1
|
Mo H, Zhang X, Ren L. Analysis of neuroglia and immune cells in the tumor microenvironment of breast cancer brain metastasis. Cancer Biol Ther 2024; 25:2398285. [PMID: 39238191 PMCID: PMC11382727 DOI: 10.1080/15384047.2024.2398285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Breast cancer stands as the most prevalent cancer diagnosed worldwide, often leading to brain metastasis, a challenging complication characterized by high mortality rates and a grim prognosis. Understanding the intricate mechanisms governing breast cancer brain metastasis (BCBM) remains an ongoing challenge. The unique microenvironment in the brain fosters an ideal setting for the colonization of breast cancer cells. The tumor microenvironment (TME) in brain metastases plays a pivotal role in the initiation and progression of BCBM, shaping the landscape for targeted therapeutic interventions. Current research primarily concentrates on unraveling the complexities of the TME in BCBM, with a particular emphasis on neuroglia and immune cells, such as microglia, monocyte-derived macrophages (MDMs), astrocytes and T cells. This comprehensive review delves deeply into these elements within the TME of BCBM, shedding light on their interplay, mechanisms, and potential as therapeutic targets to combat BCBM.
Collapse
Affiliation(s)
- Haixin Mo
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Liangliang Ren
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| |
Collapse
|
2
|
Dong X, Pei G, Yang Z, Huang S. Flavonoid chrysin activates both TrkB and FGFR1 receptors while upregulates their endogenous ligands such as brain derived neurotrophic factor to promote human neurogenesis. Cell Prolif 2024:e13732. [PMID: 39331585 DOI: 10.1111/cpr.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 09/29/2024] Open
Abstract
Neurogenesis is the process of generating new neurons from neural stem cells (NSCs) and plays a crucial role in neurological diseases. The process involves a series of steps, including NSC proliferation, migration and differentiation, which are regulated by multiple pathways such as neurotrophic Trk and fibroblast growth factor receptors (FGFR) signalling. Despite the discovery of numerous compounds capable of modulating individual stages of neurogenesis, it remains challenging to identify an agent that can regulate multiple cellular processes of neurogenesis. Here, through screening of bioactive compounds in dietary functional foods, we identified a flavonoid chrysin that not only enhanced the human NSCs proliferation but also facilitated neuronal differentiation and neurite outgrowth. Further mechanistic study revealed the effect of chrysin was attenuated by inhibition of neurotrophic tropomyosin receptor kinase-B (TrkB) receptor. Consistently, chrysin activated TrkB and downstream ERK1/2 and AKT. Intriguingly, we found that the effect of chrysin was also reduced by FGFR1 blockade. Moreover, extended treatment of chrysin enhanced levels of brain-derived neurotrophic factor, as well as FGF1 and FGF8. Finally, chrysin was found to promote neurogenesis in human cerebral organoids by increasing the organoid expansion and folding, which was also mediated by TrkB and FGFR1 signalling. To conclude, our study indicates that activating both TrkB and FGFR1 signalling could be a promising avenue for therapeutic interventions in neurological diseases, and chrysin appears to be a potential candidate for the development of such treatments.
Collapse
Affiliation(s)
- Xiaoxu Dong
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Gang Pei
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shichao Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Liu Y, Yin S, Lu G, Du Y. The intersection of the nervous system and breast cancer. Cancer Lett 2024; 598:217132. [PMID: 39059572 DOI: 10.1016/j.canlet.2024.217132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer (BC) represents a paradigm of heterogeneity, manifesting as a spectrum of molecular subtypes with divergent clinical trajectories. It is fundamentally characterized by the aberrant proliferation of malignant cells within breast tissue, a process modulated by a myriad of factors that govern its progression. Recent endeavors outline the interplay between BC and the nervous system, illuminate the complex symbiosis between neural structures and neoplastic cells, and elucidate nerve dependence as a cornerstone of BC progression. This includes the neural modulations on immune response, neurovascular formation, and multisystem interactions. Such insights have unveiled the critical impact of neural elements on tumor dynamics and patient prognosis. This revelation beckons a deeper exploration into the neuro-oncological interface, potentially unlocking novel therapeutic vistas. This review endeavors to delineate the intricate mechanisms between the nervous system and BC, aiming to accentuate the implications and therapeutic strategies of this intersection for tumor evolution and the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Shiqi Yin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, China
| | - Guanyu Lu
- Cancer Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
4
|
Ahuja S, Lazar IM. Proteomic insights into breast cancer response to brain cell-secreted factors. Sci Rep 2024; 14:19351. [PMID: 39169222 PMCID: PMC11339284 DOI: 10.1038/s41598-024-70386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
The most devastating feature of cancer cells is their ability to metastasize to distant sites in the body. HER2 + and TN breast cancers frequently metastasize to the brain and stay potentially dormant for years until favorable conditions support their proliferation. The sheltered and delicate nature of the brain prevents, however, early disease detection and effective delivery of therapeutic drugs. Moreover, the challenges associated with the acquisition of brain biopsies add compounding difficulties to exploring the mechanistic aspects of tumor development. To provide insights into the determinants of cancer cell behavior at the brain metastatic site, this study was aimed at exploring the early response of HER2 + breast cancer cells (SKBR3) to factors present in the brain perivascular niche. The neural microenvironment was simulated by using the secretome of a set of brain cells that come first in contact with the cancer cells upon crossing the blood brain barrier, i.e., endothelial cells, astrocytes, and microglia. Cytokine microarrays were used to investigate the secretome mediators of intercellular communication, and proteomic technologies for assessing the changes in the behavior of cancer cells upon exposure to the brain cell-secreted factors. The cytokines detected in the brain secretomes were supportive of inflammatory conditions, while the SKBR3 cells secreted numerous cancer-promoting growth factors that were either absent or present in lower abundance in the brain cell cultures, indicating that upon exposure the SKBR3 cells may have been deprived of favorable conditions for optimal growth. Altogether, the results suggest that the exposure of SKBR3 cells to the brain cell-secreted factors altered their growth potential and drove them toward a state of quiescence, with broader overall outcomes that affected cellular metabolism, adhesion and immune response processes. The findings of this study underscore the key role played by the neural niche in shaping the behavior of metastasized cancer cells, provide insights into the cellular cross-talk that may lead cancer cells into dormancy, and highlight novel opportunities for the development of metastatic breast cancer therapeutic strategies.
Collapse
Affiliation(s)
- Shreya Ahuja
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Fralin Life Sciences Institute, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Carilion School of Medicine, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
- Division of Systems Biology/AIS, Virginia Tech, 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
5
|
Khan MS, Wong GL, Zhuang C, Najjar MK, Lo HW. Crosstalk between breast cancer-derived microRNAs and brain microenvironmental cells in breast cancer brain metastasis. Front Oncol 2024; 14:1436942. [PMID: 39175471 PMCID: PMC11338853 DOI: 10.3389/fonc.2024.1436942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
Breast cancer is the most frequent malignancy in women, constituting 15.2% of all new cancers diagnosed in the United States. Distant breast cancer metastasis accounts for the majority of breast cancer-related deaths; brain metastasis is the third most common site for metastatic breast cancer but is associated with worst prognosis of approximately eight months of survival. Current treatment options for breast cancer brain metastasis (BCBM) are limited and ineffective. To help identify new and effective therapies for BCBM, it is important to investigate the mechanisms by which breast cancer cells metastasize to the brain and thrive in the brain microenvironment. To this end, studies have reported that primary breast tumor cells can prime brain microenvironmental cells, including, astrocytes and microglia, to promote the formation of BCBM through the release of extracellular vesicle-microRNAs (miRNAs). Breast tumor-derived miRNAs can also promote breast cancer cell invasion through the blood-brain barrier by disrupting the integrity of the brain microvascular endothelial cells. In this review, we summarize current literature on breast cancer-derived BCBM-promoting miRNAs, cover their roles in the complex steps of BCBM particularly their interactions with microenvironmental cells within the brain metastatic niche, and finally discuss their therapeutic applications in the management of BCBM.
Collapse
Affiliation(s)
- Munazza S. Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Grace L. Wong
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mariana K. Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
6
|
Poletes C, Amanirad B, Santiago AT, Yan M, Conrad T, Jerzak KJ, Shultz DB. The incidence of brain metastases in breast cancer according to molecular subtype and stage: a 10-year single institution analysis. J Neurooncol 2024; 169:119-127. [PMID: 38740672 DOI: 10.1007/s11060-024-04707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Breast cancer (BC) is the second most common etiology of brain metastases (BrM). We aimed to examine the incidence of BrM among all BC patients presenting to a large tertiary cancer centre over one decade. METHODS We included all BC patients presenting consecutively between 2009 and 2019 and cross referenced that cohort to a radiotherapy database, identifying patients treated for BrM at any time following their initial presentation. Cumulative incidences (CI) of BrM diagnoses were calculated using death as a competing risk and compared using the Fine-Gray method. Overall survival was estimated using the Kaplan Meier method. RESULTS We identified 12,995 unique patients. The CI of BrM in patients who initially presented with Stage 0-4 disease was 2.1%, 3.7%, 9.4%, 10.6%, and 28.7%, respectively at 10 years. For 8,951 patients with available molecular subtype data, 6,470 (72%), 961 (11%), 1,023 (11%), and 497 (6%) had hormone-receptor (HR)-positive/ERBB2-, HR-negative/ERBB2-, HR-positive/ERBB2 + , and HR-negative/ERBB2 + disease, respectively; the CI of BrM in each was 7.6%, 25.3%, 24.1%, and 26.6%, at 10 years following BC diagnosis, respectively. Median overall survival (OS) following BC diagnosis and BrM diagnosis was 28 years 95% CI [25, 32] and 10 months 95% CI [9, 12], respectively. CONCLUSIONS From a large, registry-based study, we observed that patients with ERBB2 + and triple negative BC have the highest incidence of BrM. Our data supports prospective surveillance brain MRI studies. Given advancements in BrM treatment, clinicians should have a low threshold for brain imaging in BC patients with high risk subtypes.
Collapse
Affiliation(s)
- Christopher Poletes
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Bardia Amanirad
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Anna T Santiago
- Department of Biostatistics, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Canada
| | - Michael Yan
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Tatiana Conrad
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Katarzyna J Jerzak
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - David B Shultz
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
7
|
Sadique FL, Subramaiam H, Krishnappa P, Chellappan DK, Ma JH. Recent advances in breast cancer metastasis with special emphasis on metastasis to the brain. Pathol Res Pract 2024; 260:155378. [PMID: 38850880 DOI: 10.1016/j.prp.2024.155378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Understanding the underlying mechanisms of breast cancer metastasis is of vital importance for developing treatment approaches. This review emphasizes contemporary breakthrough studies with special focus on breast cancer brain metastasis. Acquired mutational changes in metastatic lesions are often distinct from the primary tumor, suggesting altered mutagenesis pathways. The concept of micrometastases and heterogeneity within the tumors unravels novel therapeutic targets at genomic and molecular levels through epigenetic and proteomic profiling. Several pre-clinical studies have identified mechanisms involving the immune system, where tumor associated macrophages are key players. Expression of cell proteins like Syndecan1, fatty acid-binding protein 7 and tropomyosin kinase receptor B have been implicated in aiding the transmigration of breast cancer cells to the brain. Changes in the proteomic landscape of the blood-brain-barrier show altered permeability characteristics, supporting entry of cancer cells. Findings from laboratory studies pave the path for the emergence of new biomarkers, especially blood-based miRNA and circulating tumor cell markers for prognostic staging. The constantly evolving therapeutics call for clinical trials backing supportive evidence of efficacies of both novel and existing approaches. The challenge lying ahead is discovering innovative techniques to replace use of human samples and optimize small-scale patient recruitment in trials.
Collapse
Affiliation(s)
- Fairooz Labiba Sadique
- Department of Biomedical Science, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Hemavathy Subramaiam
- Division of Pathology, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Purushotham Krishnappa
- Division of Pathology, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Jin Hao Ma
- School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
8
|
Dankner M, Maritan SM, Priego N, Kruck G, Nkili-Meyong A, Nadaf J, Zhuang R, Annis MG, Zuo D, Nowakowski A, Biondini M, Kiepas A, Mourcos C, Le P, Charron F, Inglebert Y, Savage P, Théret L, Guiot MC, McKinney RA, Muller WJ, Park M, Valiente M, Petrecca K, Siegel PM. Invasive growth of brain metastases is linked to CHI3L1 release from pSTAT3-positive astrocytes. Neuro Oncol 2024; 26:1052-1066. [PMID: 38271182 PMCID: PMC11145453 DOI: 10.1093/neuonc/noae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Compared to minimally invasive brain metastases (MI BrM), highly invasive (HI) lesions form abundant contacts with cells in the peritumoral brain parenchyma and are associated with poor prognosis. Reactive astrocytes (RAs) labeled by phosphorylated STAT3 (pSTAT3) have recently emerged as a promising therapeutic target for BrM. Here, we explore whether the BrM invasion pattern is influenced by pSTAT3+ RAs and may serve as a predictive biomarker for STAT3 inhibition. METHODS We used immunohistochemistry to identify pSTAT3+ RAs in HI and MI human and patient-derived xenograft (PDX) BrM. Using PDX, syngeneic, and transgenic mouse models of HI and MI BrM, we assessed how pharmacological STAT3 inhibition or RA-specific STAT3 genetic ablation affected BrM growth in vivo. Cancer cell invasion was modeled in vitro using a brain slice-tumor co-culture assay. We performed single-cell RNA sequencing of human BrM and adjacent brain tissue. RESULTS RAs expressing pSTAT3 are situated at the brain-tumor interface and drive BrM invasive growth. HI BrM invasion pattern was associated with delayed growth in the context of STAT3 inhibition or genetic ablation. We demonstrate that pSTAT3+ RAs secrete Chitinase 3-like-1 (CHI3L1), which is a known STAT3 transcriptional target. Furthermore, single-cell RNA sequencing identified CHI3L1-expressing RAs in human HI BrM. STAT3 activation, or recombinant CHI3L1 alone, induced cancer cell invasion into the brain parenchyma using a brain slice-tumor plug co-culture assay. CONCLUSIONS Together, these data reveal that pSTAT3+ RA-derived CHI3L1 is associated with BrM invasion, implicating STAT3 and CHI3L1 as clinically relevant therapeutic targets for the treatment of HI BrM.
Collapse
Affiliation(s)
- Matthew Dankner
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sarah M Maritan
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Neibla Priego
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Georgia Kruck
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Andriniaina Nkili-Meyong
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Javad Nadaf
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rebecca Zhuang
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew G Annis
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Dongmei Zuo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Alexander Nowakowski
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Marco Biondini
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Alexander Kiepas
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Caitlyn Mourcos
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Phuong Le
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - François Charron
- Department of Pharmacology, McGill University, Montreal, Quebec, Canada
| | - Yanis Inglebert
- Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Paul Savage
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Louis Théret
- Research Institute of the University of Montreal (IRIC), Montreal, Quebec, Canada
| | - Marie-Christine Guiot
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - R Anne McKinney
- Department of Pharmacology, McGill University, Montreal, Quebec, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Kevin Petrecca
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute-Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Peter M Siegel
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Ruan X, Yan W, Cao M, Daza RAM, Fong MY, Yang K, Wu J, Liu X, Palomares M, Wu X, Li A, Chen Y, Jandial R, Spitzer NC, Hevner RF, Wang SE. Breast cancer cell-secreted miR-199b-5p hijacks neurometabolic coupling to promote brain metastasis. Nat Commun 2024; 15:4549. [PMID: 38811525 PMCID: PMC11137082 DOI: 10.1038/s41467-024-48740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer metastasis to the brain is a clinical challenge rising in prevalence. However, the underlying mechanisms, especially how cancer cells adapt a distant brain niche to facilitate colonization, remain poorly understood. A unique metabolic feature of the brain is the coupling between neurons and astrocytes through glutamate, glutamine, and lactate. Here we show that extracellular vesicles from breast cancer cells with a high potential to develop brain metastases carry high levels of miR-199b-5p, which shows higher levels in the blood of breast cancer patients with brain metastases comparing to those with metastatic cancer in other organs. miR-199b-5p targets solute carrier transporters (SLC1A2/EAAT2 in astrocytes and SLC38A2/SNAT2 and SLC16A7/MCT2 in neurons) to hijack the neuron-astrocyte metabolic coupling, leading to extracellular retention of these metabolites and promoting cancer cell growth. Our findings reveal a mechanism through which cancer cells of a non-brain origin reprogram neural metabolism to fuel brain metastases.
Collapse
Affiliation(s)
- Xianhui Ruan
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Wei Yan
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Minghui Cao
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Ray Anthony M Daza
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Miranda Y Fong
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Kaifu Yang
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jun Wu
- Center for Comparative Medicine, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Xuxiang Liu
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | | | - Xiwei Wu
- Department of Computational and Quantitative Medicine, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Arthur Li
- Division of Biostatistics, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Yuan Chen
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Rahul Jandial
- Department of Surgery; City of Hope, Duarte, CA, USA
| | - Nicholas C Spitzer
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Shizhen Emily Wang
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Ishibashi K, Ichinose T, Kadokawa R, Mizutani R, Iwabuchi S, Togi S, Ura H, Tange S, Shinjo K, Nakayama J, Nanjo S, Niida Y, Kondo Y, Hashimoto S, Sahai E, Yano S, Nakada M, Hirata E. Astrocyte-induced mGluR1 activates human lung cancer brain metastasis via glutamate-dependent stabilization of EGFR. Dev Cell 2024; 59:579-594.e6. [PMID: 38309264 DOI: 10.1016/j.devcel.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
There are limited methods to stably analyze the interactions between cancer cells and glial cells in vitro, which hinders our molecular understanding. Here, we develop a simple and stable culture method of mouse glial cells, termed mixed-glial culture on/in soft substrate (MGS), which serves well as a platform to study cancer-glia interactions. Using this method, we find that human lung cancer cells become overly dependent on metabotropic glutamate receptor 1 (mGluR1) signaling in the brain microenvironment. Mechanistically, interactions with astrocytes induce mGluR1 in cancer cells through the Wnt-5a/prickle planar cell polarity protein 1 (PRICKLE1)/RE1 silencing transcription factor (REST) axis. Induced mGluR1 directly interacts with and stabilizes the epidermal growth factor receptor (EGFR) in a glutamate-dependent manner, and these cells then become responsive to mGluR1 inhibition. Our results highlight increased dependence on mGluR1 signaling as an adaptive strategy and vulnerability of human lung cancer brain metastasis.
Collapse
Affiliation(s)
- Kojiro Ishibashi
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Toshiya Ichinose
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan
| | - Riki Kadokawa
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Ryo Mizutani
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Wakayama, Japan
| | - Sumihito Togi
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan; Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Hiroki Ura
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan; Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Shoichiro Tange
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Jun Nakayama
- Department of Oncogenesis and Growth Regulation, Research Institute, Osaka International Cancer Institute, Osaka 541-8567, Osaka, Japan
| | - Shigeki Nanjo
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa 920-8641, Ishikawa, Japan; Division of Medical Oncology, Cancer Research Institute of Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan; Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Wakayama, Japan
| | - Erik Sahai
- Tumor Cell Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Seiji Yano
- Department of Respiratory Medicine, Kanazawa University Hospital, Kanazawa 920-8641, Ishikawa, Japan; Division of Medical Oncology, Cancer Research Institute of Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan; Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Ishikawa, Japan
| | - Eishu Hirata
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan; Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan.
| |
Collapse
|
11
|
Xu D, Hu Z, Wang K, Hu S, Zhou Y, Zhang S, Chen Y, Pan T. Why does HER2-positive breast cancer metastasize to the brain and what can we do about it? Crit Rev Oncol Hematol 2024; 195:104269. [PMID: 38272149 DOI: 10.1016/j.critrevonc.2024.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Breast cancer is the most frequent malignancy in women. However, in the middle and late stages, some people develop distant metastases, which considerably lower the quality of life and life expectancy. The brain is one of the sites where metastasis frequently happens. According to epidemiological research, brain metastases occur at a late stage in 30-50% of patients with HER2-positive breast cancer, resulting in a poor prognosis. Additionally, few treatments are available for HER2-positive brain metastatic breast cancer, and the mortality rate is remarkable owing to the complexity of the brain's anatomical structure and physiological function. In this review, we described the stages of the brain metastasis of breast cancer, the relationship between the microenvironment and metastatic cancer cells, and the unique molecular and cellular mechanisms. It involves cancer cells migrating, invading, and adhering to the brain; penetrating the blood-brain barrier; interacting with brain cells; and activating signal pathways once inside the brain. Finally, we reviewed current clinically used treatment approaches for brain metastasis in HER2-positive breast cancer; summarized the traditional treatment, targeted treatment, immunotherapy, and other treatment modalities; compared the benefits and drawbacks of each approach; discussed treatment challenges; and emphasized the importance of identifying potential targets to improve patient survival rates and comprehend brain metastasis in breast cancer.
Collapse
Affiliation(s)
- Dongyan Xu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhengfang Hu
- Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
| | - Kaiyue Wang
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shiyao Hu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yunxiang Zhou
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shizhen Zhang
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yiding Chen
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Tao Pan
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
12
|
Maurya SK, Rehman AU, Zaidi MAA, Khan P, Gautam SK, Santamaria-Barria JA, Siddiqui JA, Batra SK, Nasser MW. Epigenetic alterations fuel brain metastasis via regulating inflammatory cascade. Semin Cell Dev Biol 2024; 154:261-274. [PMID: 36379848 PMCID: PMC10198579 DOI: 10.1016/j.semcdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Brain metastasis (BrM) is a major threat to the survival of melanoma, breast, and lung cancer patients. Circulating tumor cells (CTCs) cross the blood-brain barrier (BBB) and sustain in the brain microenvironment. Genetic mutations and epigenetic modifications have been found to be critical in controlling key aspects of cancer metastasis. Metastasizing cells confront inflammation and gradually adapt in the unique brain microenvironment. Currently, it is one of the major areas that has gained momentum. Researchers are interested in the factors that modulate neuroinflammation during BrM. We review here various epigenetic factors and mechanisms modulating neuroinflammation and how this helps CTCs to adapt and survive in the brain microenvironment. Since epigenetic changes could be modulated by targeting enzymes such as histone/DNA methyltransferase, deacetylases, acetyltransferases, and demethylases, we also summarize our current understanding of potential drugs targeting various aspects of epigenetic regulation in BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Mohd Ali Abbas Zaidi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | | | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68108, USA.
| |
Collapse
|
13
|
Liang K, Feliciano JL, Marrone KA, Murray JC, Hann CL, Anagnostou V, Tackett SA, Shin EJ, Hales RK, Voong KR, Battafarano RJ, Yang SC, Broderick SR, Ha JS, Forde PM, Brahmer JR, Lam VK. Clinical features and outcomes of advanced HER2+ esophageal/GEJ cancer with brain metastasis. ESMO Open 2024; 9:102199. [PMID: 38071928 PMCID: PMC10837776 DOI: 10.1016/j.esmoop.2023.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Brain metastasis (BRM) is uncommon in gastroesophageal cancer. As such, clinicopathologic and molecular determinants of BRM and impact on clinical outcome remain incompletely understood. METHODS We retrospectively analyzed clinicopathologic data from advanced esophageal/gastroesophageal junction (E/GEJ) patients at Johns Hopkins from 2003 to 2021. We investigated the association between several clinical and molecular features and the occurrence of BRM, with particular focus on human epidermal growth factor receptor 2 (HER2) overexpression. Survival outcomes and time to BRM onset were also evaluated. RESULTS We included 515 patients with advanced E/GEJ cancer. Tumors were 78.3% esophageal primary, 82.9% adenocarcinoma, 31.0% HER2 positive. Cumulative incidence of BRM in the overall cohort and within HER2+ subgroup was 13.8% and 24.3%, respectively. HER2 overexpression was associated with increased risk of BRM [odds ratio 2.45; 95% confidence interval (CI) 1.10-5.46]. On initial presentation with BRM, 50.7% had a solitary brain lesion and 11.3% were asymptomatic. HER2+ status was associated with longer median time to onset of BRM (14.0 versus 6.3 months, P < 0.01), improved median progression free survival on first-line systemic therapy (hazard ratio 0.35, 95% CI 0.16-0.80), and improved median overall survival (hazard ratio 0.20, 95% CI 0.08-0.54) in patients with BRM. CONCLUSION HER2 overexpression identifies a gastroesophageal cancer molecular subtype that is significantly associated with increased risk of BRM, though with later onset of BRM and improved survival likely reflecting the impact of central nervous system-penetrant HER2-directed therapy. The prevalence of asymptomatic and solitary brain lesions suggests that brain surveillance for HER2+ patients warrants prospective investigation.
Collapse
Affiliation(s)
- K Liang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - J L Feliciano
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - K A Marrone
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - J C Murray
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - C L Hann
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - V Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - S A Tackett
- Department of Medicine, Biostatistics, Epidemiology and Data Management (BEAD) Core, Johns Hopkins University School of Medicine, Baltimore, USA
| | - E J Shin
- Department of Gastroenterology & Hepatology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - R K Hales
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - K R Voong
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - R J Battafarano
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - S C Yang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - S R Broderick
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - J S Ha
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - P M Forde
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - J R Brahmer
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - V K Lam
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
14
|
Zhou D, Gong Z, Wu D, Ma C, Hou L, Niu X, Xu T. Harnessing immunotherapy for brain metastases: insights into tumor-brain microenvironment interactions and emerging treatment modalities. J Hematol Oncol 2023; 16:121. [PMID: 38104104 PMCID: PMC10725587 DOI: 10.1186/s13045-023-01518-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Brain metastases signify a deleterious milestone in the progression of several advanced cancers, predominantly originating from lung, breast and melanoma malignancies, with a median survival timeframe nearing six months. Existing therapeutic regimens yield suboptimal outcomes; however, burgeoning insights into the tumor microenvironment, particularly the immunosuppressive milieu engendered by tumor-brain interplay, posit immunotherapy as a promising avenue for ameliorating brain metastases. In this review, we meticulously delineate the research advancements concerning the microenvironment of brain metastases, striving to elucidate the panorama of their onset and evolution. We encapsulate three emergent immunotherapeutic strategies, namely immune checkpoint inhibition, chimeric antigen receptor (CAR) T cell transplantation and glial cell-targeted immunoenhancement. We underscore the imperative of aligning immunotherapy development with in-depth understanding of the tumor microenvironment and engendering innovative delivery platforms. Moreover, the integration with established or avant-garde physical methodologies and localized applications warrants consideration in the prevailing therapeutic schema.
Collapse
Affiliation(s)
- Dairan Zhou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Zhenyu Gong
- Department of Neurosurgery, Klinikum Rechts Der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Chao Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Xuhui District, Shanghai, 200030, People's Republic of China.
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
15
|
Ahuja S, Lazar IM. Proteomic Insights into Metastatic Breast Cancer Response to Brain Cell-Secreted Factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.22.563488. [PMID: 37961261 PMCID: PMC10634729 DOI: 10.1101/2023.10.22.563488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The most devastating feature of cancer cells is their ability to metastasize to distant sites in the body. HER2+ and triple negative breast cancers frequently metastasize to the brain and stay potentially dormant for years, clinging to the microvasculature, until favorable environmental conditions support their proliferation. The sheltered and delicate nature of the brain prevents, however, early disease detection, diagnosis, and effective delivery of therapeutic drugs. Moreover, the challenges associated with the acquisition of brain tissues and biopsies add compounding difficulties to exploring the mechanistic aspects of tumor development, leading to slow progress in understanding the drivers of disease progression and response to therapy. To provide insights into the determinants of cancer cell behavior at the brain metastatic site, this study was aimed at exploring the growth and initial response of HER2+ breast cancer cells (SKBR3) to factors present in the brain perivascular niche. The neural microenvironment conditions were simulated by using the secretome of a set of brain cells that come first in contact with the cancer cells upon crossing the blood brain barrier, i.e., human endothelial cells (HBEC5i), human astrocytes (NHA) and human microglia (HMC3) cells. Cytokine microarrays were used to investigate the cell secretomes and explore the mediators responsible for cell-cell communication, and proteomic technologies for assessing the changes in the behavior of cancer cells upon exposure to the brain cell-secreted factors. The results of the study suggest that the exposure of SKBR3 cells to the brain secretomes altered their growth potential and drove them towards a state of quiescence. The cytokines, growth factors and enzymes detected in the brain cell-conditioned medium were supportive of mostly inflammatory conditions, indicating a collective functional contribution to cell activation, defense, inflammatory responses, chemotaxis, adhesion, angiogenesis, and ECM organization. The SKBR3 cells, on the other hand, secreted numerous cancer-promoting growth factors that were either absent or present in lower abundance in the brain cell culture media, suggesting that upon exposure the SKBR3 cells were deprived of favorable environmental conditions required for optimal growth. The findings of this study underscore the key role played by the neural niche in shaping the behavior of metastasized cancer cells, providing insights into the cancer-host cell cross-talk that contributes to driving metastasized cancer cells into dormancy and into the opportunities that exist for developing novel therapeutic strategies that target the brain metastases of breast cancer.
Collapse
Affiliation(s)
- Shreya Ahuja
- Department of Biological Sciences, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
| | - Iulia M. Lazar
- Department of Biological Sciences, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
- Fralin Life Sciences Institute, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
- Carilion School of Medicine, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
- Division of Systems Biology/AIS, Virginia Tech 1981 Kraft Drive, Blacksburg, VA 24061
| |
Collapse
|
16
|
Sevieri M, Mazzucchelli S, Barbieri L, Garbujo S, Carelli S, Bonizzi A, Rey F, Recordati C, Recchia M, Allevi R, Sitia L, Morasso C, Zerbi P, Prosperi D, Corsi F, Truffi M. Ferritin nanoconjugates guide trastuzumab brain delivery to promote an antitumor response in murine HER2 + breast cancer brain metastasis. Pharmacol Res 2023; 196:106934. [PMID: 37734460 DOI: 10.1016/j.phrs.2023.106934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Brain metastasis (BM) represents a clinical challenge for patients with advanced HER2 + breast cancer (BC). The monoclonal anti-HER2 antibody trastuzumab (TZ) improves survival of BC patients, but it has low central nervous system penetrance, being ineffective in treating BM. Previous studies showed that ferritin nanoparticles (HFn) may cross the blood brain barrier (BBB) through binding to the transferrin receptor 1 (TfR1). However, whether this has efficacy in promoting the trans-BBB delivery of TZ and combating BC BM was not studied yet. Here, we investigated the potential of HFn to drive TZ brain delivery and promote a targeted antitumor response in a murine model of BC BM established by stereotaxic injection of engineered BC cells overexpressing human HER2. HFn were covalently conjugated with TZ to obtain a nanoconjugate endowed with HER2 and TfR1 targeting specificity (H-TZ). H-TZ efficiently achieved TZ brain delivery upon intraperitoneal injection and triggered stable targeting of cancer cells. Treatment with H-TZ plus docetaxel significantly reduced tumor growth and shaped a protective brain microenvironment by engaging macrophage activation toward cancer cells. H-TZ-based treatment also avoided TZ-associated cardiotoxicity by preventing drug accumulation in the heart and did not induce any other major side effects when combined with docetaxel. These results provided in vivo demonstration of the pharmacological potential of H-TZ, able to tackle BC BM in combination with docetaxel. Indeed, upon systemic administration, the nanoconjugate guides TZ brain accumulation, reduces BM growth and limits side effects in off-target organs, thus showing promise for the management of HER2 + BC metastatic to the brain.
Collapse
Affiliation(s)
- Marta Sevieri
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Linda Barbieri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milano, Italy
| | - Stefania Garbujo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milano, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy; Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milano, Italy
| | - Arianna Bonizzi
- Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy
| | - Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy; Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children's Hospital, Milano, Italy
| | - Camilla Recordati
- Mouse and Animal Pathology Laboratory, Fondazione Unimi, viale Ortles 22/4, 20139 Milano, Italy; Dipartimento di Medicina Veterinaria e Scienze Animali, Università di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - Matteo Recchia
- Mouse and Animal Pathology Laboratory, Fondazione Unimi, viale Ortles 22/4, 20139 Milano, Italy; Dipartimento di Medicina Veterinaria e Scienze Animali, Università di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - Raffaele Allevi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Leopoldo Sitia
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy
| | - Pietro Zerbi
- Anatomia Patologica, ASST Santi Paolo e Carlo, via Pio II, 3, Milano, Italy
| | - Davide Prosperi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milano, Italy
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milan, Italy; Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy.
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy.
| |
Collapse
|
17
|
Kim MS, Lee WS, Jin W. TrkB inhibition of DJ-1 degradation promotes the growth and maintenance of cancer stem cell characteristics in hepatocellular carcinoma. Cell Mol Life Sci 2023; 80:303. [PMID: 37749450 PMCID: PMC10520132 DOI: 10.1007/s00018-023-04960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
Although TrkB may be associated with the pathogenesis of various cancer by upregulation, how upregulation of TrkB led to tumor progression in hepatocellular carcinoma (HCC) and the signaling mechanisms by which TrkB induces motility, invasion, metastasis, drug resistance, and acquisition of self-renewal traits has remained unclear. Here, we demonstrated that TrkB was significantly upregulated in highly metastatic HCC cells and HCC patients. Also, the increased TrkB levels were significantly correlated with tumor stages and poor survival of HCC patients. Furthermore, the upregulated TrkB expression enhances the metastatic ability of HCC cells through reduced anoikis sensitivity, induced migration, and colony formation. Most strikingly, TrkB markedly enhances the activation of STAT3 by preventing DJ-1 degradation through the formation of the TrkB/DJ-1 complex. This signaling mechanism is responsible for triggering cellular traits of highly aggressive HCC. The activation of the EMT program of HCC via increasing DJ-1 stability by TrkB induces the gain of cancer stem cell states and chemoresistance via the upregulation of stem cells cell markers and ABC transporters. Also, TrkB-mediated inhibition of DJ-1 degradation promotes tumor formation and metastasizes to other organs in vivo. Our observations illustrate that TrkB is a prognostic and therapeutic targeting in promoting aggressiveness and metastasis of HCC.
Collapse
Affiliation(s)
- Min Soo Kim
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Won Sung Lee
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Korea
| | - Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
18
|
Tomasich E, Steindl A, Paiato C, Hatziioannou T, Kleinberger M, Berchtold L, Puhr R, Hainfellner JA, Müllauer L, Widhalm G, Eckert F, Bartsch R, Heller G, Preusser M, Berghoff AS. Frequent Overexpression of HER3 in Brain Metastases from Breast and Lung Cancer. Clin Cancer Res 2023; 29:3225-3236. [PMID: 37036472 DOI: 10.1158/1078-0432.ccr-23-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE HER3 belongs to a family of receptor tyrosine kinases with oncogenic properties and is targeted by a variety of novel anticancer agents. There is a huge unmet medical need for systemic treatment options in patients with brain metastases (BM). Therefore, we aimed to investigate HER3 expression in BM of breast (BCa) and non-small cell lung cancer (NSCLC) as the basis for future clinical trial design. EXPERIMENTAL DESIGN We analyzed 180 BM samples of breast cancer or NSCLC and 47 corresponding NSCLC extracranial tissue. IHC was performed to evaluate protein expression of HER3, and immune cells based on CD3, CD8, and CD68. To identify dysregulated pathways based on differential DNA methylation patterns, we used Infinium MethylationEPIC microarrays. RESULTS A total of 99/132 (75.0%) of BCa-BM and 35/48 (72.9%) of NSCLC-BM presented with HER3 expression. Among breast cancer, HER2-positive and HER2-low BM showed significantly higher rates of HER3 coexpression than HER2-negative BM (87.1%/85.7% vs. 61.0%, P = 0.004). Among NSCLC, HER3 was more abundantly expressed in BM than in matched extracranial samples (72.9% vs. 41.3%, P = 0.003). No correlation of HER3 expression and intratumoral immune cell density was observed. HER3 expression did not correlate with overall survival from BM diagnosis. Methylation signatures differed according to HER3 status in BCa-BM samples. Pathway analysis revealed subtype-specific differences, such as TrkB and Wnt signaling pathways dysregulated in HER2-positive and triple-negative breast cancer BM, respectively. CONCLUSIONS HER3 is highly abundant in BM of breast cancer and NSCLC. Given the promising results of antibody-drug conjugates in extracranial disease, BM-specific trials that target HER3 are warranted. See related commentary by Kabraji and Lin, p. 2961.
Collapse
Affiliation(s)
- Erwin Tomasich
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ariane Steindl
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christina Paiato
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Teresa Hatziioannou
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Markus Kleinberger
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Luzia Berchtold
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Rainer Puhr
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Franziska Eckert
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna Sophie Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Xiong S, Tan X, Wu X, Wan A, Zhang G, Wang C, Liang Y, Zhang Y. Molecular landscape and emerging therapeutic strategies in breast
cancer brain metastasis. Ther Adv Med Oncol 2023; 15:17588359231165976. [PMID: 37034479 PMCID: PMC10074632 DOI: 10.1177/17588359231165976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer worldwide. Advanced BC
with brain metastasis (BM) is a major cause of mortality with no specific or
effective treatment. Therefore, better knowledge of the cellular and molecular
mechanisms underlying breast cancer brain metastasis (BCBM) is crucial for
developing novel therapeutic strategies and improving clinical outcomes. In this
review, we focused on the latest advances and discuss the contribution of the
molecular subtype of BC, the brain microenvironment, exosomes, miRNAs/lncRNAs,
and genetic background in BCBM. The blood–brain barrier and blood–tumor barrier
create challenges to brain drug delivery, and we specifically review novel
approaches to bypass these barriers. Furthermore, we discuss the potential
application of immunotherapies and genetic editing techniques based on
CRISPR/Cas9 technology in treating BCBM. Emerging techniques and research
findings continuously shape our views of BCBM and contribute to improvements in
precision therapies and clinical outcomes.
Collapse
Affiliation(s)
- Siyi Xiong
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Xuanni Tan
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Xiujuan Wu
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Andi Wan
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Guozhi Zhang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Cheng Wang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, Chongqing, China
| | - Yan Liang
- Breast and Thyroid Surgery, Southwest Hospital,
Army Medical University, 30 Gaotanyan, Shapingba, China Chongqing 400038,
China
| | | |
Collapse
|
20
|
Pecar G, Liu S, Hooda J, Atkinson JM, Oesterreich S, Lee AV. RET signaling in breast cancer therapeutic resistance and metastasis. Breast Cancer Res 2023; 25:26. [PMID: 36918928 PMCID: PMC10015789 DOI: 10.1186/s13058-023-01622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/16/2023] [Indexed: 03/15/2023] Open
Abstract
RET, a single-pass receptor tyrosine kinase encoded on human chromosome 10, is well known to the field of developmental biology for its role in the ontogenesis of the central and enteric nervous systems and the kidney. In adults, RET alterations have been characterized as drivers of non-small cell lung cancer and multiple neuroendocrine neoplasms. In breast cancer, RET signaling networks have been shown to influence diverse functions including tumor development, metastasis, and therapeutic resistance. While RET is known to drive the development and progression of multiple solid tumors, therapeutic agents selectively targeting RET are relatively new, though multiple multi-kinase inhibitors have shown promise as RET inhibitors in the past; further, RET has been historically neglected as a potential therapeutic co-target in endocrine-refractory breast cancers despite mounting evidence for a key pathologic role and repeated description of a bi-directional relationship with the estrogen receptor, the principal driver of most breast tumors. Additionally, the recent discovery of RET enrichment in breast cancer brain metastases suggests a role for RET inhibition specific to advanced disease. This review assesses the status of research on RET in breast cancer and evaluates the therapeutic potential of RET-selective kinase inhibitors across major breast cancer subtypes.
Collapse
Affiliation(s)
- Geoffrey Pecar
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Simeng Liu
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jagmohan Hooda
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Jennifer M Atkinson
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center and Magee-Womens Research Institute, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, The Assembly, Room 2051, 5051 Centre Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
21
|
Chhichholiya Y, Ruthuparna M, Velagaleti H, Munshi A. Brain metastasis in breast cancer: focus on genes and signaling pathways involved, blood-brain barrier and treatment strategies. Clin Transl Oncol 2023; 25:1218-1241. [PMID: 36897508 DOI: 10.1007/s12094-022-03050-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/12/2022] [Indexed: 03/11/2023]
Abstract
Breast cancer (BC) is one of the most prevalent types of cancer in women. Despite advancement in early detection and efficient treatment, recurrence and metastasis continue to pose a significant risk to the life of BC patients. Brain metastasis (BM) reported in 17-20 percent of BC patients is considered as a major cause of mortality and morbidity in these patients. BM includes various steps from primary breast tumor to secondary tumor formation. Various steps involved are primary tumor formation, angiogenesis, invasion, extravasation, and brain colonization. Genes involved in different pathways have been reported to be associated with BC cells metastasizing to the brain. ADAM8 gene, EN1 transcription factor, WNT, and VEGF signaling pathway have been associated with primary breast tumor; MMP1, COX2, XCR4, PI3k/Akt, ERK and MAPK pathways in angiogenesis; Noth, CD44, Zo-1, CEMIP, S0X2 and OLIG2 are involved in invasion, extravasation and colonization, respectively. In addition, the blood-brain barrier is also a key factor in BM. Dysregulation of cell junctions, tumor microenvironment and loss of function of microglia leads to BBB disruption ultimately resulting in BM. Various therapeutic strategies are currently used to control the BM in BC. Oncolytic virus therapy, immune checkpoint inhibitors, mTOR-PI3k inhibitors and immunotherapy have been developed to target various genes involved in BM in BC. In addition, RNA interference (RNAi) and CRISPR/Cas9 are novel interventions in the field of BCBM where research to validate these and clinical trials are being carried out. Gaining a better knowledge of metastasis biology is critical for establishing better treatment methods and attaining long-term therapeutic efficacies against BC. The current review has been compiled with an aim to evaluate the role of various genes and signaling pathways involved in multiple steps of BM in BC. The therapeutic strategies being used currently and the novel ones being explored to control BM in BC have also been discussed at length.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Malayil Ruthuparna
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harini Velagaleti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
22
|
Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188828. [DOI: 10.1016/j.bbcan.2022.188828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
|
23
|
Mahmoodifar S, Pangal DJ, Cardinal T, Craig D, Simon T, Tew BY, Yang W, Chang E, Yu M, Neman J, Mason J, Toga A, Salhia B, Zada G, Newton PK. A quantitative characterization of the spatial distribution of brain metastases from breast cancer and respective molecular subtypes. J Neurooncol 2022; 160:241-251. [DOI: 10.1007/s11060-022-04147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022]
|
24
|
Rukhlenko OS, Halasz M, Rauch N, Zhernovkov V, Prince T, Wynne K, Maher S, Kashdan E, MacLeod K, Carragher NO, Kolch W, Kholodenko BN. Control of cell state transitions. Nature 2022; 609:975-985. [PMID: 36104561 PMCID: PMC9644236 DOI: 10.1038/s41586-022-05194-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
Understanding cell state transitions and purposefully controlling them is a longstanding challenge in biology. Here we present cell state transition assessment and regulation (cSTAR), an approach for mapping cell states, modelling transitions between them and predicting targeted interventions to convert cell fate decisions. cSTAR uses omics data as input, classifies cell states, and develops a workflow that transforms the input data into mechanistic models that identify a core signalling network, which controls cell fate transitions by influencing whole-cell networks. By integrating signalling and phenotypic data, cSTAR models how cells manoeuvre in Waddington's landscape1 and make decisions about which cell fate to adopt. Notably, cSTAR devises interventions to control the movement of cells in Waddington's landscape. Testing cSTAR in a cellular model of differentiation and proliferation shows a high correlation between quantitative predictions and experimental data. Applying cSTAR to different types of perturbation and omics datasets, including single-cell data, demonstrates its flexibility and scalability and provides new biological insights. The ability of cSTAR to identify targeted perturbations that interconvert cell fates will enable designer approaches for manipulating cellular development pathways and mechanistically underpinned therapeutic interventions.
Collapse
Affiliation(s)
- Oleksii S Rukhlenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Melinda Halasz
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Nora Rauch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Thomas Prince
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Stephanie Maher
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Eugene Kashdan
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Kenneth MacLeod
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
- Department of Pharmacology, Yale University School of Medicine, New Haven, USA.
| |
Collapse
|
25
|
Menendez JA, Lupu R. Fatty acid synthase: A druggable driver of breast cancer brain metastasis. Expert Opin Ther Targets 2022; 26:427-444. [PMID: 35545806 DOI: 10.1080/14728222.2022.2077189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Brain metastasis (BrM) is a key contributor to morbidity and mortality in breast cancer patients, especially among high-risk epidermal growth factor receptor 2-positive (HER2+) and triple-negative/basal-like molecular subtypes. Optimal management of BrM is focused on characterizing a "BrM dependency map" to prioritize targetable therapeutic vulnerabilities. AREAS COVERED We review recent studies addressing the targeting of BrM in the lipid-deprived brain environment, which selects for brain-tropic breast cancer cells capable of cell-autonomously generating fatty acids by upregulating de novo lipogenesis via fatty acid synthase (FASN). Disruption of FASN activity impairs breast cancer growth in the brain, but not extracranially, and mapping of the molecular causes of organ-specific patterns of metastasis has uncovered an enrichment of lipid metabolism signatures in brain metastasizing cells. Targeting SREBP1-the master regulator of lipogenic gene transcription-curtails the ability of breast cancer cells to survive in the brain microenvironment. EXPERT OPINION Targeting FASN represents a new therapeutic opportunity for patients with breast cancer and BrM. Delivery of brain-permeable FASN inhibitors and identifying strategies to target metabolic plasticity that might compensate for impaired brain FASN activity are two potential roadblocks that may hinder FASN-centered strategies against BrM.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Ruth Lupu
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Minnesota, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
26
|
Strickland MR, Alvarez-Breckenridge C, Gainor JF, Brastianos PK. Tumor Immune Microenvironment of Brain Metastases: Toward Unlocking Antitumor Immunity. Cancer Discov 2022; 12:1199-1216. [PMID: 35394521 PMCID: PMC11440428 DOI: 10.1158/2159-8290.cd-21-0976] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/19/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Brain metastasis (BrM) is a devastating complication of solid tumors associated with poor outcomes. Immune-checkpoint inhibitors (ICI) have revolutionized the treatment of cancer, but determinants of response are incompletely understood. Given the rising incidence of BrM, improved understanding of immunobiologic principles unique to the central nervous system (CNS) and dissection of those that govern the activity of ICIs are paramount toward unlocking BrM-specific antitumor immunity. In this review, we seek to discuss the current clinical landscape of ICI activity in the CNS and CNS immunobiology, and we focus, in particular, on the role of glial cells in the CNS immune response to BrM. SIGNIFICANCE There is an urgent need to improve patient selection for and clinical activity of ICIs in patients with cancer with concomitant BrM. Increased understanding of the unique immunobiologic principles that govern response to ICIs in the CNS is critical toward identifying targets in the tumor microenvironment that may potentiate antitumor immunity.
Collapse
Affiliation(s)
| | | | - Justin F Gainor
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
27
|
Stratification of radiosensitive brain metastases based on an actionable S100A9/RAGE resistance mechanism. Nat Med 2022; 28:752-765. [PMID: 35411077 PMCID: PMC9018424 DOI: 10.1038/s41591-022-01749-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
Abstract
AbstractWhole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9–RAGE–NF-κB–JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.
Collapse
|
28
|
Liu Y, Zhang Z, Gao X, Ma Q, Yu Z, Huang S. Rab8A promotes breast cancer progression by increasing surface expression of Tropomyosin-related kinase B. Cancer Lett 2022; 535:215629. [PMID: 35278612 DOI: 10.1016/j.canlet.2022.215629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Ras-related protein in brain (Rab) proteins are dysregulated in cancer cells and affect the proliferation and metastasis of cancer cells, thereby reducing the survival rate of cancer patients. Brain-derived neurotrophic factor (BDNF) and its receptor Tropomyosin-related kinase B (TrkB) play an important role in the occurrence and development of tumors. In this research, we investigate the interaction of Rab8A and TrkB in regulating the progression of breast cancer. Rab8A is upregulated in breast cancer tissues. The knockdown of Rab8A inhibits the proliferation, migration, and invasion of breast cancer cells through inhibiting TrkB. Moreover, the phosphorylation of AKT and ERK1/2 is suppressed by Rab8A knockdown. Rab8A interacts with TrkB, as revealed by co-immunoprecipitation assay to promote the surface expression of TrkB. However, Rab8A induced no significant changes in TrkB internalization. Functionally, BDNF promotes the expression of Rab8A through inhibiting Rab8A degradation. The TrkB inhibitor K252a blocks cell proliferation, migration and invasion as well as the activation of the AKT and ERK1/2 signaling pathway, which is induced by Rab8A in breast cancer cells. Our results reveal that Rab8A is upregulated by BDNF, and that Rab8A increases the surface expression of TrkB to promote the growth of breast cancer through the activation of the AKT and ERK1/2 signaling pathway. These results suggest that inhibiting Rab8A level could inhibit the progression of breast cancer.
Collapse
Affiliation(s)
- Yansong Liu
- Department of Breast Disease, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhonghua Zhang
- Department of Breast Disease, Dongping County Hospital, Taian, Shandong, China
| | - Xuefeng Gao
- Department of Breast and Thyroid Surgery, Yinan People's Hospital, Linyi, Shandong, China
| | - Qinghua Ma
- Department of Breast Disease, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhiyong Yu
- Department of Breast Disease, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Shuhong Huang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
29
|
Temblador A, Topalis D, van den Oord J, Andrei G, Snoeck R. Organotypic Epithelial Raft Cultures as a Three-Dimensional In Vitro Model of Merkel Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14041091. [PMID: 35205840 PMCID: PMC8870341 DOI: 10.3390/cancers14041091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare type of skin cancer for which an in vitro model is still lacking. MCC tumorigenesis is associated either with the integration of Merkel cell polyomavirus into the host genome, or with the accumulation of somatic mutations upon chronic exposure to UV light. Transgenic animals expressing the viral oncoproteins, which are constitutively expressed in virus-related MCC, do not fully recapitulate MCC. Although cell-line-derived xenografts have been established for the two subtypes of MCC, they still present certain limitations. Here, we generated organotypic epithelial raft cultures (OERCs) of MCC by using primary human keratinocytes and both virus-positive and virus-negative MCC cell lines. The primary human keratinocytes and the tumor cells were grown on top of a dermal equivalent. Histological and immunohistochemical examination of the rafts confirmed the growth of MCC cells. Furthermore, gene expression analysis revealed differences in the expression profiles of the distinct tumor cells and the keratinocytes at the transcriptional level. In summary, considering the limited availability of patient samples, OERCs of MCC may constitute a suitable model for evaluating the efficacy and selectivity of new drug candidates against MCC; moreover, they are a potential tool to study the oncogenic mechanisms of this malignancy.
Collapse
Affiliation(s)
- Arturo Temblador
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (A.T.); (D.T.); (R.S.)
| | - Dimitrios Topalis
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (A.T.); (D.T.); (R.S.)
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium;
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (A.T.); (D.T.); (R.S.)
- Correspondence:
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (A.T.); (D.T.); (R.S.)
| |
Collapse
|
30
|
Bhan A, Ansari K, Chen MY, Jandial R. Human induced pluripotent stem cell-derived platelets loaded with lapatinib effectively target HER2+ breast cancer metastasis to the brain. Sci Rep 2021; 11:16866. [PMID: 34654856 PMCID: PMC8521584 DOI: 10.1038/s41598-021-96351-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 08/06/2021] [Indexed: 01/09/2023] Open
Abstract
Prognosis of patients with HER2+ breast-to-brain-metastasis (BBM) is dismal even after current standard-of-care treatments, including surgical resection, whole-brain radiation, and systemic chemotherapy. Radiation and systemic chemotherapies can also induce cytotoxicity, leading to significant side effects. Studies indicate that donor-derived platelets can serve as immune-compatible drug carriers that interact with and deliver drugs to cancer cells with fewer side effects, making them a promising therapeutic option with enhanced antitumor activity. Moreover, human induced pluripotent stem cells (hiPSCs) provide a potentially renewable source of clinical-grade transfusable platelets that can be drug-loaded to complement the supply of donor-derived platelets. Here, we describe methods for ex vivo generation of megakaryocytes (MKs) and functional platelets from hiPSCs (hiPSC-platelets) in a scalable fashion. We then loaded hiPSC-platelets with lapatinib and infused them into BBM tumor-bearing NOD/SCID mouse models. Such treatment significantly increased intracellular lapatinib accumulation in BBMs in vivo, potentially via tumor cell-induced activation/aggregation. Lapatinib-loaded hiPSC-platelets exhibited normal morphology and function and released lapatinib pH-dependently. Importantly, lapatinib delivery to BBM cells via hiPSC-platelets inhibited tumor growth and prolonged survival of tumor-bearing mice. Overall, use of lapatinib-loaded hiPSC-platelets effectively reduced adverse effects of free lapatinib and enhanced its therapeutic efficacy, suggesting that they represent a novel means to deliver chemotherapeutic drugs as treatment for BBM.
Collapse
Affiliation(s)
- Arunoday Bhan
- Division of Neurosurgery, Beckman Research Institute, City of Hope Medical Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
| | - Khairul Ansari
- Division of Neurosurgery, Beckman Research Institute, City of Hope Medical Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
- Celcuity LLC, Minneapolis, MN, 55446, USA
| | - Mike Y Chen
- Division of Neurosurgery, Beckman Research Institute, City of Hope Medical Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Rahul Jandial
- Division of Neurosurgery, Beckman Research Institute, City of Hope Medical Center, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| |
Collapse
|
31
|
Giridharan N, Glitza Oliva IC, O'Brien BJ, Parker Kerrigan BC, Heimberger AB, Ferguson SD. Targeting the Tumor Microenvironment in Brain Metastasis. Neurosurg Clin N Am 2021; 31:641-649. [PMID: 32921358 DOI: 10.1016/j.nec.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dynamic interplay between cancer cells and the surrounding microenvironment is a feature of the metastatic process. Successful metastatic brain colonization requires complex mechanisms that ultimately allow tumor cells to adapt to the unique microenvironment of the central nervous system, evade immune destruction, survive, and grow. Accumulating evidence suggests that components of the brain tumor microenvironment (TME) play a vital role in the metastatic cascade. In this review, the authors summarize the contribution of the TME to the development and progression of brain metastasis. They also highlight opportunities for TME-directed targeted therapy.
Collapse
Affiliation(s)
- Nisha Giridharan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 430, Houston, TX 77030, USA
| | - Barbara J O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX 77030-4009, USA
| | - Brittany C Parker Kerrigan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Neman J, Franklin M, Madaj Z, Deshpande K, Triche TJ, Sadlik G, Carmichael JD, Chang E, Yu C, Strickland BA, Zada G. Use of predictive spatial modeling to reveal that primary cancers have distinct central nervous system topography patterns of brain metastasis. J Neurosurg 2021; 136:88-96. [PMID: 34271545 DOI: 10.3171/2021.1.jns203536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Brain metastasis is the most common intracranial neoplasm. Although anatomical spatial distributions of brain metastasis may vary according to primary cancer subtype, these patterns are not understood and may have major implications for treatment. METHODS To test the hypothesis that the spatial distribution of brain metastasis varies according to cancer origin in nonrandom patterns, the authors leveraged spatial 3D coordinate data derived from stereotactic Gamma Knife radiosurgery procedures performed to treat 2106 brain metastases arising from 5 common cancer types (melanoma, lung, breast, renal, and colorectal). Two predictive topographic models (regional brain metastasis echelon model [RBMEM] and brain region susceptibility model [BRSM]) were developed and independently validated. RESULTS RBMEM assessed the hierarchical distribution of brain metastasis to specific brain regions relative to other primary cancers and showed that distinct regions were relatively susceptible to metastasis, as follows: bilateral temporal/parietal and left frontal lobes were susceptible to lung cancer; right frontal and occipital lobes to melanoma; cerebellum to breast cancer; and brainstem to renal cell carcinoma. BRSM provided probability estimates for each cancer subtype, independent of other subtypes, to metastasize to brain regions, as follows: lung cancer had a propensity to metastasize to bilateral temporal lobes; breast cancer to right cerebellar hemisphere; melanoma to left temporal lobe; renal cell carcinoma to brainstem; and colon cancer to right cerebellar hemisphere. Patient topographic data further revealed that brain metastasis demonstrated distinct spatial patterns when stratified by patient age and tumor volume. CONCLUSIONS These data support the hypothesis that there is a nonuniform spatial distribution of brain metastasis to preferential brain regions that varies according to cancer subtype in patients treated with Gamma Knife radiosurgery. These topographic patterns may be indicative of the abilities of various cancers to adapt to regional neural microenvironments, facilitate colonization, and establish metastasis. Although the brain microenvironment likely modulates selective seeding of metastasis, it remains unknown how the anatomical spatial distribution of brain metastasis varies according to primary cancer subtype and contributes to diagnosis. For the first time, the authors have presented two predictive models to show that brain metastasis, depending on its origin, in fact demonstrates distinct geographic spread within the central nervous system. These findings could be used as a predictive diagnostic tool and could also potentially result in future translational and therapeutic work to disrupt growth of brain metastasis on the basis of anatomical region.
Collapse
Affiliation(s)
- Josh Neman
- Departments of1Neurological Surgery.,2Physiology and Neuroscience.,3Norris Comprehensive Cancer Center.,6Keck School of Medicine, and.,8USC Brain Tumor Center, University of Southern California, Los Angeles, California; and
| | | | - Zachary Madaj
- 7Department of Bioinformatics, Van Andel Institute, Grand Rapids, Michigan
| | | | - Timothy J Triche
- 7Department of Bioinformatics, Van Andel Institute, Grand Rapids, Michigan
| | - Gal Sadlik
- Departments of1Neurological Surgery.,6Keck School of Medicine, and
| | - John D Carmichael
- Departments of1Neurological Surgery.,6Keck School of Medicine, and.,8USC Brain Tumor Center, University of Southern California, Los Angeles, California; and
| | - Eric Chang
- 3Norris Comprehensive Cancer Center.,5Radiation Oncology.,6Keck School of Medicine, and.,8USC Brain Tumor Center, University of Southern California, Los Angeles, California; and
| | - Cheng Yu
- Departments of1Neurological Surgery.,6Keck School of Medicine, and.,8USC Brain Tumor Center, University of Southern California, Los Angeles, California; and
| | - Ben A Strickland
- Departments of1Neurological Surgery.,6Keck School of Medicine, and
| | - Gabriel Zada
- Departments of1Neurological Surgery.,3Norris Comprehensive Cancer Center.,6Keck School of Medicine, and.,8USC Brain Tumor Center, University of Southern California, Los Angeles, California; and
| |
Collapse
|
33
|
Ansari KI, Bhan A, Saotome M, Tyagi A, De Kumar B, Chen C, Takaku M, Jandial R. Autocrine GM-CSF signaling contributes to growth of HER2+ breast leptomeningeal carcinomatosis. Cancer Res 2021; 81:4723-4735. [PMID: 34247146 DOI: 10.1158/0008-5472.can-21-0259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
Leptomeningeal carcinomatosis (LC) occurs when tumor cells spread to the cerebrospinal fluid-containing leptomeninges surrounding the brain and spinal cord. LC is an ominous complication of cancer with a dire prognosis. Although any malignancy can spread to the leptomeninges, breast cancer, particularly the HER2+ subtype, is its most common origin. HER2+ breast LC (HER2+ LC) remains incurable, with few treatment options, and the molecular mechanisms underlying proliferation of HER2+ breast cancer cells in the acellular, protein, and cytokine-poor leptomeningeal environment remain elusive. Therefore, we sought to characterize signaling pathways that drive HER2+ LC development as well as those that restrict its growth to leptomeninges. Primary HER2+ LC patient-derived ("Lepto") cell lines in co-culture with various central nervous system (CNS) cell types revealed that oligodendrocyte progenitor cells (OPC), the largest population of dividing cells in the CNS, inhibited HER2+ LC growth in vitro and in vivo, thereby limiting the spread of HER2+ LC beyond the leptomeninges. Cytokine array-based analyses identified Lepto cell-secreted granulocyte-macrophage colony-stimulating factor (GM-CSF) as an oncogenic autocrine driver of HER2+ LC growth. Liquid chromatography-tandem mass spectrometry-based analyses revealed that the OPC-derived protein TPP1 proteolytically degrades GM-CSF, decreasing GM-CSF signaling and leading to suppression of HER2+ LC growth and limiting its spread. Lastly, intrathecal delivery of neutralizing anti-GM-CSF antibodies and a pan-Aurora kinase inhibitor (CCT137690) synergistically inhibited GM-CSF and suppressed activity of GM-CSF effectors, reducing HER2+ LC growth in vivo. Thus, OPC suppress GM-CSF-driven growth of HER2+ LC in the leptomeningeal environment, providing a potential targetable axis.
Collapse
|
34
|
Martirosian V, Deshpande K, Lin M, Jarvis C, Yuan E, Chen TC, Zada G, Giannotta SL, Attenello FJ, Chow F, Neman J. Utilization of Discarded Surgical Tissue from Ultrasonic Aspirators to Establish Patient-Derived Metastatic Brain Tumor Cells: A Guide from the Operating Room to the Research Laboratory. Curr Protoc 2021; 1:e140. [PMID: 34170630 DOI: 10.1002/cpz1.140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Patient-derived cells from surgical resections are of paramount importance to brain tumor research. It is well known that there is cellular and microenvironmental heterogeneity within a single tumor mass. Thus, current established protocols for propagating tumor cells in vitro are limiting because resections obtained from conventional singular samples limit the diversity in cell populations and do not accurately model the heterogeneous tumor. Utilization of discarded tissue obtained from cavitron ultrasonic surgical aspirator (CUSA) of the whole tumor mass allows for establishing novel cell lines in vitro from the entirety of the tumor, thereby creating an accurate representation of the heterogeneous population of cells originally present in the tumor. Furthermore, while others have described protocols for establishing patient tumor lines once tissue has arrived in the research lab, a primer from the operating room (OR) to the research lab has not been described before. This is integral, as basic research scientists need to understand the surgical environment of the OR, including the methods utilized to obtain a patient's tumor resection, in order to more accurately model cancer biology in laboratory. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Establishment of brain tumor cell lines from patient-derived CUSA samples: processing brain tumor sample from the OR to the lab Support Protocol 1: Sterilization of microsurgical tools in preparation for dissection Support Protocol 2: Collagen coating of tissue culture flasks Basic Protocol 2: Selection of tumor cells in vitro Support Protocol 3: FACS sorting tumor sample to isolate cancer cells from heterogeneous cell population.
Collapse
Affiliation(s)
- Vahan Martirosian
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Krutika Deshpande
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California
| | - Michelle Lin
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California
| | - Casey Jarvis
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California
| | - Edith Yuan
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California
| | - Thomas C Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Gabriel Zada
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Steven L Giannotta
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Frank J Attenello
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Frances Chow
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,Norris Comprehensive Cancer Center of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| | - Josh Neman
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, California.,USC Brain Tumor Center, Los Angeles, California
| |
Collapse
|
35
|
Bhan A, Ansari KI, Chen MY, Jandial R. Inhibition of Jumonji Histone Demethylases Selectively Suppresses HER2 + Breast Leptomeningeal Carcinomatosis Growth via Inhibition of GMCSF Expression. Cancer Res 2021; 81:3200-3214. [PMID: 33941612 DOI: 10.1158/0008-5472.can-20-3317] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
HER2+ breast leptomeningeal carcinomatosis (HER2+ LC) occurs when tumor cells spread to cerebrospinal fluid-containing leptomeninges surrounding the brain and spinal cord, a complication with a dire prognosis. HER2+ LC remains incurable, with few treatment options. Currently, much effort is devoted toward development of therapies that target mutations. However, targeting epigenetic or transcriptional states of HER2+ LC tumors might efficiently target HER2+ LC growth via inhibition of oncogenic signaling; this approach remains promising but is less explored. To test this possibility, we established primary HER2+ LC (Lepto) cell lines from nodular HER2+ LC tissues. These lines are phenotypically CD326+CD49f-, confirming that they are derived from HER2+ LC tumors, and express surface CD44+CD24-, a cancer stem cell (CSC) phenotype. Like CSCs, Lepto lines showed greater drug resistance and more aggressive behavior compared with other HER2+ breast cancer lines in vitro and in vivo. Interestingly, the three Lepto lines overexpressed Jumonji domain-containing histone lysine demethylases KDM4A/4C. Treatment with JIB04, a selective inhibitor of Jumonji demethylases, or genetic loss of function of KDM4A/4C induced apoptosis and cell-cycle arrest and reduced Lepto cell viability, tumorsphere formation, regrowth, and invasion in vitro. JIB04 treatment of patient-derived xenograft mouse models in vivo reduced HER2+ LC tumor growth and prolonged animal survival. Mechanistically, KDM4A/4C inhibition downregulated GMCSF expression and prevented GMCSF-dependent Lepto cell proliferation. Collectively, these results establish KDM4A/4C as a viable therapeutic target in HER2+ LC and spotlight the benefits of targeting the tumorigenic transcriptional network. SIGNIFICANCE: HER2+ LC tumors overexpress KDM4A/4C and are sensitive to the Jumonji demethylase inhibitor JIB04, which reduces the viability of primary HER2+ LC cells and increases survival in mouse models.
Collapse
Affiliation(s)
- Arunoday Bhan
- Division of Neurosurgery, Beckman Research Institute, City of Hope, Duarte, California
| | - Khairul I Ansari
- Division of Neurosurgery, Beckman Research Institute, City of Hope, Duarte, California.,Celcuity, Minneapolis, Minnesota
| | - Mike Y Chen
- Division of Neurosurgery, Beckman Research Institute, City of Hope, Duarte, California
| | - Rahul Jandial
- Division of Neurosurgery, Beckman Research Institute, City of Hope, Duarte, California.
| |
Collapse
|
36
|
Interactions between Ligand-Bound EGFR and VEGFR2. J Mol Biol 2021; 433:167006. [PMID: 33891904 DOI: 10.1016/j.jmb.2021.167006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022]
Abstract
In this work, we put forward the provocative hypothesis that the active, ligand-bound RTK dimers from unrelated subfamilies can associate into heterooligomers with novel signaling properties. This hypothesis is based on a quantitative FRET study that monitors the interactions between EGFR and VEGFR2 in the plasma membrane of live cells in the absence of ligand, in the presence of either EGF or VEGF, and in the presence of both ligands. We show that direct interactions occur between EGFR and VEGFR2 in the absence of ligand and in the presence of the two cognate ligands. However, there are not significant heterointeractions between EGFR and VEGFR2 when only one of the ligands is present. Since RTK dimers and RTK oligomers are believed to signal differently, this finding suggests a novel mechanism for signal diversification.
Collapse
|
37
|
Srinivasan ES, Tan AC, Anders CK, Pendergast AM, Sipkins DA, Ashley DM, Fecci PE, Khasraw M. Salting the Soil: Targeting the Microenvironment of Brain Metastases. Mol Cancer Ther 2021; 20:455-466. [PMID: 33402399 PMCID: PMC8041238 DOI: 10.1158/1535-7163.mct-20-0579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/31/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
Paget's "seed and soil" hypothesis of metastatic spread has acted as a foundation of the field for over a century, with continued evolution as mechanisms of the process have been elucidated. The central nervous system (CNS) presents a unique soil through this lens, relatively isolated from peripheral circulation and immune surveillance with distinct cellular and structural composition. Research in primary and metastatic brain tumors has demonstrated that this tumor microenvironment (TME) plays an essential role in the growth of CNS tumors. In each case, the cancerous cells develop complex and bidirectional relationships that reorganize the local TME and reprogram the CNS cells, including endothelial cells, pericytes, astrocytes, microglia, infiltrating monocytes, and lymphocytes. These interactions create a structurally and immunologically permissive TME with malignant processes promoting positive feedback loops and systemic consequences. Strategies to interrupt interactions with the native CNS components, on "salting the soil," to create an inhospitable environment are promising in the preclinical setting. This review aims to examine the general and specific pathways thus far investigated in brain metastases and related work in glioma to identify targetable mechanisms that may have general application across the spectrum of intracranial tumors.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Aaron C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Carey K Anders
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | | | - Dorothy A Sipkins
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - David M Ashley
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Peter E Fecci
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina
| | - Mustafa Khasraw
- Duke Brain and Spine Metastases Center, Duke University, Durham, North Carolina.
| |
Collapse
|
38
|
Serafim Junior V, Fernandes GMDM, Oliveira-Cucolo JGD, Pavarino EC, Goloni-Bertollo EM. Role of Tropomyosin-related kinase B receptor and brain-derived neurotrophic factor in cancer. Cytokine 2020; 136:155270. [PMID: 32911446 DOI: 10.1016/j.cyto.2020.155270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
The tropomyosin-related kinase B (TrkB) receptor is a member of the neurotrophic tyrosine kinase receptors family and, together with the brain-derived neurotrophic factor (BDNF), plays an important role in the development of breast cancer, lung cancer, neuroblastoma, colorectal cancer, leukemia, cervical cancer, gallbladder cancer, gastric cancer, kidney cancer, Ewing's sarcoma, esophageal cancer, and head and neck cancer. Overexpression of these two factors has been associated with increased processes involved in carcinogenesis, such as invasion, migration, epithelial-mesenchymal transition (EMT), angiogenesis, metastasis, cell proliferation, resistance to apoptosis, resistance to cell death due to loss of adhesion (anoikis), activation of cell proliferation pathways, regulation of tumor suppressor genes, and drug resistance, and is related to advanced clinical stage. Inhibition of the TrkB/BDNF axis using drugs in phase 1 studies, approved drugs, and small interfering RNA (siRNA) are promising strategies for the treatment of various malignant tumors in addition to increasing the sensitivity of cells resistant to chemotherapy, improving the effectiveness of drugs without increasing toxicity. Another factor related to poor cancer prognosis is the presence of cancer stem cells, having effects similar to the high expression of the TrkB/BDNF axis, on cancer. This review aimed to show the role of the TrkB/BDNF axis in several types of cancer, its possible use as a prognostic biomarker, the effects of inhibiting this axis, and its role in the cancer stem cells.
Collapse
Affiliation(s)
- Vilson Serafim Junior
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Glaucia Maria de Mendonça Fernandes
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Juliana Garcia de Oliveira-Cucolo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Erika Cristina Pavarino
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Eny Maria Goloni-Bertollo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
39
|
Zimmer AS, Van Swearingen AED, Anders CK. HER2‐positive
breast cancer brain metastasis: A new and exciting landscape. Cancer Rep (Hoboken) 2020; 5:e1274. [PMID: 32881421 PMCID: PMC9124511 DOI: 10.1002/cnr2.1274] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022] Open
Abstract
Background Brain metastases (BrM) incidence is 25% to 50% in women with advanced human epidermal growth factor receptor 2 (HER2)‐positive breast cancer. Radiation and surgery are currently the main local treatment approaches for central nervous system (CNS) metastases. Systemic anti‐HER2 therapy following a diagnosis of BrM improves outcomes. Previous preclinical data has helped elucidate HER2 brain trophism, the blood‐brain/blood‐tumor barrier(s), and the brain tumor microenvironment, all of which can lead to development of novel therapeutic options. Recent findings Several anti‐HER2 agents are currently available and reviewed here, some of which have recently shown promising effects in BrM patients, specifically. New strategies driven by and focusing on brain metastasis‐specific genomics, immunotherapy, and preventive strategies have shown promising results and are under development. Conclusions The field of HER2+ breast cancer, particularly for BrM, continues to evolve as new therapeutic strategies show promising results in recent clinical trials. Increasing inclusion of patients with BrM in clinical studies, and a focus on assessing their outcomes both intracranially and extracranially, is changing the landscape for patients with HER2+ CNS metastases by demonstrating the ability of newer agents to improve outcomes.
Collapse
Affiliation(s)
| | | | - Carey K. Anders
- Duke Center for Brain and Spine MetastasisDuke Cancer Institute Durham North Carolina USA
| |
Collapse
|
40
|
Méndez-Maldonado K, Vega-López GA, Aybar MJ, Velasco I. Neurogenesis From Neural Crest Cells: Molecular Mechanisms in the Formation of Cranial Nerves and Ganglia. Front Cell Dev Biol 2020; 8:635. [PMID: 32850790 PMCID: PMC7427511 DOI: 10.3389/fcell.2020.00635] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
The neural crest (NC) is a transient multipotent cell population that originates in the dorsal neural tube. Cells of the NC are highly migratory, as they travel considerable distances through the body to reach their final sites. Derivatives of the NC are neurons and glia of the peripheral nervous system (PNS) and the enteric nervous system as well as non-neural cells. Different signaling pathways triggered by Bone Morphogenetic Proteins (BMPs), Fibroblast Growth Factors (FGFs), Wnt proteins, Notch ligands, retinoic acid (RA), and Receptor Tyrosine Kinases (RTKs) participate in the processes of induction, specification, cell migration and neural differentiation of the NC. A specific set of signaling pathways and transcription factors are initially expressed in the neural plate border and then in the NC cell precursors to the formation of cranial nerves. The molecular mechanisms of control during embryonic development have been gradually elucidated, pointing to an important role of transcriptional regulators when neural differentiation occurs. However, some of these proteins have an important participation in malformations of the cranial portion and their mutation results in aberrant neurogenesis. This review aims to give an overview of the role of cell signaling and of the function of transcription factors involved in the specification of ganglia precursors and neurogenesis to form the NC-derived cranial nerves during organogenesis.
Collapse
Affiliation(s)
- Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guillermo A Vega-López
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| |
Collapse
|
41
|
Zheng B, Chen T. MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma. Open Life Sci 2020; 15:274-283. [PMID: 33817216 PMCID: PMC7874546 DOI: 10.1515/biol-2020-0024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
Among astrocyte tumors, glioblastoma (GBM) is the most malignant glioma, highly aggressive and invasive, with extremely poor prognosis. Previous research has reported that microRNAs (miRNAs) participate in the progression of many cancers. Thus, this study aimed to explore the role and the underlying mechanisms of microRNA (miR)-489-3p in GBM progression. The expression of miR-489-3p and brain-derived neurotrophic factor (BDNF) mRNA was measured by quantitative real-time polymerase chain reaction. Western blot analysis was used to detect BDNF protein and the PI3K/AKT pathway-related protein. Cell proliferation, apoptosis, migration, and invasion were analyzed using CKK-8 assay, flow cytometry, and transwell assay, respectively. The interaction between BDNF and miR-489-3p was explored by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-489-3p was down-regulated and BDNF was up-regulated in GBM tissues and cells. MiR-489-3p re-expression or BDNF knockdown inhibited GBM cell proliferation, migration, and invasion, and promoted apoptosis. BDNF was a target of miR-489-3p, and BDNF up-regulation reversed the effects of miR-489-3p on GBM cells. The protein levels of p-AKT and p-PI3K were notably reduced in GBM cells by overexpression of miR-489-3p, but were rescued following BDNF up-regulation. Therefore, miR-489-3p inhibited proliferation, migration, and invasion, and induced apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in GBM, providing new strategies for clinical treatment of GBM.
Collapse
Affiliation(s)
- Bo Zheng
- Department of Neurosurgery, Jingzhou Central Hospital, Hubei Province, Jingzhou, 434020, China
| | - Tao Chen
- Department of Neurosurgery, Jingzhou Central Hospital, Hubei Province, Jingzhou, 434020, China
| |
Collapse
|
42
|
Rogez B, Pascal Q, Bobillier A, Machuron F, Toillon RA, Tierny D, Chopin V, Le Bourhis X. Expression and Prognostic Significance of Neurotrophins and Their Receptors in Canine Mammary Tumors. Vet Pathol 2020; 57:507-519. [PMID: 32351171 DOI: 10.1177/0300985820921813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating data highlight the role of neurotrophins and their receptors in human breast cancer. This family includes nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), both synthetized as proneurotrophins (proNGF and proBDNF). (pro)NGF and (pro)BDNF initiate their biological effects by binding to both their specific receptors TrkA and TrkB, respectively, and the common receptor p75NTR. Currently, no data are available about their expression and potential role in canine mammary tumors. The aim of this study was to investigate expression of proNGF and BDNF as well as their receptors TrkA, TrkB, and p75NTR in canine mammary carcinomas, and to correlate them with clinicopathological parameters (grade, histological type, lymph node status, recurrence, and distant metastasis) and survival. Immunohistochemistry was performed on serial sections of 96 canine mammary carcinomas with antibodies against proNGF, BDNF, TrkA, TrkB, and p75NTR. Of the 96 carcinomas, proNGF expression was detected in 71 (74%), BDNF in 79 (82%), TrkA in 94 (98%), TrkB in 35 (37%), and p75NTR in 44 (46%). No association was observed between proNGF, BDNF, or TrkA expression and either clinicopathological parameters or survival. TrkB and p75NTR expression were associated with favorable clinicopathological parameters as well as better overall survival.
Collapse
Affiliation(s)
- Bernadette Rogez
- University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France.,OCR (Oncovet Clinical Research), Parc Eurasanté, Loos, France
| | - Quentin Pascal
- OCR (Oncovet Clinical Research), Parc Eurasanté, Loos, France
| | | | | | - Robert-Alain Toillon
- University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France
| | | | - Valérie Chopin
- University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France.,University of Picardie Jules Verne, Amiens, France.,Contributed equally to this work
| | - Xuefen Le Bourhis
- University of Lille, INSERM U908 "Cell Plasticity and Cancer," Villeneuve d'Ascq, France.,Contributed equally to this work
| |
Collapse
|
43
|
Ansari KI, Bhan A, Liu X, Chen MY, Jandial R. Astrocytic IGFBP2 and CHI3L1 in cerebrospinal fluid drive cortical metastasis of HER2+breast cancer. Clin Exp Metastasis 2020; 37:401-412. [PMID: 32279122 DOI: 10.1007/s10585-020-10032-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
The brain is often reported as the first site of recurrence among breast cancer patients overexpressing human epidermal growth factor receptor 2 (HER2). Although most HER2+tumors metastasize to the subcortical region of the brain, a subset develops in the cortical region. We hypothesize that factors in cerebrospinal fluid (CSF) play a critical role in the adaptation, proliferation, and establishment of cortical metastases. We established novel cell lines using patient biopsies to model breast cancer cortical and subcortical metastases. We assessed the localization and growth of these cells in vivo and proliferation and apoptosis in vitro under various conditions. Proteomic analysis of human CSF identified astrocyte-derived factors that support the proliferation of cortical metastases, and we used neutralizing antibodies to test the effects of inhibiting these factors both in vivo and in vitro. The cortical breast cancer brain metastatic cells exhibited greater proliferation than subcortical breast cancer brain metastatic cells in CSF containing several growth factors that nourish both the CNS and tumor cells. Specifically, the astrocytic paracrine factors IGFBP2 and CHI3LI promoted the proliferation of cortical metastatic cells and the formation of metastatic lesions. Disruption of these factors suppressed astrocyte-tumor cell interactions in vitro and the growth of cortical tumors in vivo. Our findings suggest that inhibition of IGFBP2 and CHI3LI signaling, in addition to existing treatment modalities, may be an effective therapeutic strategy targeting breast cancer cortical metastasis.
Collapse
Affiliation(s)
- Khairul I Ansari
- Division of Neurosurgery, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
- Celcuity, 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA.
| | - Arunoday Bhan
- Division of Neurosurgery, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Xueli Liu
- Division of Biostatistics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Mike Y Chen
- Division of Neurosurgery, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Rahul Jandial
- Division of Neurosurgery, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
44
|
Metastases to the central nervous system: Molecular basis and clinical considerations. J Neurol Sci 2020; 412:116755. [PMID: 32120132 DOI: 10.1016/j.jns.2020.116755] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metastatic tumors are the most common malignancies of the central nervous system (CNS) in adults. CNS metastases are associated with unfavorable prognosis, high morbidity and mortality. Lung cancer is the most common source of brain metastases, followed by breast cancer and melanoma. Rising incidence is primarily due to improvements in systemic control of primary malignancies, prolonged survival and advances in cancer detection. PURPOSE To provide an overview of the metastatic cascade and the role of angiogenesis, neuroinflammation, metabolic adaptations, and clinical details about brain metastases from different primary tumors. METHODS A review of the literature on brain metastases was conducted, focusing on the pathophysiology and clinical aspects of the disease. PubMed was used to search for relevant articles published from January 1975 through December 2019 using the keywords brain metabolism, brain metastasis, metastatic cascade, molecular mechanisms, incidence, risk factors, and prognosis. 146 articles met the criteria and were included in this review. DISCUSSION Some primary tumors have a higher tendency to metastasize to the CNS. Establishing a suitable metastatic microenvironment is important in maintaining tumor cell growth and survival. Magnetic resonance imaging (MRI) is a widely used tool for diagnosis and treatment monitoring. Available treatments include surgery, radiotherapy, stereotactic radiosurgery, chemotherapy, immunotherapy, and systemic targeted therapies. CONCLUSIONS Prevention of metastases to the CNS remains a difficult challenge. Advances in screening of high-risk patients and future development of novel treatments may improve patient outcomes.
Collapse
|
45
|
Cacho-Díaz B, García-Botello DR, Wegman-Ostrosky T, Reyes-Soto G, Ortiz-Sánchez E, Herrera-Montalvo LA. Tumor microenvironment differences between primary tumor and brain metastases. J Transl Med 2020; 18:1. [PMID: 31900168 PMCID: PMC6941297 DOI: 10.1186/s12967-019-02189-8] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The present review aimed to discuss contemporary scientific literature involving differences between the tumor microenvironment (TME) in melanoma, lung cancer, and breast cancer in their primary site and TME in brain metastases (BM). TME plays a fundamental role in the behavior of cancer. In the process of carcinogenesis, cells such as fibroblasts, macrophages, endothelial cells, natural killer cells, and other cells can perpetuate and progress carcinogenesis via the secretion of molecules. Oxygen concentration, growth factors, and receptors in TME initiate angiogenesis and are examples of the importance of microenvironmental conditions in the performance of neoplastic cells. The most frequent malignant brain tumors are metastatic in origin and primarily originate from lung cancer, breast cancer, and melanoma. Metastatic cancer cells have to adhere to and penetrate the blood-brain barrier (BBB). After traversing BBB, these cells have to survive by producing various cytokines, chemokines, and mediators to modify their new TME. The microenvironment of these metastases is currently being studied owing to the discovery of new therapeutic targets. In these three types of tumors, treatment is more effective in the primary tumor than in BM due to several factors, including BBB. Understanding the differences in the characteristics of the microenvironment surrounding the primary tumor and their respective metastasis might help improve strategies to comprehend cancer.
Collapse
Affiliation(s)
- Bernardo Cacho-Díaz
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico.
| | - Donovan R García-Botello
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Talia Wegman-Ostrosky
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Gervith Reyes-Soto
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Elizabeth Ortiz-Sánchez
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Luis Alonso Herrera-Montalvo
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico.
| |
Collapse
|
46
|
Anderson G. Breast cancer: Occluded role of mitochondria N-acetylserotonin/melatonin ratio in co-ordinating pathophysiology. Biochem Pharmacol 2019; 168:259-268. [PMID: 31310736 DOI: 10.1016/j.bcp.2019.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
A plethora of factors contribute to the biochemical underpinnings of breast cancer, in the absence of any clear, integrative framework. This article proposes that melatonergic pathway regulation within mitochondria provides an integrative framework for the wide array of data driving breast cancer pathophysiology. As melatonin is toxic to breast cancer cells, its production within mitochondria poses a significant challenge to breast cancer cell survival. Consequently, the diverse plasticity in breast cancer cells may arise from a requirement to decrease mitochondria melatonin synthesis. The aryl hydrocarbon receptor role in breast cancer pathophysiology may be mediated by an increase in cytochrome P450 (CYP)1b1 in mitochondria, leading to the backward conversion of melatonin to N-acetylserotonin (NAS). NAS has distinct effects to melatonin, including its activation of the tyrosine receptor kinase B (TrkB) receptor. TrkB activation significantly contributes to breast cancer cell survival and migration. However, the most important aspect of NAS induction by CYP1b1 in breast cancer cells is the prevention of melatonin effects in mitochondria. Many of the changes occurring in breast cancer cells arise from the need to regulate this pathway in mitochondria, allowing this to provide a framework that integrates a host of previously disparate data, including: microRNAs, estrogen, 14-3-3 proteins, sirtuins, glycolysis, oxidative phosphorylation, indoleamine 2,3-dioxygenase and the kynurenine pathways. It is also proposed that this framework provides a pathoetiological model incorporating the early developmental regulation of the gut microbiome that integrates breast cancer risk factors, including obesity. This has significant treatment, prevention and research implications.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PH, UK.
| |
Collapse
|
47
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
48
|
Khosla R, Banik A, Kaushal S, Battu P, Gupta D, Anand A. Is Brain-Derived Neurotrophic Factor: A Common Link Between Neurodegenerative Disorders and Cancer? Curr Alzheimer Res 2019; 16:344-352. [PMID: 30961497 DOI: 10.2174/1567205016666190408123947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a common disease caused by the excessive proliferation of cells, and neurodegenerative diseases are the disorders caused due to the degeneration of neurons. Both can be considered as diseases caused by the dysregulation of cell cycle events. A recent data suggests that there is a strong inverse association between cancer and neurodegenerative disorders. There is indirect evidence to postulate Brain-derived Neurotrophic Factor (BDNF) as a potential molecular link in this association. DISCUSSION The BDNF levels are found to be downregulated in many neurodegenerative disorders and are found to be upregulated in various kinds of cancers. The lower level of BDNF in Alzheimer's and Parkinson's disease has been found to be related to cognitive and other neuropsychological impairments, whereas, its higher levels are associated with the tumour growth and metastasis and poor survival rate in the cancer patients. CONCLUSION In this review, we propose that variance in BDNF levels is critical in determining the course of cellular pathophysiology and the development of cancer or neurodegenerative disorder. We further propose that an alternative therapeutic strategy that can modulate BDNF expression, can rescue or prevent above said pathophysiological course. Larger studies that examine this link through animal studies are imperative to understand the putative biochemical and molecular link to wellness and disease.
Collapse
Affiliation(s)
- Radhika Khosla
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, India
| | - Avijit Banik
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sushant Kaushal
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, India
| | - Priya Battu
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, India
| | - Deepti Gupta
- Department of English and Cultural Studies, Panjab University, Chandigarh, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, Chandigarh, India
| |
Collapse
|
49
|
Contreras-Zárate MJ, Day NL, Ormond DR, Borges VF, Tobet S, Gril B, Steeg PS, Cittelly DM. Estradiol induces BDNF/TrkB signaling in triple-negative breast cancer to promote brain metastases. Oncogene 2019; 38:4685-4699. [PMID: 30796353 PMCID: PMC6565485 DOI: 10.1038/s41388-019-0756-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer brain metastases (BM) affect younger women disproportionally, including those lacking estrogen receptor (ER), progesterone receptor, and HER2 (known as triple-negative breast cancer; TNBC). Previous studies in preclinical models showed that pre-menopausal levels of estradiol (E2) promote TNBC-BM through incompletely understood mechanisms involving reactive astrocytes. Herein, a novel mechanism involving E2-dependent upregulation of brain-derived neurotrophic factor (BDNF) in astrocytes, and subsequent activation of tumor cell tropomyosin kinase receptor B (TrkB), is identified. E2 increased experimental BM of TNBC 4T1BR5 and E0771 cells by 21 and 3.6 fold, respectively, compared to E2-depleted mice. ERα+ reactive astrocytes were found at early and late stages of BM, and E2 upregulated BDNF in ER+ reactive astrocytes in vitro and in vivo. TrkB was expressed in TNBC brain-trophic cell lines, BM-patient-derived xenografts, and breast cancer BM. Conditioned media from E2-treated astrocytes (CM-E2) activated TrkB and downstream AKT, ERK, and PLC-γ signaling in TNBC cells, increasing their invasiveness and tumor-initiating capability in vitro. The promotion of BM by E2-activated astrocytes was found to be more complex, involving feedback loops and other receptor tyrosine kinases. In 4T1BR5 cells, there was a positive feedback loop whereby astrocytic BDNF induced cancer cell BDNF translation. Upregulation of cancer cell BDNF was required to promote full invasiveness of 4T1BR5 in response to CM-E2, and was observed in brain metastatic cells in E2-treated mice in vivo. Moreover, the non-competitive BDNF/TrkB inhibitor ANA-12 reduced E2-induced 4T1BR5 BM to levels similar to OVX mice. BDNF also activated EGFR in TrkB+EGFR+ TNBC cells, suggesting that E2 action through astrocytes activates redundant pathways promoting BM. These findings have important therapeutic implications, as they provide a rationale to use E2-depletion therapies or TrkB inhibitors to prevent or delay development of BM in younger women.
Collapse
Affiliation(s)
- Maria J Contreras-Zárate
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nicole L Day
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Stuart Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Brunilde Gril
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Patricia S Steeg
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - Diana M Cittelly
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
50
|
Wilhelm I, Fazakas C, Molnár K, Végh AG, Haskó J, Krizbai IA. Foe or friend? Janus-faces of the neurovascular unit in the formation of brain metastases. J Cereb Blood Flow Metab 2018; 38:563-587. [PMID: 28920514 PMCID: PMC5888855 DOI: 10.1177/0271678x17732025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/13/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022]
Abstract
Despite the potential obstacle represented by the blood-brain barrier for extravasating malignant cells, metastases are more frequent than primary tumors in the central nervous system. Not only tightly interconnected endothelial cells can hinder metastasis formation, other cells of the brain microenvironment (like astrocytes and microglia) can also be very hostile, destroying the large majority of metastatic cells. However, malignant cells that are able to overcome these harmful mechanisms may benefit from the shielding and even support provided by cerebral endothelial cells, astrocytes and microglia, rendering the brain a sanctuary site against anti-tumor strategies. Thus, cells of the neurovascular unit have a Janus-faced attitude towards brain metastatic cells, being both destructive and protective. In this review, we present the main mechanisms of brain metastasis formation, including those involved in extravasation through the brain vasculature and survival in the cerebral environment.
Collapse
Affiliation(s)
- Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| | - Csilla Fazakas
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Kinga Molnár
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila G Végh
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - János Haskó
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - István A Krizbai
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania
| |
Collapse
|