNRIs or SSRIs were administered to the rats for 3 or 6 weeks. The levels of norepinephrine (NE) and serotonin in tear fluid were tested by ELISA. The corneal fluorescence and lissamine green staining were used to evaluate ocular surface damage. NE and/or serotonin were administered to human corneal epithelial cells in vitro. RNA sequencing (RNA-seq) analysis was performed to investigate the mRNA expression profiles. Tear NE levels were higher in the SNRIs group, and ocular surface inflammation and apoptosis were significantly reduced compared to the SSRIs group. RNA-Seq indicated that NE significantly activate MAPK signaling pathway. NE can inhibit serotonin-induced activation of the NF-κB signaling pathway through α-1 adrenergic receptors and promotes the proliferation of corneal epithelial cells through activation of the MAPK signaling pathway. SNRIs administration have less ocular surface damage than SSRIs. NE protects human corneal epithelial cells from damage, and reduce inflammation on the ocular surface via activating the MAPK signaling pathway. SNRIs might be used as an appropriate treatment for depression-related DED.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Yue Yin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, 200000, China; Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
15
|
Liu XY, Wei DG, Li RS. Ghrelin attenuates inflammation in diabetic lung disease by TLR4 pathway in vivo and in vitro. BMJ Open Diabetes Res Care 2023; 11:11/2/e003027. [PMID: 37085277 PMCID: PMC10123865 DOI: 10.1136/bmjdrc-2022-003027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/11/2023] [Indexed: 04/23/2023] Open
Abstract
INTRODUCTION Diabetic lung disease is already known as one of the diabetes complications, but report on its therapeutic strategy is rare. The present study aimed to add novel therapeutic strategy for diabetic lung disease, to reveal the protective effect of ghrelin on diabetic lung disease both in vivo and in vitro, and to discuss its probable molecular mechanism. RESEARCH DESIGN AND METHODS Diabetic mice and 16HBE cells were our research objects. We surveyed the effect of ghrelin on streptozotocin-induced lung tissue morphology changes by H&E staining. Furthermore, the changes of proinflammatory cytokines (interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)) were detected by ELISA. To expound the molecular mechanism, we detected critical proteins of TLR4 pathway and observed their changes by immunohistochemistry (IHC), real-time PCR and western blot analysis in vivo and in vitro, respectively. RESULTS The results of H&E staining showed that pathological alterations of the lung induced by hyperglycemia were ameliorated by ghrelin. The results of ELISA demonstrated that the elevated levels of IL-1β and TNF-α induced by hyperglycemia turned to decrease in the lung after ghrelin treatment. In the results of IHC, real-time PCR and western blot analysis, we found that the TLR4 pathway was elevated by hyperglycemia or high glucose and is remarkably inhibited by the treatment of ghrelin both in vivo and in vitro. CONCLUSIONS Ghrelin could inhibit inflammation of diabetic lung disease by regulating the TLR4 pathway. This study might affect research on diabetic lung disease, and the therapeutic potential of ghrelin for diabetic lung disease is worth considering.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- Department of Pulmonary and Critical Care Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Dong-Guang Wei
- Department of Pulmonary and Critical Care Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Rong-Shan Li
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
16
|
Fratta Pasini AM, Stranieri C, Busti F, Di Leo EG, Girelli D, Cominacini L. New Insights into the Role of Ferroptosis in Cardiovascular Diseases. Cells 2023; 12:cells12060867. [PMID: 36980208 PMCID: PMC10047059 DOI: 10.3390/cells12060867] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the principal cause of disease burden and death worldwide. Ferroptosis is a new form of regulated cell death mainly characterized by altered iron metabolism, increased polyunsaturated fatty acid peroxidation by reactive oxygen species, depletion of glutathione and inactivation of glutathione peroxidase 4. Recently, a series of studies have indicated that ferroptosis is involved in the death of cardiac and vascular cells and has a key impact on the mechanisms leading to CVDs such as ischemic heart disease, ischemia/reperfusion injury, cardiomyopathies, and heart failure. In this article, we reviewed the molecular mechanism of ferroptosis and the current understanding of the pathophysiological role of ferroptosis in ischemic heart disease and in some cardiomyopathies. Moreover, the comprehension of the machinery governing ferroptosis in vascular cells and cardiomyocytes may provide new insights into preventive and therapeutic strategies in CVDs.
Collapse
|
17
|
Interaction between A-kinase anchoring protein 5 and protein kinase A mediates CaMKII/HDAC signaling to inhibit cardiomyocyte hypertrophy after hypoxic reoxygenation. Cell Signal 2023; 103:110569. [PMID: 36565899 DOI: 10.1016/j.cellsig.2022.110569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
We reported that A-kinase anchoring protein 5 (AKAP5) played a role in cardiomyocyte apoptosis after hypoxia-reoxygenation (H/R). The role of AKAP5 in cardiomyocyte hypertrophy has not been fully elucidated. Herein we investigated whether AKAP5 regulates cardiomyocyte hypertrophy through calcium/calmodulin-dependent protein kinase II (CaMKII). After H/R, deficiency of AKAP5 in H9C2 cardiomyocytes and neonatal rat cardiac myocytes activated CaMKII and stimulated cardiomyocyte hypertrophy. AKAP5 upregulation limited this. Low expression of AKAP5 increased CaMKII interaction with histone deacetylases 4/5 (HDAC4/5) and increased nuclear export of HDAC4/5. In addition, AKAP5 interactions with protein kinase A (PKA) and phospholamban (PLN) were diminished. Moreover, the phosphorylation of PLN was decreased, and intracellular calcium increased. Interference of this process with St-Ht31 increased CaMKII signaling, decreased PLN phosphorylation and promoted post-H/R cell hypertrophy. And PKA-anchoring deficient AKAP5ΔPKA could not attenuate hypoxia-reoxygenation-induced cardiomyocyte hypertrophy, but AKAP5 could. Altogether, AKAP5 downregulation exacerbated H/R-induced hypertrophy in cardiomyocytes. This was due to, in part, to less in AKAP5-PKA interaction and the accumulation of intracellular Ca2+ with a subsequent increase in CaMKII activity.
Collapse
|
18
|
Bertomeu-Gonzalez V, Moreno-Arribas J, Heras S, Fernandez-Ortiz N, Cazorla D, Quintanilla MA, Lopez-Ayala JM, Facila L, Zuazola P, Cordero A. Increased Risk of Heart Failure in Elderly Patients Treated with Beta-Blockers After AV Node Ablation. Am J Cardiovasc Drugs 2023; 23:157-164. [PMID: 36652190 PMCID: PMC10006059 DOI: 10.1007/s40256-022-00566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Controversy exists regarding the indication of beta-blockers (BB) in different scenarios in patients with cardiovascular disease. We sought to evaluate the effect of BB on survival and heart failure (HF) hospitalizations in a sample of pacemaker-dependent patients after AV node ablation to control ventricular rate for atrial tachyarrhythmias. METHODS A retrospective study including consecutive patients that underwent AV node ablation was conducted in a single center between 2011 and 2019. The study's primary endpoints were the incidence of all-cause mortality, first HF hospitalization and the cumulative incidence of subsequent hospitalizations for HF. Competing risk analyses were employed. RESULTS A total of 111 patients with a mean age of 73.9 years were included in the study. After a median follow-up of 45.5 months, 43 patients had died (38.7%) and 31 had been hospitalized for HF (27.9%). The recurrent HF hospitalization rate was 74/1000 patients/year. Patients treated with BB had a non-significant trend to higher mortality rates and a higher risk of recurrent HF hospitalizations (incidence rate ratio 2.23, 95% confidence interval 1.12-4.44; p = 0.023). CONCLUSION After an AV node ablation, the use of BB is associated with an increased risk of HF hospitalizations in a cohort of elderly patients.
Collapse
Affiliation(s)
- Vicente Bertomeu-Gonzalez
- Cardiology Department, Hospital Clinica Benidorm, Benidorm, Spain.
- Department of Clinical Medicine, Miguel Hernandez University, Universidad Miguel Hernández de Elche, Ctra Valencia-Alicante S/N, 03550, San Juan de Alicante, Alicante, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Jose Moreno-Arribas
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, Hospital Universitario de San Juan de Alicante, San Juan de Alicante, Alicante, Spain
| | - Santiago Heras
- Cardiology Department, Hospital Universitario de San Juan de Alicante, San Juan de Alicante, Alicante, Spain
| | - Nerea Fernandez-Ortiz
- Cardiology Department, Hospital Universitario de San Juan de Alicante, San Juan de Alicante, Alicante, Spain
| | - Diego Cazorla
- Cardiology Department, Hospital Universitario de San Juan de Alicante, San Juan de Alicante, Alicante, Spain
| | - María Amparo Quintanilla
- Cardiology Department, Hospital Universitario de San Juan de Alicante, San Juan de Alicante, Alicante, Spain
| | - Jose Maria Lopez-Ayala
- Cardiology Department, Hospital Universitario de San Juan de Alicante, San Juan de Alicante, Alicante, Spain
| | - Lorenzo Facila
- Cardiology Department, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
- Universitat de Valencia, Valencia, Spain
| | - Pilar Zuazola
- Department of Clinical Medicine, Miguel Hernandez University, Universidad Miguel Hernández de Elche, Ctra Valencia-Alicante S/N, 03550, San Juan de Alicante, Alicante, Spain
- Cardiology Department, Hospital Universitario de San Juan de Alicante, San Juan de Alicante, Alicante, Spain
| | - Alberto Cordero
- Department of Clinical Medicine, Miguel Hernandez University, Universidad Miguel Hernández de Elche, Ctra Valencia-Alicante S/N, 03550, San Juan de Alicante, Alicante, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, Hospital Universitario de San Juan de Alicante, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
19
|
Berberine Alleviates Doxorubicin-Induced Myocardial Injury and Fibrosis by Eliminating Oxidative Stress and Mitochondrial Damage via Promoting Nrf-2 Pathway Activation. Int J Mol Sci 2023; 24:ijms24043257. [PMID: 36834687 PMCID: PMC9966753 DOI: 10.3390/ijms24043257] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Doxorubicin (DOX)-related cardiotoxicity has been recognized as a serious complication of cancer chemotherapy. Effective targeted strategies for myocardial protection in addition to DOX treatment are urgently needed. The purpose of this paper was to determine the therapeutic effect of berberine (Ber) on DOX-triggered cardiomyopathy and explore the underlying mechanism. Our data showed that Ber markedly prevented cardiac diastolic dysfunction and fibrosis, reduced cardiac malondialdehyde (MDA) level and increased antioxidant superoxide dismutase (SOD) activity in DOX-treated rats. Moreover, Ber effectively rescued the DOX-induced production of reactive oxygen species (ROS) and MDA, mitochondrial morphological damage and membrane potential loss in neonatal rat cardiac myocytes and fibroblasts. This effect was mediated by increases in the nuclear accumulation of nuclear erythroid factor 2-related factor 2 (Nrf2) and levels of heme oxygenase-1 (HO-1) and mitochondrial transcription factor A (TFAM). We also found that Ber suppressed the differentiation of cardiac fibroblasts (CFs) into myofibroblasts, as indicated by decreased expression of α-smooth muscle actin (α-SMA), collagen I and collagen III in DOX-treated CFs. Pretreatment with Ber inhibited ROS and MDA production and increased SOD activity and the mitochondrial membrane potential in DOX-challenged CFs. Further investigation indicated that the Nrf2 inhibitor trigonelline reversed the protective effect of Ber on both cardiomyocytes and CFs after DOX stimulation. Taken together, these findings demonstrated that Ber effectively alleviated DOX-induced oxidative stress and mitochondrial damage by activating the Nrf2-mediated pathway, thereby leading to the prevention of myocardial injury and fibrosis. The current study suggests that Ber is a potential therapeutic agent for DOX-induced cardiotoxicity that exerts its effects by activating Nrf2.
Collapse
|
20
|
Kim HH, Shim YR, Choi SE, Kim MH, Lee G, You HJ, Choi WM, Yang K, Ryu T, Kim K, Kim MJ, Woo C, Chung KPS, Hong SH, Eun HS, Kim SH, Ko G, Park JE, Gao B, Kim W, Jeong WI. Catecholamine induces Kupffer cell apoptosis via growth differentiation factor 15 in alcohol-associated liver disease. Exp Mol Med 2023; 55:158-170. [PMID: 36631664 PMCID: PMC9898237 DOI: 10.1038/s12276-022-00921-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
Chronic alcohol consumption often induces hepatic steatosis but rarely causes severe inflammation in Kupffer cells (KCs) despite the increased hepatic influx of lipopolysaccharide (LPS), suggesting the presence of a veiled tolerance mechanism. In addition to LPS, the liver is affected by several gut-derived neurotransmitters through the portal blood, but the effects of catecholamines on KCs have not been clearly explored in alcohol-associated liver disease (ALD). Hence, we investigated the regulatory roles of catecholamine on inflammatory KCs under chronic alcohol exposure. We discovered that catecholamine levels were significantly elevated in the cecum, portal blood, and liver tissues of chronic ethanol-fed mice. Increased catecholamines induced mitochondrial translocation of cytochrome P450 2E1 in perivenous hepatocytes expressing the β2-adrenergic receptor (ADRB2), leading to the enhanced production of growth differentiation factor 15 (GDF15). Subsequently, GDF15 profoundly increased ADRB2 expression in adjacent inflammatory KCs to facilitate catecholamine/ADRB2-mediated apoptosis. Single-cell RNA sequencing of KCs confirmed the elevated expression of Adrb2 and apoptotic genes after chronic ethanol intake. Genetic ablation of Adrb2 or hepatic Gdf15 robustly decreased the number of apoptotic KCs near perivenous areas, exacerbating alcohol-associated inflammation. Consistently, we found that blood and stool catecholamine levels and perivenous GDF15 expression were increased in patients with early-stage ALD along with an increase in apoptotic KCs. Our findings reveal a novel protective mechanism against ALD, in which the catecholamine/GDF15 axis plays a critical role in KC apoptosis, and identify a unique neuro-metabo-immune axis between the gut and liver that elicits hepatoprotection against alcohol-mediated pathogenic challenges.
Collapse
Affiliation(s)
- Hee-Hoon Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Young-Ri Shim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Sung Eun Choi
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Myung-Ho Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.32224.350000 0004 0386 9924Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Boston, MA USA
| | - Giljae Lee
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun Ju You
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Won-Mook Choi
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.413967.e0000 0001 0842 2126Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Keungmo Yang
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Tom Ryu
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Kyurae Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Min Jeong Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Chaerin Woo
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Katherine Po Sin Chung
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Song Hwa Hong
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Hyuk Soo Eun
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.254230.20000 0001 0722 6377Department of Internal Medicine, Chungnam National University, College of Medicine, Daejeon, 35015 Republic of Korea
| | - Seok-Hwan Kim
- grid.254230.20000 0001 0722 6377Department of Surgery, Chungnam National University, College of Medicine, Daejeon, 35015 Republic of Korea
| | - GwangPyo Ko
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jong-Eun Park
- grid.37172.300000 0001 2292 0500Single-Cell Medical Genomics Laboratory, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Bin Gao
- grid.420085.b0000 0004 0481 4802Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD 20892 USA
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, 07061, Republic of Korea.
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
21
|
Liu C, Zou Q, Tang H, Liu J, Zhang S, Fan C, Zhang J, Liu R, Liu Y, Liu R, Zhao Y, Wu Q, Qi Z, Shen Y. Melanin nanoparticles alleviate sepsis-induced myocardial injury by suppressing ferroptosis and inflammation. Bioact Mater 2022; 24:313-321. [PMID: 36632502 PMCID: PMC9813528 DOI: 10.1016/j.bioactmat.2022.12.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Myocardial injury as one of the severe complications leads to the increasing morbidity and mortality in patients with sepsis. Recent studies reported that reactive oxygen species (ROS)-mediated ferroptosis plays a critical role in the development of heart diseases. Therefore, we hypothesized that anti-ferroptosis agent might be a novel potential therapeutic strategy for sepsis-induced cardiac injury. Herein, we demonstrated that a small biocompatible and MRI-visible melanin nanoparticles (MMPP) improves myocardial function by inhibiting ROS-related ferroptosis signaling pathway. In LPS-induced murine sepsis model, after a single dose intravenously injection of MMPP treatment, MMPP markedly alleviated the myocardial injury including cardiac function and heart structure disorder through suppressing iron-accumulation induced ferroptosis. In vitro, MMPP inhibited cardiomyocyte death by attenuating oxidative stress, inflammation and maintaining mitochondrial homeostasis. Collectively, our findings demonstrated that MMPP protected heart against sepsis-induced myocardial injury via inhibiting ferroptosis and inflammation, which might be a novel therapeutic approach in future.
Collapse
Affiliation(s)
- Chang Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Huixin Tang
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Jia Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Shiqi Zhang
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Caihong Fan
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Junwei Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ruiqing Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Yashan Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Ruiyan Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Yan Zhao
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Qiang Wu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China,Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China,Xinjiang Production and Construction Corps Hospital, Xinjiang, 830092, China,Corresponding author. Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Yanna Shen
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China,Corresponding author. School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
22
|
Fu Y, Dong YF. 5-Methoxytryptophan pretreatment alleviates lipopolysaccharide-induced cardiac injury and dysfunction. APPLIED BIOLOGICAL CHEMISTRY 2022; 65:36. [DOI: 10.1186/s13765-022-00705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 01/05/2025]
Abstract
AbstractReducing inflammation is a promising therapeutic approach for sepsis-induced cardiomyopathy (SIC). The 5-Methoxytryptophan (5-MTP) is a tryptophan metabolite that demonstrates anti-inflammatory, anti-fibrosis, anti-tumorigenesis, and anti-senescence features. Current investigations aimed to assess the 5-MTP pretreatment impacts on lipopolysaccharide (LPS)-induced cardiac injury and dysfunction. For in vivo studies, the mice were categorized randomly into four groups: control, LPS, LPS+5-MTP (25 mg/kg) and LPS+5-MTP (50 mg/kg). The mice in the LPS+5-MTP groups were given 5-MTP intraperitoneally once a day for 7 days. LPS (10 mg/kg) was then administered intraperitoneally for 24 h. Echocardiography, cardiac injury biomarkers, and H & E staining evaluated heart anatomy and function. The findings indicate that 5-MTP pretreatment significantly reduced LPS-induced heart dysfunction and morphological alterations. Western blot assay was used for investigating molecular mechanisms. After LPS stimulation, the pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and NLRP3) protein levels increased while anti-inflammatory cytokine (IL-10) decreased; however, 5-MTP pretreatment mitigated this response by suppressing the stimulation of the NF-κB signaling pathway. Furthermore, 5-MTP administration reduced LPS-induced cardiac apoptosis, as demonstrated by increased protein levels of cleaved-Casepase-1, cleaved-Casepase-3 and Bax, and decreased protein level of Bcl-2 after LPS stimulation, whereas LPS-induced cardiac apoptosis was reversed by 5-MTP pretreatment. In vitro, 5-MTP pretreatment had a similar cardioprotective effect on cultured cardiac fibroblasts challenged with LPS. In conclusion, 5-MTP pretreatment can reduce LPS-induced cardiac inflammation and apoptosis, implying that 5-MTP is a possible therapeutic option for SIC.
Collapse
|
23
|
Song C, Zhang Y, Pei Q, Zheng L, Wang M, Shi Y, Wu S, Ni W, Fu X, Peng Y, Zhang W, Yao M. HSP70 alleviates sepsis-induced cardiomyopathy by attenuating mitochondrial dysfunction-initiated NLRP3 inflammasome-mediated pyroptosis in cardiomyocytes. BURNS & TRAUMA 2022; 10:tkac043. [PMID: 36439706 PMCID: PMC9684341 DOI: 10.1093/burnst/tkac043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SIC) is an identified serious complication of sepsis that is associated with adverse outcomes and high mortality. Heat shock proteins (HSPs) have been implicated in suppressing septic inflammation. The aim of this study was to investigate whether HSP70 can attenuate cellular mitochondrial dysfunction, exuberated inflammation and inflammasome-mediated pyroptosis for SIC intervention. METHODS Mice with cecal ligation plus perforation (CLP) and lipopolysaccharide (LPS)-treated H9C2 cardiomyocytes were used as models of SIC. The mouse survival rate, gross profile, cardiac function, pathological changes and mitochondrial function were observed by photography, echocardiography, hematoxylin-eosin staining and transmission electron microscopy. In addition, cell proliferation and the levels of cardiac troponin I (cTnI), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were determined by Cell Counting Kit-8, crystal violet staining and enzyme-linked immunosorbent assay. Moreover, mitochondrial membrane potential was assessed by immunofluorescence staining, and dynamin-related protein 1 and pyroptosis-related molecules [nucleotide-binding domain, leucine-rich-repeat containing family pyrin domain-containing 3 (NLRP3), caspase-1, gasdermin-D (GSDMD), gasdermin-D N-terminal (GSDMD-N)] were measured by western blotting, immunoprecipitation and immunoblotting. Finally, hsp70.1 knockout mice with CLP were used to verify the effects of HSP70 on SIC and the underlying mechanism. RESULTS Models of SIC were successfully established, as reduced consciousness and activity with liparotrichia in CLP mice were observed, and the survival rate and cardiac ejection fraction (EF) were decreased; conversely, the levels of cTnI, TNF-α and IL-1β and myocardial tissue damage were increased in CLP mice. In addition, LPS stimulation resulted in a reduction in cell viability, mitochondrial destabilization and activation of NLRP3-mediated pyroptosis molecules in vitro. HSP70 treatment improved myocardial tissue damage, survival rate and cardiac dysfunction caused by CLP. Additionally, HSP70 intervention reversed LPS-induced mitochondrial destabilization, inhibited activation of the NLRP3 inflammasome, caspase-1, GSDMD and GSDMD-N, and decreased pyroptosis. Finally, knockout of hsp70.1 mice with CLP aggravated cardiac dysfunction and upregulated NLRP3 inflammasome activity, and exogenous HSP70 significantly rescued these changes. It was further confirmed that HSP70 plays a protective role in SIC by attenuating mitochondrial dysfunction and inactivating pyroptotic molecules. CONCLUSIONS Our study demonstrated that mitochondrial destabilization and NLRP3 inflammasome activation-mediated pyroptosis are attributed to SIC. Interestingly, HSP70 ameliorates sepsis-induced myocardial dysfunction by improving mitochondrial dysfunction and inhibiting the activation of NLRP3 inflammasome-mediated pyroptosis, and such a result may provide approaches for novel therapies for SIC.
Collapse
Affiliation(s)
| | | | - Qing Pei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Li Zheng
- Department of Ultrasound, Baoshan Integrated Traditional Chinese and Western Medicine Hospital, 28 Tuanjie Road, Shanghai, 201999, China
| | - Meiyu Wang
- Department of Ultrasound, Baoshan Integrated Traditional Chinese and Western Medicine Hospital, 28 Tuanjie Road, Shanghai, 201999, China
| | - Youzhen Shi
- Department of Ultrasound, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, 201999, China
| | - Shan Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wei Ni
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu road, Wuhan, 430000, China
| | - Xiujun Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yinbo Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wen Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | | |
Collapse
|
24
|
Jiang L, Li D, Wang C, Liao J, Liu J, Wei Q, Wang Y. Decreased Expression of Karyopherin-α 1 is Related to the Malignant Degree of Cervical Cancer and is Critical for the Proliferation of Hela Cells. Pathol Oncol Res 2022; 28:1610518. [PMID: 35991835 PMCID: PMC9385962 DOI: 10.3389/pore.2022.1610518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022]
Abstract
Karyopherin α (KPNA) proteins are involved in nucleocytoplasmic trafficking and are critical for protein subcellular localization. Recent studies have suggested that KPNA proteins are abnormally expressed in various solid tumors. The objective of this study was to investigate the expression of KPNA1 and KPNA2 in cervical cancer tissue with different histologic grades and cell lines, as well as the effects of the KPNA1 expression level on Hela cell proliferation. We collected the medical data of 106 patients with cervical cancer and investigated the protein expression of KPNA1 and KPNA2 by immunohistochemistry and western blot. The results revealed a significantly lower expression of KPNA1 in cervical cancer compared to normal tissue. Conversely, stronger staining intensity for KPNA2 was observed in cervical tumor samples. The expression levels of KPNA1 and KPNA2 were significantly associated with the tumor histologic grade. The weakest KPNA1 expression and strongest staining for KPNA2 were observed in grade III tumor tissue. The expression levels of KPNA1 were lower in Hela and C33A cells compared with normal human cervical epithelial cells; however, the expression of KPNA2 exhibited an opposite trend. The up-regulation of KPNA1 significantly suppressed the proliferation of Hela cells and relevant proteins expression, as well as promoted transportation of IRF3 into nucleus. Our results suggest the downregulation of KPNA1 expression is related to the malignant degree of cervical cancer and is closely associated with the proliferation of cervical cancer cells.
Collapse
Affiliation(s)
- Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dan Li
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chao Wang
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jia Liao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jianghuan Liu
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qingzhu Wei
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Qingzhu Wei, ; Yiyang Wang,
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Qingzhu Wei, ; Yiyang Wang,
| |
Collapse
|
25
|
Ye J, Li M, Li Q, Jia Z, Hu X, Zhao G, Zhi S, Hong G, Lu Z. Activation of STIM1/Orai1‑mediated SOCE in sepsis‑induced myocardial depression. Mol Med Rep 2022; 26:259. [PMID: 35713214 DOI: 10.3892/mmr.2022.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/21/2022] [Indexed: 11/05/2022] Open
Abstract
Unbalanced Ca2+ homeostasis serves an essential role in the occurrence and development of septic myocardial injury. However, the mechanism of Ca2+ homeostasis in septic myocardial depression is poorly understood due to the complexity of Ca2+ transporters in excitable cells. It was therefore hypothesized that cardiac dysfunction, myocardial injury and cardiac apoptosis in septic myocardial depression are associated with elevated intracellular Ca2+ concentrations caused by stromal interaction molecule 1 (STIM1)/Orai calcium release‑activated calcium modulator 1 (Orai1)‑mediated store‑operated Ca2+ entry (SOCE). A septic myocardial depression model was established using the cecal ligation and puncture operation (CLP) in mice and was simulated in H9C2 cells via lipopolysaccharide (LPS) stimulation. Cardiac function, myocardial injury, cardiac apoptosis and the expression levels of Bax, Bcl‑2, STIM1 and Orai1 were quantified in vivo at 6, 12 and 24 h. Changes in the intracellular Ca2+ concentration, SOCE and the distribution of STIM1 were assessed in vitro within 6 h. The morphological changes of heart tissue were observed by hematoxylin‑eosin staining. Myocardial cellular apoptosis was determined by TUNEL method. The expression of Bax, Bcl‑2, STIM1 and Orai1 were visualized by western blot. Cytosolic calcium concentration and SOCE were evaluated by confocal microscopy. The results demonstrated that cardiac contractile function was significantly reduced at 6 h and morphological changes in cardiac tissues, as well as the myocardial apoptosis rate, were markedly increased at 6, 12 and 24 h following CLP. mRNA and protein expression levels of Bax/Bcl‑2 were significantly enhanced at 6 and 12 h and glycosylation of Orai1 in the myocardium of septic mice was significantly increased at 6 h following CLP. The intracellular Ca2+ concentration, SOCE, was significantly increased at 1‑2 h and the clustering and distribution of STIM1 were markedly changed in H9C2 cells at 1 and 2 h. These findings suggested that myocardial dysfunction, cardiac injury and myocardial depression may be related to increased intracellular Ca2+ concentration resulting from STIM1/Orai1‑mediated SOCE, which may provide a potential method to alleviate septic myocardial depression.
Collapse
Affiliation(s)
- Jingjing Ye
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Mengfang Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qiao Li
- Ultrasound Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhijun Jia
- Ultrasound Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiyi Hu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guangju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shaoce Zhi
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guangliang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
26
|
Yang D, Dai X, Xing Y, Tang X, Yang G, Harrison AG, Cahoon J, Li H, Lv X, Yu X, Wang P, Wang H. Intrinsic cardiac adrenergic cells contribute to LPS-induced myocardial dysfunction. Commun Biol 2022; 5:96. [PMID: 35079095 PMCID: PMC8789803 DOI: 10.1038/s42003-022-03007-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023] Open
Abstract
Intrinsic cardiac adrenergic (ICA) cells regulate both developing and adult cardiac physiological and pathological processes. However, the role of ICA cells in septic cardiomyopathy is unknown. Here we show that norepinephrine (NE) secretion from ICA cells is increased through activation of Toll-like receptor 4 (TLR4) to aggravate myocardial TNF-α production and dysfunction by lipopolysaccharide (LPS). In ICA cells, LPS activated TLR4-MyD88/TRIF-AP-1 signaling that promoted NE biosynthesis through expression of tyrosine hydroxylase, but did not trigger TNF-α production due to impairment of p65 translocation. In a co-culture consisting of LPS-treated ICA cells and cardiomyocytes, the upregulation and secretion of NE from ICA cells activated cardiomyocyte β1-adrenergic receptor driving Ca2+/calmodulin-dependent protein kinase II (CaMKII) to crosstalk with NF-κB and mitogen-activated protein kinase pathways. Importantly, blockade of ICA cell-derived NE prevented LPS-induced myocardial dysfunction. Our findings suggest that ICA cells may be a potential therapeutic target for septic cardiomyopathy.
Collapse
Affiliation(s)
- Duomeng Yang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaomeng Dai
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yun Xing
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiangxu Tang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guang Yang
- Department of Pathogen biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Andrew G Harrison
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Jason Cahoon
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiuxiu Lv
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaohui Yu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Penghua Wang
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
27
|
Hu W, Gao W, Miao J, Xu Z, Sun L. Alamandine, a derivative of angiotensin-(1-7), alleviates sepsis-associated renal inflammation and apoptosis by inhibiting the PI3K/Ak and MAPK pathways. Peptides 2021; 146:170627. [PMID: 34400214 DOI: 10.1016/j.peptides.2021.170627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is a frequent cause of kidney injury. The present study investigated whether Alamandine (Ala) could alleviate sepsis-associated renal injury by reducing inflammation and apoptosis. In addition, we investigated downstream signaling pathways modulated by Ala. Studies were performed in mice treated with lipopolysaccharide (LPS) and in the human proximal tubular epithelial cell line HK-2. The increase in serum creatinine, blood urea nitrogen, cystatin C and Fg, and neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in the kidneys of mice treated with LPS were reduced after administration of Ala. Exposure to LPS increased interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α) in mice and HK-2 cells, but were reduced after Ala treatment. Furthermore, increased levels of cleaved caspase 3, cleaved caspase 7, cleaved caspase 9, cleaved poly (ADP-ribose) polymerase (PARP) and Bax and reduced levels of Bcl2 in LPS-treated mice and HK-2 cells were reversed after Ala administration. In addition, LPS increased the levels of p-PI3K/PI3K, p-Akt/Akt, p-ERK/ERK, p-JNK/JNK, p-p38/p38 and p-FoxO1 in HK-2 cells, and all were reversed after Ala administration. These results indicate that Ala could improve renal function and inhibit inflammation and apoptosis in LPS induced sepsis mouse models. We demonstrated that Ala attenuated LPS induced sepsis by inhibiting the PI3K/Akt and MAPK signaling pathways.
Collapse
Affiliation(s)
- Wei Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Wenchuang Gao
- Department of Thoracic Surgery, Lian Shui People's Hospital, Huaian, China
| | - Jiayi Miao
- Department of Nephrology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Ziheng Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Lei Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China.
| |
Collapse
|
28
|
Yu Y, Hu LL, Liu L, Yu LL, Li JP, Rao JA, Zhu LJ, Bao HH, Cheng XS. Hsp22 ameliorates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidative stress, and apoptosis. Bioengineered 2021; 12:12544-12554. [PMID: 34839787 PMCID: PMC8810130 DOI: 10.1080/21655979.2021.2010315] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 01/02/2023] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is ubiquitous in septic shock patients and is associated with high morbidity and mortality rates. Heat shock protein 22 (Hsp22), which belongs to the small HSP family of proteins, is involved in several biological functions. However, the function of Hsp22 in lipopolysaccharide (LPS)-induced myocardial injury is not yet established. This study was aimed at investigating the underlying mechanistic aspects of Hsp22 in myocardial injury induced by LPS. In this study, following the random assignment of male C57BL/6 mice into control, LPS-treated, and LPS + Hsp22 treated groups, relevant echocardiograms and staining were performed to scrutinize the cardiac pathology. Plausible mechanisms were proposed based on the findings of the enzyme-linked immunosorbent assay and Western blotting assay. A protective role of Hsp22 against LPS-induced myocardial injury emerged, as evidenced from decreased levels of creatinine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and enhanced cardiac function. The post-LPS administration-caused spike in inflammatory cytokines (IL-1β, IL-6, TNF-α and NLRP3) was attenuated by the Hsp22 pre-treatment. In addition, superoxide dismutase (SOD) activity and B-cell lymphoma-2 (Bcl2) levels were augmented by Hsp22 treatment resulting in lowering of LPS-induced oxidative stress and cardiomyocyte apoptosis. In summary, the suppression of LPS-induced myocardial injury by Hsp22 overexpression via targeting of inflammation, oxidative stress, and apoptosis in cardiomyocytes paves the way for this protein to be employed in the therapy of SIMD.
Collapse
Affiliation(s)
- Yun Yu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Long-Long Hu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Liu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling-Ling Yu
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun-Pei Li
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing-an Rao
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling-Juan Zhu
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui-Hui Bao
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Shu Cheng
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Liao J, Li K, Su X, Chen Y, Wang Y, Tang X, Xing Y, Xu Y, Dai X, Teng J, Li H, Wang H, Lv X, Wang Y. Dexmedetomidine Promotes Lipopolysaccharide-Induced Differentiation of Cardiac Fibroblasts and Collagen I/III Synthesis through α 2A Adrenoreceptor-Mediated Activation of the PKC-p38-Smad2/3 Signaling Pathway in Mice. Int J Mol Sci 2021; 22:ijms222312749. [PMID: 34884552 PMCID: PMC8657501 DOI: 10.3390/ijms222312749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/31/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023] Open
Abstract
Dexmedetomidine (DEX), a selective α2 adrenergic receptor (AR) agonist, is commonly used as a sedative drug during critical illness. In the present study, we explored a novel accelerative effect of DEX on cardiac fibroblast (CF) differentiation mediated by LPS and clarified its potential mechanism. LPS apparently increased the expression of α-SMA and collagen I/III and the phosphorylation of p38 and Smad-3 in the CFs of mice. These effects were significantly enhanced by DEX through increasing α2A-AR expression in CFs after LPS stimulation. The CFs from α2A-AR knockout mice were markedly less sensitive to DEX treatment than those of wild-type mice. Inhibition of protein kinase C (PKC) abolished the enhanced effects of DEX on LPS-induced differentiation of CFs. We also found that the α-SMA level in the second-passage CFs was much higher than that in the nonpassage and first-passage CFs. However, after LPS stimulation, the TNF-α released from the nonpassage CFs was much higher than that in the first- and second-passage CFs. DEX had no effect on LPS-induced release of TNF-α and IL-6 from CFs. Further investigation indicated that DEX promoted cardiac fibrosis and collagen I/III synthesis in mice exposed to LPS for four weeks. Our results demonstrated that DEX effectively accelerated LPS-induced differentiation of CFs to myofibroblasts through the PKC-p38-Smad2/3 signaling pathway by activating α2A-AR.
Collapse
|
30
|
Tang X, Xu Y, Dai X, Xing Y, Yang D, Huang Q, Li H, Lv X, Wang Y, Lu D, Wang H. The Long-term Effect of Dobutamine on Intrinsic Myocardial Function and Myocardial Injury in Septic Rats with Myocardial Dysfunction. Shock 2021; 56:582-592. [PMID: 34524268 DOI: 10.1097/shk.0000000000001718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ABSTRACT Dobutamine (DOB) is recommended as an inotrope for septic patients with low cardiac output, but its long-term impact on sepsis-induced cardiomyopathy remains unclear. This study investigated the long-term effect of DOB on septic myocardial dysfunction and injury. Rats were exposed to cecal ligation and puncture (CLP), the intrinsic myocardial function, other organ functions, hemodynamics, inflammatory response, serum myocardial injury biomarkers, myocardial apoptosis, and vascular permeability were determined. At 6 h after CLP, the left ventricular ±dP/dt were significantly depressed, cardiac tumor necrosis factor-α and vascular cell adhesion molecule-1 expression were increased, but not serum cardiac troponin I (cTnI), N-terminal pro-brain natriuretic peptide (NT-proBNP), heart-type fatty acid-binding protein (H-FABP), creatinine, and urea nitrogen concentrations in CLP group compared with controls. At 9 h after CLP, hepatic dysfunction was present in CLP rats compared with controls. At 6 h after CLP, DOB treatment did not affect hemodynamics, the left ventricular ±dP/dt, cytokine levels in serum and myocardium, as well as cardiomyocyte apoptosis and cardiac vascular hyperpermeability at 20 h after CLP. However, DOB (10.0 μg/kg) increased serum IL-10 level and improved survival in septic rats. These results indicate that the intrinsic myocardial depression occurs earlier than hepatic and renal dysfunction in sepsis and serum cTnI, NT-proBNP, and H-FABP are not suitable as early biomarkers for sepsis-induced myocardial dysfunction. Although DOB treatment (10.0 μg/kg) in the presence of myocardial dysfunction improves survival in septic rats, it neither improves myocardial function and hemodynamics nor attenuates myocardial injury at the later stage of sepsis.
Collapse
Affiliation(s)
- Xiangxu Tang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jiang L, Liao J, Liu J, Wei Q, Wang Y. Geranylgeranylacetone promotes human osteosarcoma cell apoptosis by inducing the degradation of PRMT1 through the E3 ubiquitin ligase CHIP. J Cell Mol Med 2021; 25:7961-7972. [PMID: 34155784 PMCID: PMC8358878 DOI: 10.1111/jcmm.16725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Geranylgeranylacetone (GGA), an inducer of heat shock proteins, exerts anticancer activity in some tumours. However, the effect of GGA on human osteosarcoma (OS) has not been reported. This work is designed to evaluate the effect of GGA on the proliferation and apoptosis of human OS cells and to explore the underlying mechanisms. It was found that GGA markedly inhibited the proliferation and induced apoptosis of U-2 OS cells in a dose-dependent manner and also up-regulated the expression of heat shock protein 70 (Hsp70). The degradation and ubiquitination of protein arginine N-methyltransferase 1 (PRMT1) were obviously enhanced in U-2 OS cells with CHIP overexpression and GGA treatment. The expression of PRMT1 was reversed in GGA-treated cell after CHIP knockdown. The turnover of PRMT1 was obviously faster in cells overexpressing CHIP than that in control cells. The methylation and activity of STAT3 were induced by PRMT1, resulting in the inhibition of FAS transcription. Overexpression of PRMT1 reversed the effect of GGA on activation of apoptosis-related proteins and U-2 OS cell apoptosis. The expressions of PRMT1 were significantly up-regulated in OS tissues compared with the adjacent normal tissues and benign bone tumours. In conclusion, GGA promotes the degradation of PRMT1 through the Hsp70-CHIP-mediated proteasome pathway, thereby inducing the FAS-triggered cell apoptosis. Inhibition of PRMT1 may be a potential therapeutic strategy for OS patients.
Collapse
Affiliation(s)
- Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jia Liao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jianghuan Liu
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qingzhu Wei
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Yang Y, Jiang K, Liu X, Qin M, Xiang Y. CaMKII in Regulation of Cell Death During Myocardial Reperfusion Injury. Front Mol Biosci 2021; 8:668129. [PMID: 34141722 PMCID: PMC8204011 DOI: 10.3389/fmolb.2021.668129] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. In spite of the mature managements of myocardial infarction (MI), post-MI reperfusion (I/R) injury results in high morbidity and mortality. Cardiomyocyte Ca2+ overload is a major factor of I/R injury, initiating a cascade of events contributing to cardiomyocyte death and myocardial dysfunction. Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in cardiomyocyte death response to I/R injury, whose activation is a key feature of myocardial I/R in causing intracellular mitochondrial swelling, endoplasmic reticulum (ER) Ca2+ leakage, abnormal myofilament contraction, and other adverse reactions. CaMKII is a multifunctional serine/threonine protein kinase, and CaMKIIδ, the dominant subtype in heart, has been widely studied in the activation, location, and related pathways of cardiomyocytes death, which has been considered as a potential targets for pharmacological inhibition. In this review, we summarize a brief overview of CaMKII with various posttranslational modifications and its properties in myocardial I/R injury. We focus on the molecular mechanism of CaMKII involved in regulation of cell death induced by myocardial I/R including necroptosis and pyroptosis of cardiomyocyte. Finally, we highlight that targeting CaMKII modifications and cell death involved pathways may provide new insights to understand the conversion of cardiomyocyte fate in the setting of myocardial I/R injury.
Collapse
Affiliation(s)
- Yingjie Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Jiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
33
|
Zhai Z, Zou P, Liu F, Xia Z, Li J. Ferroptosis Is a Potential Novel Diagnostic and Therapeutic Target for Patients With Cardiomyopathy. Front Cell Dev Biol 2021; 9:649045. [PMID: 33869204 PMCID: PMC8047193 DOI: 10.3389/fcell.2021.649045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiomyocyte death is a fundamental progress in cardiomyopathy. However, the mechanism of triggering the death of myocardial cells remains unclear. Ferroptosis, which is the nonapoptotic, iron-dependent, and peroxidation-driven programmed cell death pathway, that is abundant and readily accessible, was not discovered until recently with a pharmacological approach. New researches have demonstrated the close relationship between ferroptosis and the development of many cardiovascular diseases, and several ferroptosis inhibitors, iron chelators, and small antioxidant molecules can relieve myocardial injury by blocking the ferroptosis pathways. Notably, ferroptosis is gradually being considered as an important cell death mechanism in the animal models with multiple cardiomyopathies. In this review, we will discuss the mechanism of ferroptosis and the important role of ferroptosis in cardiomyopathy with a special emphasis on the value of ferroptosis as a potential novel diagnostic and therapeutic target for patients suffering from cardiomyopathy in the future.
Collapse
Affiliation(s)
- Zhenyu Zhai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengtao Zou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuxiang Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zirong Xia
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Attenuating senescence and dead cells accumulation as heart failure therapy: Break the communication networks. Int J Cardiol 2021; 334:72-85. [PMID: 33794236 DOI: 10.1016/j.ijcard.2021.03.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/03/2023]
|
35
|
Shyni GL, Renjitha J, B Somappa S, Raghu KG. Zerumin A attenuates the inflammatory responses in LPS-stimulated H9c2 cardiomyoblasts. J Biochem Mol Toxicol 2021; 35:1-11. [PMID: 33755281 DOI: 10.1002/jbt.22777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 03/12/2021] [Indexed: 11/07/2022]
Abstract
Zerumin A (ZA) is one of the potential components of Curcuma amada rhizomes, and it has been shown to possess a variety of pharmacological activities. This study deals with the beneficial activity of ZA in lipopolysaccharide (LPS)-stimulated inflammation in H9c2 cardiomyoblasts. Herein, H9c2 cells were preincubated with ZA for 1 h and stimulated with LPS for 24 h. The cells were analyzed for the expression of various pro-inflammatory mediators and signaling molecules. Results showed that the cell viability was significantly improved and reactive oxygen species production was alleviated remarkably with ZA pretreatment. We also found that ZA pretreatment significantly suppressed the upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) protein levels, and nitric oxide (NO) release in LPS-stimulated cells. In addition, ZA significantly ameliorated LPS-elicited overexpression of pro-inflammatory chemokines and cytokines such as monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor α (TNF- α), interferon-γ (IFN-γ), and interleukin-1 (IL-1) in H9c2 cells, and it upregulated the synthesis of the anti-inflammatory cytokine interleukin-10 (IL-10). Moreover, pretreatment with ZA and the mitogen-activated protein kinases (MAPK) pathway inhibitors also reduced the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinases (JNK), and p38. ZA significantly inhibited IkB-a phosphorylation and nuclear factor (NF)-kB p65 subunit translocation into nuclei. Overall data demonstrated that ZA protects cardiomyocytes against LPS injury by inhibiting NF-kB p65 activation via the MAPK signaling pathway in vitro. These findings suggest that ZA may be a promising agent for a detailed study for the prevention or treatment of myocardial dysfunction in sepsis.
Collapse
Affiliation(s)
- G L Shyni
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - J Renjitha
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Sasidhar B Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
36
|
Tian T, Yao D, Zheng L, Zhou Z, Duan Y, Liu B, Wang P, Li Y. Sphingosine kinase 1 regulates HMGB1 translocation by directly interacting with calcium/calmodulin protein kinase II-δ in sepsis-associated liver injury. Cell Death Dis 2020; 11:1037. [PMID: 33281190 PMCID: PMC7719708 DOI: 10.1038/s41419-020-03255-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/22/2023]
Abstract
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.
Collapse
Affiliation(s)
- Tao Tian
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Danhua Yao
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Zhiyuan Zhou
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Yantao Duan
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Bin Liu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Pengfei Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
37
|
Li N, Wang W, Zhou H, Wu Q, Duan M, Liu C, Wu H, Deng W, Shen D, Tang Q. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic Biol Med 2020; 160:303-318. [PMID: 32846217 DOI: 10.1016/j.freeradbiomed.2020.08.009] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a reactive oxygen species (ROS)- and iron-dependent form of regulated cell death (RCD), playing critical roles in organ injury and targeting therapy of cancers. Previous studies have demonstrated that ferroptosis participates in the development of cardiomyopathy including cardiac hypertrophy, diabetic cardiomyopathy and doxorubicin-induced cardiotoxicity. However, the role of ferroptosis in sepsis-induced cardiac injury remains unclear. This study aimed to explore the role and underlying mechanism of ferroptosis on lipopolysaccharide (LPS)-induced cardiac injury. Mice were injected with LPS (10 mg/kg) for 12 h to generate experimental sepsis. Ferrostatin-1 (Fer-1) and Dexrazoxane (DXZ) were used to suppress ferroptosis of mice with sepsis-induced cardiac injury. LPS increased the levels of ferroptotic markers involving prostaglandin endoperoxide synthase 2 (PTGS2), malonaldehyde (MDA) and lipid ROS, apart from resulting in obvious mitochondria damage, which were alleviated by Fer-1 and DXZ. In vitro experiments showed that Fer-1 inhibited LPS-induced lipid peroxidation and injury of H9c2 myofibroblasts while erastin and sorafenib aggravated LPS-induced ferroptosis. Additionally, Fer-1 and DXZ improved survival rate and cardiac function of mice with sepsis. Mechanistically, LPS increased the expression of nuclear receptor coactivator 4 (NCOA4) and the level of intracellular Fe2+ but decreased the level of ferritin. NCOA4 could directly interact with ferritin and degrade it in a ferritinophagy-dependent manner, which subsequently released a great amount of iron. Cytoplasmic Fe2+ further activated the expression of siderofexin (SFXN1) on mitochondrial membrane, which in turn transported cytoplasmic Fe2+ into mitochondria, giving rise to the production of mitochondrial ROS and ferroptosis. Based on these findings, we concluded that ferritinophagy-mediated ferroptosis is one of the critical mechanisms contributing to sepsis-induced cardiac injury. Targeting ferroptosis in cardiomyocytes may be a therapeutic strategy for preventing sepsis in the future.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China; Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Mingxia Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Haiming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Difei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China.
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China.
| |
Collapse
|
38
|
GFI-1 Protects Against Lipopolysaccharide-Induced Inflammatory Responses and Apoptosis by Inhibition of the NF-κB/TNF-α Pathway in H9c2 Cells. Inflammation 2020; 43:74-84. [PMID: 31612364 DOI: 10.1007/s10753-019-01095-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Growth factor independence 1 (Gfi-1) has been widely studied for its anti-inflammatory and anti-apoptotic effects. However, whether Gfi-1 has similar effects on H9c2 cardiomyocytes has not yet been reported. In this study, we explored the effect of Gfi-1 on lipopolysaccharide (LPS)-induced inflammatory responses and apoptosis in H9c2 cells. We found that LPS induced the increased expression of TNF-α and IL-6 in the LPS group. After transfection of the Gfi-1 overexpression plasmid, the expression of TNF-α and IL-6 decreased significantly in the LPS + Gfi-1 group. Gfi-1 clearly blocked LPS-induced NF-κB, TNF-α, TNFR1, cleaved-caspase-3 and cleaved-caspase-8 expression and increased Gfi-1 and Bcl-xL expression in H9c2 cells. Similarly, compared with the LPS group, Gfi-1 significantly decreased the expression of cleaved-caspase3/8 and increased the expression of Bcl-xL in the LPS + Gfi-1 group, as verified by immunocytochemical analysis. Furthermore, Gfi-1 markedly inhibited LPS-induced H9c2 cardiomyocyte apoptosis in the LPS + Gfi-1 group, as determined by TEM, TUNEL and flow cytometry. Taken together, these results demonstrate that Gfi-1 may have protective effects against LPS-induced inflammatory responses and apoptosis in H9c2 cells. Gfi-1 may be a novel molecule for treating septic cardiomyopathy.
Collapse
|
39
|
Efentakis P, Varela A, Chavdoula E, Sigala F, Sanoudou D, Tenta R, Gioti K, Kostomitsopoulos N, Papapetropoulos A, Tasouli A, Farmakis D, Davos CH, Klinakis A, Suter T, Cokkinos DV, Iliodromitis EK, Wenzel P, Andreadou I. Levosimendan prevents doxorubicin-induced cardiotoxicity in time- and dose-dependent manner: implications for inotropy. Cardiovasc Res 2020; 116:576-591. [PMID: 31228183 DOI: 10.1093/cvr/cvz163] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
AIMS Levosimendan (LEVO) a clinically-used inodilator, exerts multifaceted cardioprotective effects. Case-studies indicate protection against doxorubicin (DXR)-induced cardiotoxicity, but this effect remains obscure. We investigated the effect and mechanism of different regimens of levosimendan on sub-chronic and chronic doxorubicin cardiotoxicity. METHODS AND RESULTS Based on preliminary in vivo experiments, rats serving as a sub-chronic model of doxorubicin-cardiotoxicity and were divided into: Control (N/S-0.9%), DXR (18 mg/kg-cumulative), DXR+LEVO (LEVO, 24 μg/kg-cumulative), and DXR+LEVO (acute) (LEVO, 24 μg/kg-bolus) for 14 days. Protein kinase-B (Akt), endothelial nitric oxide synthase (eNOS), and protein kinase-A and G (PKA/PKG) pathways emerged as contributors to the cardioprotection, converging onto phospholamban (PLN). To verify the contribution of PLN, phospholamban knockout (PLN-/-) mice were assigned to PLN-/-/Control (N/S-0.9%), PLN-/-/DXR (18 mg/kg), and PLN-/-/DXR+LEVO (ac) for 14 days. Furthermore, female breast cancer-bearing (BC) mice were divided into: Control (normal saline 0.9%, N/S 0.9%), DXR (18 mg/kg), LEVO, and DXR+LEVO (LEVO, 24 μg/kg-bolus) for 28 days. Echocardiography was performed in all protocols. To elucidate levosimendan's cardioprotective mechanism, primary cardiomyocytes were treated with doxorubicin or/and levosimendan and with N omega-nitro-L-arginine methyl ester (L-NAME), DT-2, and H-89 (eNOS, PKG, and PKA inhibitors, respectively); cardiomyocyte-toxicity was assessed. Single bolus administration of levosimendan abrogated DXR-induced cardiotoxicity and activated Akt/eNOS and cAMP-PKA/cGMP-PKG/PLN pathways but failed to exert cardioprotection in PLN-/- mice. Levosimendan's cardioprotection was also evident in the BC model. Finally, in vitro PKA inhibition abrogated levosimendan-mediated cardioprotection, indicating that its cardioprotection is cAMP-PKA dependent, while levosimendan preponderated over milrinone and dobutamine, by ameliorating calcium overload. CONCLUSION Single dose levosimendan prevented doxorubicin cardiotoxicity through a cAMP-PKA-PLN pathway, highlighting the role of inotropy in doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens 15771, Greece.,Center of Cardiology, Cardiology 2, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.,Center of Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Aimilia Varela
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Evangelia Chavdoula
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Fragiska Sigala
- First Department of Surgery, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, "Attikon" Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Roxane Tenta
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Katerina Gioti
- School of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Andreas Papapetropoulos
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens 15771, Greece.,Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | | | - Dimitrios Farmakis
- Second Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Athens University Hospital "Attikon", Athens, Greece.,School of Medicine, European University of Cyprus, Nicosia, Cyprus
| | - Costantinos H Davos
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Apostolos Klinakis
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Thomas Suter
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Dennis V Cokkinos
- Biomedical Research Foundation, Academy of Athens, Clinical, Experimental Surgery & Translational Research Center, Athens, Greece
| | - Efstathios K Iliodromitis
- Second Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Athens University Hospital "Attikon", Athens, Greece
| | - Philip Wenzel
- Center of Cardiology, Cardiology 2, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.,Center of Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Ioanna Andreadou
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens 15771, Greece
| |
Collapse
|
40
|
Ma Y, Cheng N, Sun J, Lu JX, Abbasi S, Wu G, Lee AS, Sawamura T, Cheng J, Chen CH, Xi Y. Atherogenic L5 LDL induces cardiomyocyte apoptosis and inhibits K ATP channels through CaMKII activation. Lipids Health Dis 2020; 19:189. [PMID: 32825832 PMCID: PMC7441649 DOI: 10.1186/s12944-020-01368-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022] Open
Abstract
Background Cardiac Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation plays a critical role in cardiomyocyte (CM) apoptosis and arrhythmia. Functional ATP-sensitive potassium (KATP) channels are essential for cardiac protection during ischemia. In cultured CMs, L5 low-density lipoprotein (LDL) induces apoptosis and QTc prolongation. L5 is a highly electronegative and atherogenic aberrant form of LDL, and its levels are significantly higher in patients with cardiovascular-related diseases. Here, the role of L5 in cardiac injury was studied by evaluating the effects of L5 on CaMKII activity and KATP channel physiology in CMs. Methods Cultured neonatal rat CMs (NRCMs) were treated with a moderate concentration (ie, 7.5 μg/mL) of L5 or L1 (the least electronegative LDL subfraction). NRCMs were examined for apoptosis and viability, CaMKII activity, and the expression of phosphorylated CaMKIIδ and NOX2/gp91phox. The function of KATP and action potentials (APs) was analyzed by using the patch-clamp technique. Results In NRCMs, L5 but not L1 significantly induced cell apoptosis and reduced cell viability. Furthermore, L5 decreased Kir6.2 expression by more than 50%. Patch-clamp analysis showed that L5 reduced the KATP current (IKATP) density induced by pinacidil, a KATP opener. The partial recovery of the inward potassium current during pinacidil washout was susceptible to subsequent inhibition by the IKATP blocker glibenclamide. Suppression of IKATP by L5 significantly prolonged the AP duration. L5 also significantly increased the activity of CaMKII, the phosphorylation of CaMKIIδ, and the expression of NOX2/gp91phox. L5-induced apoptosis was prevented by the addition of the CaMKII inhibitor KN93 and the reactive oxygen species scavenger Mn (III)TBAP. Conclusions L5 but not L1 induces CM damage through the activation of the CaMKII pathway and increases arrhythmogenicity in CMs by modulating the AP duration. These results help to explain the harmful effects of L5 in cardiovascular-related disease.
Collapse
Affiliation(s)
- Yanzhuo Ma
- Department of Cardiology, Bethune International Peace Hospital, 398 Zhongshan Xilu, Shijiazhuang, 050082, Hebei, China.,Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Nancy Cheng
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Junping Sun
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Jonathan Xuhai Lu
- Vascular and Medicinal Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA.,InVitro Cell Research, LLC, 106 Grand Avenue, Suite 290, Englewood, NJ, 07631, USA
| | - Shahrzad Abbasi
- Molecular Cardiology Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, USA
| | - Geru Wu
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, No. 46, Section 3, Zhongzheng Road, Sanzhi District, New Taipei City, Taiwan, 252.,Cardiovascular Research Laboratory, China Medical University Hospital, No. 2 Yude Road, North District, Taichung City, Taiwan
| | - Tatsuya Sawamura
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan.,Department of Molecular Pathophysiology, Shinshu University School of Medicine, 3 Chome-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Jie Cheng
- Cardiac Electrophysiology Research Laboratory, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA. .,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Yutao Xi
- Department of Cardiology, Bethune International Peace Hospital, 398 Zhongshan Xilu, Shijiazhuang, 050082, Hebei, China. .,, 6770 Bertner Street, MC 2-255, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Hu H, Fu Y, Li M, Xia H, Liu Y, Sun X, Hu Y, Song F, Cheng X, Li P, Wu Y. Interleukin-35 pretreatment attenuates lipopolysaccharide-induced heart injury by inhibition of inflammation, apoptosis and fibrotic reactions. Int Immunopharmacol 2020; 86:106725. [PMID: 32679538 DOI: 10.1016/j.intimp.2020.106725] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Previous studies have demonstrated that targeting inflammation is a promising strategy for treating lipopolysaccharide (LPS)-induced sepsis and related heart injury. Interleukin-35 (IL-35), which consists of two subunits, Epstein-Barr virus-induced gene 3 (EBI3) and p35, is an immunosuppressive cytokine of the IL-12 family and exhibits strong anti-inflammatory activity. However, the role of IL-35 in LPS-induced heart injury reains obscure. In this study, we explored the role of IL-35 in heart injury induced by LPS and its potential mechanisms. Mice were treated with a plasmid encoding IL-35 (pIL-35) and then injected intraperitoneally (ip) with LPS (10 mg/kg). Cardiac function was assessed by echocardiography 12 h later. LPS apparently decreased the expression of EBI3 and p35 and caused cardiac dysfunction and pathological changes, which were significantly improved by pIL-35 pretreatment. Moreover, pIL-35 pretreatment significantly decreased the levels of cardiac proinflammatory cytokines including TNF-α, IL-6, and IL-1β, and the NLRP3 inflammasome. Furthermore, decreased number of apoptotic myocardial cells, increased BCL-2 levels and decreased BAX levels inhibited apoptosis, and LPS-induced upregulation of the expression of cardiac pro-fibrotic genes (MMP2 and MMP9) and fibrotic factor (Collagen type I) was inhibited. Further investigation indicated that pIL-35 pretreatment might suppressed the activation of the cardiac NF-κBp65 and TGF-β1/Smad2/3 signaling pathways in LPS-treated mice. Similar cardioprotective effects of IL-35 pretreatment were observed in mouse myocardial fibroblasts challenged with LPS in vitro. In summary, IL-35 pretreatment can attenuate cardiac inflammation, apoptosis, and fibrotic reactions induced by LPS, implicating IL-35 as a promising therapeutic target in sepsis-related cardiac injury.
Collapse
Affiliation(s)
- Huan Hu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yang Fu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Huasong Xia
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yue Liu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaopei Sun
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yang Hu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fulin Song
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaoshu Cheng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ping Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
42
|
Poveda-Jaramillo R. Heart Dysfunction in Sepsis. J Cardiothorac Vasc Anesth 2020; 35:298-309. [PMID: 32807603 DOI: 10.1053/j.jvca.2020.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/11/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022]
Abstract
Cardiac involvement during sepsis frequently occurs. A series of molecules induces a set of changes at the cellular level that result in the malfunction of the myocardium. The understanding of these molecular alterations has simultaneously promoted the implementation of diagnostic strategies that are much more precise and allowed the advance of the therapeutics. The heart is a vital organ for survival. Its well-being ensures the adequate supply of essential elements for organs and tissues.
Collapse
|
43
|
Chen RJ, Rui QL, Wang Q, Tian F, Wu J, Kong XQ. Shenfu injection attenuates lipopolysaccharide-induced myocardial inflammation and apoptosis in rats. Chin J Nat Med 2020; 18:226-233. [PMID: 32245593 DOI: 10.1016/s1875-5364(20)30025-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Indexed: 11/18/2022]
Abstract
Shenfu injection (SFI), a Chinese medicinal product, shows potent efficacy in treating sepsis. The aim of the present study was to clarify the protective effects of SFI against lipopolysaccharide (LPS)-induced myocardial inflammation and apoptosis. Experiments were carried out in Sprague-Dawley (SD) rats treated with LPS or LPS + SFI, and in H9C2 cardiomyocytes. The sepsis-associated myocardial inflammation and apoptosis was induced by the intraperitoneal injection of LPS (20 mg·kg-1). SFI attenuated the increased expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β induced by LPS both in serum and heart. In LPS group, cell viability was reduced, and reversed after SFI administration. LPS treatment increased the expression levels of cleaved-caspase 3 and Bax, and those of Bcl2 and Bcl2/Bax. These two trends were reversed by SFI administration. The expression levels of phosphorylated mitogen-activated protein kinase kinase (p-MEK) and phosphorylated extracellular regulated protein kinases (p-ERK) were increased by LPS, and reversed by SFI. MEK inhibitor U0126 attenuated the apoptosis induced by LPS. These results indicate that SFI could treat LPS-induced cardiac dysfunction. In conclusion, SFI attenuates the inflammation and apoptosis induced by LPS via downregulating the MEK and ERK signaling pathways.
Collapse
Affiliation(s)
- Rui-Juan Chen
- Cardiology Department, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Emergency Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Qing-Lin Rui
- Emergency Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Qiong Wang
- Clinical Pharmacology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Fang Tian
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Jian Wu
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Xiang-Qing Kong
- Cardiology Department, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
44
|
Cai ZL, Shen B, Yuan Y, Liu C, Xie QW, Hu TT, Yao Q, Wu QQ, Tang QZ. The effect of HMGA1 in LPS-induced Myocardial Inflammation. Int J Biol Sci 2020; 16:1798-1810. [PMID: 32398950 PMCID: PMC7211173 DOI: 10.7150/ijbs.39947] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/26/2019] [Indexed: 12/30/2022] Open
Abstract
Aims: The High Mobility Group A1 (HMGA1) proteins, serving as a dynamic regulator of gene transcription and chromatin remodeling, play an influential part in the pathological process of a large number of cardiovascular diseases. However, the precise role of HMGA1 in sepsis induced cardiomyopathy (SIC) remains unintelligible. This research was designed to illustrate the effect of HMGA1 involved in SIC. Methods and Results: Cardiomyocyte-specific HMGA1 overexpression was obtained using an adeno-associated virus system with intramyocardial injection in mice heart. The model of SIC in mice was constructed via intraperitoneal injection of lipopolysaccharide (LPS) for 6h. H9c2 rat cardiomyocytes was stimulated with LPS for 12h. HMGA1 expression was upregulated in murine inflammatory hearts as well as LPS stimulated H9c2 cardiomyocytes. HMGA1-overexpressing exhibited aggravated cardiac dysfunction, cardiac inflammation as well as cells apoptosis following LPS treatment both in vivo and in vitro experiment. Interestingly, HMGA1 knockdown in H9c2 cardiomyocytes attenuated LPS-induced cardiomyocyte inflammation, but aggravated cell apoptosis. Mechanistically, we found that overexpression of HMGA1 induced increased expression of cyclooxygenase-2 (COX-2). COX-2 inhibitor alleviated the aggravation of inflammation and apoptosis in HMGA1 overexpressed H9c2 cardiomyocytes whereas HMGA1 knockdown induced a reduction in signal transducer and activators of transcription 3 (STAT3) expression. STAT3 agonist reversed HMGA1 silence induced anti-inflammatory effects, while ameliorated cell apoptosis induced by LPS. Conclusion: In conclusion, our results suggest that overexpression of HMGA1 aggravated cardiomyocytes inflammation and apoptosis by up-regulating COX-2 expression, while silence of HMGA1 expression attenuated inflammation but aggregated cell apoptosis via down-regulation of STAT3.
Collapse
Affiliation(s)
- Zhu-Lan Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qing-Wen Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Tong-Tong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, RP China
| |
Collapse
|
45
|
Li M, Ye J, Zhao G, Hong G, Hu X, Cao K, Wu Y, Lu Z. Gas6 attenuates lipopolysaccharide‑induced TNF‑α expression and apoptosis in H9C2 cells through NF‑κB and MAPK inhibition via the Axl/PI3K/Akt pathway. Int J Mol Med 2019; 44:982-994. [PMID: 31524235 PMCID: PMC6657963 DOI: 10.3892/ijmm.2019.4275] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 06/10/2019] [Indexed: 11/06/2022] Open
Abstract
Therapeutic agents used to treat sepsis‑induced cardiac dysfunction are designed to suppress tumor necrosis factor (TNF)‑α release and inhibit cell apoptosis. Exogenous administration of growth arrest‑specific 6 (Gas6) exerts several biological and pharmacological effects; however, the role of Gas6 in sepsis‑induced myocardial dysfunction remains unclear. In this study, H9C2 cardiomyocytes were stimulated with LPS (10 µg/ml) to mimic septic cardiac dysfunction and Gas6 (100 ng/ml) was applied exogenously. Subsequently, mitogen‑activated protein kinase (MAPK) and nuclear factor (NF)‑κB activation, TNF‑α expression, and apoptosis in the presence or absence of TP‑0903 (15 nM) and Wortmannin (3 nM) were evaluated. The morphological alterations of H9C2 cells were visualized by phase‑contrast microscopy. Cell viability was determined using the Cell Counting kit 8 assay and lactate dehydrogenase release, and TNF‑α release was analyzed by ELISA analysis. Cell apoptosis was analyzed by flow cytometry and TUNEL assay. Nuclear morphological alterations were detected by Hoechst staining and caspase‑3 activity was measured using biochemical methods. The expression levels of Bax and Bcl‑2, and the phosphorylation and expression levels of Axl, Akt, IκB‑α, p65, c‑Jun N‑terminal protein kinase (JNK), extracellular signal‑regulated kinase (ERK) and p38 were determined by western blotting. Furthermore, immunofluorescence analysis was performed to visualize translocation of NF‑κB p65. The results demonstrated that Gas6 suppressed TNF‑α release and inhibited cell apoptosis, and attenuated nuclear factor (NF)‑κB and mitogen‑activated protein kinase (MAPK) activation via the Axl/PI3K/Akt pathway. Furthermore, the cardioprotective properties of Gas6 on the suppression of LPS‑induced TNF‑α release and apoptosis were abolished by treatment with TP‑0903 (an Axl inhibitor) and Wortmannin (a PI3K inhibitor). Pretreatment with TP‑0903 and Wortmannin abrogated the effects of Gas6 on phosphorylated‑IκB‑α, IκB‑α, NF‑κB, ERK1/2, JNK and p38 MAPK. These findings suggested that activation of Axl/PI3K/Akt signaling by Gas6 may inhibit LPS‑induced TNF‑α expression and apoptosis, as well as MAPK and NF‑κB activation.
Collapse
Affiliation(s)
- Mengfang Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jingjing Ye
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guangju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Guangliang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiyi Hu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kaiqiang Cao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - You Wu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
46
|
Wang R, Li D, Ouyang J, Tian X, Zhao Y, Peng X, Li S, Yu G, Yang J. Leonurine alleviates LPS-induced myocarditis through suppressing the NF-кB signaling pathway. Toxicology 2019; 422:1-13. [PMID: 31005592 DOI: 10.1016/j.tox.2019.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 12/30/2022]
|
47
|
Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W, Tang Q. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol 2019; 24:101215. [PMID: 31121492 PMCID: PMC6529775 DOI: 10.1016/j.redox.2019.101215] [Citation(s) in RCA: 390] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/27/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Mountainous evidence suggests that inflammation, cardiomyocyte apoptosis and pyroptosis are involved in the development of sepsis and sepsis-induced cardiomyopathy (SIC). Stimulator of interferon genes (STING) is an indispensable molecule that could regulate inflammation and immune response in multiple diseases. However, the role of STING in cardiovascular disease, especially SIC remains unclear. This study was designed to investigate the potential molecular mechanisms of STING in lipopolysaccharide (LPS)-induced cardiac injury using STING global knockout mice. In wild type mice and cardiomyocytes, LPS stimulation triggered the perinuclear translocation of STING, which further bound to Type-I interferons (IFN) regulatory factor 3 (IRF3) and phosphorylated IRF3. Phosphorylated (P-) IRF3 subsequently translocated into nucleus and increased the expression of NOD-like receptor protein 3 (NLRP3). Knockout of STING in mice significantly improved survival rate and cardiac function, apart from suppressing myocardial and serum inflammatory cytokines, apoptosis, as well as cardiomyocyte pyroptosis. In vitro experiments revealed that NLRP3 overexpression by adenovirus could offset protective effects of STING knockdown in LPS-induced cardiomyocytes. Additionally, LPS stimulation also promoted the production of intracellular reactive oxygen (ROS), which further induced the NLRP3 translocation to the cytoplasm from the nucleus. Dissociative TXNIP could directly interact with cytoplasmic NLRP3 and form inflammasome, eventually triggering cardiomyocyte injury. Collectively, our findings disclose that STING deficiency could alleviate LPS-induced SIC in mice. Hence, targeting STING in cardiomyocytes may be a promising therapeutic strategy for preventing SIC.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China.
| | - Haiming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Mingxia Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China.
| |
Collapse
|
48
|
Wang S, Wang Y, Guo X, Li Y, Yan L, Wei C, Zhao M. Endotoxin modulates the electrophysiological characteristics of human embryonic stem cell‐differentiated cardiomyocytes. J Cell Physiol 2019. [PMCID: PMC6585610 DOI: 10.1002/jcp.27251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gram‐negative bacteria‐induced infections result in fever, arrhythmia, and even death. Lipopolysaccharide (LPS), a constituent of bacteria, leads to an inflammatory response under sepsis and increase arrhythmogenesis. This study analyzed the effects on human embryonic stem cell‐differentiated cardiomyocytes (HIPSC‐CMs) exposed to LPS. A whole cell patch clamp was used to record the action potential (AP) and ionic currents with or without different doses of LPS in HIPSC‐CMs. Compared with the control, a different dose (0.04, 0.2, 1, and 5 µg/ml) of LPS‐treated HIPSC‐CMs resulted in a longer AP duration. The IC50 of sodium channel current was 1.254 µg/ml, L‐type calcium channel current was 5 µg/ml, and
Ik channel currents were 1.254 µg/ml. LPS‐treated HIPSC‐CMs showed a lower sodium channel current, L‐type calcium channel current, and
Ik channel currents. Furthermore, the expressions of Nav1.5 were decreased, and L‐Ca, Kv11.1, and Kv7.1 were increased in LPS‐treated HIPSC‐CMs. LPS‐induced arrhythmogenesis was related to the electrophysiological characteristics of sodium channel current, L‐type calcium channel current, and
Ik channel currents. These results suggest a potential mechanism of cardiomyocyte injury in endotoxemia.
Collapse
Affiliation(s)
- Shiji Wang
- First Hospital of Jilin University Changchun Jilin China
| | - Yu Wang
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities Tongliao Inner Mongolia China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio‐Cerebral Vascular System Tongliao Inner Mongolia China
| | - Xin Guo
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities Tongliao Inner Mongolia China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio‐Cerebral Vascular System Tongliao Inner Mongolia China
| | - Yingji Li
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities Tongliao Inner Mongolia China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio‐Cerebral Vascular System Tongliao Inner Mongolia China
| | - Li Yan
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities Tongliao Inner Mongolia China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio‐Cerebral Vascular System Tongliao Inner Mongolia China
| | - Chengxi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities Tongliao Inner Mongolia China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio‐Cerebral Vascular System Tongliao Inner Mongolia China
| | - Ming Zhao
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities Tongliao Inner Mongolia China
- Affiliated Hospital of Inner Mongolia University for Nationalities Tongliao Inner Mongolia China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio‐Cerebral Vascular System Tongliao Inner Mongolia China
| |
Collapse
|
49
|
Zhou J, Wang Y, Liu Y, Zeng H, Xu H, Lian F. Adipose derived mesenchymal stem cells alleviated osteoarthritis and chondrocyte apoptosis through autophagy inducing. J Cell Biochem 2019; 120:2198-2212. [PMID: 30315711 DOI: 10.1002/jcb.27530] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/01/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE We aim to explore the effect of adipose derived mesenchymal stem cells (ADMSCs) on a knee osteoarthritis rat model and analyze how ADMSCs affect chondrocyte apoptosis. MATERIALS AND METHODS A surgically induced rat knee osteoarthritis (OA) model was constructed. ADMSCs were engrafted into the right knee cavity. Hematoxylin and eosin (H&E), Masson, and Safranin O were used to compare the histopathology of synovial membrane and cartilage. Immunohistochemical (IHC) was used to measure MMP-13, Collagen 2 (Col-2), Caspase-3 (Cas-3), PARP, p62, LC3b, DDR-2, FGFR-1, Wnt, P-AKT/AKT, p-CAMKII/CAMKII, and p-Smad1/Smad1 expression in the articular cartilage. qPCR and Western blot analysis were used to detect mRNA and protein levels of markers in chondrocytes. TUNEL and Annexin-V were used to assess apoptosis. RESULTS Histological analysis showed that ADMSCs alleviated the deterioration of cartilage and osteoarthritis. ADMSCs coculture increase the expression of Col2 and Sox-9, while down regulated MMP-13 in IL-1β stimulated chondrocytes. ADMSCs decreased proinflammatory cytokines IL-1β, IL-6, and TNF-α. ADMSCs enhanced the viability of IL-1β stimulated chondrocytes. ADMSC attenuated chondrocyte apoptosis. The pretreatment of 3-methyladenine (3-MA) reversed the reduction of Caspase-3 caused by ADMSCs, showing that the antiapoptotic effect was associated with autophagy inducing. ADMSCs significantly reduced the expression of FGFR-1, DDR-2, and Wnt in IL-1β stimulated chondrocytes. ADMSCs reduced the ratio of p-Smad1/Smad1 and p-CAMK II/CAMKII, and increased the ratio of p-AKT/AKT. CONCLUSIONS ADMSCs treatment alleviate osteoarthritis in rat OA models. AMDSCs reduced the secretion of proinflammatory cytokines and protected against apoptosis through autophagy inducing. ADMSCs' function could be related to multiple signaling pathway.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Rheumatology & Clinical Immunology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Wang
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiming Liu
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hanjiang Zeng
- Department of Rheumatology & Clinical Immunology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology & Clinical Immunology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fan Lian
- Department of Rheumatology & Clinical Immunology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
50
|
Kontogiannis C, Kosmopoulos M, Georgiopoulos G, Spartalis M, Paraskevaidis I, Chatzidou S. Mitochondria in β-adrenergic signaling: emerging therapeutic perspectives in heart failure and ventricular arrhythmias. J Thorac Dis 2018; 10:S4183-S4185. [PMID: 30632537 DOI: 10.21037/jtd.2018.11.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Christos Kontogiannis
- Department of Clinical Therapeutics, "Alexandra" Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marinos Kosmopoulos
- Department of Clinical Therapeutics, "Alexandra" Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, "Alexandra" Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Spartalis
- Department of Electrophysiology and Pacing, Onassis Cardiac Surgery Center, Athens, Greece
| | - Ioannis Paraskevaidis
- Department of Clinical Therapeutics, "Alexandra" Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Chatzidou
- Department of Clinical Therapeutics, "Alexandra" Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|