1
|
Barrios EL, Balzano-Nogueira L, Polcz VE, Rodhouse C, Leary JR, Darden DB, Rincon JC, Dirain ML, Ungaro R, Nacionales DC, Larson SD, Sharma A, Upchurch G, Wallet SM, Brusko TM, Loftus TJ, Mohr AM, Maile R, Bacher R, Cai G, Kladde MP, Mathews CE, Moldawer LL, Brusko MA, Efron PA. Unique lymphocyte transcriptomic profiles in septic patients with chronic critical illness. Front Immunol 2024; 15:1478471. [PMID: 39691721 PMCID: PMC11649506 DOI: 10.3389/fimmu.2024.1478471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Despite continued improvement in post-sepsis survival, long term morbidity and mortality remain high. Chronic critical illness (CCI), defined as persistent inflammation and organ injury requiring prolonged intensive care, is a harbinger of poor long-term outcomes in sepsis survivors. Current dogma states that sepsis survivors are immunosuppressed, particularly in CCI. Investigation of this immune suppression in heterogeneous immune populations across distinct clinical trajectories and outcomes, along with limited sampling access, is accessible via single-cell RNA sequencing (scRNA-seq). Methods scRNA-seq analysis was performed on healthy subjects (n=12), acutely septic patients at day 4 ± 1 (n=4), and those defined as rapid recovery (n=4) or CCI (n=5) at day 14-21. Differential gene expression and pathway analyses were performed on peripheral blood lymphocytes at both a population and annotated cell subset level. Cellular function was assessed via enzyme-linked immunosorbent spot (ELISpot), cytokine production analysis, and T-cell proliferation assays on an additional cohort of septic patients (19 healthy, 68 acutely septic, 27 rapid recovery and 20 classified as CCI 14-21 days after sepsis onset). Results Sepsis survivors that developed CCI exhibited proportional shifts within lymphoid cell populations, with expanded frequency of CD8+ and NK cells. Differential expression and pathway analyses revealed continued activation in T cells and NK cells, with generalized suppression of B-cell function. Both T and NK cell subsets displayed transcriptomic profiles of exhaustion and immunosuppression in CCI, particularly in CD8+ T effector memory (TEM) cells and NK cells. Functional validation of T-cell behavior in an independent cohort demonstrated T cells maintained proliferative responses in vitro yet exhibited a marked loss of cytokine production. IFN-γ production at the acute phase (day 4 ± 1) was significantly reduced in subjects later classified as CCI. Discussion Sepsis patients exhibit unique T-, B-, and NK-cell transcriptional patterns that are both time- and clinical trajectory-dependent. These transcriptomic and pathway differences in sepsis patients that develop CCI are associated with exhaustion in CD8+ TEM cells and NK cells. Understanding the specific immune system patterns of different cell subsets after sepsis at a molecular level will be key to the development of personalized immunotherapy and drug-targeting intervention. Clinical trial registration https://clinicaltrials.gov/, identifier NCT02276417.
Collapse
Affiliation(s)
- Evan L. Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | | | - Valerie E. Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christine Rodhouse
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jack R. Leary
- Department of Biostatistics, University of Florida College of Medicine and Public Health and Health Sciences, Gainesville, FL, United States
| | - Dijoia B. Darden
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jaimar C. Rincon
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marvin L. Dirain
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ricardo Ungaro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Dina C. Nacionales
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D. Larson
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ashish Sharma
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Gilburt Upchurch
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shannon M. Wallet
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, United States
| | - Todd M. Brusko
- Diabetes Institute, University of Florida, Gainesville, FL, United States
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Tyler J. Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M. Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Robert Maile
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rhonda Bacher
- Diabetes Institute, University of Florida, Gainesville, FL, United States
- Department of Biostatistics, University of Florida College of Medicine and Public Health and Health Sciences, Gainesville, FL, United States
| | - Guoshuai Cai
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael P. Kladde
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L. Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Maigan A. Brusko
- Diabetes Institute, University of Florida, Gainesville, FL, United States
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
2
|
Chadda KR, Blakey EE, Davies TW, Puthucheary Z. Risk factors, biomarkers, and mechanisms for persistent inflammation, immunosuppression, and catabolism syndrome (PICS): a systematic review and meta-analysis. Br J Anaesth 2024; 133:538-549. [PMID: 38688799 PMCID: PMC11347813 DOI: 10.1016/j.bja.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
INTRODUCTION Persistent inflammation, immunosuppression, and catabolism syndrome (PICS) has been proposed as an endotype of chronic critical illness (CCI). The aim of this systematic review is to synthesise the available evidence of risk factors, biomarkers, and biological mechanisms underlying PICS. METHODS MEDLINE, CENTRAL, and EMBASE were searched on June 2, 2023. Our population of interest was adult intensive care unit survivors. The exposure group was patients with PICS and the comparator group was patients with no PICS, CCI, or rapid recovery. Mean differences were pooled for each biomarker using a random effects DerSimonian-Laird method. Risk of bias assessment was done using the Newcastle-Ottawa Scale. RESULTS Six papers were included. Five were single-centre retrospective cohort studies, and one was a prospective cohort study, with sample sizes ranging from 22 to 391 patients. Two studies showed an increased incidence of PICS with age, and two studies showed an association between PICS and Charlson Comorbidity Index scores. PICS was associated with requiring mechanical ventilation in four studies. Meta-analysis showed a 34.4 mg L-1 higher C-reactive protein (95% confidence interval [CI] 12.7-56.2 mg L-1; P<0.01), a 4.4 g L-1 lower albumin (95% CI 0.5-8.3 g L-1; P<0.01), and a 0.36×109 L-1 lower lymphocyte count (95% CI 0.25-0.47×109 L-1; P=0.01) in the PICS compared with the non-PICS group. There are a large variety of other potential biomarkers but limited validation studies. The overall quality of evidence is limited, and these results should be interpreted accordingly. CONCLUSIONS While older patients and those with co-morbidities could be at greater risk for PICS, acquired risk factors, such as injury severity, are potentially more predictive of PICS than intrinsic patient characteristics. There are many potential biomarkers for PICS, but limited validation studies have been conducted. Persistent myeloid-derived suppressor cell expansion, the continual release of danger-associated molecular patterns and pathogen-associated molecular patterns propagating inflammation, and bioenergetic failure are all mechanisms underlying PICS that could offer potential for novel biomarkers and therapeutic interventions. CLINICAL TRIAL REGISTRATION International Prospective Register of Systematic Reviews (PROSPERO; CRD42023427749).
Collapse
Affiliation(s)
- Karan R Chadda
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK; Homerton College, University of Cambridge, Cambridge, UK; Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| | - Ellen E Blakey
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Thomas W Davies
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK; Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Zudin Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK; Adult Critical Care Unit, Royal London Hospital, London, UK
| |
Collapse
|
3
|
Wang W, Ma L, Liu B, Ouyang L. The role of trained immunity in sepsis. Front Immunol 2024; 15:1449986. [PMID: 39221248 PMCID: PMC11363069 DOI: 10.3389/fimmu.2024.1449986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction syndrome caused by dysregulated host response to infection, characterized by a systemic inflammatory response to infection. The use of antibiotics, fluid resuscitation, and organ support therapy has limited prognostic benefit in patients with sepsis, and its incidence is not diminishing, which is attracting increased attention in medicine. Sepsis remains one of the most debilitating and expensive illnesses. One of the main reasons of septic mortality is now understood to be disruption of immune homeostasis. Immunotherapy is revolutionizing the treatment of illnesses in which dysregulated immune responses play a significant role. This "trained immunity", which is a potent defense against infection regardless of the type of bacteria, fungus, or virus, is attributed to the discovery that the innate immune cells possess immune memory via metabolic and epigenetic reprogramming. Here we reviewed the immunotherapy of innate immune cells in sepsis, the features of trained immunity, and the relationship between trained immunity and sepsis.
Collapse
Affiliation(s)
| | | | | | - Liangliang Ouyang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
4
|
Polcz VE, Barrios EL, Larson SD, Efron PA, Rincon JC. Charting the course for improved outcomes in chronic critical illness: therapeutic strategies for persistent inflammation, immunosuppression, and catabolism syndrome (PICS). Br J Anaesth 2024; 133:260-263. [PMID: 38902117 DOI: 10.1016/j.bja.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/22/2024] Open
Abstract
Enhanced critical care delivery has led to improved survival rates in critically ill patients, yet sepsis remains a leading cause of multiorgan failure with variable recovery outcomes. Chronic critical illness, characterised by prolonged ICU stays and persistent end-organ dysfunction, presents a significant challenge in patient management, often requiring multifaceted interventions. Recent research, highlighted in a comprehensive review in the British Journal of Anaesthesia, focuses on addressing the pathophysiological drivers of chronic critical illness, such as persistent inflammation, immunosuppression, and catabolism, through targeted therapeutic strategies including immunomodulation, muscle wasting prevention, nutritional support, and microbiome modulation. Although promising avenues exist, challenges remain in patient heterogeneity, treatment timing, and the need for multimodal approaches.
Collapse
Affiliation(s)
- Valerie E Polcz
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Evan L Barrios
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Shawn D Larson
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Philip A Efron
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Jaimar C Rincon
- Department of Surgery, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Barrios EL, Rincon JC, Willis M, Polcz VE, Leary JR, Darden DB, Balch JA, Larson SD, Loftus TJ, Mohr AM, Wallet S, Brusko MA, Balzano-Nogueira L, Cai G, Sharma A, Upchurch GR, Kladde MP, Mathews CE, Maile R, Moldawer LL, Bacher R, Efron PA. TRANSCRIPTOMIC DIFFERENCES IN PERIPHERAL MONOCYTE POPULATIONS IN SEPTIC PATIENTS BASED ON OUTCOME. Shock 2024; 62:208-216. [PMID: 38713581 DOI: 10.1097/shk.0000000000002379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
ABSTRACT Postsepsis early mortality is being replaced by survivors who experience either a rapid recovery and favorable hospital discharge or the development of chronic critical illness with suboptimal outcomes. The underlying immunological response that determines these clinical trajectories remains poorly defined at the transcriptomic level. As classical and nonclassical monocytes are key leukocytes in both the innate and adaptive immune systems, we sought to delineate the transcriptomic response of these cell types. Using single-cell RNA sequencing and pathway analyses, we identified gene expression patterns between these two groups that are consistent with differences in TNF-α production based on clinical outcome. This may provide therapeutic targets for those at risk for chronic critical illness in order to improve their phenotype/endotype, morbidity, and long-term mortality.
Collapse
Affiliation(s)
- Evan L Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Jaimar C Rincon
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Micah Willis
- Department of Oral Biology, College of Dentistry, Gainesville, Florida
| | - Valerie E Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Jack R Leary
- Department of Biostatistics, College of Medicine, Gainesville, Florida
| | - Dijoia B Darden
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Jeremy A Balch
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Shawn D Larson
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Tyler J Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Alicia M Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Shannon Wallet
- Department of Oral Biology, College of Dentistry, Gainesville, Florida
| | - Maigan A Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Gainesville, Florida
| | | | - Guoshuai Cai
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Ashish Sharma
- Department of Surgery, College of Medicine, Gainesville, Florida
| | | | - Michael P Kladde
- Department of Biochemistry and Molecular Biology, College of Medicine, Gainesville, Florida
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Gainesville, Florida
| | - Robert Maile
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| | - Rhonda Bacher
- Department of Biostatistics, College of Medicine, Gainesville, Florida
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, College of Medicine, Gainesville, Florida
| |
Collapse
|
6
|
Barrios EL, Leary JR, Darden DB, Rincon JC, Willis M, Polcz VE, Gillies GS, Munley JA, Dirain ML, Ungaro R, Nacionales DC, Gauthier MPL, Larson SD, Morel L, Loftus TJ, Mohr AM, Maile R, Kladde MP, Mathews CE, Brusko MA, Brusko TM, Moldawer LL, Bacher R, Efron PA. The post-septic peripheral myeloid compartment reveals unexpected diversity in myeloid-derived suppressor cells. Front Immunol 2024; 15:1355405. [PMID: 38720891 PMCID: PMC11076668 DOI: 10.3389/fimmu.2024.1355405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Sepsis engenders distinct host immunologic changes that include the expansion of myeloid-derived suppressor cells (MDSCs). These cells play a physiologic role in tempering acute inflammatory responses but can persist in patients who develop chronic critical illness. Methods Cellular Indexing of Transcriptomes and Epitopes by Sequencing and transcriptomic analysis are used to describe MDSC subpopulations based on differential gene expression, RNA velocities, and biologic process clustering. Results We identify a unique lineage and differentiation pathway for MDSCs after sepsis and describe a novel MDSC subpopulation. Additionally, we report that the heterogeneous response of the myeloid compartment of blood to sepsis is dependent on clinical outcome. Discussion The origins and lineage of these MDSC subpopulations were previously assumed to be discrete and unidirectional; however, these cells exhibit a dynamic phenotype with considerable plasticity.
Collapse
Affiliation(s)
- Evan L. Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jack R. Leary
- Department of Biostatistics, University of Florida College of Medicine and Public Health and Health Sciences, Gainesville, FL, United States
| | - Dijoia B. Darden
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jaimar C. Rincon
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Micah Willis
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Valerie E. Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Gwendolyn S. Gillies
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jennifer A. Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marvin L. Dirain
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ricardo Ungaro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Dina C. Nacionales
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marie-Pierre L. Gauthier
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D. Larson
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Laurence Morel
- Department of Microbiology and Immunology, University of Texas San Antonio School of Medicine, San Antonio, TX, United States
| | - Tyler J. Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M. Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Robert Maile
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael P. Kladde
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Maigan A. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L. Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida College of Medicine and Public Health and Health Sciences, Gainesville, FL, United States
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
7
|
Cui J, Cai W, Lin J, Zhang L, Miao Y, Xu Y, Zhao W. Monocytic myeloid-derived suppressor cells as an immune indicator of early diagnosis and prognosis in patients with sepsis. BMC Infect Dis 2024; 24:399. [PMID: 38609858 PMCID: PMC11015644 DOI: 10.1186/s12879-024-09290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Immunosuppression is a leading cause of septic death. Therefore, it is necessary to search for biomarkers that can evaluate the immune status of patients with sepsis. We assessed the diagnostic and prognostic value of low-density neutrophils (LDNs) and myeloid-derived suppressor cells (MDSCs) subsets in the peripheral blood mononuclear cells (PBMCs) of patients with sepsis. METHODS LDNs and MDSC subsets were compared among 52 inpatients with sepsis, 33 inpatients with infection, and 32 healthy controls to investigate their potential as immune indicators of sepsis. The percentages of LDNs, monocytic MDSCs (M-MDSCs), and polymorphonuclear MDSCs (PMN-MDSCs) in PBMCs were analyzed. Sequential organ failure assessment (SOFA) scores, C-reactive protein (CRP), and procalcitonin (PCT) levels were measured concurrently. RESULTS The percentages of LDNs and MDSC subsets were significantly increased in infection and sepsis as compared to control. MDSCs performed similarly to CRP and PCT in diagnosing infection or sepsis. LDNs and MDSC subsets positively correlated with PCT and CRP levels and showed an upward trend with the number of dysfunctional organs and SOFA score. Non-survivors had elevated M-MDSCs compared with that of patients who survived sepsis within 28 days after enrollment. CONCLUSIONS MDSCs show potential as a diagnostic biomarker comparable to CRP and PCT, in infection and sepsis, even in distinguishing sepsis from infection. M-MDSCs show potential as a prognostic biomarker of sepsis and may be useful to predict 28-day hospital mortality in patients with sepsis.
Collapse
Affiliation(s)
- Juanjuan Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, 215006, Suzhou, China
| | - Wen Cai
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, 215006, Suzhou, China
| | - Jing Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, 215006, Suzhou, China
| | - Li Zhang
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, 215006, Suzhou, China
| | - Youhan Miao
- Department of Infectious Diseases, The Third Affiliated Hospital of Nantong University, No. 60 Qingnian Middle Road, Chongchuan District, 226006, Nantong, China
| | - Ying Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, 215006, Suzhou, China
| | - Weifeng Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, 215006, Suzhou, China.
| |
Collapse
|
8
|
Chadda KR, Puthucheary Z. Persistent inflammation, immunosuppression, and catabolism syndrome (PICS): a review of definitions, potential therapies, and research priorities. Br J Anaesth 2024; 132:507-518. [PMID: 38177003 PMCID: PMC10870139 DOI: 10.1016/j.bja.2023.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 01/06/2024] Open
Abstract
Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) is a clinical endotype of chronic critical illness. PICS consists of a self-perpetuating cycle of ongoing organ dysfunction, inflammation, and catabolism resulting in sarcopenia, immunosuppression leading to recurrent infections, metabolic derangements, and changes in bone marrow function. There is heterogeneity regarding the definition of PICS. Currently, there are no licensed treatments specifically for PICS. However, findings can be extrapolated from studies in other conditions with similar features to repurpose drugs, and in animal models. Drugs that can restore immune homeostasis by stimulating lymphocyte production could have potential efficacy. Another treatment could be modifying myeloid-derived suppressor cell (MDSC) activation after day 14 when they are immunosuppressive. Drugs such as interleukin (IL)-1 and IL-6 receptor antagonists might reduce persistent inflammation, although they need to be given at specific time points to avoid adverse effects. Antioxidants could treat the oxidative stress caused by mitochondrial dysfunction in PICS. Possible anti-catabolic agents include testosterone, oxandrolone, IGF-1 (insulin-like growth factor-1), bortezomib, and MURF1 (muscle RING-finger protein-1) inhibitors. Nutritional support strategies that could slow PICS progression include ketogenic feeding and probiotics. The field would benefit from a consensus definition of PICS using biologically based cut-off values. Future research should focus on expanding knowledge on underlying pathophysiological mechanisms of PICS to identify and validate other potential endotypes of chronic critical illness and subsequent treatable traits. There is unlikely to be a universal treatment for PICS, and a multimodal, timely, and personalised therapeutic strategy will be needed to improve outcomes for this growing cohort of patients.
Collapse
Affiliation(s)
- Karan R Chadda
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK; Homerton College, University of Cambridge, Cambridge, UK; Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| | - Zudin Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK; Adult Critical Care Unit, Royal London Hospital, London, UK
| |
Collapse
|
9
|
Chung KP, Su JY, Wang YF, Budiarto BR, Yeh YC, Cheng JC, Keng LT, Chen YJ, Lu YT, Juan YH, Nakahira K, Ruan SY, Chien JY, Chang HT, Jerng JS, Huang YT, Chen SY, Yu CJ. Immunometabolic features of natural killer cells are associated with infection outcomes in critical illness. Front Immunol 2024; 15:1334882. [PMID: 38426112 PMCID: PMC10902670 DOI: 10.3389/fimmu.2024.1334882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 03/02/2024] Open
Abstract
Immunosuppression increases the risk of nosocomial infection in patients with chronic critical illness. This exploratory study aimed to determine the immunometabolic signature associated with nosocomial infection during chronic critical illness. We prospectively recruited patients who were admitted to the respiratory care center and who had received mechanical ventilator support for more than 10 days in the intensive care unit. The study subjects were followed for the occurrence of nosocomial infection until 6 weeks after admission, hospital discharge, or death. The cytokine levels in the plasma samples were measured. Single-cell immunometabolic regulome profiling by mass cytometry, which analyzed 16 metabolic regulators in 21 immune subsets, was performed to identify immunometabolic features associated with the risk of nosocomial infection. During the study period, 37 patients were enrolled, and 16 patients (43.2%) developed nosocomial infection. Unsupervised immunologic clustering using multidimensional scaling and logistic regression analyses revealed that expression of nuclear respiratory factor 1 (NRF1) and carnitine palmitoyltransferase 1a (CPT1a), key regulators of mitochondrial biogenesis and fatty acid transport, respectively, in natural killer (NK) cells was significantly associated with nosocomial infection. Downregulated NRF1 and upregulated CPT1a were found in all subsets of NK cells from patients who developed a nosocomial infection. The risk of nosocomial infection is significantly correlated with the predictive score developed by selecting NK cell-specific features using an elastic net algorithm. Findings were further examined in an independent cohort of COVID-19-infected patients, and the results confirm that COVID-19-related mortality is significantly associated with mitochondria biogenesis and fatty acid oxidation pathways in NK cells. In conclusion, this study uncovers that NK cell-specific immunometabolic features are significantly associated with the occurrence and fatal outcomes of infection in critically ill population, and provides mechanistic insights into NK cell-specific immunity against microbial invasion in critical illness.
Collapse
Affiliation(s)
- Kuei-Pin Chung
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jia-Ying Su
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Yi-Fu Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bugi Ratno Budiarto
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Chang Yeh
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jui-Chen Cheng
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Ta Keng
- Department of Internal Medicine, National Taiwan University Hospital, Hsinchu, Taiwan
| | - Yi-Jung Chen
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Ting Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsiu Juan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kiichi Nakahira
- Department of Pharmacology, Nara Medical University, Kashihara, Nara, Japan
| | - Sheng-Yuan Ruan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jung-Yien Chien
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hou-Tai Chang
- Department of Critical Care Medicine, Far Eastern Memorial Hospital, New Taipei, Taiwan
- Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan, Taiwan
| | - Jih-Shuin Jerng
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Hsinchu, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Wang Y, Zhang C, Liu T, Yu Z, Wang K, Ying J, Wang Y, Zhu T, Li J, Hu XL, Zhou Y, Lu G. Malat1 regulates PMN-MDSC expansion and immunosuppression through p-STAT3 ubiquitination in sepsis. Int J Biol Sci 2024; 20:1529-1546. [PMID: 38385073 PMCID: PMC10878150 DOI: 10.7150/ijbs.92267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expand during sepsis and contribute to the development of persistent inflammation-immunosuppression-catabolism syndrome. However, the underlying mechanism remains unclear. Exploring the mechanisms of MDSCs generation may provide therapeutic targets for improving immune status in sepsis. Here, a sepsis mouse model is established by cecal ligation and perforation. Bone marrow cells at different sepsis time points are harvested to detect the proportion of MDSCs and search for differentially expressed genes by RNA-sequence. In lethal models of sepsis, polymorphonuclear-MDSCs (PMN-MDSCs) decrease in early but increase and become activated in late sepsis, which is contrary to the expression of metastasis-associated lung adenocarcinoma transcript 1 (Malat1). In vivo, Malat1 inhibitor significantly increases the mortality in mice with late sepsis. And in vitro, Malat1 down-regulation increases the proportion of PMN-MDSCs and enhanced its immunosuppressive ability. Mechanistically, Malat1 limits the differentiation of PMN-MDSCs by accelerating the degradation of phosphorylated STAT3. Furthermore, Stattic, an inhibitor of STAT3 phosphorylation, improves the survival of septic mice by inhibiting PMN-MDSCs. Overall, the study identifies a novel insight into the mechanism of sepsis-induced MDSCs and provides more evidence for targeting MDSCs in the treatment of sepsis.
Collapse
Affiliation(s)
- Yaodong Wang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Caiyan Zhang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Tingyan Liu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Zhenhao Yu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Kexin Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiayun Ying
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yao Wang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Ting Zhu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Jingjing Li
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xiuchuan Lucas Hu
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Yufeng Zhou
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
- Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
- Fujian Key Laboratory of Neonatal Diseases, Fujian, China
| | - Guoping Lu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Xiong X, Zhang Y, Wen Y. Diverse functions of myeloid-derived suppressor cells in autoimmune diseases. Immunol Res 2024; 72:34-49. [PMID: 37733169 PMCID: PMC10811123 DOI: 10.1007/s12026-023-09421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Since myeloid-derived suppressor cells (MDSCs) were found suppressing immune responses in cancer and other pathological conditions, subsequent researchers have pinned their hopes on the suppressive function against immune damage in autoimmune diseases. However, recent studies have found key distinctions of MDSC immune effects in cancer and autoimmunity. These include not only suppression and immune tolerance, but MDSCs also possess pro-inflammatory effects and exacerbate immune disorders during autoimmunity, while promoting T cell proliferation, inducing Th17 cell differentiation, releasing pro-inflammatory cytokines, and causing direct tissue damage. Additionally, MDSCs could interact with surrounding cells to directly cause tissue damage or repair, sometimes even as an inflammatory indicator in line with disease severity. These diverse manifestations could be partially attributed to the heterogeneity of MDSCs, but not all. The different disease types, disease states, and cytokine profiles alter the diverse phenotypes and functions of MDSCs, thus leading to the impairment or obversion of MDSC suppression. In this review, we summarize the functions of MDSCs in several autoimmune diseases and attempt to elucidate the mechanisms behind their actions.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Barrios EL, Mazer MB, McGonagill PW, Bergmann CB, Goodman MD, Gould RW, Rao M, Polcz VE, Davis RJ, Del Toro DE, Dirain ML, Dram A, Hale LO, Heidarian M, Kim CY, Kucaba TA, Lanz JP, McCray AE, Meszaros S, Miles S, Nelson CR, Rocha IL, Silva EE, Ungaro RF, Walton AH, Xu J, Zeumer-Spataro L, Drewry AM, Liang M, Bible LE, Loftus TJ, Turnbull IR, Efron PA, Remy KE, Brakenridge SC, Badovinac VP, Griffith TS, Moldawer LL, Hotchkiss RS, Caldwell CC. Adverse outcomes and an immunosuppressed endotype in septic patients with reduced IFN-γ ELISpot. JCI Insight 2024; 9:e175785. [PMID: 38100268 PMCID: PMC10906237 DOI: 10.1172/jci.insight.175785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUNDSepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients generally relies on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision.METHODSAn ex vivo whole-blood enzyme-linked immunosorbent spot (ELISpot) assay for cellular production of interferon γ (IFN-γ) was evaluated in 107 septic and 68 nonseptic patients from 5 academic health centers using blood samples collected on days 1, 4, and 7 following ICU admission.RESULTSCompared with 46 healthy participants, unstimulated and stimulated whole-blood IFN-γ expression was either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole-blood IFN-γ expression was significantly reduced on ICU days 1, 4, and 7 (all P < 0.05), due to both significant reductions in total number of IFN-γ-producing cells and amount of IFN-γ produced per cell (all P < 0.05). Importantly, IFN-γ total expression on days 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6, and procalcitonin. Septic patients with low IFN-γ expression were older and had lower ALCs and higher soluble PD-L1 and IL-10 concentrations, consistent with an immunosuppressed endotype.CONCLUSIONSA whole-blood IFN-γ ELISpot assay can both identify septic patients at increased risk of late mortality and identify immunosuppressed septic patients.TRIAL REGISTRYN/A.FUNDINGThis prospective, observational, multicenter clinical study was directly supported by National Institute of General Medical Sciences grant R01 GM-139046, including a supplement (R01 GM-139046-03S1) from 2022 to 2024.
Collapse
Affiliation(s)
- Evan L. Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Monty B. Mazer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Patrick W. McGonagill
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Christian B. Bergmann
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- University Hospital Ulm, Clinic for Trauma Surgery, Hand, Plastic, and Reconstructive Surgery Albert-Einstein-Allee 23, Ulm, Germany
| | - Michael D. Goodman
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert W. Gould
- Department of Anesthesiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mahil Rao
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Valerie E. Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ruth J. Davis
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Drew E. Del Toro
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marvin L.S. Dirain
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alexandra Dram
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lucas O. Hale
- Department of Anesthesiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mohammad Heidarian
- Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Caleb Y. Kim
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Tamara A. Kucaba
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jennifer P. Lanz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ashley E. McCray
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Sandra Meszaros
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sydney Miles
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Candace R. Nelson
- Department of Anesthesiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ivanna L. Rocha
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Elvia E. Silva
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ricardo F. Ungaro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Andrew H. Walton
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julie Xu
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Leilani Zeumer-Spataro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Anne M. Drewry
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Muxuan Liang
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Biostatistics, University of Florida College of Public Health and Health Professions and the University of Florida College of Medicine, Gainesville, Florida, USA
| | - Letitia E. Bible
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Tyler J. Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Isaiah R. Turnbull
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kenneth E. Remy
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Scott C. Brakenridge
- Department of Surgery, Harborview Medical Center, University of Washington School of Medicine, Seattle, Washington, USA
| | - Vladimir P. Badovinac
- Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Experimental Pathology PhD Program, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Minneapolis VA Healthcare System, Minneapolis, Minnesota, USA
| | - Lyle L. Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Richard S. Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles C. Caldwell
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Padovani CM, Yin K. Immunosuppression in Sepsis: Biomarkers and Specialized Pro-Resolving Mediators. Biomedicines 2024; 12:175. [PMID: 38255280 PMCID: PMC10813323 DOI: 10.3390/biomedicines12010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Severe infection can lead to sepsis. In sepsis, the host mounts an inappropriately large inflammatory response in an attempt to clear the invading pathogen. This sustained high level of inflammation may cause tissue injury and organ failure. Later in sepsis, a paradoxical immunosuppression occurs, where the host is unable to clear the preexisting infection and is susceptible to secondary infections. A major issue with sepsis treatment is that it is difficult for physicians to ascertain which stage of sepsis the patient is in. Sepsis treatment will depend on the patient's immune status across the spectrum of the disease, and these immune statuses are nearly polar opposites in the early and late stages of sepsis. Furthermore, there is no approved treatment that can resolve inflammation without contributing to immunosuppression within the host. Here, we review the major mechanisms of sepsis-induced immunosuppression and the biomarkers of the immunosuppressive phase of sepsis. We focused on reviewing three main mechanisms of immunosuppression in sepsis. These are lymphocyte apoptosis, monocyte/macrophage exhaustion, and increased migration of myeloid-derived suppressor cells (MDSCs). The biomarkers of septic immunosuppression that we discuss include increased MDSC production/migration and IL-10 levels, decreased lymphocyte counts and HLA-DR expression, and increased GPR18 expression. We also review the literature on the use of specialized pro-resolving mediators (SPMs) in different models of infection and/or sepsis, as these compounds have been reported to resolve inflammation without being immunosuppressive. To obtain the necessary information, we searched the PubMed database using the keywords sepsis, lymphocyte apoptosis, macrophage exhaustion, MDSCs, biomarkers, and SPMs.
Collapse
Affiliation(s)
- Cristina M. Padovani
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Life Sciences of Rowan University, Stratford, NJ 08084, USA;
| | | |
Collapse
|
14
|
Coudereau R, Haem Rahimi M, Lukaszewicz AC, Cour M, Bidar F, Argaud L, Venet F, Monneret G. Immature neutrophils and myeloid-derived suppressor cells in sepsis: differences in occurrence kinetics. Crit Care 2024; 28:7. [PMID: 38169413 PMCID: PMC10759592 DOI: 10.1186/s13054-023-04781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Rémy Coudereau
- Immunology Laboratory, Edouard Herriot Hospital, Hospices Civils de Lyon, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux, Lyon, France
| | - Muzhda Haem Rahimi
- Immunology Laboratory, Edouard Herriot Hospital, Hospices Civils de Lyon, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux, Lyon, France
| | - Anne-Claire Lukaszewicz
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux, Lyon, France
- Anesthesia and Critical Care Medicine Department, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Martin Cour
- Medical Intensive Care Department, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Frank Bidar
- Anesthesia and Critical Care Medicine Department, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Laurent Argaud
- Medical Intensive Care Department, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Fabienne Venet
- Immunology Laboratory, Edouard Herriot Hospital, Hospices Civils de Lyon, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Guillaume Monneret
- Immunology Laboratory, Edouard Herriot Hospital, Hospices Civils de Lyon, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France.
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux, Lyon, France.
| |
Collapse
|
15
|
Zhi L, Gu L, Tong L, Liu X, Lu L, Guo R. Immune profile alterations of systemic lupus erythematosus patients with infections. Clin Exp Med 2023; 23:4765-4777. [PMID: 37938465 DOI: 10.1007/s10238-023-01220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
This study aimed to elucidate the immune status of systemic lupus erythematosus (SLE) patients with infections. We enrolled 253 SLE patients including 77 patients with infections. Clinical features and immunological parameters were analyzed, with particular reference to neutrophil CD64 (nCD64) expression, myeloid-derived suppressor cells (MDSCs), activated T cells and multiple cytokines. Among the 77 SLE patients with infections, 32 patients (41.56%) developed fever and 20 patients (25.97%) developed serositis, which were higher compared to the non-infection group. A considerably higher level of nCD64 was found in the infection group (4.65 vs 1.01, P < 0.001). In addition, the infection group exhibited higher percentages of total MDSCs (6.99 vs 4.30%, P = 0.003), polymorphonuclear MDSCs (PMN-MDSCs) (P = 0.032) and monocytic MDSCs (M-MDSCs) (P = 0.015). T cells were more activated during infections, with an elevated level of IL-2R (P < 0.001). Specifically, higher percentages of CD4+CD38+ T cells (55.73 vs 50.17%, P = 0.036), CD8+HLA-DR+ T cells (59.82 vs 47.99%, P < 0.001) and CD8+CD38+ T cells (68.59 vs 63.90%, P = 0.044) were identified in the infection group. Furthermore, the serum levels of IL-6, IL-8 and IL-10 were elevated in the infection group (all P < 0.001). Higher proportions of neutrophils, CD4+ and CD8+ T cells, and MDSCs were activated during infections in SLE patients. Additionally, the serum cytokines altered during infections, with noticeably elevated levels of IL-6, IL-8 and IL-10. Infections may lead to the amplification of immune alterations in SLE.
Collapse
Affiliation(s)
- Langxian Zhi
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Liyang Gu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Lei Tong
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, 200030, China
| | - Xuesong Liu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China.
| | - Ruru Guo
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China.
| |
Collapse
|
16
|
Efron PA, Brakenridge SC, Mohr AM, Barrios EL, Polcz VE, Anton S, Ozrazgat-Baslanti T, Bihorac A, Guirgis F, Loftus TJ, Rosenthal M, Leeuwenburgh C, Mankowski R, Moldawer LL, Moore FA. The persistent inflammation, immunosuppression, and catabolism syndrome 10 years later. J Trauma Acute Care Surg 2023; 95:790-799. [PMID: 37561664 PMCID: PMC10615691 DOI: 10.1097/ta.0000000000004087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
With the implementation of new intensive care unit (ICU) therapies in the 1970s, multiple organ failure (MOF) emerged as a fulminant inflammatory phenotype leading to early ICU death. Over the ensuing decades, with fundamental advances in care, this syndrome has evolved into a lingering phenotype of chronic critical illness (CCI) leading to indolent late post-hospital discharge death. In 2012, the University of Florida (UF) Sepsis Critical Illness Research Center (SCIRC) coined the term Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) to provide a mechanistic framework to study CCI in surgical patients. This was followed by a decade of research into PICS-CCI in surgical ICU patients in order to define the epidemiology, dysregulated immunity, and long-term outcomes after sepsis. Other focused studies were performed in trauma ICU patients and emergency department sepsis patients. Early deaths were surprisingly low (4%); 63% experienced rapid recovery. Unfortunately, 33% progressed to CCI, of which 79% had a poor post-discharge disposition and 41% were dead within one year. These patients had biomarker evidence of PICS, and these biomarkers enhanced clinical prediction models for dismal one-year outcomes. Emergency myelopoiesis appears to play a central role in the observed persistent immune dysregulation that characterizes PICS-CCI. Older patients were especially vulnerable. Disturbingly, over half of the older CCI patients were dead within one year and older CCI survivors remained severely disabled. Although CCI is less frequent (20%) after major trauma, PICS appears to be a valid concept. This review will specifically detail the epidemiology of CCI, PICS biomarkers, effect of site of infection, acute kidney injury, effect on older patients, dysfunctional high-density lipoproteins, sarcopenia/cachexia, emergency myelopoiesis, dysregulated erythropoiesis, and potential therapeutic interventions. A review of UF SCIRC’s research efforts characterizing CCI, PICS biomarkers, effect of site of infection, acute kidney injury, effects on older patients, dysfunctional high-density lipoproteins, sarcopenia/cachexia, emergency myelopoiesis, and dysregulated erythropoiesis.
Collapse
Affiliation(s)
- Philip A Efron
- From the Department of Surgery and Anesthesiology (P.A.E., A.M.M., M.R.), University of Florida, Gainesville, Florida, Department of Surgery (S.C.B.), University of Washington, Seattle, Washington; Department of Surgery (E.L.B., V.E.P., T.J.L., L.L.M., F.A.M.), Department of Physiology and Aging (S.A., C.L., R.M.), Department of Medicine (T.O.-B., A.B.), University of Florida, Gainesville; and Department of Emergency Medicine (F.G.), University of Florida, Jacksonville, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sanchez-Pinto LN, Bhavani SV, Atreya MR, Sinha P. Leveraging Data Science and Novel Technologies to Develop and Implement Precision Medicine Strategies in Critical Care. Crit Care Clin 2023; 39:627-646. [PMID: 37704331 DOI: 10.1016/j.ccc.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Precision medicine aims to identify treatments that are most likely to result in favorable outcomes for subgroups of patients with similar clinical and biological characteristics. The gaps for the development and implementation of precision medicine strategies in the critical care setting are many, but the advent of data science and multi-omics approaches, combined with the rich data ecosystem in the intensive care unit, offer unprecedented opportunities to realize the promise of precision critical care. In this article, the authors review the data-driven and technology-based approaches being leveraged to discover and implement precision medicine strategies in the critical care setting.
Collapse
Affiliation(s)
- Lazaro N Sanchez-Pinto
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA; Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
| | | | - Mihir R Atreya
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Pratik Sinha
- Division of Clinical and Translational Research, Department of Anesthesia, Washington University School of Medicine, 1 Barnes Jewish Hospital Plaza, St. Louis, MO 63110, USA; Division of Critical Care, Department of Anesthesia, Washington University School of Medicine, 1 Barnes Jewish Hospital Plaza, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Wójcik B, Superata J, Szyguła Z. Simple Blood Test Indicating Sepsis Relapse: A Case Report. Cureus 2023; 15:e47199. [PMID: 38021942 PMCID: PMC10652649 DOI: 10.7759/cureus.47199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Delays in the diagnosis and management of sepsis are associated with higher mortality. Moreover, routine blood tests performed just before hospital discharge are still insufficient for sepsis survivors. In this report, for the first time, dramatic hematological changes found in the blood of a sepsis survivor are described. The pictorial information from microscope images associated with an appropriate set of multiparameter laboratory test results enabled for prediction of sepsis relapse four days before its clinical recognition. Thus, the role of this case report is to encourage medical practitioners to introduce (or re-introduce) blood smears as the helpful adjunctive extension of routine blood testing, especially when sepsis is suspected.
Collapse
Affiliation(s)
- Barbara Wójcik
- Department of Clinical Rehabilitation, University of Physical Education in Krakow, Krakow, POL
| | - Jerzy Superata
- Department of Clinical Rehabilitation, University of Physical Education in Krakow, Krakow, POL
| | - Zbigniew Szyguła
- Department of Sports Medicine and Human Nutrition, University of Physical Education in Krakow, Krakow, POL
| |
Collapse
|
19
|
Chen P, Chen J, Ye J, Yang L. Identification of an Immune-Related Gene Diagnostic Model and Potential Drugs in Sepsis Using Bioinformatics and Pharmacogenomics Approaches. Infect Drug Resist 2023; 16:5665-5680. [PMID: 37662976 PMCID: PMC10473429 DOI: 10.2147/idr.s418176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose Sepsis is an organ dysfunction with high mortality. Early identification, diagnosis, and effective treatment of sepsis are beneficial to the survival of patients. This study aimed to find potential diagnosis and immune-related genes, and drug targets, which could provide novel diagnostic and therapeutic markers for sepsis. Patients and Methods The GSE69063, GSE154918 and GSE28750 datasets were integrated to evaluate immune infiltration and identify differentially expressed genes (DEGs) and immune-related genes. Weighted gene co-expression network analysis (WGCNA) was applied to find the hub module related to immune score and sepsis. Immune-related key genes were screened out by taking interaction of DEGs, immune-related genes, and genes in hub module. Protein-protein interaction (PPI) analysis was used to further screen immune-related hub genes, followed by construction of a diagnostic model based on immune-related hub genes. Functional analysis and drug prediction of immune-related hub genes were, respectively, performed by David software and DGIdb database, followed by expression validation by reverse transcriptase polymerase chain reaction (RT-PCR). Results Totally, 93 immune-related key genes were identified between 561 DEGs, 1793 immune-related genes and 12,459 genes in the hub module of WGCNA. Through PPI analysis, a total of 5 diagnose and immune-related hub genes were further obtained, including IL7R, IL10, CD40LG, CD28 and LCN2. Relationship pairs between these 5 genes and immune cell were identified, including LCN2/IL7R/CD28-activated dendritic cell and IL10-immature B cell. Based on pharmacogenomics, 17 candidate drugs might interact with IL 10, including CYCLOSPORINE. Six candidate drugs might interact with CD28 and 11 with CD40LG, CD40LG and CD28 were drug targets of ALDESLEUKIN. Four significantly enriched signaling pathways were identified, such as T cell receptor signaling pathway, NF-kappa B signaling pathway and JAK-STAT signaling pathway. Conclusion The 5-gene diagnostic model could be used to diagnose and guide clinical immunotherapy for sepsis.
Collapse
Affiliation(s)
- Peng Chen
- Department of Urology, General Hospital of Northern Theater Command PLA, Shenyang, People’s Republic of China
| | - Juan Chen
- Department of Oncology, General Hospital of Northern Theater Command PLA, Shenyang, People’s Republic of China
| | - Jinghe Ye
- Department of Urology, General Hospital of Northern Theater Command PLA, Shenyang, People’s Republic of China
| | - Limin Yang
- Department of Urology, General Hospital of Northern Theater Command PLA, Shenyang, People’s Republic of China
| |
Collapse
|
20
|
Han R, Li W, Tian H, Zhao Y, Zhang H, Pan W, Wang X, Xu L, Ma Z, Bao Z. Urinary microRNAs in sepsis function as a novel prognostic marker. Exp Ther Med 2023; 26:346. [PMID: 37383369 PMCID: PMC10294602 DOI: 10.3892/etm.2023.12045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/16/2023] [Indexed: 06/30/2023] Open
Abstract
Renal dysfunction is a common complication of sepsis. Early diagnosis and prompt treatment of sepsis with renal insufficiency are crucial for improving patient outcomes. Diagnostic markers can help identify patients at risk for sepsis and AKI, allowing for early intervention and potentially preventing the development of severe complications. The aim of the present study was to investigate the expression difference of urinary microRNAs (miRNAs/miRs) in elderly patients with sepsis and secondary renal insufficiency, and to evaluate their diagnostic value in these patients. In the present study, RNA was extracted from urine samples of elderly sepsis-related acute renal damage patients and the expression profiles of several miRNAs were analyzed. In order to evaluate the expression profile of several miRNAs, urine samples from elderly patients with acute renal damage brought on by sepsis were obtained. RNA extraction and sequencing were then performed on the samples. Furthermore, multiple bioinformatics methods were used to analyze miRNA profiles, including differential expression analysis, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of different miRNA target genes, to further explore miRNAs that are suitable for utilization as biomarkers. A total of four miRNAs, including hsa-miR-31-5p, hsa-miR-151a-3p, hsa-miR-142-5p and hsa-miR-16-5p, were identified as potential biological markers and were further confirmed in sepsis using reverse transcription-quantitative PCR. The results of the present study demonstrated that the four urinary miRNAs were differentially expressed and may serve as specific markers for prediction of secondary acute kidney injury in elderly patients with sepsis.
Collapse
Affiliation(s)
- Rui Han
- Department of Emergency, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Wanqiu Li
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Hui Tian
- Department of Gerontology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yun Zhao
- Department of Emergency, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hui Zhang
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Wei Pan
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Xianyi Wang
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Linfeng Xu
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Zhongliang Ma
- Laboratory for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
21
|
Ostrand-Rosenberg S, Lamb TJ, Pawelec G. Here, There, and Everywhere: Myeloid-Derived Suppressor Cells in Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1183-1197. [PMID: 37068300 PMCID: PMC10111205 DOI: 10.4049/jimmunol.2200914] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 04/19/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) were initially identified in humans and mice with cancer where they profoundly suppress T cell- and NK cell-mediated antitumor immunity. Inflammation is a central feature of many pathologies and normal physiological conditions and is the dominant driving force for the accumulation and function of MDSCs. Therefore, MDSCs are present in conditions where inflammation is present. Although MDSCs are detrimental in cancer and conditions where cellular immunity is desirable, they are beneficial in settings where cellular immunity is hyperactive. Because MDSCs can be generated ex vivo, they are being exploited as therapeutic agents to reduce damaging cellular immunity. In this review, we discuss the detrimental and beneficial roles of MDSCs in disease settings such as bacterial, viral, and parasitic infections, sepsis, obesity, trauma, stress, autoimmunity, transplantation and graft-versus-host disease, and normal physiological settings, including pregnancy and neonates as well as aging. The impact of MDSCs on vaccination is also discussed.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Division of Microbiology and Immunology, Department of Pathology, University of Utah 84112, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Tracey J. Lamb
- Division of Microbiology and Immunology, Department of Pathology, University of Utah 84112, Salt Lake City, UT
| | - Graham Pawelec
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany, and Health Sciences North Research Institute, Sudbury, ON, Canada
| |
Collapse
|
22
|
Zhang W, Fang X, Gao C, Song C, He Y, Zhou T, Yang X, Shang Y, Xu J. MDSCs in sepsis-induced immunosuppression and its potential therapeutic targets. Cytokine Growth Factor Rev 2023; 69:90-103. [PMID: 35927154 DOI: 10.1016/j.cytogfr.2022.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. In sepsis, a complicated immune response is initiated, which varies over time with sustained excessive inflammation and immunosuppression. Identifying a promising way to orchestrate sepsis-induced immunosuppression is a challenge. Myeloid-derived suppressor cells (MDSCs) comprise pathologically activated neutrophils and monocytes with potent immunosuppressive activity. They play an important part in inhibiting innate and adaptive immune responses, and have emerged as part of the immune response in sepsis. MDSCs numbers are persistently high in sepsis patients, and associated with nosocomial infections and other adverse clinical outcomes. However, their characteristics and functional mechanisms during sepsis have not been addressed fully. Our review sheds light on the features and suppressive mechanism of MDSCs. We also review the potential applications of MDSCs as biomarkers and targets for clinical treatment of sepsis.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangzhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenggang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoying Song
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and critical care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
23
|
MONOCYTIC MYELOID-DERIVED SUPPRESSOR CELL EXPANSION AFTER CARDIAC SURGERY WITH CARDIOPULMONARY BYPASS INDUCES LYMPHOCYTE DYSFUNCTION. Shock 2022; 58:476-483. [PMID: 36548638 DOI: 10.1097/shk.0000000000002007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT Cardiac surgery with cardiopulmonary bypass (CPB) is associated with an immune paresis that predisposes to the development of postoperative infections and sepsis. Among factors responsible for CPB-induced immunosuppression, circulating myeloid-derived suppressor cells (MDSCs) have been found to induce early lymphocyte apoptosis and lymphocyte proliferation inhibition. However, the mechanisms involved are not fully understood. In this study, we found that the main lymphocyte subsets decreased significantly 24 h after cardiac surgery with CBP. As expected, cardiac surgery with CPB induced a monocytic MDSC expansion associated with an increased T-cell apoptosis and decreased proliferation capacity. Noteworthy, granulocytic MDSCs remain stable. Myeloid-derived suppressor cell depletion restored the ability of T-cell to proliferate ex vivo . After CPB, indoleamine 2,3-dioxygenase activity and IL-10 plasma level were increased such as programmed death-ligand 1 monocytic expression, whereas plasma level of arginine significantly decreased. Neither the inhibition of indoleamine 2,3-dioxygenase activity nor the use of anti-programmed death-ligand 1 or anti-IL-10 blocking antibody restored the ability of T-cell to proliferate ex vivo . Only arginine supplementation restored partially the ability of T-cell to proliferate.
Collapse
|
24
|
Formosa A, Turgeon P, dos Santos CC. Role of miRNA dysregulation in sepsis. Mol Med 2022; 28:99. [PMID: 35986237 PMCID: PMC9389495 DOI: 10.1186/s10020-022-00527-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Sepsis is defined as a state of multisystem organ dysfunction secondary to a dysregulated host response to infection and causes millions of deaths worldwide annually. Novel ways to counteract this disease are needed and such tools may be heralded by a detailed understanding of its molecular pathogenesis. MiRNAs are small RNA molecules that target mRNAs to inhibit or degrade their translation and have important roles in several disease processes including sepsis. Main body The current review adopted a strategic approach to analyzing the widespread literature on the topic of miRNAs and sepsis. A pubmed search of “miRNA or microRNA or small RNA and sepsis not review” up to and including January 2021 led to 1140 manuscripts which were reviewed. Two hundred and thirty-three relevant papers were scrutinized for their content and important themes on the topic were identified and subsequently discussed, including an in-depth look at deregulated miRNAs in sepsis in peripheral blood, myeloid derived suppressor cells and extracellular vesicles. Conclusion Our analysis yielded important observations. Certain miRNAs, namely miR-150 and miR-146a, have consistent directional changes in peripheral blood of septic patients across numerous studies with strong data supporting a role in sepsis pathogenesis. Furthermore, a large body of literature show miRNA signatures of clinical relevance, and lastly, many miRNAs deregulated in sepsis are associated with the process of endothelial dysfunction. This review offers a widespread, up-to-date and detailed discussion of the role of miRNAs in sepsis and is meant to stimulate further work in the field due to the potential of these small miRNAs in prompt diagnostics, prognostication and therapeutic agency. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00527-z.
Collapse
|
25
|
Bonavia AS, Samuelsen A, Luthy J, Halstead ES. Integrated machine learning approaches for flow cytometric quantification of myeloid-derived suppressor cells in acute sepsis. Front Immunol 2022; 13:1007016. [PMID: 36466851 PMCID: PMC9714638 DOI: 10.3389/fimmu.2022.1007016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/04/2022] [Indexed: 09/05/2024] Open
Abstract
Highly heterogeneous cell populations require multiple flow cytometric markers for appropriate phenotypic characterization. This exponentially increases the complexity of 2D scatter plot analyses and exacerbates human errors due to variations in manual gating of flow data. We describe a semi-automated workflow, based entirely on the Flowjo Graphical User Interface (GUI), that involves the stepwise integration of several, newly available machine learning tools for the analysis of myeloid-derived suppressor cells (MDSCs) in septic and non-septic critical illness. Supervised clustering of flow cytometric data showed correlation with, but significantly different numbers of, MDSCs as compared with the cell numbers obtained by manual gating. Neither quantification method predicted 30-day clinical outcomes in a cohort of 16 critically ill and septic patients and 5 critically ill and non-septic patients. Machine learning identified a significant decrease in the proportion of PMN-MDSC in critically ill and septic patients as compared with healthy controls. There was no difference between the proportion of these MDSCs in septic and non-septic critical illness.
Collapse
Affiliation(s)
- Anthony S. Bonavia
- Division of Critical Care Medicine, Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Abigail Samuelsen
- Division of Critical Care Medicine, Department of Anesthesiology and Perioperative Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Joshua Luthy
- Product Innovation Division, BD Life Sciences - FlowJo, Ashland, OR, United States
| | - E. Scott Halstead
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
26
|
Xu L, Zhou C, Liang Y, Fan T, Zhang F, Chen X, Yuan W. Epigenetic modifications in the accumulation and function of myeloid-derived suppressor cells. Front Immunol 2022; 13:1016870. [PMID: 36439186 PMCID: PMC9691837 DOI: 10.3389/fimmu.2022.1016870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/31/2022] [Indexed: 12/27/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are key players under various pathologic conditions, such as cancer. Epigenetic modifications such as DNA methylation, RNA-mediated processes, and histone modification can alter gene transcription, and thus regulating pathological process. Studies have shown that epigenetic modification contributes to the accumulation and function of MDSCs. This review summarizes the crosstalk between the epigenetic alterations and MDSCs functions, and briefly introduces how the accumulation and function of MDSCs caused by epigenetic modification impact on the disease development, which represents as a promising therapeutic strategy for the related disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
27
|
Bhavani SV, Semler M, Qian ET, Verhoef PA, Robichaux C, Churpek MM, Coopersmith CM. Development and validation of novel sepsis subphenotypes using trajectories of vital signs. Intensive Care Med 2022; 48:1582-1592. [PMID: 36152041 PMCID: PMC9510534 DOI: 10.1007/s00134-022-06890-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Sepsis is a heterogeneous syndrome and identification of sub-phenotypes is essential. This study used trajectories of vital signs to develop and validate sub-phenotypes and investigated the interaction of sub-phenotypes with treatment using randomized controlled trial data. METHODS All patients with suspected infection admitted to four academic hospitals in Emory Healthcare between 2014-2017 (training cohort) and 2018-2019 (validation cohort) were included. Group-based trajectory modeling was applied to vital signs from the first 8 h of hospitalization to develop and validate vitals trajectory sub-phenotypes. The associations between sub-phenotypes and outcomes were evaluated in patients with sepsis. The interaction between sub-phenotype and treatment with balanced crystalloids versus saline was tested in a secondary analysis of SMART (Isotonic Solutions and Major Adverse Renal Events Trial). RESULTS There were 12,473 patients with suspected infection in training and 8256 patients in validation cohorts, and 4 vitals trajectory sub-phenotypes were found. Group A (N = 3483, 28%) were hyperthermic, tachycardic, tachypneic, and hypotensive. Group B (N = 1578, 13%) were hyperthermic, tachycardic, tachypneic (not as pronounced as Group A) and hypertensive. Groups C (N = 4044, 32%) and D (N = 3368, 27%) had lower temperatures, heart rates, and respiratory rates, with Group C normotensive and Group D hypotensive. In the 6,919 patients with sepsis, Groups A and B were younger while Groups C and D were older. Group A had the lowest prevalence of congestive heart failure, hypertension, diabetes mellitus, and chronic kidney disease, while Group B had the highest prevalence. Groups A and D had the highest vasopressor use (p < 0.001 for all analyses above). In logistic regression, 30-day mortality was significantly higher in Groups A and D (p < 0.001 and p = 0.03, respectively). In the SMART trial, sub-phenotype significantly modified treatment effect (p = 0.03). Group D had significantly lower odds of mortality with balanced crystalloids compared to saline (odds ratio (OR) 0.39, 95% confidence interval (CI) 0.23-0.67, p < 0.001). CONCLUSION Sepsis sub-phenotypes based on vital sign trajectory were consistent across cohorts, had distinct outcomes, and different responses to treatment with balanced crystalloids versus saline.
Collapse
Affiliation(s)
- Sivasubramanium V Bhavani
- Department of Medicine, Emory University, Atlanta, GA, USA.
- Emory Critical Care Center, Atlanta, GA, USA.
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, 615 Michael St., Atlanta, GA, 30322, USA.
| | - Matthew Semler
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Edward T Qian
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Philip A Verhoef
- Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
- Hawaii Permanente Medical Group, Honolulu, HI, USA
| | - Chad Robichaux
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Matthew M Churpek
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Craig M Coopersmith
- Emory Critical Care Center, Atlanta, GA, USA
- Department of Surgery, Emory University, Atlanta, GA, USA
| |
Collapse
|
28
|
Rogala J, Siemińska I, Baran J, Rubinkiewicz M, Zybaczyńska J, Szczepanik AM, Pach R. Myeloid-Derived Suppressor Cells May Predict the Occurrence of Postoperative Complications in Colorectal Cancer Patients-a Pilot Study. J Gastrointest Surg 2022; 26:2354-2357. [PMID: 35650461 DOI: 10.1007/s11605-022-05364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/13/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Joanna Rogala
- First Department of Surgery, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688, Krakow, Poland
| | - Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Mateusz Rubinkiewicz
- Second Department of Surgery, Jagiellonian University Medical College, Krakow, Poland
| | | | - Antoni M Szczepanik
- First Department of Surgery, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688, Krakow, Poland
| | - Radoslaw Pach
- First Department of Surgery, Faculty of Medicine, Jagiellonian University Medical College, 2 Jakubowskiego Street, 30-688, Krakow, Poland.
| |
Collapse
|
29
|
Bain CR, Myles PS, Taylor R, Trahair H, Lee YP, Croft L, Peyton PJ, Painter T, Chan MTV, Wallace S, Corcoran T, Shaw AD, Paul E, Ziemann M, Bozaoglu K. Methylomic and transcriptomic characterization of postoperative systemic inflammatory dysregulation. Transl Res 2022; 247:79-98. [PMID: 35470009 DOI: 10.1016/j.trsl.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
Abstract
In this study, we define and validate a state of postoperative systemic inflammatory dysregulation (PSID) based on postoperative phenotypic extremes of plasma C-reactive protein concentration following major abdominal surgery. PSID manifested clinically with significantly higher rates of sepsis, complications, longer hospital stays and poorer short, and long-term outcomes. We hypothesized that PSID will be associated with, and potentially predicted by, altered patterns of genome-wide peripheral blood mononuclear cell differential DNA methylation and gene expression. We identified altered DNA methylation and differential gene expression in specific immune and metabolic pathways during PSID. Our findings suggest that dysregulation results in, or from, dramatic changes in differential DNA methylation and highlights potential targets for early detection and treatment. The combination of altered DNA methylation and gene expression suggests that dysregulation is mediated at multiple levels within specific gene sets and hence, nonspecific anti-inflammatory treatments such as corticosteroids alone are unlikely to represent an effective therapeutic strategy.
Collapse
Affiliation(s)
- Chris R Bain
- Genomics and Systems Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Anesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne Victoria, Australia; Department of Anesthesiology and Perioperative Medicine, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.
| | - Paul S Myles
- Department of Anesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne Victoria, Australia; Department of Anesthesiology and Perioperative Medicine, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Rachael Taylor
- Genomics and Systems Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Hugh Trahair
- Genomics and Systems Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Yin Peng Lee
- Genomics Centre, School of life and environmental sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, Australia
| | - Larry Croft
- Genomics Centre, School of life and environmental sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, Australia
| | - Philip J Peyton
- Department of Anesthesia, The Austin Hospital and Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas Painter
- Department of Anesthesia, Royal Adelaide Hospital, Discipline of Acute Care Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care, The Chinese Universtiy of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sophie Wallace
- Department of Anesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne Victoria, Australia; Department of Anesthesiology and Perioperative Medicine, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| | - Tomás Corcoran
- Department of Anesthesia and Pain Medicine, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Andrew D Shaw
- Department of Anesthesiology and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina; Department of Intensive Care and Resuscitation, Cleveland Clinic, Cleveland, Ohio
| | - Eldho Paul
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Mark Ziemann
- Genomics Centre, School of life and environmental sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, Australia; Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Kiymet Bozaoglu
- Genomics and Systems Biology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Voiriot G, Oualha M, Pierre A, Salmon-Gandonnière C, Gaudet A, Jouan Y, Kallel H, Radermacher P, Vodovar D, Sarton B, Stiel L, Bréchot N, Préau S, Joffre J. Chronic critical illness and post-intensive care syndrome: from pathophysiology to clinical challenges. Ann Intensive Care 2022; 12:58. [PMID: 35779142 PMCID: PMC9250584 DOI: 10.1186/s13613-022-01038-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Post‐intensive care syndrome (PICS) encompasses physical, cognition, and mental impairments persisting after intensive care unit (ICU) discharge. Ultimately it significantly impacts the long‐term prognosis, both in functional outcomes and survival. Thus, survivors often develop permanent disabilities, consume a lot of healthcare resources, and may experience prolonged suffering. This review aims to present the multiple facets of the PICS, decipher its underlying mechanisms, and highlight future research directions. Main text This review abridges the translational data underlying the multiple facets of chronic critical illness (CCI) and PICS. We focus first on ICU-acquired weakness, a syndrome characterized by impaired contractility, muscle wasting, and persisting muscle atrophy during the recovery phase, which involves anabolic resistance, impaired capacity of regeneration, mitochondrial dysfunction, and abnormalities in calcium homeostasis. Second, we discuss the clinical relevance of post-ICU cognitive impairment and neuropsychological disability, its association with delirium during the ICU stay, and the putative role of low-grade long-lasting inflammation. Third, we describe the profound and persistent qualitative and quantitative alteration of the innate and adaptive response. Fourth, we discuss the biological mechanisms of the progression from acute to chronic kidney injury, opening the field for renoprotective strategies. Fifth, we report long-lasting pulmonary consequences of ARDS and prolonged mechanical ventilation. Finally, we discuss several specificities in children, including the influence of the child’s pre-ICU condition, development, and maturation. Conclusions Recent understandings of the biological substratum of the PICS’ distinct features highlight the need to rethink our patient trajectories in the long term. A better knowledge of this syndrome and precipitating factors is necessary to develop protocols and strategies to alleviate the CCI and PICS and ultimately improve patient recovery.
Collapse
Affiliation(s)
- Guillaume Voiriot
- Service de Médecine Intensive Réanimation, Hôpital Tenon, Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker Hospital, APHP, Centre - Paris University, Paris, France
| | - Alexandre Pierre
- Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, 59000, Lille, France.,Department of Intensive Care Medicine, Critical Care Center, CHU Lille, 59000, Lille, France.,Faculté de Médecine de Tours, Centre d'Etudes des Pathologies Respiratoires, INSERM U1100, University Lille, Tours, France
| | - Charlotte Salmon-Gandonnière
- Service de Médecine Intensive Réanimation, CHRU de Tours, Réseau CRICS-TRIGGERSEP F-CRIN Research Network, Tours, France
| | - Alexandre Gaudet
- Department of Intensive Care Medicine, Critical Care Center, CHU Lille, 59000, Lille, France.,Faculté de Médecine de Tours, Centre d'Etudes des Pathologies Respiratoires, INSERM U1100, University Lille, Tours, France.,Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, 59000, Lille, France
| | - Youenn Jouan
- Service de Médecine Intensive Réanimation, CHRU de Tours, Réseau CRICS-TRIGGERSEP F-CRIN Research Network, Tours, France
| | - Hatem Kallel
- Service de Réanimation, Centre Hospitalier de Cayenne, French Guiana, Cayenne, France
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, 89070, Ulm, Germany
| | - Dominique Vodovar
- Centre AntiPoison de Paris, Hôpital Fernand Widal, APHP, 75010, Paris, France.,Faculté de Pharmacie, UMRS 1144, 75006, Paris, France.,Université de Paris, UFR de Médecine, 75010, Paris, France
| | - Benjamine Sarton
- Critical Care Unit, University Hospital of Purpan, Toulouse, France.,Toulouse NeuroImaging Center, ToNIC, Inserm 1214, Paul Sabatier University, Toulouse, France
| | - Laure Stiel
- Service de Réanimation Médicale, Groupe Hospitalier de la Région Mulhouse Sud Alsace, Mulhouse, France.,INSERM, LNC UMR 1231, FCS Bourgogne Franche Comté LipSTIC LabEx, Dijon, France
| | - Nicolas Bréchot
- Service de Médecine Intensive Réanimation, Sorbonne Université, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,College de France, Center for Interdisciplinary Research in Biology (CIRB)-UMRS INSERM U1050 - CNRS 7241, Paris, France
| | - Sébastien Préau
- Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, 59000, Lille, France.,Service de Médecine Intensive Réanimation, CHRU de Tours, Réseau CRICS-TRIGGERSEP F-CRIN Research Network, Tours, France
| | - Jérémie Joffre
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, 94143, USA. .,Medical Intensive Care Unit, Saint Antoine University Hospital, APHP, Sorbonne University, 75012, Paris, France. .,Sorbonne University, Centre de Recherche Saint-Antoine INSERM U938, 75012, Paris, France.
| | | |
Collapse
|
31
|
Yao RQ, Ren C, Zheng LY, Xia ZF, Yao YM. Advances in Immune Monitoring Approaches for Sepsis-Induced Immunosuppression. Front Immunol 2022; 13:891024. [PMID: 35619710 PMCID: PMC9127053 DOI: 10.3389/fimmu.2022.891024] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis represents a life-threatening organ dysfunction due to an aberrant host response. Of note is that majority of patients have experienced a severe immune depression during and after sepsis, which is significantly correlated with the occurrence of nosocomial infection and higher risk of in-hospital death. Nevertheless, the clinical sign of sepsis-induced immune paralysis remains highly indetectable and ambiguous. Given that, specific yet robust biomarkers for monitoring the immune functional status of septic patients are of prominent significance in clinical practice. In turn, the stratification of a subgroup of septic patients with an immunosuppressive state will greatly contribute to the implementation of personalized adjuvant immunotherapy. In this review, we comprehensively summarize the mechanism of sepsis-associated immunosuppression at the cellular level and highlight the recent advances in immune monitoring approaches targeting the functional status of both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chao Ren
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhao-Fan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
32
|
Simón-Fuentes M, Sánchez-Ramón S, Fernández-Paredes L, Alonso B, Guevara-Hoyer K, Vega MA, Corbí AL, Domínguez-Soto Á. Intravenous Immunoglobulins Promote an Expansion of Monocytic Myeloid-Derived Suppressor Cells (MDSC) in CVID Patients. J Clin Immunol 2022; 42:1093-1105. [PMID: 35486340 PMCID: PMC9053130 DOI: 10.1007/s10875-022-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Common variable immunodeficiency disorders (CVID), the most common primary immune deficiency, includes heterogeneous syndromes characterized by hypogammaglobulinemia and impaired antibody responses. CVID patients frequently suffer from recurrent infections and inflammatory conditions. Currently, immunoglobulin replacement therapy (IgRT) is the first-line treatment to prevent infections and aminorate immune alterations in CVID patients. Intravenous Immunoglobulin (IVIg), a preparation of highly purified poly-specific IgG, is used for treatment of immunodeficiencies as well as for autoimmune and inflammatory disorders, as IVIg exerts immunoregulatory and anti-inflammatory actions on innate and adaptive immune cells. To determine the mechanism of action of IVIg in CVID in vivo, we determined the effect of IVIg infusion on the transcriptome of peripheral blood mononuclear cells from CVID patients, and found that peripheral blood monocytes are primary targets of IVIg in vivo, and that IVIg triggers the acquisition of an anti-inflammatory gene profile in human monocytes. Moreover, IVIg altered the relative proportions of peripheral blood monocyte subsets and enhanced the proportion of CD14+ cells with a transcriptional, phenotypic, and functional profile that resembles that of monocytic myeloid-derived suppressor cells (MDSC). Therefore, our results indicate that CD14 + MDSC-like cells might contribute to the immunoregulatory effects of IVIg in CVID and other inflammatory disorders.
Collapse
Affiliation(s)
- Miriam Simón-Fuentes
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | | | | | - Bárbara Alonso
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.,Hospital Universitario Clínico San Carlos, IML and IdSSC, Madrid, Spain
| | | | - Miguel A Vega
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Angel L Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| | - Ángeles Domínguez-Soto
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
33
|
Schrijver IT, Karakike E, Théroude C, Baumgartner P, Harari A, Giamarellos-Bourboulis EJ, Calandra T, Roger T. High levels of monocytic myeloid-derived suppressor cells are associated with favorable outcome in patients with pneumonia and sepsis with multi-organ failure. Intensive Care Med Exp 2022; 10:5. [PMID: 35146585 PMCID: PMC8831012 DOI: 10.1186/s40635-022-00431-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with immunosuppressive functions sub-classified into monocytic and polymorphonuclear MDSCs (M-MDSCs and PMN-MDSCs). Clinical studies reported increased levels of MDSCs that were associated with poor outcome in sepsis patients. Since sepsis patients exhibit signs of inflammation and immunosuppression, MDSCs may provide benefit by dampening deleterious inflammation in some patients. To test this hypothesis, we measured MDSCs in critically ill sepsis patients with pneumonia and multi-organ dysfunctions and a high likelihood of death. Methods This was a prospective multicenter observational cohort study performed in eight ICUs in Athens and Thessaloniki, Greece, enrolling critically ill patients with pneumonia and sepsis with multi-organ dysfunctions. A flow cytometry approach using blood collected at study inclusion in tubes containing lyophilized antibodies combined to unsupervised clustering was developed to quantify M-MDSCs and PMN-MDSCs. Results Forty-eight patients were included, of whom 34 died within 90 days. At study inclusion, M-MDSCs and PMN-MDSCs were increased in sepsis patients when compared to healthy subjects (3.07% vs 0.96% and 22% vs 2.1% of leukocytes, respectively; p < 10–4). Increased PMN-MDSCs were associated with secondary infections (p = 0.024) and new sepsis episodes (p = 0.036). M-MDSCs were more abundant in survivors than in patients who died within 28 days (p = 0.028). Stratification of patients according to M-MDSC levels revealed that high levels of M-MDSC were associated with reduced 90-day mortality (high vs low M-MDSCs: 47% vs 84% mortality, p = 0.003, hazard ratio [HR] = 3.2, 95% CI 1.4–7.2). Combining high M-MDSC levels with low Acute Physiology and Chronic Health Evaluation (APACHE) II score improved patient stratification (M-MDSCshigh/APACHE IIlow vs M-MDSCslow/APACHE IIlow: 20% vs 80% 90-day mortality, p = 0.0096, HR = 7.2, 95% CI 1.6–32). In multivariate analyses high M-MDSCs remained correlated with improved survival in patients with low APACHE II score (p = 0.05, HR = 5.26, 95% CI 1.0–27.8). Conclusion This is the first study to associate high levels of M-MDSCs with improved survival in sepsis patients. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-022-00431-0.
Collapse
Affiliation(s)
- Irene T Schrijver
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, CLED.04.407, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Eleni Karakike
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, CLED.04.407, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Pétra Baumgartner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, CLED.04.407, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, CLED.04.407, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|
34
|
Malavika M, Sanju S, Poorna MR, Vishnu Priya V, Sidharthan N, Varma P, Mony U. Role of myeloid derived suppressor cells in sepsis. Int Immunopharmacol 2022; 104:108452. [PMID: 34996010 DOI: 10.1016/j.intimp.2021.108452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/05/2022]
Abstract
Sepsis is a serious and menacing organ dysfunction that occur due to dysregulated response of the host towards the infection. This organ dysfunction may lead to sepsis with intense cellular, metabolic and circulatory dysregulation, multiple organ failure and high mortality. Lymphopenia is observed in two-third of sepsis patients and a significant depletion of lymphocytes occurs in non-survivors compared to sepsis survivors. Myeloid derived suppressor cells (MDSCs) gave new insights into sepsis-associated lymphopenia. If MDSC expansion and its tissue-infiltration persist, it can induce significant pathophysiology including lymphopenia, host immunosuppression and immune-paralysis that contributes to worsened patient outcomes. This review focuses on MDSCs and its subsets, the role of MDSCs in infection, sepsis and septic shock.
Collapse
Affiliation(s)
- M Malavika
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - S Sanju
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - M R Poorna
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Veeraraghavan Vishnu Priya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Neeraj Sidharthan
- Department of Clinical Hematology and Stem Cell Transplant, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Praveen Varma
- Department of Cardiovascular and Thoracic Surgery, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
35
|
Loftus TJ, Ungaro R, Dirain M, Efron PA, Mazer MB, Remy KE, Hotchkiss RS, Zhong L, Bacher R, Starostik P, Moldawer LL, Brakenridge SC. Overlapping but Disparate Inflammatory and Immunosuppressive Responses to SARS-CoV-2 and Bacterial Sepsis: An Immunological Time Course Analysis. Front Immunol 2021; 12:792448. [PMID: 34956225 PMCID: PMC8696010 DOI: 10.3389/fimmu.2021.792448] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
Both severe SARS-CoV-2 infections and bacterial sepsis exhibit an immunological dyscrasia and propensity for secondary infections. The nature of the immunological dyscrasias for these differing etiologies and their time course remain unclear. In this study, thirty hospitalized patients with SARS-CoV-2 infection were compared with ten critically ill patients with bacterial sepsis over 21 days, as well as ten healthy control subjects. Blood was sampled between days 1 and 21 after admission for targeted plasma biomarker analysis, cellular phenotyping, and leukocyte functional analysis via enzyme-linked immunospot assay. We found that circulating inflammatory markers were significantly higher early after bacterial sepsis compared with SARS-CoV-2. Both cohorts exhibited profound immune suppression through 21 days (suppressed HLA-DR expression, reduced mononuclear cell IFN-gamma production), and expanded numbers of myeloid-derived suppressor cells (MDSCs). In addition, MDSC expansion and ex vivo production of IFN-gamma and TNF-alpha were resolving over time in bacterial sepsis, whereas in SARS-CoV-2, immunosuppression and inflammation were accelerating. Despite less severe initial physiologic derangement, SARS-CoV-2 patients had similar incidence of secondary infections (23% vs 30%) as bacterial sepsis patients. Finally, COVID patients who developed secondary bacterial infections exhibited profound immunosuppression evident by elevated sPD-L1 and depressed HLA-DR. Although both bacterial sepsis and SARS-CoV-2 are associated with inflammation and immune suppression, their immune dyscrasia temporal patterns and clinical outcomes are different. SARS-CoV-2 patients had less severe early inflammation and organ dysfunction but had persistent inflammation and immunosuppression and suffered worse clinical outcomes, especially when SARS-CoV-2 infection was followed by secondary bacterial infection.
Collapse
Affiliation(s)
- Tyler J. Loftus
- Department of Surgery and the Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ricardo Ungaro
- Department of Surgery and the Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marvin Dirain
- Department of Surgery and the Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A. Efron
- Department of Surgery and the Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Monty B. Mazer
- Departments of Anesthesiology and Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Kenneth E. Remy
- Departments of Anesthesiology and Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Richard S. Hotchkiss
- Departments of Anesthesiology and Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Luer Zhong
- Department of Biostatistics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Petr Starostik
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine and Shands Hospital-UF Health Science Center, Gainesville, FL, United States
| | - Lyle L. Moldawer
- Department of Surgery and the Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
- *Correspondence: Lyle L. Moldawer,
| | - Scott C. Brakenridge
- Department of Surgery and the Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
36
|
Pradhan K, Yi Z, Geng S, Li L. Development of Exhausted Memory Monocytes and Underlying Mechanisms. Front Immunol 2021; 12:778830. [PMID: 34777396 PMCID: PMC8583871 DOI: 10.3389/fimmu.2021.778830] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023] Open
Abstract
Pathogenic inflammation and immuno-suppression are cardinal features of exhausted monocytes increasingly recognized in septic patients and murine models of sepsis. However, underlying mechanisms responsible for the generation of exhausted monocytes have not been addressed. In this report, we examined the generation of exhausted primary murine monocytes through prolonged and repetitive challenges with high dose bacterial endotoxin lipopolysaccharide (LPS). We demonstrated that repetitive LPS challenges skew monocytes into the classically exhausted Ly6Chi population, and deplete the homeostatic non-classical Ly6Clo population, reminiscent of monocyte exhaustion in septic patients. scRNAseq analyses confirmed the expansion of Ly6Chi monocyte cluster, with elevation of pathogenic inflammatory genes previously observed in human septic patients. Furthermore, we identified CD38 as an inflammatory mediator of exhausted monocytes, associated with a drastic depletion of cellular NAD+; elevation of ROS; and compromise of mitochondria respiration, representative of septic monocytes. Mechanistically, we revealed that STAT1 is robustly elevated and sustained in LPS-exhausted monocytes, dependent upon the TRAM adaptor of the TLR4 pathway. TRAM deficient monocytes are largely resistant to LPS-mediated exhaustion, and retain the non-classical homeostatic features. Together, our current study addresses an important yet less-examined area of monocyte exhaustion, by providing phenotypic and mechanistic insights regarding the generation of exhausted monocytes.
Collapse
Affiliation(s)
- Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Ziyue Yi
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, VA, United States
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
37
|
Vázquez AC, Arriaga-Pizano L, Ferat-Osorio E. Cellular Markers of Immunosuppression in Sepsis. Arch Med Res 2021; 52:828-835. [PMID: 34702587 DOI: 10.1016/j.arcmed.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Sepsis is a pathological condition frequently caused by invasion of a pathogen and the subsequent unregulated response that threatens the patient's life through diverse organ failure. The incidence of sepsis is increasing, and there is no specific therapy. Despite technological contributions to treat sepsis or increased knowledge of its molecular pathophysiology, mortality remains high, and sepsis is a global health problem. Knowledge of the role of the cells involved in the host response through the synthesis of inflammatory mediators and their different effects on cells, tissues or systems is key to the development of medical treatments that regulate systems involved in such responses to pathogens. This review addresses new insights into the role of cells, their mediators, and the interaction between them that lead to the development of a state of immunosuppression.
Collapse
Affiliation(s)
- Arturo Cérbulo Vázquez
- Servicio de Medicina Genómica, Hospital General de México, Dr Eduardo Liceaga, Ciudad de México, México
| | - Lourdes Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica de la Unidad de Investigación en Epidemiología Clínica, Hospital de Especialidades, Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Eduardo Ferat-Osorio
- División de Investigación en Salud, Unidad de Investigación en Epidemiología Clínica, Hospital de Especialidades, Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This study reviews the mechanisms of HDL cholesterol immunomodulation in the context of the mechanisms of chronic inflammation and immunosuppression causing persistent inflammation, immunosuppression and catabolism syndrome (PICS) and describes potential therapies and gaps in current research. RECENT FINDINGS Low HDL cholesterol is predictive of acute sepsis severity and outcome. Recent research has indicated apolipoprotein is a prognostic indicator of long-term outcomes. The pathobiologic mechanisms of PICS have been elucidated in the past several years. Recent research of the interaction of HDL pathways in related chronic inflammatory diseases may provide insights into further mechanisms and therapeutic targets. SUMMARY HDL significantly influences innate and adaptive immune pathways relating to chronic disease and inflammation. Further research is needed to better characterize these interactions in the setting of PICS.
Collapse
Affiliation(s)
- Grant Barker
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville
| | - Julia R Winer
- University of Florida College of Medicine, Gainesville, Florida
| | - Faheem W Guirgis
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville
| | - Srinivasa Reddy
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| |
Collapse
|
39
|
Sebastian A, Sanju S, Jain P, Priya VV, Varma PK, Mony U. Non-classical monocytes and its potential in diagnosing sepsis post cardiac surgery. Int Immunopharmacol 2021; 99:108037. [PMID: 34426113 DOI: 10.1016/j.intimp.2021.108037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sepsis is caused by a dysregulation of immune response to infection that results in very high mortality. Current laboratory tests and clinical criteria are inadequate to diagnose sepsis due to limited sensitivity and specificity. Circulating monocytes are important players in immune homeostasis and their altered HLA-DR expression indicate immune dysregulation. HLA-DR is an MHC Class II cell-surface receptor that can present foreign antigens to helper T cells and mount an inflammatory response. Therefore, we analyzed the variations in HLA-DR expression and the concentration of monocyte subsets for diagnosing post-surgical sepsis. METHODS In this double-blinded prospective cohort study, we adopted immunophenotyping and quantification of antigen expression by flowcytometry to detect the changes in circulating monocyte subsets in patients undergoing cardiac surgery. Statistical analysis was performed to identify significant changes and based on the predictive potential of measured variables ROC curve analysis was done. ROC curve permitted the choice of appropriate cut-off values using which a diagnostic protocol was developed. RESULTS We observed that the monocyte subset concentrations in circulation varied differently after surgery. There was a significant downregulation of monocytic HLA-DR on both intermediate (p = 0.0477) and non-classical monocytes (p = 0.0333) at 48 h post-surgery. The monocyte subset analysis clearly showed that the patients with reduced pre-surgical non-classical monocyte count (p = 0.0430) coupled with post-surgical down-regulation of HLA-DR expression on the same subset had a higher incidence of developing sepsis after cardiac surgery. CONCLUSIONS Here we are reporting for the first time, the significant influence of non-classical monocytes in inducing dysregulated host response and sepsis after cardiac surgery. Using multiple biomarkers associated with this monocyte subset, we established an algorithm for the diagnosis of sepsis at 48 h post cardiac surgery with 100% sensitivity and 69.23% specificity.
Collapse
Affiliation(s)
- Agnes Sebastian
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - S Sanju
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | | | - Veeraraghavan Vishnu Priya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Praveen Kerala Varma
- Department of Cardiovascular and Thoracic Surgery, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India; Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India..
| |
Collapse
|
40
|
Tang F, Tie Y, Hong W, Wei Y, Tu C, Wei X. Targeting Myeloid-Derived Suppressor Cells for Premetastatic Niche Disruption After Tumor Resection. Ann Surg Oncol 2021; 28:4030-4048. [PMID: 33258011 PMCID: PMC7703739 DOI: 10.1245/s10434-020-09371-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023]
Abstract
Surgical resection is a common therapeutic option for primary solid tumors. However, high cancer recurrence and metastatic rates after resection are the main cause of cancer related mortalities. This implies the existence of a "fertile soil" following surgery that facilitates colonization by circulating cancer cells. Myeloid-derived suppressor cells (MDSCs) are essential for premetastatic niche formation, and may persist in distant organs for up to 2 weeks after surgery. These postsurgical persistent lung MDSCs exhibit stronger immunosuppression compared with presurgical MDSCs, suggesting that surgery enhances MDSC function. Surgical stress and trauma trigger the secretion of systemic inflammatory cytokines, which enhance MDSC mobilization and proliferation. Additionally, damage associated molecular patterns (DAMPs) directly activate MDSCs through pattern recognition receptor-mediated signals. Surgery also increases vascular permeability, induces an increase in lysyl oxidase and extracellular matrix remodeling in lungs, that enhances MDSC mobilization. Postsurgical therapies that inhibit the induction of premetastatic niches by MDSCs promote the long-term survival of patients. Cyclooxygenase-2 inhibitors and β-blockade, or their combination, may minimize the impact of surgical stress on MDSCs. Anti-DAMPs and associated inflammatory signaling inhibitors also are potential therapies. Existing therapies under tumor-bearing conditions, such as MDSCs depletion with low-dose chemotherapy or tyrosine kinase inhibitors, MDSCs differentiation using all-trans retinoic acid, and STAT3 inhibition merit clinical evaluation during the perioperative period. In addition, combining low-dose epigenetic drugs with chemokine receptors, reversing immunosuppression through the Enhanced Recovery After Surgery protocol, repairing vascular leakage, or inhibiting extracellular matrix remodeling also may enhance the long-term survival of curative resection patients.
Collapse
Affiliation(s)
- Fan Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yan Tie
- Department of Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chongqi Tu
- Department of Orthopeadics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
41
|
Kelly LS, Darden DB, Fenner BP, Efron PA, Mohr AM. The Hematopoietic Stem/Progenitor Cell Response to Hemorrhage, Injury, and Sepsis: A Review of Pathophysiology. Shock 2021; 56:30-41. [PMID: 33234838 PMCID: PMC8141062 DOI: 10.1097/shk.0000000000001699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT Hematopoietic stem/progenitor cells (HSPC) have both unique and common responses following hemorrhage, injury, and sepsis. HSPCs from different lineages have a distinctive response to these "stress" signals. Inflammation, via the production of inflammatory factors, including cytokines, hormones, and interferons, has been demonstrated to impact the differentiation and function of HSPCs. In response to injury, hemorrhagic shock, and sepsis, cellular phenotypic changes and altered function occur, demonstrating the rapid response and potential adaptability of bone marrow hematopoietic cells. In this review, we summarize the pathophysiology of emergency myelopoiesis and the role of myeloid-derived suppressor cells, impaired erythropoiesis, as well as the mobilization of HSPCs from the bone marrow. Finally, we discuss potential therapeutic options to optimize HSPC function after severe trauma or infection.
Collapse
Affiliation(s)
- Lauren S Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | |
Collapse
|
42
|
Reyes M, Filbin MR, Bhattacharyya RP, Sonny A, Mehta A, Billman K, Kays KR, Pinilla-Vera M, Benson ME, Cosimi LA, Hung DT, Levy BD, Villani AC, Sade-Feldman M, Baron RM, Goldberg MB, Blainey PC, Hacohen N. Plasma from patients with bacterial sepsis or severe COVID-19 induces suppressive myeloid cell production from hematopoietic progenitors in vitro. Sci Transl Med 2021; 13:eabe9599. [PMID: 34103408 PMCID: PMC8432955 DOI: 10.1126/scitranslmed.abe9599] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/17/2020] [Accepted: 05/28/2021] [Indexed: 12/16/2022]
Abstract
Bacterial sepsis and severe COVID-19 share similar clinical manifestations and are both associated with dysregulation of the myeloid cell compartment. We previously reported an expanded CD14+ monocyte state, MS1, in patients with bacterial sepsis and validated expansion of this cell subpopulation in publicly available transcriptomics data. Here, using published datasets, we show that the gene expression program associated with MS1 correlated with sepsis severity and was up-regulated in monocytes from patients with severe COVID-19. To examine the ontogeny and function of MS1 cells, we developed a cellular model for inducing CD14+ MS1 monocytes from healthy bone marrow hematopoietic stem and progenitor cells (HSPCs). We found that plasma from patients with bacterial sepsis or COVID-19 induced myelopoiesis in HSPCs in vitro and expression of the MS1 gene program in monocytes and neutrophils that differentiated from these HSPCs. Furthermore, we found that plasma concentrations of IL-6, and to a lesser extent IL-10, correlated with increased myeloid cell output from HSPCs in vitro and enhanced expression of the MS1 gene program. We validated the requirement for these two cytokines to induce the MS1 gene program through CRISPR-Cas9 editing of their receptors in HSPCs. Using this cellular model system, we demonstrated that induced MS1 cells were broadly immunosuppressive and showed decreased responsiveness to stimulation with a synthetic RNA analog. Our in vitro study suggests a potential role for systemic cytokines in inducing myelopoiesis during severe bacterial or SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Miguel Reyes
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael R Filbin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Emergency Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roby P Bhattacharyya
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Abraham Sonny
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Arnav Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Kyle R Kays
- Department of Emergency Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mayra Pinilla-Vera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maura E Benson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lisa A Cosimi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deborah T Hung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloe Villani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Moshe Sade-Feldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcia B Goldberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul C Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Mendoza AE, Raju Paul S, El Hechi M, Naar L, Nederpelt C, Mikdad S, van Erp I, Hess JM, Velmahos GC, Poznansky M, Reeves P. Deep immune profiling of whole blood to identify early immune signatures that correlate to patient outcome after major trauma. J Trauma Acute Care Surg 2021; 90:959-966. [PMID: 33755643 DOI: 10.1097/ta.0000000000003170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Major injury results in an early cascade of immunologic responses that increase susceptibility to infection and multiorgan dysfunction. Detailed immune profiling by mass cytometry has the potential to identify immune signatures that correspond to patient outcomes. Our objective was to determine the prognostic value of immune signatures early after major trauma injury. METHODS Trauma patients (n = 17) were prospectively enrolled between September 2018 and December 2019. Serial whole blood samples were obtained from trauma patients (mean Injury Severity Score, 26.2; standard error of the mean, 3.7) at Days 1 and 3 after injury, and from age- and sex-matched uninjured controls using a standardized protocol for fixation, storage, and labeling. Computational analyses including K-nearest neighbor automated clustering of immune cells and Spearman's correlation analysis were used to identify correlations between cell populations, clinical measures, and patient outcomes. RESULTS Analysis revealed nine immune cell clusters that correlated with one or more clinical outcomes. On Days 1 and 3 postinjury, the abundance of immature neutrophil and classical monocytes exhibited a strong positive correlation with increased intensive care unit and hospital length of stay. Conversely, the abundance of CD4 T-cell subsets, namely Th17 cells, is associated with improved patient outcomes including decreased ventilator days (r = -0.76), hospital-acquired pneumonia (r = -0.69), and acute kidney injury (r = -0.73). CONCLUSION Here, we provide a comprehensive multitime point immunophenotyping analysis of whole blood from patients soon after traumatic injury to determine immune correlates of adverse outcomes. Our findings indicate that alterations in myeloid-origin cell types may contribute to immune dysfunction after injury. Conversely, the presence of effector T cell populations corresponds with decreased hospital length of stay and organ dysfunction. Overall, these data identify novel immune signatures following traumatic injury that support the view that monitoring of immune (sub)-populations may provide clinical decision-making support for at-risk patients early in their hospital course. LEVEL OF EVIDENCE Prognostic/Epidemiologic, Level IV.
Collapse
Affiliation(s)
- April E Mendoza
- From the Division of Trauma, Emergency Surgery & Surgical Critical Care, Department of Surgery (A.E.M., M.E.H., L.N., C.N., S.M., I.v.E., G.C.V.), and Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine (S.R.P., J.H., M.P., P.R.), Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jiang H, Zhu M, Guo P, Bi K, Lu Z, Li C, Zhai M, Wang K, Cao Y. Impaired myeloid-derived suppressor cells are associated with recurrent implantation failure: A case-control study. J Reprod Immunol 2021; 145:103316. [PMID: 33866110 DOI: 10.1016/j.jri.2021.103316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Studies have reported that myeloid-derived suppressor cells (MDSCs) contribute to maintain pregnancy. The aim of this case-control study was to test whether there is a dysregulation of peripheral MDSCs in recurrent implantation failure (RIF). METHODS 26 RIF patients and 30 controls were recruited. Flow cytometry was applied to characterize polymorphonuclear (PMN)-MDSCs, monocytic-MDSCs (M-MDSCs), effector T cells (Teffs) and regulatory T cells (Tregs) in blood. ELISA was used to define MDSCs correlative cytokines and chemokines in serum from all patients. RESULTS Compared with controls, RIF patients showed significant reductions of blood PMN-MDSCs, M-MDSCs, Tregs and NO production by PMN-MDSCs, whereas the expression of ζ chain on CD4+T cell receptor (TCR) and CD8+TCR displayed a remarkable upregulation in RIF patients. Moreover, RIF patients presented a lower concentration of serum chemokine (C-C motif) ligand (CCL) 5 and transforming growth factor (TGF)-β than those from controls. Furthermore, the level of TCR ζ chain on CD4+ and CD8+ Teffs was negatively correlated not only with the percentage of PMN-MDSCs, but also with the amount of NO produced by PMN-MDSCs. The frequency of PMN-MDSCs had positive correlations with the concentration of CCL5 and TGF-β. CONCLUSIONS This study indicated that the dysregulation of MDSCs might impair maternal-fetal immune balance thus resulting in RIF.
Collapse
Affiliation(s)
- Huanhuan Jiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Mengting Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Peipei Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kaihuan Bi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhimin Lu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Caihua Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Muxin Zhai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kangxia Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
45
|
Liu T, Yang F, Xie J, Chen J, Gao W, Bai X, Li Z. All-trans-retinoic acid restores CD4+ T cell response after sepsis by inhibiting the expansion and activation of myeloid-derived suppressor cells. Mol Immunol 2021; 136:8-15. [PMID: 34051632 DOI: 10.1016/j.molimm.2021.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/28/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Patients are susceptible to immunosuppression in late-stage of sepsis, in which myeloid-derived suppressor cells (MDSCs) is an important contributor. This study aims to investigate whether all-trans-retinoic acid (ATRA), which has been proved to inhibit MDSCs generation in cancer, will ameliorate sepsis-induced immuno-suppression through modulating MDSCs. METHODS A clinically relevant "two-hit'' model of sepsis, the cecal ligation and puncture (CLP) model and secondary pneumonia model, were established in mice. The effects of ATRA on the mortality, the bacterial burden, the expansion and activity of CLP-induced MDSCs, as well as the function of CD4+ T cells were evaluated. RESULTS In CLP model, ATRA was found to reduce frequency of MDSCs in spleen of mice and inhibit activity of MDSCs by regulating the generation and activity of arginase-1 and iNOS, and the secretion of immune-supressive cytokines. ATRA administration eventually reduced mortality of secondary infection by Legionella pneumophila in CLP-surviving mice, which might be associated with the restoration of CD4+ T cells proliferating and secreting activity. CONCLUSION ATRA can restore CD4+ T cells dysfunction in sepsis by modulating the expansion and function of MDSCs and therefore provides a potential therapy that targets the immunosuppressive state of sepsis.
Collapse
Affiliation(s)
- Tao Liu
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China
| | - Fan Yang
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China
| | - Jie Xie
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China
| | - Jiajun Chen
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China
| | - Wei Gao
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China
| | - Xiangjun Bai
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China
| | - Zhanfei Li
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China.
| |
Collapse
|
46
|
Darden DB, Bacher R, Brusko MA, Knight P, Hawkins RB, Cox MC, Dirain ML, Ungaro R, Nacionales DC, Rincon JC, Gauthier MPL, Kladde M, Bihorac A, Brusko TM, Moore FA, Brakenridge SC, Mohr AM, Moldawer LL, Efron PA. Single-Cell RNA-seq of Human Myeloid-Derived Suppressor Cells in Late Sepsis Reveals Multiple Subsets With Unique Transcriptional Responses: A Pilot Study. Shock 2021; 55:587-595. [PMID: 33021571 PMCID: PMC8019679 DOI: 10.1097/shk.0000000000001671] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Increased circulating myeloid-derived suppressor cells (MDSCs) are independently associated with poor long-term clinical outcomes in sepsis. Studies implicate subsets of MDSCs having unique roles in lymphocyte suppression; however, characterization of these cells after sepsis remains incomplete. We performed a pilot study to determine the transcriptomic landscape in MDSC subsets in sepsis using single-cell RNAseq (scRNA-seq). METHODS A mixture of whole blood myeloid-enriched and Ficoll-enriched PBMCs from two late septic patients on post-sepsis day 21 and two control subjects underwent Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq). RESULTS We successfully identified the three MDSC subset clusters-granulocytic (G-), monocytic (M-), and early (E-) MDSCs. Sepsis was associated with a greater relative expansion of G-MDSCs versus M-MDSCs at 21 days as compared to control subjects. Genomic analysis between septic patients and control subjects revealed cell-specific and common differential expression of genes in both G-MDSC and M-MDSC subsets. Many of the common genes have previously been associated with MDSC proliferation and immunosuppressive function. Interestingly, there was no differential expression of several genes demonstrated in the literature to be vital to immunosuppression in cancer-induced MDSC. CONCLUSION This pilot study successfully demonstrated that MDSCs maintain a transcriptomic profile that is immunosuppressive in late sepsis. Interestingly, the landscape in chronic critical illness is partially dependent on the original septic insult. Preliminary data would also indicate immunosuppressive MDSCs from late sepsis patients appear to have a somewhat unique transcriptome from cancer and/or other inflammatory diseases.
Collapse
Affiliation(s)
- Dijoia B. Darden
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Maigan A. Brusko
- Department of Biomedical Engineering, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Parker Knight
- Department of Mathematics, University of Florida, Gainesville, Florida, USA
| | - Russell B. Hawkins
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Michael C. Cox
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Marvin L. Dirain
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ricardo Ungaro
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Dina C. Nacionales
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Jaimar C. Rincon
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Marie-Pierre L. Gauthier
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Michael Kladde
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Azra Bihorac
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Frederick A. Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Scott C. Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alicia M. Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lyle L. Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Philip A. Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
47
|
Coudereau R, Waeckel L, Cour M, Rimmele T, Pescarmona R, Fabri A, Jallades L, Yonis H, Gossez M, Lukaszewicz AC, Argaud L, Venet F, Monneret G. Emergence of immunosuppressive LOX-1+ PMN-MDSC in septic shock and severe COVID-19 patients with acute respiratory distress syndrome. J Leukoc Biol 2021; 111:489-496. [PMID: 33909917 PMCID: PMC8242532 DOI: 10.1002/jlb.4covbcr0321-129r] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Myeloid‐derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells with immunosuppressive properties. In cancer patients, the expression of lectin‐type oxidized LDL receptor 1 (LOX‐1) on granulocytic MDSC identifies a subset of MDSC that retains the most potent immunosuppressive properties. The main objective of the present work was to explore the presence of LOX‐1+ MDSC in bacterial and viral sepsis. To this end, whole blood LOX‐1+ cells were phenotypically, morphologically, and functionally characterized. They were monitored in 39 coronavirus disease‐19 (COVID‐19, viral sepsis) and 48 septic shock (bacterial sepsis) patients longitudinally sampled five times over a 3 wk period in intensive care units (ICUs). The phenotype, morphology, and immunosuppressive functions of LOX‐1+ cells demonstrated that they were polymorphonuclear MDSC. In patients, we observed the significant emergence of LOX‐1+ MDSC in both groups. The peak of LOX‐1+ MDSC was 1 wk delayed with respect to ICU admission. In COVID‐19, their elevation was more pronounced in patients with acute respiratory distress syndrome. The persistence of these cells may contribute to long lasting immunosuppression leaving the patient unable to efficiently resolve infections.
Collapse
Affiliation(s)
- Rémy Coudereau
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France
| | - Louis Waeckel
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France
| | - Martin Cour
- Hospices Civils de Lyon, Edouard Herriot Hospital, Medical Intensive Care Department, Lyon, France
| | - Thomas Rimmele
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Anesthesia and Critical Care Medicine Department, Lyon, France
| | - Rémi Pescarmona
- Hospices Civils de Lyon, Lyon-Sud University Hospital, Immunology Laboratory, PierreBénite, France
| | - Astrid Fabri
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France
| | - Laurent Jallades
- Hospices Civils de Lyon, Lyon-Sud University Hospital, Hematology Laboratory, PierreBénite, France
| | - Hodane Yonis
- Hospices Civils de Lyon, Croix-Rousse University Hospital, Medical Intensive Care Department
| | - Morgane Gossez
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France.,International Research Center on Infectiology (CIRI), Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Team "NLRP3 inflammation and immune response to sepsis, Lyon, France
| | - Anne-Claire Lukaszewicz
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France.,Hospices Civils de Lyon, Edouard Herriot Hospital, Anesthesia and Critical Care Medicine Department, Lyon, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France
| | -
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France.,International Research Center on Infectiology (CIRI), Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, Team "NLRP3 inflammation and immune response to sepsis, Lyon, France
| | - Guillaume Monneret
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, Lyon, France.,EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1-Hospices Civils de Lyon-bioMérieux), Joint Research Unit HCL-bioMérieux, Lyon, France
| |
Collapse
|
48
|
Pelosi A, Besi F, Tumino N, Merli P, Quatrini L, Li Pira G, Algeri M, Moretta L, Vacca P. NK Cells and PMN-MDSCs in the Graft From G-CSF Mobilized Haploidentical Donors Display Distinct Gene Expression Profiles From Those of the Non-Mobilized Counterpart. Front Immunol 2021; 12:657329. [PMID: 33986748 PMCID: PMC8111072 DOI: 10.3389/fimmu.2021.657329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
A recent approach of hematopoietic stem cell (HSC) transplantation from haploidentical donors "mobilized" with G-CSF is based on the selective depletion of αβ T and B lymphocytes from the graft. Through this approach, the patient receives both HSC and mature donor-derived effector cells (including NK cells), which exert both anti-leukemia activity and protection against infections. We previously showed that donor HSC mobilization with G-CSF results in accumulation in the graft of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), capable of inhibiting in vitro the anti-leukemia activity of allogeneic NK cells. Here, we performed a detailed gene expression analysis on NK cells and PMN-MDSCs both derived from mobilized graft. Cytotoxicity assays and real time PCR arrays were performed in NK cells. Microarray technology followed by bioinformatics analysis was used for gene expression profiling in PMN-MDSCs. Results indicate that NK cells from the graft have a lower cytolytic activity as compared to those from non-mobilized samples. Further, mobilized PMN-MDSCs displayed a peculiar transcriptional profile distinguishing them from non-mobilized ones. Differential expression of pro-proliferative and immune-modulatory genes was detected in mobilized PMN-MDSCs. These data strengthen the concept that G-CSF-mobilized PMN-MDSCs present in the graft display unique molecular characteristics, in line with the strong inhibitory effect on donor NK cells.
Collapse
Affiliation(s)
- Andrea Pelosi
- Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Besi
- Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Tumino
- Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Linda Quatrini
- Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppina Li Pira
- Department of Pediatric Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
49
|
Mankowski RT, Laitano O, Clanton TL, Brakenridge SC. Pathophysiology and Treatment Strategies of Acute Myopathy and Muscle Wasting after Sepsis. J Clin Med 2021; 10:1874. [PMID: 33926035 PMCID: PMC8123669 DOI: 10.3390/jcm10091874] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Sepsis survivors experience a persistent myopathy characterized by skeletal muscle weakness, atrophy, and an inability to repair/regenerate damaged or dysfunctional myofibers. The origins and mechanisms of this persistent sepsis-induced myopathy are likely complex and multifactorial. Nevertheless, the pathobiology is thought to be triggered by the interaction between circulating pathogens and impaired muscle metabolic status. In addition, while in the hospital, septic patients often experience prolonged periods of physical inactivity due to bed rest, which may exacerbate the myopathy. Physical rehabilitation emerges as a potential tool to prevent the decline in physical function in septic patients. Currently, there is no consensus regarding effective rehabilitation strategies for sepsis-induced myopathy. The optimal timing to initiate the rehabilitation intervention currently lacks consensus as well. In this review, we summarize the evidence on the fundamental pathobiological mechanisms of sepsis-induced myopathy and discuss the recent evidence on in-hospital and post-discharge rehabilitation as well as other potential interventions that may prevent physical disability and death of sepsis survivors.
Collapse
Affiliation(s)
- Robert T. Mankowski
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32603, USA
| | - Orlando Laitano
- Department of Nutrition and Integrated Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - Thomas L. Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA;
| | | |
Collapse
|
50
|
Darden DB, Kelly LS, Fenner BP, Moldawer LL, Mohr AM, Efron PA. Dysregulated Immunity and Immunotherapy after Sepsis. J Clin Med 2021; 10:jcm10081742. [PMID: 33920518 PMCID: PMC8073536 DOI: 10.3390/jcm10081742] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Implementation of protocolized surveillance, diagnosis, and management of septic patients, and of surgical sepsis patients in particular, is shown to result in significantly increased numbers of patients surviving their initial hospitalization. Currently, most surgical sepsis patients will rapidly recover from sepsis; however, many patients will not rapidly recover, but instead will go on to develop chronic critical illness (CCI) and experience dismal long-term outcomes. The elderly and comorbid patient is highly susceptible to death or CCI after sepsis. Here, we review aspects of the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) endotype to explain the underlying pathobiology of a dysregulated immune system in sepsis survivors who develop CCI; then, we explore targets for immunomodulatory therapy.
Collapse
|