1
|
Sottnik JL, Shackleford MT, Nesiba CS, Richer AL, Swartz JM, Rowland CE, Musick M, Fu R, Opresko PL, Mehrotra S, Hesselberth JR, Diamond JR, Sikora MJ. Co-regulator activity of Mediator of DNA Damage Checkpoint 1 (MDC1) is associated with DNA repair dysfunction and PARP inhibitor sensitivity in lobular carcinoma of the breast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.29.564555. [PMID: 39677775 PMCID: PMC11642799 DOI: 10.1101/2023.10.29.564555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Invasive lobular carcinoma of the breast (ILC) are typically estrogen receptor α (ER)-positive and present with biomarkers of anti-estrogen sensitive disease, yet patients with ILC face uniquely poor long-term outcomes with increased recurrence risk, suggesting endocrine response and ER function are unique in ILC. We previously found specifically in ILC cells that ER is co-regulated by the DNA repair protein Mediator of DNA Damage Checkpoint 1 (MDC1). This novel MDC1 activity, however, was associated with dysfunction in the canonical DNA repair activity of MDC1, but absent typical features of DNA repair deficiency. To understand reciprocal activities of MDC1, we profiled the MDC1 interactome and found MDC1-associated proteins in ILC cells mirror a "BRCA-like" state lacking key homologous recombination (HR) proteins, consistent with HR dysfunction but distinct from classic "BRCAness". HR dysfunction in ILC cells was mirrored in single-cell transcriptome and DNA repair activity analyses, along with DNA repair signaling and functional data, showing dysfunctional HR induction and resolution. In parallel, ILC tumor data are consistent with a distinct form of HR dysfunction via impaired HR resolution, lacking BRCA-like genomic scarring but with elevated signatures of PARP inhibitor sensitivity. We tested whether this HR dysfunction could indeed be exploited using PARP inhibition and found that talazoparib treatment produced a durable growth suppression in vitro and in multiple ILC xenografts in vivo. ILC-specific ER:MDC1 activity creates a new context for ER and MDC1 function in ILC, at the cost of a DNA repair dysfunction that is therapeutically targetable.
Collapse
Affiliation(s)
| | | | - Camryn S. Nesiba
- Dept. of Pathology, University of Colorado Anschutz Medical Campus
| | - Amanda L. Richer
- Dept. of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus
- RNA Bioscience Initiative, University of Colorado School of Medicine
| | - Jordan M. Swartz
- Dept. of Pathology, University of Colorado Anschutz Medical Campus
| | | | - Maggie Musick
- Dept. of Pathology, University of Colorado Anschutz Medical Campus
| | - Rui Fu
- Dept. of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus
- RNA Bioscience Initiative, University of Colorado School of Medicine
| | | | - Sanjana Mehrotra
- Dept. of Pathology, University of Colorado Anschutz Medical Campus
| | - Jay R. Hesselberth
- Dept. of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus
- RNA Bioscience Initiative, University of Colorado School of Medicine
| | | | - Matthew J. Sikora
- Dept. of Pathology, University of Colorado Anschutz Medical Campus
- RNA Bioscience Initiative, University of Colorado School of Medicine
| |
Collapse
|
2
|
Kontogiannis A, Karaviti E, Karaviti D, Lanitis S, Gomatou G, Syrigos NK, Kotteas E. Mutations Matter: Unravelling the Genetic Blueprint of Invasive Lobular Carcinoma for Progression Insights and Treatment Strategies. Cancers (Basel) 2024; 16:3826. [PMID: 39594781 PMCID: PMC11593237 DOI: 10.3390/cancers16223826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Invasive Lobular Carcinoma (ILC) presents a distinct subtype of breast cancer, representing 10-15% of cases, with unique clinical and molecular features. Characterized by a non-cohesive, single-file invasion pattern, ILC is typically estrogen receptor (ER)- and progesterone receptor (PR)-positive but human epidermal growth factor receptor 2 (HER2)-negative. Despite favorable prognostic features, its highly metastatic nature and predilection for atypical sites contribute to lower long-term survival compared to invasive breast carcinoma of no special type (NST). ILC's genetic landscape includes mutations in various genes (CDH1, BRCA2, ATM, etc.) and signaling pathways that impact treatment responses, especially in endocrine treatment. Furthermore, the diverse ILC subtypes complicate its management. Current challenges in chemotherapy, along with the targeted therapies, are also discussed. The present article aims to comprehensively review the recent literature, focusing on the pathological and molecular aspects of ILC, including associated genetic mutations influencing disease progression and drug resistance.
Collapse
Affiliation(s)
- Athanasios Kontogiannis
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Eleftheria Karaviti
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Dimitra Karaviti
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Sophocles Lanitis
- 2nd Department of Surgery, Korgiallenio Benakeio Athens General Hospital, 115 26 Athens, Greece;
| | - Georgia Gomatou
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Nikolaos K. Syrigos
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| | - Elias Kotteas
- Oncology Unit, 3rd Department of Medicine, “Sotiria” Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.K.); (E.K.); (D.K.); (G.G.); (N.K.S.)
| |
Collapse
|
3
|
Tuesley KM, Webb PM, Protani MM, Donovan P, Jordan SJ, Dixon-Suen S. Exploring estrogen-related mechanisms in ovarian carcinogenesis: association between bone mineral density and ovarian cancer risk in a multivariable Mendelian randomization study. Cancer Causes Control 2024:10.1007/s10552-024-01926-9. [PMID: 39419895 DOI: 10.1007/s10552-024-01926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Estrogen may play a role in epithelial ovarian cancer (EOC) carcinogenesis, with effects varying by EOC histotype. Measuring women's long-term exposure to estrogen is difficult, but bone mineral density (BMD) may be a reasonable proxy of longer-term exposure. We examined this relationship by assessing the association between genetic predisposition for higher BMD and risk of EOC by histotype. METHODS We used Mendelian randomization (MR) to assess associations between genetic markers for femoral neck and lumbar spine BMD and each EOC histotype. We used multivariable MR (MVMR) to adjust for probable pleiotropic traits, including body mass index, height, menarcheal age, menopausal age, smoking, alcohol intake, and vitamin D. RESULTS Univariable analyses suggested greater BMD was associated with increased risk of endometrioid EOC (per standard deviation increase; lumbar spine OR = 1.21; 95% CI 0.93,1.57, femoral neck: OR = 1.25; 0.99,1.57), but sensitivity analyses indicated that pleiotropy was likely. Adjustment using MVMR reduced the magnitude of estimates slightly (lumbar spine: OR = 1.13; 95% CI 1.00,1.28, femoral neck: OR = 1.18; 1.03,1.36). Results for lumbar spine BMD and high-grade serous EOC were also suggestive of an association (univariable MR: OR = 1.16; 95% CI 1.03,1.30; MVMR: OR = 1.06; 0.99,1.14). CONCLUSION Our study found associations between genetic predisposition to higher BMD, a proxy for long-term estrogen exposure, and risk of developing endometroid and high-grade serous EOC cancers. These findings add to existing evidence of the relationship between estrogen and increased risk of EOC for certain histotypes.
Collapse
Affiliation(s)
- Karen M Tuesley
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Penelope M Webb
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Melinda M Protani
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Peter Donovan
- Clinical Pharmacology Department, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Susan J Jordan
- School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Suzanne Dixon-Suen
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
4
|
Young TA, Bahnassy S, Abalum TC, Pope EA, Rivera AT, Fernandez AI, Olukoya AO, Mobin D, Ranjit S, Libbey NE, Persaud S, Rozeboom AM, Chaldekas K, Harris BT, Madak-Erdogan Z, Sottnik JL, Sikora MJ, Riggins RB. Glutamate Transport Proteins and Metabolic Enzymes are Poor Prognostic Factors in Invasive Lobular Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.29.615681. [PMID: 39464069 PMCID: PMC11507668 DOI: 10.1101/2024.09.29.615681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Invasive Lobular Carcinoma (ILC) is a subtype of breast cancer characterized by distinct biological features, and limited glucose uptake coupled with increased reliance on amino acid and lipid metabolism. Our prior studies highlight the importance of glutamate as a key regulator of ILC tumor growth and therapeutic response. Here we examine the expression of four key proteins involved in glutamate transport and metabolism - SLC3A2, SLC7A11, GPX4, and GLUD1/2 - in a racially diverse cohort of 72 estrogen receptor-positive (ER+) ILC and 50 ER+ invasive ductal carcinoma, no special type (IDC/NST) patients with primary disease. All four proteins are associated with increased tumor size in ILC, but not IDC/NST, with SLC3A2 also specifically linked to shorter overall survival and the presence of comorbidities in ILC. Notably, GLUD1/2 expression is associated with ER expression in ILC, and is most strongly associated with increased tumor size and stage in Black women with ILC from our cohort and TCGA. We further explore the effects of GLUD1 inhibition in endocrine therapy-resistant ILC cells using the small-molecule inhibitor R162, which reduces ER protein levels, increases reactive oxygen species, and inhibits oxidative phosphorylation. These findings highlight a potentially important role for glutamate metabolism in ILC, particularly for Black women, and position several of these glutamate-handling proteins as potential targets for therapeutic intervention in ILC.
Collapse
Affiliation(s)
- Todd A. Young
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Shaymaa Bahnassy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Theresa C. Abalum
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
- Towson University, Towson, MD 21252
| | - Eden A. Pope
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
- Wake Forest University, Winston-Salem, NC 27109
| | - Amanda Torres Rivera
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Aileen I. Fernandez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
| | - Ayodeji O. Olukoya
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Dua Mobin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Suman Ranjit
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057
| | - Nicole E. Libbey
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Sonali Persaud
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Aaron M. Rozeboom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Krysta Chaldekas
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| | - Brent T. Harris
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
- Departments of Neurology and Pathology, Georgetown University Medical Center, Washington, DC 20057
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, Cancer Center at Illinois, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Joseph L. Sottnik
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Matthew J. Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057
| |
Collapse
|
5
|
Djerroudi L, El Sabeh-Ayoun A, Benoist C, Pierron G, Masliah-Planchon J, Fuhrmann L, Kieffer Y, Carton M, Ramtohul T, Callens C, Renault V, Bidard FC, Mechta-Grigoriou F, Vincent-Salomon A. Molecular and Clinical Portrait of HER2-low Invasive Lobular Carcinomas. Mod Pathol 2024; 37:100463. [PMID: 38428737 DOI: 10.1016/j.modpat.2024.100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Invasive lobular carcinomas (ILCs) have a low frequency of ERBB2 amplification, therefore restricting the use of conventional anti-HER2 therapies for this histologic special type. Conversely, ILCs with low HER2 overexpression may represent a broader target for the use of emerging antibody drug conjugate therapies targeting HER2, since these treatments have proven effective in HER2-low breast cancers. Very scarce data about HER2-low ILCs have been so far published, although these tumors could have different prevalence and histomolecular specificities compared with invasive breast carcinoma of no special type (IBC-NST). Our aims in that context were to decipher the clinicopathological and molecular features of a large series of HER2-low ILCs. Comparative evaluation of HER2-low prevalence was done based on a retrospective series of 7970 patients from Institut Curie, with either primary invasive lobular (N = 1103) or no special type (N = 6867) invasive carcinoma. Clinicopathological and molecular analyses of HER2-zero, HER2-low, and HER2-positive ILCs were performed on a subgroup of 251 patients who underwent surgery for a primary ILC between 2005 and 2008. The mutational profile of these 251 cases was determined from RNAseq data. Compared with HER2-negative IBC-NSTs, the HER2-negative ILCs were found to display a higher frequency of HER2-zero cases (59.4% vs 53.7%) and a lower frequency of HER2-low (40.6% vs 46.3%) (P < .001). Clinicopathological features associated with HER2-low status (vs HER2-zero) in ILC were older age, postmenopausal status, nonclassic ILC histological types, higher grade, proliferation, and estrogen receptor expression levels. Survival curve analysis showed a significantly lower risk of local recurrence for HER2-low (vs HER2-zero) ILCs, but no association was found between HER2 status and either breast cancer-specific survival or distant metastasis-free interval. ERBB3 was the unique mutated gene exclusively associated with HER2-low ILCs yet being mutated at a low frequency (7.1%) (false discovery rate < 0.05). In conclusion, HER2-low ILCs exhibit their own particularities, both on clinical-pathological and molecular levels. Our findings call for larger multicenter validation studies.
Collapse
MESH Headings
- Humans
- Female
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/pathology
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/therapy
- Carcinoma, Lobular/drug therapy
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/therapy
- Middle Aged
- Aged
- Retrospective Studies
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
- Adult
- Mutation
- Aged, 80 and over
Collapse
Affiliation(s)
- Lounes Djerroudi
- Institut Curie, PSL University, Department of Diagnostic and Theranostic Medicine, Paris, France; Institut Curie, Stress and Cancer laboratory, Inserm U830, PSL University, Paris, France.
| | - Ahmad El Sabeh-Ayoun
- Institut Curie, PSL University, Department of Diagnostic and Theranostic Medicine, Paris, France
| | - Camille Benoist
- Institut Curie, PSL University, Clinical Bioinformatics, Paris, France
| | - Gaelle Pierron
- Institut Curie, PSL University, Department of Diagnostic and Theranostic Medicine, Paris, France
| | - Julien Masliah-Planchon
- Institut Curie, PSL University, Department of Diagnostic and Theranostic Medicine, Paris, France
| | - Laetitia Fuhrmann
- Institut Curie, PSL University, Department of Diagnostic and Theranostic Medicine, Paris, France
| | - Yann Kieffer
- Institut Curie, Stress and Cancer laboratory, Inserm U830, PSL University, Paris, France
| | - Matthieu Carton
- Department of Statistics, Institut Curie, PSL University, Paris, France
| | - Toulsie Ramtohul
- Department of Radiology, Institut Curie, PSL University, Paris, France
| | - Celine Callens
- Institut Curie, PSL University, Department of Diagnostic and Theranostic Medicine, Paris, France
| | - Victor Renault
- Institut Curie, PSL University, Clinical Bioinformatics, Paris, France
| | - François-Clément Bidard
- Department of Medical Oncology, Institut Curie, Université Versailles Saint Quentin, Saint Cloud, France
| | | | - Anne Vincent-Salomon
- Institut Curie, PSL University, Department of Diagnostic and Theranostic Medicine, Paris, France
| |
Collapse
|
6
|
Alexander J, Schipper K, Nash S, Brough R, Kemp H, Iacovacci J, Isacke C, Natrajan R, Sawyer E, Lord CJ, Haider S. Pathway-based signatures predict patient outcome, chemotherapy benefit and synthetic lethal dependencies in invasive lobular breast cancer. Br J Cancer 2024; 130:1828-1840. [PMID: 38600325 PMCID: PMC11130209 DOI: 10.1038/s41416-024-02679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Invasive Lobular Carcinoma (ILC) is a morphologically distinct breast cancer subtype that represents up to 15% of all breast cancers. Compared to Invasive Breast Carcinoma of No Special Type (IBC-NST), ILCs exhibit poorer long-term outcome and a unique pattern of metastasis. Despite these differences, the systematic discovery of robust prognostic biomarkers and therapeutically actionable molecular pathways in ILC remains limited. METHODS Pathway-centric multivariable models using statistical machine learning were developed and tested in seven retrospective clinico-genomic cohorts (n = 996). Further external validation was performed using a new RNA-Seq clinical cohort of aggressive ILCs (n = 48). RESULTS AND CONCLUSIONS mRNA dysregulation scores of 25 pathways were strongly prognostic in ILC (FDR-adjusted P < 0.05). Of these, three pathways including Cell-cell communication, Innate immune system and Smooth muscle contraction were also independent predictors of chemotherapy response. To aggregate these findings, a multivariable machine learning predictor called PSILC was developed and successfully validated for predicting overall and metastasis-free survival in ILC. Integration of PSILC with CRISPR-Cas9 screening data from breast cancer cell lines revealed 16 candidate therapeutic targets that were synthetic lethal with high-risk ILCs. This study provides interpretable prognostic and predictive biomarkers of ILC which could serve as the starting points for targeted drug discovery for this disease.
Collapse
Affiliation(s)
- John Alexander
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Koen Schipper
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Sarah Nash
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Breast Cancer Genetics, King's College London, London, SE1 9RT, UK
| | - Rachel Brough
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Harriet Kemp
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Jacopo Iacovacci
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Clare Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Elinor Sawyer
- Breast Cancer Genetics, King's College London, London, SE1 9RT, UK
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
7
|
Flaherty RL, Sflomos G, Brisken C. Is There a Special Role for Ovarian Hormones in the Pathogenesis of Lobular Carcinoma? Endocrinology 2024; 165:bqae031. [PMID: 38551031 PMCID: PMC10988861 DOI: 10.1210/endocr/bqae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 04/04/2024]
Abstract
Lobular carcinoma represent the most common special histological subtype of breast cancer, with the majority classed as hormone receptor positive. Rates of invasive lobular carcinoma in postmenopausal women have been seen to increase globally, while other hormone receptor-positive breast cancers proportionally have not followed the same trend. This has been linked to exposure to exogenous ovarian hormones such as hormone replacement therapy. Reproductive factors resulting in increased lifetime exposure to endogenous ovarian hormones have also been linked to an increased risk of lobular breast cancer, and taken together, these data make a case for the role of ovarian hormones in the genesis and progression of the disease. In this review, we summarize current understanding of the epidemiological associations between ovarian hormones and lobular breast cancer and highlight mechanistic links that may underpin the etiology and biology.
Collapse
Affiliation(s)
- Renée L Flaherty
- Division of Breast Cancer Research, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
| | - George Sflomos
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Cathrin Brisken
- Division of Breast Cancer Research, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Ding K, Chen L, Levine K, Sikora M, Tasdemir N, Dabbs D, Jankowitz R, Hazan R, Shah OS, Atkinson JM, Lee AV, Oesterreich S. Estrogen regulation and functional role of FGFR4 in estrogen receptor positive breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585626. [PMID: 38562741 PMCID: PMC10983957 DOI: 10.1101/2024.03.18.585626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Resistance to endocrine therapy is a major challenge of managing estrogen receptor positive (ER+) breast cancer. We previously reported frequent overexpression of FGFR4 in endocrine resistant cell lines and breast cancers that recurred and metastasized following endocrine therapy, suggesting FGFR4 as a potential driver of endocrine resistance. In this study, we investigated the role of FGFR4 in mediating endocrine resistance and explored the therapeutic potential of targeting FGFR4 in advanced breast cancer. Methods A gene expression signature of FGFR4 activity was examined in ER+ breast cancer pre- and post-neoadjuvant endocrine therapy and the association between FGFR4 expression and patient survival was examined. A correlation analysis was used to uncover potential regulators of FGFR4 overexpression. To investigate if FGFR4 is necessary to drive endocrine resistance, we tested response to FGFR4 inhibition in long term estrogen deprived (LTED) cells and their paired parental cells. Doxycycline inducible FGFR4 overexpression and knockdown cell models were generated to examine if FGFR4 was sufficient to confer endocrine resistance. Finally, we examined response to FGFR4 monotherapy or combination therapy with fulvestrant in breast cancer cell lines to explore the potential of FGFR4 targeted therapy for advanced breast cancer and assessed the importance of PAM50 subtype in response to FGFR4 inhibition. Results A FGFR4 activity gene signature was significantly upregulated post neoadjuvant aromatase inhibitor treatment, and high FGFR4 expression predicted poorer survival in patients with ER+ breast cancer. Gene expression association analysis using TCGA, METABRIC and SCAN-B datasets uncovered ER as the most significant gene negatively correlated with FGFR4 expression. ER negatively regulates FGFR4 expression at both the mRNA and protein level across multiple ER+ breast cancer cell lines. Despite robust overexpression of FGFR4, LTED cells did not show enhanced responses to FGFR4 inhibition compared to parental cells. Similarly, FGFR4 overexpression, knockdown or hotspot mutations did not significantly alter response to endocrine treatment in ER+ cell lines, nor did FGFR4 and fulvestrant combination treatment show synergistic effects. The HER2-like subtype of breast cancer showed elevated expression of FGFR4 and an increased response to FGFR4 inhibition relative to other breast cancer subtypes. Conclusions Despite ER-mediated upregulation of FGFR4 post endocrine therapy, our study does not support a general role of FGFR4 in mediating endocrine resistance in ER+ breast cancer. Our data suggests that specific genomic backgrounds such as HER2 expression may be required for FGFR4 function in breast cancer and should be further explored.
Collapse
|
9
|
Pavličev M, McDonough-Goldstein CE, Zupan AM, Muglia L, Hu YC, Kong F, Monangi N, Dagdas G, Zupančič N, Maziarz J, Sinner D, Zhang G, Wagner G, Muglia L. A common allele increases endometrial Wnt4 expression, with antagonistic implications for pregnancy, reproductive cancers, and endometriosis. Nat Commun 2024; 15:1152. [PMID: 38346980 PMCID: PMC10861470 DOI: 10.1038/s41467-024-45338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2024] [Indexed: 02/15/2024] Open
Abstract
The common human SNP rs3820282 is associated with multiple phenotypes including gestational length and likelihood of endometriosis and cancer, presenting a paradigmatic pleiotropic variant. Deleterious pleiotropic mutations cause the co-occurrence of disorders either within individuals, or across population. When adverse and advantageous effects are combined, pleiotropy can maintain high population frequencies of deleterious alleles. To reveal the causal molecular mechanisms of this pleiotropic SNP, we introduced this substitution into the mouse genome by CRISPR/Cas 9. Previous work showed that rs3820282 introduces a high-affinity estrogen receptor alpha-binding site at the Wnt4 locus. Here, we show that this mutation upregulates Wnt4 transcription in endometrial stroma, following the preovulatory estrogen peak. Effects on uterine transcription include downregulation of epithelial proliferation and induction of progesterone-regulated pro-implantation genes. We propose that these changes increase uterine permissiveness to embryo invasion, whereas they decrease resistance to invasion by cancer and endometriotic foci in other estrogen-responsive tissues.
Collapse
Affiliation(s)
- Mihaela Pavličev
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.
- Complexity Science Hub, Vienna, Austria.
| | | | | | - Lisa Muglia
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yueh-Chiang Hu
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fansheng Kong
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nagendra Monangi
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gülay Dagdas
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Nina Zupančič
- University Medical Center Ljubljana, Department of Cardiovascular Surgery, Ljubljana, Slovenia
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Debora Sinner
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ge Zhang
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Günter Wagner
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Yale Systems Biology Institute, Yale University, West Haven, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, USA
| | - Louis Muglia
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Burroughs Wellcome Fund, Research Triangle Park, NC, Durham, USA
| |
Collapse
|
10
|
Sottnik JL, Shackleford MT, Robinson SK, Villagomez FR, Bahnassy S, Oesterreich S, Hu J, Madak-Erdogan Z, Riggins RB, Corr BR, Cook LS, Treviño LS, Bitler BG, Sikora MJ. WNT4 Regulates Cellular Metabolism via Intracellular Activity at the Mitochondria in Breast and Gynecologic Cancers. CANCER RESEARCH COMMUNICATIONS 2024; 4:134-151. [PMID: 38112643 PMCID: PMC10793200 DOI: 10.1158/2767-9764.crc-23-0275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Wnt ligand WNT4 is critical in female reproductive tissue development, with WNT4 dysregulation linked to related pathologies including breast cancer (invasive lobular carcinoma, ILC) and gynecologic cancers. WNT4 signaling in these contexts is distinct from canonical Wnt signaling yet inadequately understood. We previously identified atypical intracellular activity of WNT4 (independent of Wnt secretion) regulating mitochondrial function, and herein examine intracellular functions of WNT4. We further examine how convergent mechanisms of WNT4 dysregulation impact cancer metabolism. In ILC, WNT4 is co-opted by estrogen receptor α (ER) via genomic binding in WNT4 intron 1, while in gynecologic cancers, a common genetic polymorphism (rs3820282) at this ER binding site alters WNT4 regulation. Using proximity biotinylation (BioID), we show canonical Wnt ligand WNT3A is trafficked for secretion, but WNT4 is localized to the cytosol and mitochondria. We identified DHRS2, mTOR, and STAT1 as putative WNT4 cytosolic/mitochondrial signaling partners. Whole metabolite profiling, and integrated transcriptomic data, support that WNT4 mediates metabolic reprogramming via fatty acid and amino acid metabolism. Furthermore, ovarian cancer cell lines with rs3820282 variant genotype are WNT4 dependent and have active WNT4 metabolic signaling. In protein array analyses of a cohort of 103 human gynecologic tumors enriched for patient diversity, germline rs3820282 genotype is associated with metabolic remodeling. Variant genotype tumors show increased AMPK activation and downstream signaling, with the highest AMPK signaling activity in variant genotype tumors from non-White patients. Taken together, atypical intracellular WNT4 signaling, in part via genetic dysregulation, regulates the distinct metabolic phenotypes of ILC and gynecologic cancers. SIGNIFICANCE WNT4 regulates breast and gynecologic cancer metabolism via a previously unappreciated intracellular signaling mechanism at the mitochondria, with WNT4 mediating metabolic remodeling. Understanding WNT4 dysregulation by estrogen and genetic polymorphism offers new opportunities for defining tumor biology, precision therapeutics, and personalized cancer risk assessment.
Collapse
Affiliation(s)
- Joseph L. Sottnik
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Sydney K. Robinson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shaymaa Bahnassy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Junxiao Hu
- Biostatistics and Bioinformatics Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, Cancer Center at Illinois, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Champaign, Illinois
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Bradley R. Corr
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Linda S. Cook
- Department of Epidemiology, University of Colorado School of Public Health, Aurora, Colorado
| | - Lindsey S. Treviño
- Depratment of Population Sciences, Division of Health Equities, City of Hope, Duarte, California
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew J. Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
11
|
Aarts MT, Wagner M, van der Wal T, van Boxtel AL, van Amerongen R. A molecular toolbox to study progesterone receptor signaling. J Mammary Gland Biol Neoplasia 2023; 28:24. [PMID: 38019315 PMCID: PMC10687192 DOI: 10.1007/s10911-023-09550-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/29/2023] [Indexed: 11/30/2023] Open
Abstract
Progesterone receptor (PR) signaling is required for mammary gland development and homeostasis. A major bottleneck in studying PR signaling is the lack of sensitive assays to measure and visualize PR pathway activity both quantitatively and spatially. Here, we develop new tools to study PR signaling in human breast epithelial cells. First, we generate optimized Progesterone Responsive Element (PRE)-luciferase constructs and demonstrate that these new reporters are a powerful tool to quantify PR signaling activity across a wide range of progesterone concentrations in two luminal breast cancer cell lines, MCF7 and T47D. We also describe a fluorescent lentiviral PRE-GFP reporter as a novel tool to visualize PR signaling at the single-cell level. Our reporter constructs are sensitive to physiological levels of progesterone. Second, we show that low background signaling, and high levels of PR expression are a prerequisite for robustly measuring PR signaling. Increasing PR expression by transient transfection, stable overexpression in MCF7 or clonal selection in T47D, drastically improves both the dynamic range of luciferase reporter assays, and the induction of endogenous PR target genes as measured by qRT-PCR. We find that the PR signaling response differs per cell line, target gene and hormone concentration used. Taken together, our tools allow a more rationally designed approach for measuring PR signaling in breast epithelial cells.
Collapse
Affiliation(s)
- Marleen T Aarts
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Muriel Wagner
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Tanne van der Wal
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Antonius L van Boxtel
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Lee DY, Song WH, Lim YS, Lee C, Rajbongshi L, Hwang SY, Kim BS, Lee D, Song YJ, Kim HG, Yoon S. Fish Collagen Peptides Enhance Thymopoietic Gene Expression, Cell Proliferation, Thymocyte Adherence, and Cytoprotection in Thymic Epithelial Cells via Activation of the Nuclear Factor-κB Pathway, Leading to Thymus Regeneration after Cyclophosphamide-Induced Injury. Mar Drugs 2023; 21:531. [PMID: 37888466 PMCID: PMC10608061 DOI: 10.3390/md21100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Prolonged thymic involution results in decreased thymopoiesis and thymic output, leading to peripheral T-cell deficiency. Since the thymic-dependent pathway is the only means of generating fully mature T cells, the identification of strategies to enhance thymic regeneration is crucial in developing therapeutic interventions to revert immune suppression in immunocompromised patients. The present study clearly shows that fish collagen peptides (FCPs) stimulate activities of thymic epithelial cells (TECs), including cell proliferation, thymocyte adhesion, and the gene expression of thymopoietic factors such as FGF-7, IGF-1, BMP-4, VEGF-A, IL-7, IL-21, RANKL, LTβ, IL-22R, RANK, LTβR, SDF-1, CCL21, CCL25, CXCL5, Dll1, Dll4, Wnt4, CD40, CD80, CD86, ICAM-1, VCAM-1, FoxN1, leptin, cathepsin L, CK5, and CK8 through the NF-κB signal transduction pathway. Furthermore, our study also revealed the cytoprotective effects of FCPs on TECs against cyclophosphamide-induced cellular injury through the NF-κB signaling pathway. Importantly, FCPs exhibited a significant capability to facilitate thymic regeneration in mice after cyclophosphamide-induced damage via the NF-κB pathway. Taken together, this study sheds light on the role of FCPs in TEC function, thymopoiesis, and thymic regeneration, providing greater insight into the development of novel therapeutic strategies for effective thymus repopulation for numerous clinical conditions in which immune reconstitution is required.
Collapse
Affiliation(s)
- Do Young Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Won Hoon Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Urology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Ye Seon Lim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Changyong Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Lata Rajbongshi
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Seon Yeong Hwang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Yong Jung Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Hwi-Gon Kim
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| |
Collapse
|
13
|
Kiewisz J, Waśniewski T, Kieżun J, Skowrońska A, Kaczmarek MM, Szóstak B, Kowalczyk AE, Kmieć Z. WNT4 Gene and Protein Expression in Endometrial Cancer and Its Significance. Cancers (Basel) 2023; 15:4780. [PMID: 37835474 PMCID: PMC10571897 DOI: 10.3390/cancers15194780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The inappropriate action of WNT4 and estrogens affects uterine homeostasis and function, and may lead to endometrial cancer (EC). OBJECTIVE The aim was to evaluate the alterations of WNT4 gene expression and WNT4 protein immunoreactivity (Ir) in EC, considering tumor characteristics, the clinicopathological association and estrogen dependence. METHODS WNT4 mRNA levels were compared between benign (control) endometrium (n = 8) and endometroid EC (EEC) and non-endometroid EC (non-EEC) samples (n = 28) using the real-time PCR technique. The WNT4-Ir and ERα-Ir were evaluated by immunohistochemistry (IHC). WNT4 mRNA gene and WNT4-Ir were correlated with clinicopathological and blood morphological parameters. Overall survival (OS) was assessed. The bioanalysis was utilized to study WNT4 expression in large patient cohort (n = 549). RESULTS WNT4 gene expression was decreased in EC samples (specifically in EEC but not in non-EEC) compared to the control. The WNT4 gene expression was also decreased in EC samples categorized by the tumor characteristics. There was no statistical difference in WNT4-Ir or ERα-Ir between the control and EC. There was no correlation between OS and WNT4 gene expression and WNT4-Ir. Bioanalysis showed that WNT4 and ESR1 gene expression alterations tended to be mutually exclusive. An alteration in WNT4 expression was found in different histological tumor types in a large group of EC patients. CONCLUSIONS There is a great need to evaluate the molecular background of EC. Our study suggests that the WNT4 gene has the potential to be a marker of functional estrogen signaling in EEC.
Collapse
Affiliation(s)
- Jolanta Kiewisz
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (J.K.); (A.E.K.); (Z.K.)
| | - Tomasz Waśniewski
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland;
| | - Jacek Kieżun
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (J.K.); (A.E.K.); (Z.K.)
| | - Agnieszka Skowrońska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Monika M. Kaczmarek
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland
| | - Błażej Szóstak
- Department of Pathomorphology, The Regional Specialist Hospital, 10-561 Olsztyn, Poland
| | - Anna E. Kowalczyk
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (J.K.); (A.E.K.); (Z.K.)
| | - Zbigniew Kmieć
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland; (J.K.); (A.E.K.); (Z.K.)
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland
| |
Collapse
|
14
|
Olukoya AO, Stires H, Bahnassy S, Persaud S, Guerra Y, Ranjit S, Ma S, Cruz MI, Benitez C, Rozeboom AM, Ceuleers H, Berry DL, Jacobsen BM, Raj GV, Riggins RB. Riluzole Suppresses Growth and Enhances Response to Endocrine Therapy in ER+ Breast Cancer. J Endocr Soc 2023; 7:bvad117. [PMID: 37766843 PMCID: PMC10521904 DOI: 10.1210/jendso/bvad117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 09/29/2023] Open
Abstract
Background Resistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer remains a significant clinical problem. Riluzole is FDA-approved for the treatment of amyotrophic lateral sclerosis. A benzothiazole-based glutamate release inhibitor with several context-dependent mechanism(s) of action, riluzole has shown antitumor activity in multiple malignancies, including melanoma, glioblastoma, and breast cancer. We previously reported that the acquisition of tamoxifen resistance in a cellular model of invasive lobular breast cancer is accompanied by the upregulation of GRM mRNA expression and growth inhibition by riluzole. Methods We tested the ability of riluzole to reduce cell growth, alone and in combination with endocrine therapy, in a diverse set of ER+ invasive ductal and lobular breast cancer-derived cell lines, primary breast tumor explant cultures, and the estrogen-independent, ESR1-mutated invasive lobular breast cancer patient-derived xenograft model HCI-013EI. Results Single-agent riluzole suppressed the growth of ER+ invasive ductal and lobular breast cancer cell lines in vitro, inducing a histologic subtype-associated cell cycle arrest (G0-G1 for ductal, G2-M for lobular). Riluzole induced apoptosis and ferroptosis and reduced phosphorylation of multiple prosurvival signaling molecules, including Akt/mTOR, CREB, and Fak/Src family kinases. Riluzole, in combination with either fulvestrant or 4-hydroxytamoxifen, additively suppressed ER+ breast cancer cell growth in vitro. Single-agent riluzole significantly inhibited HCI-013EI patient-derived xenograft growth in vivo, and the combination of riluzole plus fulvestrant significantly reduced proliferation in ex vivo primary breast tumor explant cultures. Conclusion Riluzole may offer therapeutic benefits in diverse ER+ breast cancers, including lobular breast cancer.
Collapse
Affiliation(s)
- Ayodeji O Olukoya
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Hillary Stires
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Shaymaa Bahnassy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Sonali Persaud
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Yanira Guerra
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Suman Ranjit
- Department of Biochemistry, Georgetown University, Washington, DC 20057, USA
| | - Shihong Ma
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - M Idalia Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Carlos Benitez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Aaron M Rozeboom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Hannah Ceuleers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Deborah L Berry
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Britta M Jacobsen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA
| | - Ganesh V Raj
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
15
|
Wu X, Sun L, Xu F. NF-κB in Cell Deaths, Therapeutic Resistance and Nanotherapy of Tumors: Recent Advances. Pharmaceuticals (Basel) 2023; 16:783. [PMID: 37375731 DOI: 10.3390/ph16060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The transcription factor nuclear factor-κB (NF-κB) plays a complicated role in multiple tumors. Mounting evidence demonstrates that NF-κB activation supports tumorigenesis and development by enhancing cell proliferation, invasion, and metastasis, preventing cell death, facilitating angiogenesis, regulating tumor immune microenvironment and metabolism, and inducing therapeutic resistance. Notably, NF-κB functions as a double-edged sword exerting positive or negative influences on cancers. In this review, we summarize and discuss recent research on the regulation of NF-κB in cancer cell deaths, therapy resistance, and NF-κB-based nano delivery systems.
Collapse
Affiliation(s)
- Xuesong Wu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liang Sun
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Fangying Xu
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Department of Pathology and Pathophysiology, and Department of Hepatobiliary and Pancreatic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310005, China
| |
Collapse
|
16
|
Ito H, Emori C, Kobayashi M, Maruyama N, Fujii W, Naito K, Sugiura K. Cooperative effects of oocytes and estrogen on the forkhead box L2 expression in mural granulosa cells in mice. Sci Rep 2022; 12:20158. [PMID: 36424497 PMCID: PMC9691737 DOI: 10.1038/s41598-022-24680-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Forkhead box L2 (FOXL2) plays a critical role in the development and function of mammalian ovaries. In fact, the causative effects of FOXL2 misregulations have been identified in many ovarian diseases, such as primary ovarian insufficiency and granulosa cell tumor; however, the mechanism by which FOXL2 expression is regulated is not well studied. Here, we showed that FOXL2 expression in ovarian mural granulosa cells (MGCs) requires stimulation by both oocyte-derived signals and estrogen in mice. In the absence of oocytes or estrogen, expression of FOXL2 and its transcriptional targets, Cyp19a1 and Fst mRNA, in MGCs were significantly decreased. Moreover, expression levels of Sox9 mRNA, but not SOX9 protein, were significantly increased in the FOXL2-reduced MGCs. FOXL2 expression in MGCs was maintained with either oocytes or recombinant proteins of oocyte-derived paracrine factors, BMP15 and GDF9, together with estrogen, and this oocyte effect was abrogated with an ALK5 inhibitor, SB431542. In addition, the FOXL2 level was significantly decreased in MGCs isolated from Bmp15-/- /Gdf9+/- mice. Therefore, oocyte, probably with estrogen, plays a critical role in the regulation of FOXL2 expression in mural granulosa cells in mice.
Collapse
Affiliation(s)
- Haruka Ito
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chihiro Emori
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan ,grid.136593.b0000 0004 0373 3971Present Address: Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Mei Kobayashi
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Maruyama
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- grid.26999.3d0000 0001 2151 536XLaboratory of Applied Genetics, Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Nardone A, Qiu X, Spisak S, Nagy Z, Feiglin A, Feit A, Cohen Feit G, Xie Y, Font-Tello A, Guarducci C, Hermida-Prado F, Syamala S, Lim K, Munoz Gomez M, Pun M, Cornwell M, Liu W, Ors A, Mohammed H, Cejas P, Brock JB, Freedman ML, Winer EP, Fu X, Schiff R, Long HW, Metzger Filho O, Jeselsohn R. A Distinct Chromatin State Drives Therapeutic Resistance in Invasive Lobular Breast Cancer. Cancer Res 2022; 82:3673-3686. [PMID: 35950920 PMCID: PMC9588703 DOI: 10.1158/0008-5472.can-21-3186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/04/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022]
Abstract
Most invasive lobular breast cancers (ILC) are of the luminal A subtype and are strongly hormone receptor-positive. Yet, ILC is relatively resistant to tamoxifen and associated with inferior long-term outcomes compared with invasive ductal cancers (IDC). In this study, we sought to gain mechanistic insights into these clinical findings that are not explained by the genetic landscape of ILC and to identify strategies to improve patient outcomes. A comprehensive analysis of the epigenome of ILC in preclinical models and clinical samples showed that, compared with IDC, ILC harbored a distinct chromatin state linked to gained recruitment of FOXA1, a lineage-defining pioneer transcription factor. This resulted in an ILC-unique FOXA1-estrogen receptor (ER) axis that promoted the transcription of genes associated with tumor progression and poor outcomes. The ILC-unique FOXA1-ER axis led to retained ER chromatin binding after tamoxifen treatment, which facilitated tamoxifen resistance while remaining strongly dependent on ER signaling. Mechanistically, gained FOXA1 binding was associated with the autoinduction of FOXA1 in ILC through an ILC-unique FOXA1 binding site. Targeted silencing of this regulatory site resulted in the disruption of the feed-forward loop and growth inhibition in ILC. In summary, ILC is characterized by a unique chromatin state and FOXA1-ER axis that is associated with tumor progression, offering a novel mechanism of tamoxifen resistance. These results underscore the importance of conducting clinical trials dedicated to patients with ILC in order to optimize treatments in this breast cancer subtype. SIGNIFICANCE A unique FOXA1-ER axis in invasive lobular breast cancer promotes disease progression and tamoxifen resistance, highlighting a potential therapeutic avenue for clinical investigations dedicated to this disease. See related commentary by Blawski and Toska, p. 3668.
Collapse
Affiliation(s)
- Agostina Nardone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sandor Spisak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts.,Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zsuzsanna Nagy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ariel Feiglin
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Avery Feit
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gabriela Cohen Feit
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alba Font-Tello
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cristina Guarducci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Francisco Hermida-Prado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sudeepa Syamala
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Klothilda Lim
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Miguel Munoz Gomez
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Matthew Pun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - MacIntosh Cornwell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Weihan Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Aysegul Ors
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, Oregon
| | - Hisham Mohammed
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, Oregon
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jane B Brock
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eric P Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Xiaoyong Fu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Otto Metzger Filho
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts.,Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Van Baelen K, Geukens T, Maetens M, Tjan-Heijnen V, Lord CJ, Linn S, Bidard FC, Richard F, Yang WW, Steele RE, Pettitt SJ, Van Ongeval C, De Schepper M, Isnaldi E, Nevelsteen I, Smeets A, Punie K, Voorwerk L, Wildiers H, Floris G, Vincent-Salomon A, Derksen PWB, Neven P, Senkus E, Sawyer E, Kok M, Desmedt C. Current and future diagnostic and treatment strategies for patients with invasive lobular breast cancer. Ann Oncol 2022; 33:769-785. [PMID: 35605746 DOI: 10.1016/j.annonc.2022.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Invasive lobular breast cancer (ILC) is the second most common type of breast cancer after invasive breast cancer of no special type (NST), representing up to 15% of all breast cancers. DESIGN Latest data on ILC are presented, focusing on diagnosis, molecular make-up according to the European Society for Medical Oncology Scale for Clinical Actionability of molecular Targets (ESCAT) guidelines, treatment in the early and metastatic setting and ILC-focused clinical trials. RESULTS At the imaging level, magnetic resonance imaging-based and novel positron emission tomography/computed tomography-based techniques can overcome the limitations of currently used imaging techniques for diagnosing ILC. At the pathology level, E-cadherin immunohistochemistry could help improving inter-pathologist agreement. The majority of patients with ILC do not seem to benefit as much from (neo-)adjuvant chemotherapy as patients with NST, although chemotherapy might be required in a subset of high-risk patients. No differences in treatment efficacy are seen for anti-human epidermal growth factor receptor 2 (HER2) therapies in the adjuvant setting and cyclin-dependent kinases 4 and 6 inhibitors in the metastatic setting. The clinical utility of the commercially available prognostic gene expression-based tests is unclear for patients with ILC. Several ESCAT alterations differ in frequency between ILC and NST. Germline BRCA1 and PALB2 alterations are less frequent in patients with ILC, while germline CDH1 (gene coding for E-cadherin) alterations are more frequent in patients with ILC. Somatic HER2 mutations are more frequent in ILC, especially in metastases (15% ILC versus 5% NST). A high tumour mutational burden, relevant for immune checkpoint inhibition, is more frequent in ILC metastases (16%) than in NST metastases (5%). Tumours with somatic inactivating CDH1 mutations may be vulnerable for treatment with ROS1 inhibitors, a concept currently investigated in early and metastatic ILC. CONCLUSION ILC is a unique malignancy based on its pathological and biological features leading to differences in diagnosis as well as in treatment response, resistance and targets as compared to NST.
Collapse
Affiliation(s)
- K Van Baelen
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium; Departments of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - T Geukens
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium; General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - M Maetens
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | - V Tjan-Heijnen
- Medical Oncology Department, Maastricht University Medical Center (MUMC), School of GROW, Maastricht, The Netherlands
| | - C J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - S Linn
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands; Departments of Medical Oncology, Amsterdam, The Netherlands; Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - F-C Bidard
- Department of Medical Oncology, Institut Curie, UVSQ/Paris-Saclav University, Paris, France
| | - F Richard
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | - W W Yang
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - R E Steele
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - S J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - C Van Ongeval
- Departments of Radiology, UZ Leuven, Leuven, Belgium
| | - M De Schepper
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium; Pathology, UZ Leuven, Leuven, Belgium
| | - E Isnaldi
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - A Smeets
- Surgical Oncology, UZ Leuven, Leuven, Belgium
| | - K Punie
- General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - L Voorwerk
- Departments of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - H Wildiers
- General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - G Floris
- Pathology, UZ Leuven, Leuven, Belgium
| | | | - P W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Neven
- Departments of Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - E Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - E Sawyer
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - M Kok
- Departments of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C Desmedt
- Laboratory for Translational Breast Cancer Research (LTBCR), Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
Zhang X, Schalke B, Kvell K, Kriegsmann K, Kriegsmann M, Graeter T, Preissler G, Ott G, Kurz K, Bulut E, Ströbel P, Marx A, Belharazem D. WNT4 overexpression and secretion in thymic epithelial tumors drive an autocrine loop in tumor cells in vitro. Front Oncol 2022; 12:920871. [PMID: 35965500 PMCID: PMC9372913 DOI: 10.3389/fonc.2022.920871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundWNT4-driven non-canonical signaling is crucial for homeostasis and age-related involution of the thymus. Abnormal WNT signaling is important in many cancers, but the role of WNT signaling in thymic tumors is largely unknown.Materials & MethodsExpression and function of WNT4 and FZD6 were analyzed using qRT–PCR, Western blot, ELISA, in biopsies of non-neoplastic thymi (NT), thymoma and thymic carcinomas. ShRNA techniques and functional assays were used in primary thymic epithelial cells (pTECs) and TC cell line 1889c. Cells were conventionally (2D) grown and in three-dimensional (3D) spheroids.ResultsIn biopsy, WHO classified B3 thymomas and TCs showed increased WNT4 expression compared with NTs. During short-term 2D culture, WNT4 expression and secretion declined in neoplastic pTECs but not in 3D spheroids or medium supplemented with recombinant WNT4 cultures. Under the latter condition, the growth of pTECs was accompanied by increased expression of non-canonical targets RAC1 and JNK. Down-regulation of WNT4 by shRNA induced cell death in pTECs derived from B3 thymomas and led to decreased RAC1, but not JNK protein phosphorylation. Pharmacological inhibition of NF-κB decreased both RAC1 and JNK phosphorylation in neoplastic pTECs.ConclusionsLack of the age-related decline of non-canonical WNT4 expression in TETs and restoration of declining WNT4 expression through exogeneous WNT4 or 3D culture of pTECs hints at an oncogenic role of WNT4 in TETs and is compatible with the WNT4 autocrine loop model. Crosstalk between WNT4 and NF-κB signaling may present a promising target for combined interventions in TETs.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Institute of Pathology and Medical Research Center, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Pecs, Hungary
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mark Kriegsmann
- Translational Lung Research Centre Heidelberg, German Centre for Lung Research, Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas Graeter
- Department of Thoracic Surgery, University Medical Centre Erlangen, Erlangen, Germany
| | - Gerhard Preissler
- Department of Thoraxic Surgery, Clinic Schillerhöhe, Robert-Bosch-Hospital, Gerlingen, Löwenstein, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Hospital, Stuttgart, Germany
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Katrin Kurz
- Department of Clinical Pathology, Robert-Bosch-Hospital, Stuttgart, Germany
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Elena Bulut
- Department of Thoraxic Surgery, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology and Medical Research Center, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Djeda Belharazem
- Institute of Pathology and Medical Research Center, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- *Correspondence: Djeda Belharazem,
| |
Collapse
|
20
|
Cheng GJ, Leung EY, Singleton DC. In vitro breast cancer models for studying mechanisms of resistance to endocrine therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:297-320. [PMID: 36045910 PMCID: PMC9400723 DOI: 10.37349/etat.2022.00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
The development of endocrine resistance is a common reason for the failure of endocrine therapies in hormone receptor-positive breast cancer. This review provides an overview of the different types of in vitro models that have been developed as tools for studying endocrine resistance. In vitro models include cell lines that have been rendered endocrine-resistant by ex vivo treatment; cell lines with de novo resistance mechanisms, including genetic alterations; three-dimensional (3D) spheroid, co-culture, and mammosphere techniques; and patient-derived organoid models. In each case, the key discoveries, different analysis strategies that are suitable, and strengths and weaknesses are discussed. Certain recently developed methodologies that can be used to further characterize the biological changes involved in endocrine resistance are then emphasized, along with a commentary on the types of research outcomes that using these techniques can support. Finally, a discussion anticipates how these recent developments will shape future trends in the field. We hope this overview will serve as a useful resource for investigators that are interested in understanding and testing hypotheses related to mechanisms of endocrine therapy resistance.
Collapse
Affiliation(s)
- Gary J. Cheng
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Euphemia Y. Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1023, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand
| | - Dean C. Singleton
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1023, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
21
|
Deng H, Muthupalani S, Erdman S, Liu H, Niu Z, Wang TC, Fox JG. Translocation of Helicobacter hepaticus synergizes with myeloid-derived suppressor cells and contributes to breast carcinogenesis. Oncoimmunology 2022; 11:2057399. [PMID: 35371619 PMCID: PMC8966989 DOI: 10.1080/2162402x.2022.2057399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microbial dysbiosis plays an important role in the development of intestinal diseases. Recent studies suggest a link between intestinal bacteria and mammary cancer. Here, we report that female ApcMin/+ mice infected with Helicobacter hepaticus exhibited an increased mammary and small/large intestine tumor burden compared with uninfected littermates. H. hepaticus DNA was detected in small/large intestine, mammary tumors, and adjacent lymph nodes, suggesting a migration pathway. CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) infiltrated and expressed high levels of Wnts, likely enhancing tumorigenesis through activation of Wnt/β-catenin pathway. Our previous studies indicated that histidine decarboxylase (Hdc) marks a population of myeloid-biased hematopoietic stem cells and granulocytic MDSCs. Cytokines/chemokines secreted by IL-17-expressing mast cells and tumor tissues promoted Hdc+ MDSCs expansion and trafficking toward mammary tumors. Adoptive transfer of MDSCs isolated from H. hepaticus-infected mice increased MDSCs frequencies in peripheral blood, mesenteric lymph nodes, mammary gland, and lymph nodes in recipient ApcMin/+ mice. The adoptive transfer of H. hepaticus primed MDSCs also increased the size and number of mammary tumors. Our results demonstrate that H. hepaticus can translocate from the intestine to mammary tissues to promote mammary tumorigenesis with MDSCs. Targeting bacteria and MDSCs may be useful for the prevention and therapy of extraintestinal cancers. Abbreviations: Helicobacter hepaticus, Hh; myeloid-derived suppressor cell, MDSC; histidine decarboxylase, Hdc; Breast cancer, BC; T regulatory, TR; inflammatory bowel disease, IBD; fluorescence in situ hybridization, FISH; myeloid-biased hematopoietic stem cells, MB-HSCs; granulocytic MDSCs, PMN-MDSCs; Lipopolysaccharide, LPS; Toll-like receptors, TLRs; Mast cells, MCs; Granulocyte-macrophage colony-stimulating factor, GM-CSF; epithelial–mesenchymal transition, EMT; Intestinal epithelial cells, IECs.
Collapse
Affiliation(s)
- Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | | | - Susan Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haibo Liu
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhengchuan Niu
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
22
|
Czapiewski P, Cornelius M, Hartig R, Kalinski T, Haybaeck J, Dittmer A, Dittmer J, Ignatov A, Nass N. BCL3 expression is strongly associated with the occurrence of breast cancer relapse under tamoxifen treatment in a retrospective cohort study. Virchows Arch 2022; 480:529-541. [PMID: 35020071 PMCID: PMC8989858 DOI: 10.1007/s00428-021-03238-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Patients with estrogen receptor positive breast cancer are usually receiving an anti-estrogen therapy by either aromatase inhibitors or selective estrogen receptor mediators such as tamoxifen. Nevertheless, acquired resistance to tamoxifen under treatment frequently hampers therapy. One proposed explanation for this phenomenon is the interaction of the tumor cells with cells of the tumor microenvironment via the Insulin-like growth factor RNA binding protein 5/B-cell lymphoma 3 (IGFBP5/BCL3) axis. Here we investigated whether a high expression of BCL3 either cytoplasmic or nuclear is associated with the occurrence of a relapse under anti-estrogen therapy in patients. Formaldehyde-fixed, paraffin-embedded samples of 180 breast cancer patients were analyzed for BCL3 expression by immunohistochemistry. An immunoreactive score (IRS) was calculated from staining intensity in cytoplasm and nucleus as well as the percentage of positive tumor cells. These scores were correlated with clinico-pathological parameters using cross-tabulation analysis and patients’ relapse free and overall survival by Kaplan–Meier analysis and Cox regression. A tamoxifen-adapted MCF-7 derived cell line was investigated for BCL3 localization by immunofluorescence. The cytosolic BCL3-IRS significantly correlated with the proliferation marker Ki-67, and with the occurrence of a relapse under tamoxifen treatment. Nuclear score correlated only with tamoxifen-relapse. In survival analysis, both scores were highly significant prognostic factors for relapse free, but not for overall survival. This was especially obvious for estrogen receptor positive and HER2/NEU negative cases as well as lobular breast cancer. Tamoxifen-treated, but not aromatase-treated patients had a poor survival when BCL3 scores were high. A tamoxifen adapted cell line exhibited a reduced expression and mainly nuclear localization of BCL3, compared to the parental estrogen receptor positive cell-line MCF-7. Altogether, these data strongly support a function of BCL3 in tamoxifen resistance and its potential use as a predictive biomarker for tamoxifen resistance.
Collapse
Affiliation(s)
- Piotr Czapiewski
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Department of Pathology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany
| | - Maximilian Cornelius
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Roland Hartig
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str.44, 39120, Magdeburg, Germany.,Multi-Parametric Bioimaging and Cytometry Platform, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str.44, 39120, Magdeburg, Germany
| | - Thomas Kalinski
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Johannes Haybaeck
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria.,Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Müllerstraße 44, 6020, Innsbruck, Austria
| | - Angela Dittmer
- Clinic for Gynecology, Martin-Luther University, Halle-Wittenberg Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Jürgen Dittmer
- Clinic for Gynecology, Martin-Luther University, Halle-Wittenberg Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| | - Atanas Ignatov
- Department of Obstetrics and Gynecology, Otto Von Guericke University Magdeburg, Gerhart-Hauptmann Str. 35, 39108, Magdeburg, Germany
| | - Norbert Nass
- Department of Pathology, Medical Faculty, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Dessau Medical Center, Department for Internal Medicine I, Auenweg 38, 06847, Dessau, Germany.
| |
Collapse
|
23
|
Sflomos G, Schipper K, Koorman T, Fitzpatrick A, Oesterreich S, Lee AV, Jonkers J, Brunton VG, Christgen M, Isacke C, Derksen PWB, Brisken C. Atlas of Lobular Breast Cancer Models: Challenges and Strategic Directions. Cancers (Basel) 2021; 13:5396. [PMID: 34771558 PMCID: PMC8582475 DOI: 10.3390/cancers13215396] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Invasive lobular carcinoma (ILC) accounts for up to 15% of all breast cancer (BC) cases and responds well to endocrine treatment when estrogen receptor α-positive (ER+) yet differs in many biological aspects from other ER+ BC subtypes. Up to 30% of patients with ILC will develop late-onset metastatic disease up to ten years after initial tumor diagnosis and may experience failure of systemic therapy. Unfortunately, preclinical models to study ILC progression and predict the efficacy of novel therapeutics are scarce. Here, we review the current advances in ILC modeling, including cell lines and organotypic models, genetically engineered mouse models, and patient-derived xenografts. We also underscore four critical challenges that can be addressed using ILC models: drug resistance, lobular tumor microenvironment, tumor dormancy, and metastasis. Finally, we highlight the advantages of shared experimental ILC resources and provide essential considerations from the perspective of the European Lobular Breast Cancer Consortium (ELBCC), which is devoted to better understanding and translating the molecular cues that underpin ILC to clinical diagnosis and intervention. This review will guide investigators who are considering the implementation of ILC models in their research programs.
Collapse
Affiliation(s)
- George Sflomos
- ISREC—Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Koen Schipper
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (K.S.); (A.F.); (C.I.)
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (T.K.); (P.W.B.D.)
| | - Amanda Fitzpatrick
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (K.S.); (A.F.); (C.I.)
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.O.); (A.V.L.)
- Magee Women’s Cancer Research Institute, Pittsburgh, PA 15213, USA
- Cancer Biology Program, Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Adrian V. Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.O.); (A.V.L.)
- Magee Women’s Cancer Research Institute, Pittsburgh, PA 15213, USA
- Cancer Biology Program, Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 1066 CX Amsterdam, The Netherlands
| | - Valerie G. Brunton
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK;
| | - Matthias Christgen
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Clare Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (K.S.); (A.F.); (C.I.)
| | - Patrick W. B. Derksen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (T.K.); (P.W.B.D.)
| | - Cathrin Brisken
- ISREC—Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (K.S.); (A.F.); (C.I.)
| |
Collapse
|
24
|
Sottnik JL, Bordeaux EK, Mehrotra S, Ferrara SE, Goodspeed AE, Costello JC, Sikora MJ. Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Coregulator in Invasive Lobular Carcinoma of the Breast. Mol Cancer Res 2021; 19:1270-1282. [PMID: 33947745 PMCID: PMC8349796 DOI: 10.1158/1541-7786.mcr-21-0025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
Invasive lobular carcinoma (ILC) is the most common special histologic subtype of breast cancer, and nearly all ILC tumors express estrogen receptor alpha (ER). However, clinical and laboratory data suggest ILC are strongly estrogen-driven but not equally antiestrogen-sensitive. We hypothesized ILC-specific ER coregulators mediate ER functions and antiestrogen resistance in ILC, and profiled ER-associated proteins by mass spectrometry. Three ER+ ILC cell lines (MDA MB 134VI, SUM44PE, and BCK4) were compared with ER+ invasive ductal carcinoma (IDC) line data, and we examined whether siRNA of identified proteins suppressed ER-driven proliferation in ILC cells. This identified mediator of DNA damage checkpoint 1 (MDC1), a tumor suppressor in DNA damage response (DDR), as a novel ER coregulator in ILC. We confirmed ER:MDC1 interaction was specific to ILC versus IDC cells, and found MDC1 knockdown suppressed ILC cell proliferation and tamoxifen resistance. Using RNA-sequencing, we found in ILC cells MDC1 knockdown broadly dysregulates the ER transcriptome, with ER:MDC1 target genes enriched for promoter hormone response elements. Importantly, our data are inconsistent with MDC1 tumor suppressor functions in DDR, but suggest a novel oncogenic role for MDC1 as an ER coregulator. Supporting this, in breast tumor tissue microarrays, MDC1 protein was frequently low or absent in IDC, but MDC1 loss was rare in ER+ ILC. ER:MDC1 interaction and MDC1 coregulator functions may underlie ER function in ILC and serve as targets to overcome antiestrogen resistance in ILC. IMPLICATIONS: MDC1 has novel ER coregulator activity in ILC, which may underlie ILC-specific ER functions, estrogen response, and antiestrogen resistance.
Collapse
Affiliation(s)
- Joseph L Sottnik
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Evelyn K Bordeaux
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sanjana Mehrotra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sarah E Ferrara
- Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrew E Goodspeed
- Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James C Costello
- Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
25
|
Pitzer LM, Moroney MR, Nokoff NJ, Sikora MJ. WNT4 Balances Development vs Disease in Gynecologic Tissues and Women's Health. Endocrinology 2021; 162:6272210. [PMID: 33963381 PMCID: PMC8197283 DOI: 10.1210/endocr/bqab093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The WNT family of proteins is crucial in numerous developmental pathways and tissue homeostasis. WNT4, in particular, is uniquely implicated in the development of the female phenotype in the fetus, and in the maintenance of müllerian and reproductive tissues. WNT4 dysfunction or dysregulation can drive sex-reversal syndromes, highlighting the key role of WNT4 in sex determination. WNT4 is also critical in gynecologic pathologies later in life, including several cancers, uterine fibroids, endometriosis, and infertility. The role of WNT4 in normal decidualization, implantation, and gestation is being increasingly appreciated, while aberrant activation of WNT4 signaling is being linked both to gynecologic and breast cancers. Notably, single-nucleotide polymorphisms (SNPs) at the WNT4 gene locus are strongly associated with these pathologies and may functionally link estrogen and estrogen receptor signaling to upregulation and activation of WNT4 signaling. Importantly, in each of these developmental and disease states, WNT4 gene expression and downstream WNT4 signaling are regulated and executed by myriad tissue-specific pathways. Here, we review the roles of WNT4 in women's health with a focus on sex development, and gynecologic and breast pathologies, and our understanding of how WNT4 signaling is controlled in these contexts. Defining WNT4 functions provides a unique opportunity to link sex-specific signaling pathways to women's health and disease.
Collapse
Affiliation(s)
- Lauren M Pitzer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Marisa R Moroney
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Natalie J Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- Correspondence: Matthew J. Sikora, PhD; Department of Pathology, University of Colorado Anschutz Medical Campus, Mail Stop 8104, Research Complex 1 South, Rm 5117, 12801 E 17th Ave, Aurora, CO 80045, USA. . Twitter: @mjsikora
| |
Collapse
|
26
|
Pramod N, Nigam A, Basree M, Mawalkar R, Mehra S, Shinde N, Tozbikian G, Williams N, Majumder S, Ramaswamy B. Comprehensive Review of Molecular Mechanisms and Clinical Features of Invasive Lobular Cancer. Oncologist 2021; 26:e943-e953. [PMID: 33641217 DOI: 10.1002/onco.13734] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Invasive lobular carcinoma (ILC) accounts for 10% to 15% of breast cancers in the United States, 80% of which are estrogen receptor (ER)-positive, with an unusual metastatic pattern of spread to sites such as the serosa, meninges, and ovaries, among others. Lobular cancer presents significant challenges in detection and clinical management given its multifocality and multicentricity at presentation. Despite the unique features of ILC, it is often lumped with hormone receptor-positive invasive ductal cancers (IDC); consequently, ILC screening, treatment, and follow-up strategies are largely based on data from IDC. Despite both being treated as ER-positive breast cancer, querying the Cancer Genome Atlas database shows distinctive molecular aberrations in ILC compared with IDC, such as E-cadherin loss (66% vs. 3%), FOXA1 mutations (7% vs. 2%), and GATA3 mutations (5% vs. 20%). Moreover, compared with patients with IDC, patients with ILC are less likely to undergo breast-conserving surgery, with lower rates of complete response following therapy as these tumors are less chemosensitive. Taken together, this suggests that ILC is biologically distinct, which may influence tumorigenesis and therapeutic strategies. Long-term survival and clinical outcomes in patients with ILC are worse than in stage- and grade-matched patients with IDC; therefore, nuanced criteria are needed to better define treatment goals and protocols tailored to ILC's unique biology. This comprehensive review highlights the histologic and clinicopathologic features that distinguish ILC from IDC, with an in-depth discussion of ILC's molecular alterations and biomarkers, clinical trials and treatment strategies, and future targets for therapy. IMPLICATIONS FOR PRACTICE: The majority of invasive lobular breast cancers (ILCs) are hormone receptor (HR)-positive and low grade. Clinically, ILC is treated similar to HR-positive invasive ductal cancer (IDC). However, ILC differs distinctly from IDC in its clinicopathologic characteristics and molecular alterations. ILC also differs in response to systemic therapy, with studies showing ILC as less sensitive to chemotherapy. Patients with ILC have worse clinical outcomes with late recurrences. Despite these differences, clinical trials treat HR-positive breast cancers as a single disease, and there is an unmet need for studies addressing the unique challenges faced by patients diagnosed with ILC.
Collapse
Affiliation(s)
- Nikhil Pramod
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Akanksha Nigam
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Mustafa Basree
- University of Pikeville Kentucky College of Osteopathic Medicine, Pikeville, Kentucky, USA
| | - Resham Mawalkar
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Saba Mehra
- University of Toledo - Health Science Campus, Toledo, Ohio, USA
| | - Neelam Shinde
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Gary Tozbikian
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Nicole Williams
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Sarmila Majumder
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Bhuvaneswari Ramaswamy
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
27
|
Sflomos G, Battista L, Aouad P, De Martino F, Scabia V, Stravodimou A, Ayyanan A, Ifticene‐Treboux A, Bucher P, Fiche M, Ambrosini G, Brisken C. Intraductal xenografts show lobular carcinoma cells rely on their own extracellular matrix and LOXL1. EMBO Mol Med 2021; 13:e13180. [PMID: 33616307 PMCID: PMC7933935 DOI: 10.15252/emmm.202013180] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022] Open
Abstract
Invasive lobular carcinoma (ILC) is the most frequent special histological subtype of breast cancer, typically characterized by loss of E-cadherin. It has clinical features distinct from other estrogen receptor-positive (ER+ ) breast cancers but the molecular mechanisms underlying its characteristic biology are poorly understood because we lack experimental models to study them. Here, we recapitulate the human disease, including its metastatic pattern, by grafting ILC-derived breast cancer cell lines, SUM-44 PE and MDA-MB-134-VI cells, into the mouse milk ducts. Using patient-derived intraductal xenografts from lobular and non-lobular ER+ HER2- tumors to compare global gene expression, we identify extracellular matrix modulation as a lobular carcinoma cell-intrinsic trait. Analysis of TCGA patient datasets shows matrisome signature is enriched in lobular carcinomas with overexpression of elastin, collagens, and the collagen modifying enzyme LOXL1. Treatment with the pan LOX inhibitor BAPN and silencing of LOXL1 expression decrease tumor growth, invasion, and metastasis by disrupting ECM structure resulting in decreased ER signaling. We conclude that LOXL1 inhibition is a promising therapeutic strategy for ILC.
Collapse
Affiliation(s)
- George Sflomos
- ISREC ‐ Swiss Institute for Experimental Cancer ResearchSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Laura Battista
- ISREC ‐ Swiss Institute for Experimental Cancer ResearchSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Patrick Aouad
- ISREC ‐ Swiss Institute for Experimental Cancer ResearchSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Fabio De Martino
- ISREC ‐ Swiss Institute for Experimental Cancer ResearchSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Valentina Scabia
- ISREC ‐ Swiss Institute for Experimental Cancer ResearchSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | | | - Ayyakkannu Ayyanan
- ISREC ‐ Swiss Institute for Experimental Cancer ResearchSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | | | - RLS
- Réseau Lausannois du Sein (RLS)LausanneSwitzerland
| | - Philipp Bucher
- ISREC ‐ Swiss Institute for Experimental Cancer ResearchSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Maryse Fiche
- Réseau Lausannois du Sein (RLS)LausanneSwitzerland
- International Cancer Prevention InstituteEpalingesSwitzerland
| | - Giovanna Ambrosini
- ISREC ‐ Swiss Institute for Experimental Cancer ResearchSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Cathrin Brisken
- ISREC ‐ Swiss Institute for Experimental Cancer ResearchSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
28
|
Ramamoorthi G, Kodumudi K, Gallen C, Zachariah NN, Basu A, Albert G, Beyer A, Snyder C, Wiener D, Costa RLB, Czerniecki BJ. Disseminated cancer cells in breast cancer: Mechanism of dissemination and dormancy and emerging insights on therapeutic opportunities. Semin Cancer Biol 2021; 78:78-89. [PMID: 33626407 DOI: 10.1016/j.semcancer.2021.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 02/07/2021] [Indexed: 02/07/2023]
Abstract
Metastatic spread in breast cancer patients is the major driver of cancer-related deaths. A unique subset of cells disseminated from pre-invasive or primary tumor lesions are recognized as the main seeds for metastatic outgrowth. Disseminated cancer cells (DCCs) can migrate to distant organs and settle in a dormant state for a prolonged period until they emerge to overt metastases. Understanding the biology of breast cancer cells dissemination, dormancy and reactivation to form overt metastases has become an important focus. In this review, we discuss the recent advancements of molecular pathways involving breast cancer cell dissemination, role of chemokine-chemokine receptor networks in DCCs migration, DCCs phenotypic heterogeneity and unique genes signatures in tumor dormancy, microenvironmental regulation and specific niches that favors DCCs homing and dormancy. In addition, we also discuss recent findings relating to the role of immune response on DCC dissemination and dormancy. With recent advances in the field of immunotherapy/targeted therapy and its beneficial effects in cancer treatment, this review will focus on their impact on DCCs, reversal of stemness, tumor dormancy and metastatic relapse.
Collapse
Affiliation(s)
- Ganesan Ramamoorthi
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Krithika Kodumudi
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Corey Gallen
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Nadia Nocera Zachariah
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Amrita Basu
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Gabriella Albert
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Amber Beyer
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Colin Snyder
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Doris Wiener
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Ricardo L B Costa
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Brian J Czerniecki
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology H. Lee Moffitt Cancer Center, Tampa, FL, United States.
| |
Collapse
|
29
|
Evidence for existence of insulin-like factor 3 (INSL3) hormone-receptor system in the ovarian corpus luteum and extra-ovarian reproductive organs during pregnancy in goats. Cell Tissue Res 2021; 385:173-189. [PMID: 33590284 DOI: 10.1007/s00441-021-03410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Insulin-like factor 3 (INSL3), initially described as a male hormone, is expressed in female reproductive organs during the estrous cycle and pregnancy but its function has not yet been established. This study explores the function of INSL3 in pregnant Saanen goats by characterizing the expression dynamics of INSL3 and its receptor, relaxin family peptide receptor 2 (RXFP2) and by demonstrating specific INSL3 binding in reproductive organs, using molecular and immunological approaches and ligand-receptor interaction assays. We demonstrate that the corpus luteum (CL) acts as both a source and target of INSL3 in pregnant goats, while extra-ovarian reproductive organs serve as additional INSL3 targets. The expression of INSL3 and RXFP2 in the CL reached maximum levels in middle pregnancy, followed by a decrease in late pregnancy; in contrast, RXFP2 expression levels in extra-ovarian reproductive organs were higher in the mammary glands but lower in the uterus, cervix and placenta and did not significantly change during pregnancy. The functional RXFP2 enabling INSL3 to bind was identified as an ~ 85 kDa protein in both the CL and mammary glands and localized in large and small luteal cells in the CL and in tubuloalveolar and ductal epithelial cells in the mammary glands. Additionally, INSL3 also bound to multiple cell types expressing RXFP2 in the uterus, cervix and placenta in a hormone-specific and saturable manner. These results provide evidence that an active intra- and extra-ovarian INSL3 hormone-receptor system operates during pregnancy in goats.
Collapse
|
30
|
Chen F, Ding K, Priedigkeit N, Elangovan A, Levine KM, Carleton N, Savariau L, Atkinson JM, Oesterreich S, Lee AV. Single-Cell Transcriptomic Heterogeneity in Invasive Ductal and Lobular Breast Cancer Cells. Cancer Res 2021; 81:268-281. [PMID: 33148662 PMCID: PMC7856056 DOI: 10.1158/0008-5472.can-20-0696] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/14/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
Invasive lobular breast carcinoma (ILC), one of the major breast cancer histologic subtypes, exhibits unique features compared with the well-studied ductal cancer subtype (IDC). The pathognomonic feature of ILC is loss of E-cadherin, mainly caused by inactivating mutations, but the contribution of this genetic alteration to ILC-specific molecular characteristics remains largely understudied. To profile these features transcriptionally, we conducted single-cell RNA sequencing on a panel of IDC and ILC cell lines, and an IDC cell line (T47D) with CRISPR-Cas9-mediated E-cadherin knockout (KO). Inspection of intracell line heterogeneity illustrated genetically and transcriptionally distinct subpopulations in multiple cell lines and highlighted rare populations of MCF7 cells highly expressing an apoptosis-related signature, positively correlated with a preadaptation signature to estrogen deprivation. Investigation of E-cadherin KO-induced alterations showed transcriptomic membranous systems remodeling, elevated resemblance to ILCs in regulon activation, and increased sensitivity to IFNγ-mediated growth inhibition via activation of IRF1. This study reveals single-cell transcriptional heterogeneity in breast cancer cell lines and provides a resource to identify drivers of cancer progression and drug resistance. SIGNIFICANCE: This study represents a key step towards understanding heterogeneity in cancer cell lines and the role of E-cadherin depletion in contributing to the molecular features of invasive lobular breast carcinoma.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Biomarkers, Tumor/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cadherins/antagonists & inhibitors
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Mutation
- Prognosis
- Single-Cell Analysis/methods
- Transcriptome
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Fangyuan Chen
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- School of Medicine, Tsinghua University, Beijing, China
| | - Kai Ding
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nolan Priedigkeit
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ashuvinee Elangovan
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kevin M Levine
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Neil Carleton
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Laura Savariau
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Jennifer M Atkinson
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Womens Research Institute, Pittsburgh, Pennsylvania.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
McCart Reed AE, Kalinowski L, Simpson PT, Lakhani SR. Invasive lobular carcinoma of the breast: the increasing importance of this special subtype. Breast Cancer Res 2021; 23:6. [PMID: 33413533 PMCID: PMC7792208 DOI: 10.1186/s13058-020-01384-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Invasive lobular carcinoma (ILC) is the most common of the breast cancer special types, accounting for up to 15% of all breast cancer cases. ILCs are noted for their lack of E-cadherin function, which underpins their characteristic discohesive growth pattern, with cells arranged in single file and dispersed throughout the stroma. Typically, tumours are luminal in molecular subtype, being oestrogen and progesterone receptor positive, and HER2 negative. Since last reviewing the lobular literature (McCart Reed et al., Breast Cancer Res 17:12, 2015), there has been a considerable increase in research output focused on this tumour type, including studies into the pathology and management of disease, a high-resolution definition of the genomic landscape of tumours as well as the evolution of several potential therapeutic avenues. There abounds a huge amount of new data, which we will review herein.
Collapse
Affiliation(s)
- Amy E McCart Reed
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia.
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia.
| | - Lauren Kalinowski
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
- Department of Histopathology, Sullivan Nicolaides Pathology, Bowen Hills, Brisbane, Australia
| | - Peter T Simpson
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Sunil R Lakhani
- UQ Centre for Clinical Research, The University of Queensland, Herston, Brisbane, Australia
- Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia
| |
Collapse
|
32
|
Priedigkeit N, Ding K, Horne W, Kolls JK, Du T, Lucas PC, Blohmer JU, Denkert C, Machleidt A, Ingold-Heppner B, Oesterreich S, Lee AV. Acquired mutations and transcriptional remodeling in long-term estrogen-deprived locoregional breast cancer recurrences. Breast Cancer Res 2021; 23:1. [PMID: 33407744 PMCID: PMC7788918 DOI: 10.1186/s13058-020-01379-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Endocrine therapy resistance is a hallmark of advanced estrogen receptor (ER)-positive breast cancer. In this study, we aimed to determine acquired genomic changes in endocrine-resistant disease. METHODS We performed DNA/RNA hybrid-capture sequencing on 12 locoregional recurrences after long-term estrogen deprivation and identified acquired genomic changes versus each tumor's matched primary. RESULTS Despite being up to 7 years removed from the primary lesion, most recurrences harbored similar intrinsic transcriptional and copy number profiles. Only two genes, AKAP9 and KMT2C, were found to have single nucleotide variant (SNV) enrichments in more than one recurrence. Enriched mutations in single cases included SNVs within transcriptional regulators such as ARID1A, TP53, FOXO1, BRD1, NCOA1, and NCOR2 with one local recurrence gaining three PIK3CA mutations. In contrast to DNA-level changes, we discovered recurrent outlier mRNA expression alterations were common-including outlier gains in TP63 (n = 5 cases [42%]), NTRK3 (n = 5 [42%]), NTRK2 (n = 4 [33%]), PAX3 (n = 4 [33%]), FGFR4 (n = 3 [25%]), and TERT (n = 3 [25%]). Recurrent losses involved ESR1 (n = 5 [42%]), RELN (n = 5 [42%]), SFRP4 (n = 4 [33%]), and FOSB (n = 4 [33%]). ESR1-depleted recurrences harbored shared transcriptional remodeling events including upregulation of PROM1 and other basal cancer markers. CONCLUSIONS Taken together, this study defines acquired genomic changes in long-term, estrogen-deprived disease; highlights the importance of longitudinal RNA profiling; and identifies a common ESR1-depleted endocrine-resistant breast cancer subtype with basal-like transcriptional reprogramming.
Collapse
Affiliation(s)
- Nolan Priedigkeit
- Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kai Ding
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - William Horne
- Richard King Mellon Foundation Institute for Pediatric Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Tian Du
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Peter C Lucas
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jens-Uwe Blohmer
- Institute of Pathology and Department of Gynecology, Charité University Hospital, Berlin, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Marburg, Germany
| | - Anna Machleidt
- Institute of Pathology and Department of Gynecology, Charité University Hospital, Berlin, Germany
| | | | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Magee-Women's Research Institute, Magee-Women's Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Magee-Women's Research Institute, 204 Craft Avenue (Room A412), Pittsburgh, PA, 15213, USA.
| |
Collapse
|
33
|
Zheng D, Jiang C, Yan N, Miao Y, Wang K, Gao G, Jiao Y, Zhang X, He M, Yang Z. Wntless (Wls): A Prognostic Index for Progression and Patient Survival of Breast Cancer. Onco Targets Ther 2020; 13:12649-12659. [PMID: 33335405 PMCID: PMC7737487 DOI: 10.2147/ott.s265324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
Abstract
Background Wntless (Wls) is an essential protein that is necessary for the secretion of Wnt proteins. While numerous researches have demonstrated that aberrations in Wnt/β-catenin expression lead to tumorigenesis and progression in many cancer types, the effects of Wls in breast cancer (BC) are less studied. Methods The mRNA and protein expression of Wls in BC cell lines were detected by RT-qPCR and Western blot; the protein expression of patient samples was detected by immunohistochemistry (IHC). The associations between Wls expression and clinicopathological factors as well as survival time, including overall survival (OS) and disease-free survival (DFS) were analyzed. Bioinformatics analysis was used to reveal the correlation between Wls genes and associated genes or pathways. Results Wls was overexpressed in BC cell lines and tissues. The expression level of Wls was significantly correlated with tumor size, estrogen receptor (ER), progesterone receptor (PR), Ki-67, molecular classification, and follow-up status. Spearman correlation analysis showed that Wls protein expression was negatively correlated with ER and PR, which was confirmed by bioinformatics analysis in mRNA level. However, there were positive relationships with MBNG (modified Black's nuclear grade), tumor size, Ki-67, molecular classification, follow-up, and vital status. Univariate and multivariate analysis showed that Wls was an independent prognostic factor for OS and DFS in BC patients. Moreover, Wls was a significant prognostic indicator of OS and DFS in a hormone receptor-positive (HR+) subgroup. GSEA showed that estrogen and androgen response, as well as epithelial-mesenchymal transition pathways, were up-regulated in the Wls high-expression group. Conclusion Overexpression of Wls is a significant marker of worse prognosis in BC and might play a crucial role in the HR+ subgroup.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, People's Republic of China.,Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Chengwei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Ning Yan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Yayun Miao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Keren Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Ge Gao
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, People's Republic of China
| | - Xiangkai Zhang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Miao He
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun, Jilin 130022, People's Republic of China
| | - Zhaoying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| |
Collapse
|
34
|
Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 2020; 19:165. [PMID: 33234169 PMCID: PMC7686704 DOI: 10.1186/s12943-020-01276-5] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is a highly conserved signaling pathway that plays a critical role in controlling embryonic and organ development, as well as cancer progression. Genome-wide sequencing and gene expression profile analyses have demonstrated that Wnt signaling is involved mainly in the processes of breast cancer proliferation and metastasis. The most recent studies have indicated that Wnt signaling is also crucial in breast cancer immune microenvironment regulation, stemness maintenance, therapeutic resistance, phenotype shaping, etc. Wnt/β-Catenin, Wnt-planar cell polarity (PCP), and Wnt-Ca2+ signaling are three well-established Wnt signaling pathways that share overlapping components and play different roles in breast cancer progression. In this review, we summarize the main findings concerning the relationship between Wnt signaling and breast cancer and provide an overview of existing mechanisms, challenges, and potential opportunities for advancing the therapy and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Miaofeng Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
35
|
Estrogen Regulation of mTOR Signaling and Mitochondrial Function in Invasive Lobular Carcinoma Cell Lines Requires WNT4. Cancers (Basel) 2020; 12:cancers12102931. [PMID: 33053661 PMCID: PMC7650584 DOI: 10.3390/cancers12102931] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Invasive lobular carcinoma (ILC) is a common but understudied breast cancer subtype. ILC is presumed to be a low-risk disease in part because nearly all ILCs contain the estrogen receptor (ER). However, we previously showed that ER has unique functions in ILC cells, including driving expression of the Wnt ligand WNT4. WNT4 signaling is required for ILC cell proliferation and survival, but the mechanisms and targets of WNT4 signaling in ILC is unknown. We found that WNT4 regulates mTOR signaling via S6 kinase, and controls levels of MCL-1 protein, ultimately regulating mitochondrial function and cellular metabolism. These findings offer new insight into a novel Wnt signaling pathway and identify new targets to inhibit WNT4 signaling as potential treatments against ILC cells. Abstract Invasive lobular carcinoma of the breast (ILC) is strongly estrogen-driven and represents a unique context for estrogen receptor (ER) signaling. In ILC, ER controls the expression of the Wnt ligand WNT4, which is critical for endocrine response and anti-estrogen resistance. However, signaling mediated by WNT4 is cell type- and tissue-specific, and has not been explored in ILC. We utilized reverse phase protein array (RPPA) to characterize ER and WNT4-driven signaling in ILC cells and identified that WNT4 mediates downstream mTOR signaling via phosphorylation of S6 Kinase. Additionally, ER and WNT4 control levels of MCL-1, which is associated with regulation of mitochondrial function. In this context, WNT4 knockdown led to decreased ATP production and increased mitochondrial fragmentation. WNT4 regulation of both mTOR signaling and MCL-1 were also observed in anti-estrogen resistant models of ILC. We identified that high WNT4 expression is associated with similar mTOR pathway activation in ILC and serous ovarian cancer tumors, suggesting that WNT4 signaling is active in multiple tumor types. The identified downstream pathways offer insight into WNT4 signaling and represent potential targets to overcome anti-estrogen resistance for patients with ILC.
Collapse
|
36
|
Potentials of miR-15/16 targeting cancer stem cell pathways: Novel implication in cancer chemotherapy. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Luveta J, Parks RM, Heery DM, Cheung KL, Johnston SJ. Invasive Lobular Breast Cancer as a Distinct Disease: Implications for Therapeutic Strategy. Oncol Ther 2020; 8:1-11. [PMID: 32700069 PMCID: PMC7359988 DOI: 10.1007/s40487-019-00105-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Invasive lobular carcinoma comprises 10-15% of all breast cancers and is increasingly recognised as a distinct and understudied disease compared with the predominant histological subtype, invasive ductal carcinoma. Hallmarks of invasive lobular carcinoma include E-cadherin loss, leading to discohesive morphology with cells proliferating in single-file strands and oestrogen receptor positivity, with favourable response to endocrine therapy. This review summarises the distinct histological and molecular features of invasive lobular carcinoma with focus on diagnostic challenges and the impact on surgical management and medical therapy. Emphasis is placed on recent advances in our understanding of the unique molecular biology of lobular breast cancer and how this is optimising our therapy approach in the clinic.
Collapse
Affiliation(s)
- Jocelyn Luveta
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Gene Regulation and RNA Biology, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Ruth M Parks
- Division of Medical Sciences and Graduate Entry Medicine, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - David M Heery
- Gene Regulation and RNA Biology, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Kwok-Leung Cheung
- Division of Medical Sciences and Graduate Entry Medicine, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Simon J Johnston
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.
- Gene Regulation and RNA Biology, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
38
|
Hanker AB, Sudhan DR, Arteaga CL. Overcoming Endocrine Resistance in Breast Cancer. Cancer Cell 2020; 37:496-513. [PMID: 32289273 PMCID: PMC7169993 DOI: 10.1016/j.ccell.2020.03.009] [Citation(s) in RCA: 475] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Estrogen receptor-positive (ER+) breast cancer is the most common breast cancer subtype. Treatment of ER+ breast cancer comprises interventions that suppress estrogen production and/or target the ER directly (overall labeled as endocrine therapy). While endocrine therapy has considerably reduced recurrence and mortality from breast cancer, de novo and acquired resistance to this treatment remains a major challenge. An increasing number of mechanisms of endocrine resistance have been reported, including somatic alterations, epigenetic changes, and changes in the tumor microenvironment. Here, we review recent advances in delineating mechanisms of resistance to endocrine therapies and potential strategies to overcome such resistance.
Collapse
Affiliation(s)
- Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Dhivya R Sudhan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
39
|
Rao DM, Shackleford MT, Bordeaux EK, Sottnik JL, Ferguson RL, Yamamoto TM, Wellberg EA, Bitler BG, Sikora MJ. Wnt family member 4 (WNT4) and WNT3A activate cell-autonomous Wnt signaling independent of porcupine O-acyltransferase or Wnt secretion. J Biol Chem 2019; 294:19950-19966. [PMID: 31740580 PMCID: PMC6937561 DOI: 10.1074/jbc.ra119.009615] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Porcupine O-acyltransferase (PORCN) is considered essential for Wnt secretion and signaling. However, we observed that PORCN inhibition does not phenocopy the effects of WNT4 knockdown in WNT4-dependent breast cancer cells. This suggests a unique relationship between PORCN and WNT4 signaling. To examine the role of PORCN in WNT4 signaling, here we overexpressed WNT4 or WNT3A in breast cancer, ovarian cancer, and fibrosarcoma cell lines. Conditioned media from these lines and co-culture systems were used to assess the dependence of Wnt secretion and activity on the critical Wnt secretion proteins PORCN and Wnt ligand secretion (WLS) mediator. We observed that WLS is universally required for Wnt secretion and paracrine signaling. In contrast, the dependence of WNT3A secretion and activity on PORCN varied across the cell lines, and WNT4 secretion was PORCN-independent in all models. Surprisingly, WNT4 did not exhibit paracrine activity in any tested context. Absent the expected paracrine activity of secreted WNT4, we identified cell-autonomous Wnt signaling activation by WNT4 and WNT3A, independent of PORCN or Wnt secretion. The PORCN-independent, cell-autonomous Wnt signaling demonstrated here may be critical in WNT4-driven cellular contexts or in those that are considered to have dysfunctional Wnt signaling.
Collapse
Affiliation(s)
- Deviyani M Rao
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Madeleine T Shackleford
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Evelyn K Bordeaux
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Joseph L Sottnik
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Rebecca L Ferguson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Tomomi M Yamamoto
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Elizabeth A Wellberg
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Benjamin G Bitler
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
40
|
Zhu L, Huo Z, Ma T, Oesterreich S, Tseng GC. Bayesian indicator variable selection to incorporate hierarchical overlapping group structure in multi-omics applications. Ann Appl Stat 2019. [DOI: 10.1214/19-aoas1271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Levine KM, Priedigkeit N, Basudan A, Tasdemir N, Sikora MJ, Sokol ES, Hartmaier RJ, Ding K, Ahmad NZ, Watters RJ, Weiss KR, Blohmer JU, Denkert C, Machleidt A, Karsten MM, Boisen MM, Elishaev E, Lucas PC, Lee AV, Oesterreich S. FGFR4 overexpression and hotspot mutations in metastatic ER+ breast cancer are enriched in the lobular subtype. NPJ Breast Cancer 2019; 5:19. [PMID: 31263748 PMCID: PMC6597581 DOI: 10.1038/s41523-019-0114-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 05/30/2019] [Indexed: 12/16/2022] Open
Abstract
Invasive lobular carcinoma (ILC) is an understudied subtype of breast cancer that requires novel therapies in the advanced setting. To study acquired resistance to endocrine therapy in ILC, we have recently performed RNA-Sequencing on long-term estrogen deprived cell lines and identified FGFR4 overexpression as a top druggable target. Here, we show that FGFR4 expression also increases dramatically in endocrine-treated distant metastases, with an average fold change of 4.8 relative to the paired primary breast tumor for ILC, and 2.4-fold for invasive ductal carcinoma (IDC). In addition, we now report that FGFR4 hotspot mutations are enriched in metastatic breast cancer, with an additional enrichment for ILC, suggesting a multimodal selection of FGFR4 activation. These data collectively support the notion that FGFR4 is an important mediator of endocrine resistance in ILC, warranting future mechanistic studies on downstream signaling of overexpressed wild-type and mutant FGFR4.
Collapse
Affiliation(s)
- Kevin M. Levine
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA USA
- Magee-Women’s Research Institute, Magee-Women’s Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA USA
| | - Nolan Priedigkeit
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA USA
- Magee-Women’s Research Institute, Magee-Women’s Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - Ahmed Basudan
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA USA
- Magee-Women’s Research Institute, Magee-Women’s Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA USA
- Present Address: Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nilgun Tasdemir
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA USA
- Magee-Women’s Research Institute, Magee-Women’s Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - Matthew J. Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | | | | | - Kai Ding
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA USA
- Magee-Women’s Research Institute, Magee-Women’s Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA USA
| | - Nedah Z. Ahmad
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA USA
| | - Rebecca J. Watters
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA USA
| | - Kurt R. Weiss
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA USA
| | | | | | | | | | - Michelle M. Boisen
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA USA
| | - Peter C. Lucas
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA USA
| | - Adrian V. Lee
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA USA
- Magee-Women’s Research Institute, Magee-Women’s Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA USA
- Magee-Women’s Research Institute, Magee-Women’s Research Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
42
|
Chou CK, Huang HW, Yang CF, Dahms HU, Liang SS, Wang TN, Kuo PL, Hsi E, Tsai EM, Chiu CC. Reduced camptothecin sensitivity of estrogen receptor-positive human breast cancer cells following exposure to di(2-ethylhexyl)phthalate (DEHP) is associated with DNA methylation changes. ENVIRONMENTAL TOXICOLOGY 2019; 34:401-414. [PMID: 30720231 DOI: 10.1002/tox.22694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) has been considered as an estrogen receptor alpha (ERα) agonist due to its ability to interact with ERα and promote the cell proliferation of ERα-positive breast cancer cells. The impact of DEHP on the chemical therapy in breast cancer is little known. Two breast cancer cell lines, MCF-7 (ERα-dependent) and MDA-MB-231 (ERα-independent) were examined. We found that DEHP impaired the effectiveness of camptothecin (CPT) and alleviated the CPT-induced formation of reactive oxygen species in ERα-positive MCF-7 cells, but not in ERα-negative MDA-MB-231 cells. DEHP also significantly protected MCF-7 cells against the genotoxicity of CPT. Genome-wide DNA methylation profiling revealed that after 48 hours of exposure to 100 μM DEHP, MCF-7 cells exhibited a significant change in their DNA methylation pattern, including hypermethylation of 700 genes and hypomethylation of 221 genes. The impaired therapeutic response to CPT in DEHP-exposed MCF-7 cells is probably mediated by epigenetic changes, especially through Wnt/β-catenin signaling. A zebrafish xenograft model confirmed the disruptive effect of DEHP on CPT-induced anti-growth of MCF-7 cells. In summary, DEHP exposure induces acquired CPT-resistance in breast cancer cells and epigenetic changes associated with Wnt/β-catenin signaling activation are probably depending on an ER-positive status.
Collapse
Affiliation(s)
- Chon-Kit Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chun-Feng Yang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsu-Nai Wang
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Lin Kuo
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Edward Hsi
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Translational Research Center, Cancer Center and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
43
|
SNAIL is induced by tamoxifen and leads to growth inhibition in invasive lobular breast carcinoma. Breast Cancer Res Treat 2019; 175:327-337. [PMID: 30798422 DOI: 10.1007/s10549-019-05161-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/05/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE Invasive lobular carcinoma (ILC) is a histological subtype of breast cancer that is predominantly estrogen receptor alpha (ER)-positive (+) and is thus treated with endocrine therapies. Herein, we sought to understand the molecular underpinnings of the 4-hydroxytamoxifen (4OHT) resistance in ILC by assessing the potential role of the epithelial-to-mesenchymal transition transcription factor (EMT-TF) SNAIL (SNAI1). METHODS Using a series of breast cancer cell lines, we measured the basal, estrogen and 4OHT-induced expression of SNAIL and other EMT-TF family members by quantitative reverse transcription-polymerase chain reaction and immunoblotting. Chromatin immunoprecipitation experiments were performed to assess ER binding to the SNAIL promoter. Cell proliferation, cell cycle and apoptosis were assessed in 2D cultures. 3D growth was assessed in Matrigel and Collagen I cultures. RESULTS Estrogen and 4OHT induced SNAIL expression, but not that of the other EMT-TF family members SLUG (SNAI2) and SMUC (SNAI3), with the 4OHT effect being specific to the lobular but not the ductal subtype. We observed estrogen and 4OHT-induced ER recruitment to the SNAI1 promoter and high endogenous basal levels of SNAIL and several EMT-TFs in ILC cell lines. While SNAIL knockdown had a minor impact on the 4OHT partial agonism in estrogen-depleted conditions, it led to a surprising increase in cell proliferation in full serum. In complementary experiments, inducible SNAI1 overexpression caused decreased proliferation, associated with a cell cycle arrest in G0/G1. Additionally, apoptosis was observed in BCK4 cells. CONCLUSION These data suggest a previously unrecognized role for SNAIL in ILC, substantiating a context-dependent behavior for this EMT-TF.
Collapse
|
44
|
Du T, Sikora MJ, Levine KM, Tasdemir N, Riggins RB, Wendell SG, Van Houten B, Oesterreich S. Key regulators of lipid metabolism drive endocrine resistance in invasive lobular breast cancer. Breast Cancer Res 2018; 20:106. [PMID: 30180878 PMCID: PMC6124012 DOI: 10.1186/s13058-018-1041-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background Invasive lobular breast carcinoma (ILC) is a histological subtype of breast cancer that is characterized by loss of E-cadherin and high expression of estrogen receptor alpha (ERα). In many cases, ILC is effectively treated with adjuvant aromatase inhibitors (AIs); however, acquired AI resistance remains a significant problem. Methods To identify underlying mechanisms of acquired anti-estrogen resistance in ILC, we recently developed six long-term estrogen-deprived (LTED) variant cell lines from the human ILC cell lines SUM44PE (SUM44; two lines) and MDA-MB-134VI (MM134; four lines). To better understand mechanisms of AI resistance in these models, we performed transcriptional profiling analysis by RNA-sequencing followed by candidate gene expression and functional studies. Results MM134 LTED cells expressed ER at a decreased level and lost growth response to estradiol, while SUM44 LTED cells retained partial ER activity. Our transcriptional profiling analysis identified shared activation of lipid metabolism across all six independent models. However, the underlying basis of this signature was distinct between models. Oxysterols were able to promote the proliferation of SUM44 LTED cells but not MM134 LTED cells. In contrast, MM134 LTED cells displayed a high expression of the sterol regulatory element-binding protein 1 (SREBP1), a regulator of fatty acid and cholesterol synthesis, and were hypersensitive to genetic or pharmacological inhibition of SREBPs. Several SREBP1 downstream targets involved in fatty acid synthesis, including FASN, were induced, and MM134 LTED cells were more sensitive to etomoxir, an inhibitor of the rate-limiting enzyme in beta-oxidation, than their respective parental control cells. Finally, in silico expression analysis in clinical specimens from a neo-adjuvant endocrine trial showed a significant association between the increase of SREBP1 expression and lack of clinical response, providing further support for a role of SREBP1 in the acquisition of endocrine resistance in breast cancer. Conclusions Our characterization of a unique series of AI-resistant ILC models identifies the activation of key regulators of fatty acid and cholesterol metabolism, implicating lipid-metabolic processes driving estrogen-independent growth of ILC cells. Targeting these changes may prove a strategy for prevention and treatment of endocrine resistance for patients with ILC. Electronic supplementary material The online version of this article (10.1186/s13058-018-1041-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tian Du
- Women's Cancer Research Center, UPMC Hillman Cancer Institute, Magee Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.,School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Matthew J Sikora
- Women's Cancer Research Center, UPMC Hillman Cancer Institute, Magee Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.,Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kevin M Levine
- Women's Cancer Research Center, UPMC Hillman Cancer Institute, Magee Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nilgun Tasdemir
- Women's Cancer Research Center, UPMC Hillman Cancer Institute, Magee Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Rebecca B Riggins
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Stacy G Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bennett Van Houten
- Women's Cancer Research Center, UPMC Hillman Cancer Institute, Magee Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Institute, Magee Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
45
|
Stires H, Heckler MM, Fu X, Li Z, Grasso CS, Quist MJ, Lewis JA, Klimach U, Zwart A, Mahajan A, Győrffy B, Cavalli LR, Riggins RB. Integrated molecular analysis of Tamoxifen-resistant invasive lobular breast cancer cells identifies MAPK and GRM/mGluR signaling as therapeutic vulnerabilities. Mol Cell Endocrinol 2018; 471:105-117. [PMID: 28935545 PMCID: PMC5858970 DOI: 10.1016/j.mce.2017.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/26/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022]
Abstract
Invasive lobular breast cancer (ILC) is an understudied malignancy with distinct clinical, pathological, and molecular features that distinguish it from the more common invasive ductal carcinoma (IDC). Mounting evidence suggests that estrogen receptor-alpha positive (ER+) ILC has a poor response to Tamoxifen (TAM), but the mechanistic drivers of this are undefined. In the current work, we comprehensively characterize the SUM44/LCCTam ILC cell model system through integrated analysis of gene expression, copy number, and mutation, with the goal of identifying actionable alterations relevant to clinical ILC that can be co-targeted along with ER to improve treatment outcomes. We show that TAM has several distinct effects on the transcriptome of LCCTam cells, that this resistant cell model has acquired copy number alterations and mutations that impinge on MAPK and metabotropic glutamate receptor (GRM/mGluR) signaling networks, and that pharmacological inhibition of either improves or restores the growth-inhibitory actions of endocrine therapy.
Collapse
Affiliation(s)
- Hillary Stires
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Mary M Heckler
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Xiaoyong Fu
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zhao Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Joseph A Lewis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Uwe Klimach
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Alan Zwart
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Akanksha Mahajan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Luciane R Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
46
|
Martin LA, Ribas R, Simigdala N, Schuster E, Pancholi S, Tenev T, Gellert P, Buluwela L, Harrod A, Thornhill A, Nikitorowicz-Buniak J, Bhamra A, Turgeon MO, Poulogiannis G, Gao Q, Martins V, Hills M, Garcia-Murillas I, Fribbens C, Patani N, Li Z, Sikora MJ, Turner N, Zwart W, Oesterreich S, Carroll J, Ali S, Dowsett M. Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance. Nat Commun 2017; 8:1865. [PMID: 29192207 PMCID: PMC5709387 DOI: 10.1038/s41467-017-01864-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/20/2017] [Indexed: 12/18/2022] Open
Abstract
Resistance to endocrine therapy remains a major clinical problem in breast cancer. Genetic studies highlight the potential role of estrogen receptor-α (ESR1) mutations, which show increased prevalence in the metastatic, endocrine-resistant setting. No naturally occurring ESR1 mutations have been reported in in vitro models of BC either before or after the acquisition of endocrine resistance making functional consequences difficult to study. We report the first discovery of naturally occurring ESR1 Y537C and ESR1 Y537S mutations in MCF7 and SUM44 ESR1-positive cell lines after acquisition of resistance to long-term-estrogen-deprivation (LTED) and subsequent resistance to fulvestrant (ICIR). Mutations were enriched with time, impacted on ESR1 binding to the genome and altered the ESR1 interactome. The results highlight the importance and functional consequence of these mutations and provide an important resource for studying endocrine resistance.
Collapse
Affiliation(s)
- Lesley-Ann Martin
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK.
| | - Ricardo Ribas
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Nikiana Simigdala
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Eugene Schuster
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Sunil Pancholi
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Tencho Tenev
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Pascal Gellert
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Laki Buluwela
- Division of Cancer, CRUK Labs, University of London Imperial College, London, W12 0NN, UK
| | - Alison Harrod
- Division of Cancer, CRUK Labs, University of London Imperial College, London, W12 0NN, UK
| | - Allan Thornhill
- Centre for Cancer Imaging, Institute of Cancer Research, Sutton, SM2 5NG, UK
| | | | - Amandeep Bhamra
- Proteomic Unit, Institute of Cancer Research, London, SW7 3RP, UK
| | - Marc-Olivier Turgeon
- Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - George Poulogiannis
- Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Qiong Gao
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Vera Martins
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JB, UK
| | - Margaret Hills
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JB, UK
| | - Isaac Garcia-Murillas
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Charlotte Fribbens
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Neill Patani
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Zheqi Li
- Department of Pharmacology and Chemical biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Matthew J Sikora
- Department of Pharmacology and Chemical biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nicholas Turner
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Wilbert Zwart
- Department of Molecular Pathology, Netherlands Cancer Institute, 1066CX, Amsterdam, Netherlands
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jason Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Simak Ali
- Division of Cancer, CRUK Labs, University of London Imperial College, London, W12 0NN, UK
| | - Mitch Dowsett
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JB, UK
| |
Collapse
|
47
|
Espié M, Bécourt S, Ledoux F. Cancer lobulaire infiltrant : épidémiologie, histoire naturelle, principes thérapeutiques. IMAGERIE DE LA FEMME 2017. [DOI: 10.1016/j.femme.2017.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Chen Y, Liu X, Liu Y, Wang Y, Wang H, Lu C, Zhang P. Decreased Wnt4 expression inhibits thymoma development through downregulation of FoxN1. J Thorac Dis 2017; 9:1574-1583. [PMID: 28740671 DOI: 10.21037/jtd.2017.05.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The Wnt signaling pathway controls the development of thymic epithelial cells by regulating the expression of FoxN1. Thymoma is a type of malignant tumor arising from the thymic epithelial cells. To determine whether Wnt4 and FoxN1 are involved in the pathogenesis of thymoma, this study determined the mRNA and protein levels of Wnt4 and Foxn1 in thymoma, and analyzed the effect of thymoma cell apoptosis and tumor growth in nude mice after Wnt4 and FoxN1 downregulation. METHODS Wnt4 and FoxN1 mRNA and protein levels in thymoma tissues were analyzed by RT-qPCR and immunohistochemistry, respectively. Thymoma cells were cultured and transfected with siRNA targeting the Wnt4, JNK, and FoxN1 genes. Apoptosis of thymoma cells were analyzed after Wnt4 and FoxN1 downregulation. In addition, thymoma cells were inoculated into nude mice and tumor growth was analyzed. RESULTS The rates of expression of Wnt4 and FoxN1 protein were 64.3% and 58.9%, while the levels of mRNA expression were 2.56±0.04 and 1.83±0.11, respectively. With increasing malignancy of thymoma, the rates of positivity for Wnt4 and FoxN1 mRNA and protein expression gradually increased. Upon interfering with Wnt4, JNK, and FoxN1 gene expression by using siRNA technology, the inhibition rates were 56.7%, 72.6%, and 63.2%, respectively. The expression of FoxN1 mRNA and protein was decreased after Wnt4 and JNK downregulation. After downregulation of Wnt4 and FoxN1 gene expression, the apoptosis rate of thymoma cells increased and the tumor volume decreased in nude mice. CONCLUSIONS High expression of Wnt4 and FoxN1 may play an important role in the generation and development of thymoma. The FoxN1 gene produced a marked downstream effect through the regulation of Wnt4. Determining the positivity for both Wnt4 and FoxN1 can help us to evaluate the level of malignancy of thymoma.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Liu
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yimei Liu
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuanguo Wang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Hai Wang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chao Lu
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
49
|
Li X, Wang S, Li Z, Long X, Guo Z, Zhang G, Zu J, Chen Y, Wen L. The lncRNA NEAT1 facilitates cell growth and invasion via the miR-211/HMGA2 axis in breast cancer. Int J Biol Macromol 2017; 105:346-353. [PMID: 28720546 DOI: 10.1016/j.ijbiomac.2017.07.053] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/28/2017] [Accepted: 07/09/2017] [Indexed: 01/28/2023]
Abstract
Long non-coding RNAs play a significant role in cancer metastasis. Studies have demonstrated that LncRNA NEAT1 promotes cancer progression. We aimed to explore whether NEAT1 regulated growth and invasion in breast cancer cells. We provided evidence that lncRNA NEAT1 was up-regulated in breast cancer cell lines and tissues. NEAT1 promoted invasion through inducing Epithelial-mesenchymal transition (EMT) and NEAT1 played a role in 5-fluorouracil (5-FU) resistance. In addition, we revealed a reciprocal repression between NEAT1 and miR-211. Furthermore, the EMT-inducer HMGA2 was identified as a down-stream target of miR-211. LncRNA NEAT1 induced EMT and 5-FU resistance through the miR-211/HMGA2 axis. Our findings suggest that lncRNA NEAT1 could be a new diagnostic biomarker and therapy target for breast cancer.
Collapse
Affiliation(s)
- Xuerui Li
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Shuxia Wang
- Department of Nuclear Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenzhong Li
- Department of Pharmacy, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoyu Long
- Department of Pathology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zibai Guo
- Department of Breast Cancer, Zhongshan City People's Hospital, Zhongshan, China
| | - Guochun Zhang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian Zu
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Chen
- Department of Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Linzhu Wen
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
50
|
Weber RJ, Desai TA, Gartner ZJ. Non-autonomous cell proliferation in the mammary gland and cancer. Curr Opin Cell Biol 2017; 45:55-61. [PMID: 28314237 PMCID: PMC8811621 DOI: 10.1016/j.ceb.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/27/2017] [Accepted: 02/08/2017] [Indexed: 12/28/2022]
Abstract
Cells decide whether to grow and divide by integrating internal and external signals. Non-autonomous cell growth and proliferation occurs when microenvironmental signals from neighboring cells, both physical and secreted, license this decision. Understanding these processes is vital to developing an accurate framework for cell-cell interactions and cellular decision-making, and is useful for advancing new therapeutic strategies to prevent dysregulated growth. Here, we review some recent examples of non-autonomous cell growth in the mammary gland and tumor cell proliferation.
Collapse
Affiliation(s)
- Robert J Weber
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States; Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, 600 16th Street, Room 522, San Francisco, California 94158, United States; Medical Scientist Training Program, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, United States
| | - Tejal A Desai
- UC Berkeley-UCSF Group in Bioengineering, 1700 Fourth Street, Room 216, San Francisco, California 94158, United States; UCSF Bioengineering and Therapeutic Sciences, 1700 Fourth Street, Room 216B, San Francisco, California 94158, United States
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, California 94158, United States; UC Berkeley-UCSF Group in Bioengineering, 1700 Fourth Street, Room 216, San Francisco, California 94158, United States; Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, 600 16th Street, Room 522, San Francisco, California 94158, United States.
| |
Collapse
|