1
|
Saponaro C, Damato M, Stanca E, Aboulouard S, Zito FA, De Summa S, Traversa D, Schirosi L, Bravaccini S, Pirini F, Fonzi E, Tebaldi M, Puccetti M, Gaballo A, Pantalone L, Ronci M, Magnani L, Sergi D, Tinelli A, Tacconi S, Siculella L, Giudetti AM, Fournier I, Salzet M, Trerotola M, Vergara D. Unraveling the protein kinase C/NDRG1 signaling network in breast cancer. Cell Biosci 2024; 14:156. [PMID: 39736699 DOI: 10.1186/s13578-024-01336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1) is a member of the NDRG family of intracellular proteins and plays a central role in a wide range of biological processes including stress response, differentiation, and metabolism. The overexpression of NDRG1 is an indicator of poor prognosis in various types of cancer. Here, we found that NDRG1 is an independent prognostic marker of poor outcome in breast cancer (BC). Analysis of the TCGA dataset showed a significant positive correlation between NDRG1 and PRKCA expression, suggesting a mechanistic role of protein kinase C (PKC) in the regulation of NDRG1. We then assessed the hypothesis that PKC might modulate the activity of NDRG1, and observed that different acute stress conditions converging on PKC activation lead to enhanced NDRG1 expression. This mechanism was found to be specific for NDRG1 as the expression of other NDRG members was not affected. Moreover, CRISPR-based inhibition of NDRG1 expression was obtained in a BC cell line, and showed that this protein is a key driver of BC cell invasion through the Rho-associated coiled-coil containing protein kinase 1 (ROCK1)/phosphorylated cofilin pathway that regulates stress fiber assembly, and the modulation of extracellular matrix reorganization related genes. Together, our findings highlight the potential of NDRG1 as a new BC biomarker and uncover a novel mechanism of regulation of NDRG1 expression that might lead to innovative therapeutic strategies.
Collapse
Affiliation(s)
- C Saponaro
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - M Damato
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - E Stanca
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - S Aboulouard
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille University, Inserm, CHU Lille, U1192, Lille, France
| | - F A Zito
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - S De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - D Traversa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - L Schirosi
- Pathology Department, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - S Bravaccini
- Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | - F Pirini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - E Fonzi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - M Tebaldi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - M Puccetti
- Azienda Unità Sanitaria Locale di Imola, Imola, Italy
| | - A Gaballo
- CNR Nanotec, Institute of Nanotechnology, Via Monteroni, 73100, Lecce, Italy
| | - L Pantalone
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - M Ronci
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - L Magnani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Oncology and Haemato-Oncology, Università Degli Studi di Milano, Milan, Italy
| | - D Sergi
- Department of Radiology, V. Fazzi Hospital, 73100, Lecce, Italy
| | - A Tinelli
- Department of Obstetrics and Gynecology and CERICSAL, (CEntro di RIcerca Clinico SALentino), "Veris Delli Ponti Hospital", 73020, ScorranoScorrano (Lecce), Italy
| | - S Tacconi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - L Siculella
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - A M Giudetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - I Fournier
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille University, Inserm, CHU Lille, U1192, Lille, France
| | - M Salzet
- Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille University, Inserm, CHU Lille, U1192, Lille, France
| | - M Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - D Vergara
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
2
|
Liu H, Lu Y, Zong J, Zhang B, Li X, Qi H, Yu T, Li Y. Engineering dendritic cell biomimetic membrane as a delivery system for tumor targeted therapy. J Nanobiotechnology 2024; 22:663. [PMID: 39465376 PMCID: PMC11520105 DOI: 10.1186/s12951-024-02913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
Targeted immunotherapies make substantial strides in clinical cancer care due to their ability to counteract the tumor's capacity to suppress immune responses. Advances in biomimetic technology with minimally immunogenic and highly targeted, are addressing issues of targeted drug delivery and disrupting the tumor's immunosuppressive environment to trigger immune activation. Specifically, the use of dendritic cell (DC) membranes to coat nanoparticles ensures targeted delivery due to DC's unique ability to activate naive T cells, spotlighting their role in immunotherapy aimed at disrupting the tumor microenvironment. The potential of DC's biomimetic membrane to mediate immune activation and target tumors is gaining momentum, enhancing the effectiveness of cancer treatments in conjunction with other immune responses. This review delves into the methodologies behind crafting DC membranes and the fusion of dendritic and tumor cell membranes for encapsulating therapeutic nanoparticles. It explores their applications and recent advancements in combating cancer, offering an all-encompassing perspective on DC biomimetic nanosystems, immunotherapy driven by antigen presentation, and the collaborative efforts of drug delivery in chemotherapy and photodynamic therapies. Current evidence shows promise in augmenting combined therapeutic approaches for cancer treatment and holds translational potential for various cancer treatments in a clinical setting.
Collapse
Affiliation(s)
- Huiyang Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China
| | - Yiming Lu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China
| | - Jinbao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, People's Republic of China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China.
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| | - Yu Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China.
| |
Collapse
|
3
|
Wang D, Zhang J, Yin H, Yan R, Wang Z, Deng J, Li G, Pan Y. The anti-tumor effects of cosmosiin through regulating AhR/CYP1A1-PPARγ in breast cancer. FASEB J 2024; 38:e70002. [PMID: 39162680 DOI: 10.1096/fj.202401191r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
Breast cancer is one of the threatening malignant tumors with the highest mortality and incidence rate over the world. There are a lot of breast cancer patients dying every year due to the lack of effective and safe therapeutic drugs. Therefore, it is highly necessary to develop more effective drugs to overcome breast cancer. As a glycoside derivative of apigenin, cosmosiin is characterized by low toxicity, high water solubility, and wide distribution in nature. Additionally, cosmosiin has been shown to perform anti-tumor effects in cervical cancer, hepatocellular carcinoma and melanoma. However, its pharmacological effects on breast cancer and its mechanisms are still unknown. In our study, the anti-breast cancer effect and mechanism of cosmosiin were investigated by using breast cancer models in vivo and in vitro. The results showed that cosmosiin inhibited the proliferation, migration, and adhesion of breast cancer cells in vitro and suppressed the growth of tumor in vivo through binding with AhR and inhibiting it, thus regulating the downstream CYP1A1/AMPK/mTOR and PPARγ/Wnt/β-catenin signaling pathways. Collectively, our findings have made contribution to the development of novel drugs against breast cancer by targeting AhR and provided a new direction for the research in the field of anti-breast cancer therapy.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Jing Zhang
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot, China
| | - Houqing Yin
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Ribai Yan
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zequn Wang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
| | - Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Gang Li
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Yan Pan
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing, China
- Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| |
Collapse
|
4
|
Jadhav SB, Vondrackova M, Potomova P, Sandoval-Acuña C, Smigova J, Klanicova K, Rosel D, Brabek J, Stursa J, Werner L, Truksa J. NDRG1 acts as an oncogene in triple-negative breast cancer and its loss sensitizes cells to mitochondrial iron chelation. Front Pharmacol 2024; 15:1422369. [PMID: 38983911 PMCID: PMC11231402 DOI: 10.3389/fphar.2024.1422369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Multiple studies indicate that iron chelators enhance their anti-cancer properties by inducing NDRG1, a known tumor and metastasis suppressor. However, the exact role of NDRG1 remains controversial, as newer studies have shown that NDRG1 can also act as an oncogene. Our group recently introduced mitochondrially targeted iron chelators deferoxamine (mitoDFO) and deferasirox (mitoDFX) as effective anti-cancer agents. In this study, we evaluated the ability of these modified chelators to induce NDRG1 and the role of NDRG1 in breast cancer. We demonstrated that both compounds specifically increase NDRG1 without inducing other NDRG family members. We have documented that the effect of mitochondrially targeted chelators is at least partially mediated by GSK3α/β, leading to phosphorylation of NDRG1 at Thr346 and to a lesser extent on Ser330. Loss of NDRG1 increases cell death induced by mitoDFX. Notably, MDA-MB-231 cells lacking NDRG1 exhibit reduced extracellular acidification rate and grow slower than parental cells, while the opposite is true for ER+ MCF7 cells. Moreover, overexpression of full-length NDRG1 and the N-terminally truncated isoform (59112) significantly reduced sensitivity towards mitoDFX in ER+ cells. Furthermore, cells overexpressing full-length NDRG1 exhibited a significantly accelerated tumor formation, while its N-terminally truncated isoforms showed significantly impaired capacity to form tumors. Thus, overexpression of full-length NDRG1 promotes tumor growth in highly aggressive triple-negative breast cancer.
Collapse
Affiliation(s)
- Sukanya B. Jadhav
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Centre, Vestec, Czechia
- Faculty of Sciences, Charles University, Prague, Czechia
| | - Michaela Vondrackova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Centre, Vestec, Czechia
- Faculty of Sciences, Charles University, Prague, Czechia
- Faculty of Sciences, BIOCEV Research Centre, Charles University, Vestec, Czechia
| | - Petra Potomova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Centre, Vestec, Czechia
- Faculty of Sciences, Charles University, Prague, Czechia
| | - Cristian Sandoval-Acuña
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Centre, Vestec, Czechia
| | - Jana Smigova
- Faculty of Sciences, BIOCEV Research Centre, Charles University, Vestec, Czechia
| | - Kristyna Klanicova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Centre, Vestec, Czechia
| | - Daniel Rosel
- Faculty of Sciences, Charles University, Prague, Czechia
- Faculty of Sciences, BIOCEV Research Centre, Charles University, Vestec, Czechia
| | - Jan Brabek
- Faculty of Sciences, Charles University, Prague, Czechia
- Faculty of Sciences, BIOCEV Research Centre, Charles University, Vestec, Czechia
| | - Jan Stursa
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Centre, Vestec, Czechia
| | - Lukas Werner
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Centre, Vestec, Czechia
| | - Jaroslav Truksa
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Centre, Vestec, Czechia
| |
Collapse
|
5
|
Huang J, Ye J, Gao Y, Wang Y, Zhao Q, Lou T, Lai W. Identification of proteins related to SIS3 by iTRAQ and PRM-based comparative proteomic analysis in cisplatin-induced acute kidney injury. PeerJ 2024; 12:e17485. [PMID: 38854800 PMCID: PMC11160430 DOI: 10.7717/peerj.17485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Background Cisplatin is a commonly used nephrotoxic drug and can cause acute kidney injury (AKI). In the present study, isobaric tags for relative and absolute quantification (iTRAQ) and parallel reaction monitoring (PRM)-based comparative proteomics were used to analyze differentially expressed proteins (DEPs) to determine the key molecular mechanism in mice with cisplatin-induced AKI in the presence or absence of SIS3, a specific p-smad3 inhibitor, intervention. Methods The cisplatin-induced AKI mouse model was established and treated with SIS3. We used iTRAQ to search for DEPs, PRM to verify key DEPs and combined Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for bioinformatics analysis. We then assessed lipid deposition, malondialdehyde (MDA) and reactive oxygen species (ROS) and detected the expression of SREBF1, SCD1, CPT1A, PPARα and NDRG1 in vitro. Results Proteomic analysis showed that the identified DEPs were mainly enriched in energy metabolism pathways, especially in lipid metabolism. When SIS3 was applied to inhibit the phosphorylation of Smad3, the expression of NDRG1 and fatty acid oxidation key proteins CPT1A and PPARα increased, the expression of lipid synthesis related proteins SREBF1 and SCD1 decreased and the production of lipid droplets, MDA and ROS decreased. Conclusion SIS3 alleviates oxidative stress, reduces lipid accumulation and promotes fatty acid oxidation through NDRG1 in cisplatin-induced AKI. Our study provides a new candidate protein for elucidating the molecular mechanisms of fatty acid metabolism disorders in cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Jiayan Huang
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jian Ye
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yi Gao
- Department of Critical Care Medicine/ICU (Intensive Care Unit), The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yu Wang
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qing Zhao
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tanqi Lou
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiyan Lai
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Villodre ES, Nguyen APN, Debeb BG. NDRGs in Breast Cancer: A Review and In Silico Analysis. Cancers (Basel) 2024; 16:1342. [PMID: 38611020 PMCID: PMC11011033 DOI: 10.3390/cancers16071342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The N-myc downstream regulated gene family (NDRGs) includes four members: NDRG1, NDRG2, NDRG3, and NDRG4. These members exhibit 53-65% amino acid identity. The role of NDRGs in tumor growth and metastasis appears to be tumor- and context-dependent. While many studies have reported that these family members have tumor suppressive roles, recent studies have demonstrated that NDRGs, particularly NDRG1 and NDRG2, function as oncogenes, promoting tumor growth and metastasis. Additionally, NDRGs are involved in regulating different signaling pathways and exhibit diverse cellular functions in breast cancers. In this review, we comprehensively outline the oncogenic and tumor suppressor roles of the NDRG family members in breast cancer, examining evidence from in vitro and in vivo breast cancer models as well as tumor tissues from breast cancer patients. We also present analyses of publicly available genomic and transcriptomic data from multiple independent cohorts of breast cancer patients.
Collapse
Affiliation(s)
- Emilly S. Villodre
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (E.S.V.); (A.P.N.N.)
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anh P. N. Nguyen
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (E.S.V.); (A.P.N.N.)
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bisrat G. Debeb
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (E.S.V.); (A.P.N.N.)
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Wang Y, Wang X, Chen Y, Du J, Xiao Y, Guo D, Liu S. Adapting to stress: The effects of hibernation and hibernacula temperature on the hepatic transcriptome of Rhinolophus pusillus. FASEB J 2024; 38:e23462. [PMID: 38318662 DOI: 10.1096/fj.202301646r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
Hibernation, a survival strategy in mammals for extreme climates, induces physiological phenomena such as ischemia-reperfusion and metabolic shifts that hold great potential for advancements in modern medicine. Despite this, the molecular mechanisms underpinning hibernation remain largely unclear. This study used RNA-seq and Iso-seq techniques to investigate the changes in liver transcriptome expression of Rhinolophus pusillus during hibernation and active periods, as well as under different microhabitat temperatures. We identified 11 457 differentially expressed genes during hibernation and active periods, of which 395 showed significant differential expression. Genes associated with fatty acid catabolism were significantly upregulated during hibernation, whereas genes related to carbohydrate metabolism and glycogen synthesis were downregulated. Conversely, immune-related genes displayed differential expression patterns: genes tied to innate immunity were significantly upregulated, while those linked to adaptive immunity and inflammatory response were downregulated. The analysis of transcriptomic data obtained from different microhabitat temperatures revealed that R. pusillus exhibited an upregulation of genes associated with lipid metabolism in lower microhabitat temperature. This upregulation facilitated an enhanced utilization rate of triglyceride, ultimately resulting in increased energy provision for the organism. Additionally, R. pusillus upregulated gluconeogenesis-related genes regardless of the microhabitat temperature, demonstrating the importance of maintaining blood glucose levels during hibernation. Our transcriptomic data reveal that these changes in liver gene expression optimize energy allocation during hibernation, suggesting that liver tissue adaptively responds to the inherent stress of its function during hibernation. This study sheds light on the role of differential gene expression in promoting more efficient energy allocation during hibernation. It contributes to our understanding of how liver tissue adapts to the stressors associated with this state.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xufan Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yu Chen
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jianying Du
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Dongge Guo
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Sen Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
8
|
Iwase T, Wang X, Thi Hanh Phi L, Sridhar N, Ueno NT, Lee J. Advances in targets in inflammatory breast cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:125-152. [PMID: 38637096 DOI: 10.1016/bs.ircmb.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Affiliation(s)
- Toshiaki Iwase
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; University of Hawaii Cancer Center, Honolulu, HI, United States.
| | - Xiaoping Wang
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lan Thi Hanh Phi
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nithya Sridhar
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Jangsoon Lee
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
9
|
Chen Y, Shen C, Wu J, Yan X, Huang Q. Role of immune related genes in predicting prognosis and immune response in patients with hepatocellular carcinoma. J Biochem Mol Toxicol 2024; 38:e23519. [PMID: 37665680 DOI: 10.1002/jbt.23519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/25/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Immunotherapy has developed rapidly in recent years. This study aimed to establish a prognostic signature for immune-related genes (IRGs) and explore related potential immunotherapies. The RNA-seq transcriptome profiles and clinicopathological information of patients were obtained from The Cancer Genome Atlas. Differentially expressed IRGs in tumors and normal tissues were screened and a risk score signature was constructed to predict the prognosis in patients with hepatocellular carcinoma (HCC). Receiver operating characteristic curves, survival analyses, and correlation analyses were used to explore the clinical application of this model. We further analyzed the differences in clinical characteristics, immune infiltration, somatic mutations, and treatment sensitivity between the high- and low-risk populations characterized by the prognostic models. The immune cell infiltration score and immune-related pathway activity were calculated using the single sample gene set enrichment analysis (ssGSEA) set enrichment analysis. Gene ontology (GO), Kyoto encyclopedia of genes and genomes, and GSEA were used to explore the underlying mechanisms. We constructed a nine-IRG formula to predict the prognosis in HCC patients. The higher the risk score, the higher the malignancy of the tumor and the worse the prognosis. There were significant differences in immune related processes between the high- and low-risk groups. TP53 and CTNNB1 mutations were significantly different between different risk groups. The expression of model gene was closely related to the sensitivity of tumor cells to chemotherapeutic drugs. This risk score model, which is helpful for the individualized treatment of patients with different risk factors, could be a reliable prognostic tool for HCC patients.
Collapse
Affiliation(s)
- Yi Chen
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| | - Chuchen Shen
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| | - Juju Wu
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| | - Xiaodan Yan
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| | - Qin Huang
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, People's Republic of China
| |
Collapse
|
10
|
Kotepui K, Kotepui M, Majima HJ, Tangpong J. Association between NDRG1 protein expression and aggressive features of breast cancer: a systematic review and meta-analysis. BMC Cancer 2023; 23:1003. [PMID: 37858101 PMCID: PMC10585795 DOI: 10.1186/s12885-023-11517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND N-myc downstream-regulated gene-1 (NDRG1) is well-described as a potent metastasis suppressor, but its role in human breast cancer remains controversial and unclear. Therefore, the present study utilized a systematic review and meta-analysis approach to synthesize the association between NDRG1 protein expression and the aggressive characteristics of breast cancer. METHODS The protocol for the systematic review and meta-analysis was registered on the PROSPERO website (CRD42023414814). Relevant articles were searched for in PubMed, Scopus, Embase, MEDLINE, and Ovid between March 30, 2023, and May 5, 2023. The included studies were critically evaluated using the Joanna Briggs Institute critical appraisal tools. The results from individual studies were qualitatively synthesized using textual narrative synthesis. Using a random-effects model, the pooled log odds ratio of effect estimate was used to look at the link between NDRG1 protein expression and aggressive features of breast cancer, such as tumor grade, tumor stage, metastasis to the axillary lymph nodes, and hormonal receptor status. RESULTS A total of 1423 articles were retrieved from the electronic database search, and six studies that met the eligibility criteria were included for synthesis. There was an association between the expression of NDRG1 protein and the status of the axillary lymph nodes (P = 0.01, log Odds Ratio (OR): 0.59, 95% Confidence Interval (CI): 0.13-1.05, I2: 24.24%, 292 breast cancer cases with positive axillary lymph nodes and 229 breast cancer cases with negative axillary lymph nodes, 4 studies). NDRG1 protein expression and human epidermal growth factor receptor 2 (Her2) status were found to have a negative relationship (P = 0.01, log OR: -0.76, 95% CI: -1.32-(-0.20), I2: 32.42%, 197 breast cancer cases with Her2 positive and 272 breast cancer cases with Her2 negative, 3 studies). No correlation was found between NDRG1 protein expression and tumor grade (P = 0.10), estrogen receptor (ER) status (P = 0.57), or progesterone receptor (PR) status (P = 0.41). CONCLUSION The study concluded that increased NDRG1 protein expression was associated with increased metastasis of the tumor to the axillary lymph node. Additionally, increased NDRG1 protein expression was observed in Her2-negative breast cancer, suggesting its role in both less aggressive and more aggressive behavior depending on breast cancer subtypes. Based on the findings of the meta-analysis, an increase in NDRG1 protein expression was associated with aggressive characteristics of breast cancer.
Collapse
Affiliation(s)
- Kwuntida Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| | - Hideyuki J Majima
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Jitbanjong Tangpong
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| |
Collapse
|
11
|
Supuramanian SS, Dsa S, Harihar S. Molecular interaction of metastasis suppressor genes and tumor microenvironment in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:912-932. [PMID: 37970212 PMCID: PMC10645471 DOI: 10.37349/etat.2023.00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/03/2023] [Indexed: 11/17/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths in women worldwide where the process of metastasis is a major contributor to the mortality associated with this disease. Metastasis suppressor genes are a group of genes that play a crucial role in preventing or inhibiting the spread of cancer cells. They suppress the metastasis process by inhibiting colonization and by inducing dormancy. These genes function by regulating various cellular processes in the tumor microenvironment (TME), such as cell adhesion, invasion, migration, and angiogenesis. Dysregulation of metastasis suppressor genes can lead to the acquisition of an invasive and metastatic phenotype and lead to poor prognostic outcomes. The components of the TME generally play a necessary in the metastasis progression of tumor cells. This review has identified and elaborated on the role of a few metastatic suppressors associated with the TME that have been shown to inhibit metastasis in BC by different mechanisms, such as blocking certain cell signaling molecules involved in cancer cell migration, invasion, enhancing immune surveillance of cancer cells, and promoting the formation of a protective extracellular matrix (ECM). Understanding the interaction of metastatic suppressor genes and the components of TME has important implications for the development of novel therapeutic strategies to target the metastatic cascade. Targeting these genes or their downstream signaling pathways offers a promising approach to inhibiting the spread of cancer cells and improves patient outcomes.
Collapse
Affiliation(s)
| | - Sid Dsa
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
12
|
Cheng Q, Ning S, Zhu L, Zhang C, Jiang S, Hao Y, Zhu J. NDRG1 facilitates self-renewal of liver cancer stem cells by preventing EpCAM ubiquitination. Br J Cancer 2023; 129:237-248. [PMID: 37165202 PMCID: PMC10338678 DOI: 10.1038/s41416-023-02278-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Portal vein tumour thrombus (PVTT) is the main pathway of HCC intrahepatic metastasis and is responsible for the poor prognosis of patients with HCC. However, the molecular mechanisms underlying PVTT vascular metastases have not been fully elucidated. METHODS NDRG1 expression was assessed by immunohistochemistry and immunoblotting in clinical specimens obtained from curative surgery. The functional relevance of NDRG1 was evaluated using sphere formation and animal models of tumorigenicity and metastasis. The relationship between NDRG1 and EpCAM was explored using molecular biological techniques. RESULTS NDRG1 protein was upregulated in HCC samples compared to non-tumorous tissues. Furthermore, NDRG1 expression was enhanced in the PVTT samples. Our functional study showed that NDRG1 was required for the self-renewal of tumour-initiating/cancer stem cells (CSCs). In addition, NDRG1 knockdown inhibited the proliferation and migration of PVTT-1 cells in vitro and in vivo. NDRG1 was found to stabilise the functional tumour-initiating cell marker EpCAM through protein-protein interactions and inhibition of EpCAM ubiquitination. CONCLUSION Our findings suggest that NDRG1 enhances CSCs expansion, PVTT formation and growth capability through the regulation of EpCAM stability. NDRG1 may be a promising target for the treatment of patients with HCC and PVTT.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Hepatobiliary Surgery, Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, 100044, Beijing, China.
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Shanglei Ning
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Shandong, China
| | - Lei Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Changlu Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shaodong Jiang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yajing Hao
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, 100044, Beijing, China.
| |
Collapse
|
13
|
Jia Q, Tan Y, Li Y, Wu Y, Wang J, Tang F. JUN-induced super-enhancer RNA forms R-loop to promote nasopharyngeal carcinoma metastasis. Cell Death Dis 2023; 14:459. [PMID: 37479693 PMCID: PMC10361959 DOI: 10.1038/s41419-023-05985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Oncogenic super-enhancers (SEs) generate noncoding enhancer/SE RNAs (eRNAs/seRNAs) that exert a critical function in malignancy through powerful regulation of target gene expression. Herein, we show that a JUN-mediated seRNA can form R-loop to regulate target genes to promote metastasis of nasopharyngeal carcinoma (NPC). A combination of global run-on sequencing, chromatin-immunoprecipitation sequencing, and RNA sequencing was used to screen seRNAs. A specific seRNA associated with NPC metastasis (seRNA-NPCM) was identified as a transcriptional regulator for N-myc downstream-regulated gene 1 (NDRG1). JUN was found to regulate seRNA-NPCM through motif binding. seRNA-NPCM was elevated in NPC cancer tissues and highly metastatic cell lines, and promoted the metastasis of NPC cells in vitro and in vivo. Mechanistically, the 3' end of seRNA-NPCM hybridizes with the SE region to form an R-loop, and the middle segment of seRNA-NPCM binds to heterogeneous nuclear ribonucleoprotein R (hnRNPR) at the promoter of distal gene NDRG1 and neighboring gene tribbles pseudokinase 1 (TRIB1). These structures promote chromatin looping and long-distance chromatin interactions between SEs and promoters, thus facilitating NDRG1 and TRIB1 transcription. Furthermore, the clinical analyses showed that seRNA-NPCM and NDRG1 were independent prognostic factors for NPC patients. seRNA-NPCM plays a critical role in orchestrating target gene transcription to promote NPC metastasis.
Collapse
Affiliation(s)
- Qunying Jia
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, 410013, Changsha, China
| | - Yuan Tan
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, 410013, Changsha, China
| | - Yuejin Li
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, 410013, Changsha, China
| | - Yao Wu
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, 410013, Changsha, China
- Department of Ophthalmology and Otolaryngology, The First Hospital of Hunan University of Chinese Medicine, 410208, Changsha, China
| | - Jing Wang
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, 410013, Changsha, China
| | - Faqin Tang
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, 410013, Changsha, China.
| |
Collapse
|
14
|
Ghafouri-Fard S, Ahmadi Teshnizi S, Hussen BM, Taheri M, Sharifi G. A review on the role of NDRG1 in different cancers. Mol Biol Rep 2023; 50:6251-6264. [PMID: 37249826 PMCID: PMC10290039 DOI: 10.1007/s11033-023-08540-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
NDRG1 is a member of the α/β hydrolase superfamily that resides in the cytoplasm and participates in the stress responses, hormone response, cell growth, and differentiation. Several studies have pointed to the importance of NDRG1 in the carcinogenesis. This gene has been found to be up-regulated in an array of cancer types such as bladder, esophageal squamous cell carcinoma, endometrial, lung and liver cancers, but being down-regulated in other types of cancers such as colorectal, gastric and ovarian cancers. The current study summarizes the evidence on the role of NDRG1 in the carcinogenic processes in different types of tissues.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Sara Ahmadi Teshnizi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
15
|
Martinez-Lopez N, Mattar P, Toledo M, Bains H, Kalyani M, Aoun ML, Sharma M, McIntire LBJ, Gunther-Cummins L, Macaluso FP, Aguilan JT, Sidoli S, Bourdenx M, Singh R. mTORC2-NDRG1-CDC42 axis couples fasting to mitochondrial fission. Nat Cell Biol 2023:10.1038/s41556-023-01163-3. [PMID: 37386153 PMCID: PMC10344787 DOI: 10.1038/s41556-023-01163-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/04/2023] [Indexed: 07/01/2023]
Abstract
Fasting triggers diverse physiological adaptations including increases in circulating fatty acids and mitochondrial respiration to facilitate organismal survival. The mechanisms driving mitochondrial adaptations and respiratory sufficiency during fasting remain incompletely understood. Here we show that fasting or lipid availability stimulates mTORC2 activity. Activation of mTORC2 and phosphorylation of its downstream target NDRG1 at serine 336 sustains mitochondrial fission and respiratory sufficiency. Time-lapse imaging shows that NDRG1, but not the phosphorylation-deficient NDRG1Ser336Ala mutant, engages with mitochondria to facilitate fission in control cells, as well as in those lacking DRP1. Using proteomics, a small interfering RNA screen, and epistasis experiments, we show that mTORC2-phosphorylated NDRG1 cooperates with small GTPase CDC42 and effectors and regulators of CDC42 to orchestrate fission. Accordingly, RictorKO, NDRG1Ser336Ala mutants and Cdc42-deficient cells each display mitochondrial phenotypes reminiscent of fission failure. During nutrient surplus, mTOR complexes perform anabolic functions; however, paradoxical reactivation of mTORC2 during fasting unexpectedly drives mitochondrial fission and respiration.
Collapse
Affiliation(s)
- Nuria Martinez-Lopez
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Liver Basic Research Center at University of California Los Angeles, Los Angeles, CA, USA
| | - Pamela Mattar
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Miriam Toledo
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Henrietta Bains
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Manu Kalyani
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marie Louise Aoun
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mridul Sharma
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Leslie Gunther-Cummins
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Frank P Macaluso
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jennifer T Aguilan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mathieu Bourdenx
- UK Dementia Research Institute, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Rajat Singh
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Liver Basic Research Center at University of California Los Angeles, Los Angeles, CA, USA.
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
16
|
Liu Y, Luo Y, Shi X, Lu Y, Li H, Fu G, Li X, Shan L. Role of KLF4/NDRG1/DRP1 axis in hypoxia-induced pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2023:166794. [PMID: 37356737 DOI: 10.1016/j.bbadis.2023.166794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
N-myc downstream regulated gene 1 (NDRG1) has recently drawn increasing attention because of its involvement in angiogenesis, cell proliferation, and differentiation. We used in vitro [human pulmonary artery smooth muscle cells (hPASMCs)] and in vivo (rat) models under hypoxic conditions and found a vital role of NDRG1 in reducing apoptosis and increasing proliferation and migration by overexpressing and knocking down NDRG1. We also proved that hypoxia induced the protein expression of dynamin-related protein 1 (DRP1) and stimulated The phosphatidylinositol-3-kinase (PI3K)/ Protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathways, and these effects were reversed by NDRG1 knockdown. The relationship between NDRG1 and DRP1 and the PI3K/Akt/mTOR pathway was further evaluated by adding mdivi-1 (DRP1 inhibitor) or LY294002 (PI3K inhibitor). NDRG1 was found to regulate the proliferation, apoptosis, and migration of hypoxia-treated hPASMCs via DRP1 and PI3K/Akt/mTOR signaling pathways. We explored the upstream regulators of NDRG1 using in vivo and in vitro hypoxia models. Hypoxia was found to upregulate and downregulate KLF transcription factor 4 (KLF4) protein expression in the cytoplasm and nucleus, respectively. Further, we showed that KLF4 regulated the proliferation and migration of hypoxia-treated hPASMCs via NDRG1. These results indicated a link between KLF4, NDRG1, and DRP1 for the first time, providing new ideas for treating hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Yi Liu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Yue Luo
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xianbao Shi
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Ya Lu
- Department of Respiratory Disease, Jiujiang First People's Hospital, Jiujiang 332000, China
| | - Hongyan Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Gaoge Fu
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Xin Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lina Shan
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
17
|
Wu Z, Yan Y, Li W, Li Y, Yang H. Expression Profile of miR-199a and Its Role in the Regulation of Intestinal Inflammation. Animals (Basel) 2023; 13:1979. [PMID: 37370489 DOI: 10.3390/ani13121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Early weaning stress impairs intestinal health in piglets. miRNAs are crucial for maintaining host homeostasis, while their implication for animal health remains unclear. To identify weaning-associated miRNAs, piglets were sampled at day 0, 1, 3, 7 and 14 after weaning. The data indicated that the highest levels of miR-199a-5p in jejunal villus upper cells were observed on day 14 after weaning, while the lowest levels in crypt cells were noted on day 7 and 14. In contrast, miR-199a-3p was down-regulated in both of these two cells on day 7 after weaning compared with day 0. Both miR-199a-5p and -3p were differently expressed along the villus-crypt axis. To further clarify the function of miR-199a, mice deficient in miR-199a were exposed to dextran sulfate sodium (DSS) to induce colitis. Results revealed that silencing of miR-199a enhanced sensitivity to DSS-induced colitis. Moreover, the increased morbidity and mortality were correlated with enhanced inflammatory cell infiltration, elevated pro-inflammatory cytokine expression, impaired barrier function, and a concomitant increase in permeability-related parameters. Bioinformatic analysis further demonstrated that lipid metabolism-related pathways were significantly enriched and Ndrg1 was verified as a target of miR-199a-3p. These findings indicate that miR-199a may be important for animal health management.
Collapse
Affiliation(s)
- Zijuan Wu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| | - Yanyun Yan
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| | - Wenli Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, China
| |
Collapse
|
18
|
Chang J, Lo ZHY, Alenizi S, Kovacevic Z. Re-Shaping the Pancreatic Cancer Tumor Microenvironment: A New Role for the Metastasis Suppressor NDRG1. Cancers (Basel) 2023; 15:2779. [PMID: 37345116 DOI: 10.3390/cancers15102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic cancer (PaC) is a highly aggressive disease, with poor response to current treatments and 5-year survival rates of 10-15%. PaC progression is facilitated by its interaction with the complex and multifaceted tumor microenvironment (TME). In the TME, cancer cells and surrounding stromal cells constantly communicate with each other via the secretion and uptake of factors including cytokines, chemokines, growth factors, metabolites, and extracellular vesicles (EVs), reshaping the landscape of PaC. Recent studies demonstrated that the metastasis suppressor N-myc downstream regulated 1 (NDRG1) not only inhibits oncogenic signaling pathways in PaC cells but also alters the communication between PaC cells and the surrounding stroma. In fact, NDRG1 was found to influence the secretome of PaC cells, alter cancer cell metabolism, and interfere with intracellular trafficking and intercellular communication between PaC cells and surrounding fibroblasts. This review will present recent advancements in understanding the role of NDRG1 in PaC progression, with a focus on how this molecule influences PaC-stroma communication and its potential for re-shaping the PaC TME.
Collapse
Affiliation(s)
- Jiawei Chang
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| | - Zoe H Y Lo
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Shafi Alenizi
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Zaklina Kovacevic
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| |
Collapse
|
19
|
Shen K, Zhou X, Hu L, Xiao J, Cheng Q, Wang Y, Liu K, Fan H, Xu Z, Yang L. Rs15285, a functional polymorphism located in lipoprotein lipase, predicts the risk and prognosis of gastric cancer. Appl Microbiol Biotechnol 2023; 107:3243-3256. [PMID: 37036527 DOI: 10.1007/s00253-023-12505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Lipoprotein lipase (LPL), a crucial gene in lipid metabolism, has a significant role in the progression of malignant tumors. The purpose of this research was to investigate the impact of rs15285 found in the LPL gene's 3'UTR region on the risk, biological behavior, and gastric cancer (GC) prognosis as well as to examine its potential function. Genotyping of rs15285 in 888 GC cases and 874 controls was conducted by SNaPshot technology. We used bioinformatics analysis and in vitro experiments to study the role of rs15285. First, this study revealed for the first time that polymorphism rs15285 increases the risk of GC (OR = 1.48, 95%CI = 1.16-1.89, P = 0.002). Although no relationship was found between rs12585 and the pathological features of GC, the prognosis of individuals with the rs12585 TT genotype was poorer than that of patients with the CC or CC+CT genotype (HR = 2.39 for TT vs. CC, P = 0.025; HR = 2.38 for TT vs. CC+CT, P = 0.025). In addition, bioinformatics analysis showed rs12585 may affect the binding of miRNAs to LPL, resulting in an increase of LPL expression to promote cancer progression. Ultimately, in vitro tests revealed that the rs15285 T allele increased LPL expression on the mRNA as well as the protein levels, promoting GC cell proliferation, invasion, and metastasis. The LPL rs12528 TT genotype increased the risk of GC and predicted a poor prognosis. Mechanistically, the rs15285 T allele could improve the expression of LPL, and thus promotes the malignant phenotype of GC. Therefore, our study may provide new biological predictors and a theoretical basis for the prognosis and customized therapy of stomach cancer patients. KEY POINTS: • Rs15285 polymorphism is a risk factor for GC. • Rs12585 TT genotype predicts a bad outcome in GC individuals. • Rs15285 T allele enhances GC cells malignant biological behavior.
Collapse
Affiliation(s)
- Kuan Shen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Xinyi Zhou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Li Hu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Jian Xiao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Quan Cheng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Yuanhang Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Kanghui Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Hao Fan
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| |
Collapse
|
20
|
Huang X, Huang Y, Li P. How do serum lipid levels change and influence progression-free survival in epithelial ovarian cancer patients receiving bevacizumab treatment? Front Oncol 2023; 13:1168996. [PMID: 37064140 PMCID: PMC10090393 DOI: 10.3389/fonc.2023.1168996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundThis study aimed to investigate how serum lipid levels affect epithelial ovarian cancer (EOC) patients receiving bevacizumab treatment and to develop a model for predicting the patients’ prognosis.MethodsA total of 139 EOC patients receiving bevacizumab treatment were involved in this study. Statistical analysis was used to compare the median and average values of serum lipid level variables between the baseline and final follow-up. Additionally, a method based on machine learning was proposed to identify independent risk factors for estimating progression-free survival (PFS) in EOC patients receiving bevacizumab treatment. A PFS nomogram dividing the patients into low- and high-risk categories was created based on these independent prognostic variables. Finally, Kaplan–Meier curves and log-rank tests were utilized to perform survival analysis.ResultsAmong EOC patients involved in this study, statistical analysis of serum lipid level variables revealed a substantial increase in total cholesterol, triglycerides, apolipoprotein A1, and free fatty acids, and a significant decrease in apolipoprotein B from baseline to final follow-up. Our method identified FIGO stage, combined chemotherapy regimen, activated partial thromboplastin time, globulin, direct bilirubin, free fatty acids, blood urea nitrogen, high-density lipoprotein cholesterol, and triglycerides as risk factors. These risk factors were then included in our nomogram as independent predictors for EOC patients. PFS was substantially different between the low-risk group (total score < 298) and the high-risk group (total score ≥ 298) according to Kaplan–Meier curves (P < 0.05).ConclusionSerum lipid levels changed variously in EOC patients receiving bevacizumab treatment. A prediction model for PFS of EOC patients receiving bevacizumab treatment was constructed, and it can be beneficial in determining the prognosis, selecting a treatment plan, and monitoring these patients’ long-term care.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yong Huang
- Department of Medical Oncology, The Second People’s Hospital of Hefei, Hefei, China
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ping Li,
| |
Collapse
|
21
|
Zhao X, Richardson DR. The role of the NDRG1 in the pathogenesis and treatment of breast cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188871. [PMID: 36841367 DOI: 10.1016/j.bbcan.2023.188871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer death in women. This disease is heterogeneous, with clinical subtypes being estrogen receptor-α (ER-α) positive, having human epidermal growth factor receptor 2 (HER2) overexpression, or being triple-negative for ER-α, progesterone receptor, and HER2 (TNBC). The ER-α positive and HER2 overexpressing tumors can be treated with agents targeting these proteins, including tamoxifen and pertuzumab, respectively. Despite these treatments, resistance and metastasis are problematic, while TNBC is challenging to treat due to the lack of suitable targets. Many studies examining BC and other tumors indicate a role for N-myc downstream-regulated gene-1 (NDRG1) as a metastasis suppressor. The ability of NDRG1 to inhibit metastasis is due, in part, to the inhibition of the initial step in metastasis, namely the epithelial-to-mesenchymal transition. Paradoxically, there are also reports of NDRG1 playing a pro-oncogenic role in BC pathogenesis. The oncogenic effects of NDRG1 in BC have been reported to relate to lipid metabolism or the mTOR signaling pathway. The molecular mechanism(s) of how NDRG1 regulates the activity of multiple signaling pathways remains unclear. Therapeutic strategies that up-regulate NDRG1 have been developed and include agents of the di-2-pyridylketone thiosemicarbazone class. These compounds target oncogenic drivers in BC cells, suppressing the expression of multiple key hormone receptors including ER-α, progesterone receptor, androgen receptor, and prolactin receptor, and can also overcome tamoxifen resistance. Considering the varying role of NDRG1 in BC pathogenesis, further studies are required to examine what subset of BC patients would benefit from pharmacopeia that up-regulate NDRG1.
Collapse
Affiliation(s)
- Xiao Zhao
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
22
|
López-Tejada A, Griñán-Lisón C, González-González A, Cara FE, Luque RJ, Rosa-Garrido C, Blaya-Cánovas JL, Navarro-Ocón A, Valenzuela-Torres M, Parra-López M, Calahorra J, Blancas I, Marchal JA, Granados-Principal S. TGFβ Governs the Pleiotropic Activity of NDRG1 in Triple-Negative Breast Cancer Progression. Int J Biol Sci 2023; 19:204-224. [PMID: 36594086 PMCID: PMC9760438 DOI: 10.7150/ijbs.78738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
In triple-negative breast cancer (TNBC), the pleiotropic NDRG1 (N-Myc downstream regulated gene 1) promotes progression and worse survival, yet contradictory results were documented, and the mechanisms remain unknown. Phosphorylation and localization could drive NDRG1 pleiotropy, nonetheless, their role in TNBC progression and clinical outcome was not investigated. We found enhanced p-NDRG1 (Thr346) by TGFβ1 and explored whether it drives NDRG1 pleiotropy and TNBC progression. In tissue microarrays of 81 TNBC patients, we identified that staining and localization of NDRG1 and p-NDRG1 (Thr346) are biomarkers and risk factors associated with shorter overall survival. We found that TGFβ1 leads NDRG1, downstream of GSK3β, and upstream of NF-κB, to differentially regulate migration, invasion, epithelial-mesenchymal transition, tumor initiation, and maintenance of different populations of cancer stem cells (CSCs), depending on the progression stage of tumor cells, and the combination of TGFβ and GSK3β inhibitors impaired CSCs. The present study revealed the striking importance to assess both total NDRG1 and p-NDRG1 (Thr346) positiveness and subcellular localization to evaluate patient prognosis and their stratification. NDRG1 pleiotropy is driven by TGFβ to differentially promote metastasis and/or maintenance of CSCs at different stages of tumor progression, which could be abrogated by the inhibition of TGFβ and GSK3β.
Collapse
Affiliation(s)
- Araceli López-Tejada
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain
| | - Carmen Griñán-Lisón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain.,UGC de Oncología Médica, Hospital Universitario de Jaén, 23007 Jaén, Spain
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
| | - Rafael J. Luque
- UGC de Anatomía Patológica, Hospital Universitario de Jaén, Jaén, Spain
| | - Carmen Rosa-Garrido
- FIBAO, Hospital Universitario de Jaén, Servicio Andaluz de Salud, Jaén, Spain
| | - José L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain.,UGC de Oncología Médica, Hospital Universitario de Jaén, 23007 Jaén, Spain
| | - Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain
| | - María Valenzuela-Torres
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
| | - Marisa Parra-López
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
| | - Jesús Calahorra
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain.,UGC de Oncología Médica, Hospital Universitario de Jaén, 23007 Jaén, Spain
| | - Isabel Blancas
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain.,UGC de Oncología, Hospital Universitario “San Cecilio”, 18016 Granada, Spain
| | - Juan A. Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain.,Department of Human Anatomy and Embryology, Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18011 Granada, Spain.,Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain
| | - Sergio Granados-Principal
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain.,✉ Corresponding author: E-mail: . Phone number: +34 651 55 79 21
| |
Collapse
|
23
|
NDRG1 in Cancer: A Suppressor, Promoter, or Both? Cancers (Basel) 2022; 14:cancers14235739. [PMID: 36497221 PMCID: PMC9737586 DOI: 10.3390/cancers14235739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
N-myc downregulated gene-1 (NDRG1) has been variably reported as a metastasis suppressor, a biomarker of poor outcome, and a facilitator of disease progression in a range of different cancers. NDRG1 is poorly understood in cancer due to its context-dependent and pleiotropic functions. Within breast cancer, NDRG1 is reported to be either a facilitator of, or an inhibitor of tumour progression and metastasis. The wide array of roles played by NDRG1 are dependent on post-translational modifications and subcellular localization, as well as the cellular context, for example, cancer type. We present an update on NDRG1, and its association with hallmarks of cancer such as hypoxia, its interaction with oncogenic proteins such as p53 as well its role in oncogenic and metastasis pathways in breast and other cancers. We further comment on its functional implications as a metastasis suppressor and promoter, its clinical relevance, and discuss its therapeutic targetability in different cancers.
Collapse
|
24
|
Ansar M, Thu LTA, Hung CS, Su CM, Huang MH, Liao LM, Chung YM, Lin RK. Promoter hypomethylation and overexpression of TSTD1 mediate poor treatment response in breast cancer. Front Oncol 2022; 12:1004261. [PMID: 36419875 PMCID: PMC9676938 DOI: 10.3389/fonc.2022.1004261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Epigenetic alterations play a pivotal role in cancer treatment outcomes. Using the methylation array data and The Cancer Genome Atlas (TCGA) dataset, we observed the hypomethylation and upregulation of thiosulfate sulfurtransferase–like domain containing 1 (TSTD1) in patients with breast cancer. We examined paired tissues from Taiwanese patients and observed that 65.09% and 68.25% of patients exhibited TSTD1 hypomethylation and overexpression, respectively. A significant correlation was found between TSTD1 hypomethylation and overexpression in Taiwanese (74.2%, p = 0.040) and Western (88.0%, p < 0.001) cohorts. High expression of TSTD1 protein was observed in 68.8% of Taiwanese and Korean breast cancer patients. Overexpression of TSTD1 in tumors of breast cancer patients was significantly associated with poor 5-year overall survival (p = 0.021) and poor chemotherapy response (p = 0.008). T47D cells treated with TSTD1 siRNA exhibited lower proliferation than the control group, and transfection of TSTD1 in MDA-MB-231 induced the growth of MDA-MB-231 cells compared to the vector control. Additionally, overexpression of TSTD1 in MCF7 cells mediated a poor response to chemotherapy by epirubicin (p < 0.001) and docetaxel (p < 0.001) and hormone therapy by tamoxifen (p =0.025). Circulating cell-free hypomethylated TSTD1 was detected in plasma of Taiwanese breast cancer patients with disease progression and poor chemotherapy efficacy. Our results indicate that promoter hypomethylation and overexpression of TSTD1 in patients with breast cancer are potential biomarkers for poor 5-year overall survival and poor treatment response.
Collapse
Affiliation(s)
- Muhamad Ansar
- Ph.D Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Le Thi Anh Thu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Quang Tri Medical College, Dong Ha, Quang Tri, Vietnam
| | - Chin-Sheng Hung
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chih-Ming Su
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Man-Hsu Huang
- Department of Pathology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Li-Min Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yu-Mei Chung
- Master Program in Clinical Genomics and Proteomics; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ruo-Kai Lin
- Ph.D Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Master Program in Clinical Genomics and Proteomics; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Clinical Trial Center, Taipei Medical University Hospital, Taipei, Taiwan
- *Correspondence: Ruo-Kai Lin,
| |
Collapse
|
25
|
Park JS, Gabel AM, Kassir P, Kang L, Chowdhary PK, Osei-Ntansah A, Tran ND, Viswanathan S, Canales B, Ding P, Lee YS, Brewster R. N-myc downstream regulated gene 1 (ndrg1) functions as a molecular switch for cellular adaptation to hypoxia. eLife 2022; 11:e74031. [PMID: 36214665 PMCID: PMC9550225 DOI: 10.7554/elife.74031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Lack of oxygen (hypoxia and anoxia) is detrimental to cell function and survival and underlies many disease conditions. Hence, metazoans have evolved mechanisms to adapt to low oxygen. One such mechanism, metabolic suppression, decreases the cellular demand for oxygen by downregulating ATP-demanding processes. However, the molecular mechanisms underlying this adaptation are poorly understood. Here, we report on the role of ndrg1a in hypoxia adaptation of the anoxia-tolerant zebrafish embryo. ndrg1a is expressed in the kidney and ionocytes, cell types that use large amounts of ATP to maintain ion homeostasis. ndrg1a mutants are viable and develop normally when raised under normal oxygen. However, their survival and kidney function is reduced relative to WT embryos following exposure to prolonged anoxia. We further demonstrate that Ndrg1a binds to the energy-demanding sodium-potassium ATPase (NKA) pump under anoxia and is required for its degradation, which may preserve ATP in the kidney and ionocytes and contribute to energy homeostasis. Lastly, we show that sodium azide treatment, which increases lactate levels under normoxia, is sufficient to trigger NKA degradation in an Ndrg1a-dependent manner. These findings support a model whereby Ndrg1a is essential for hypoxia adaptation and functions downstream of lactate signaling to induce NKA degradation, a process known to conserve cellular energy.
Collapse
Affiliation(s)
- Jong S Park
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Austin M Gabel
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Polina Kassir
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Lois Kang
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Prableen K Chowdhary
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Afia Osei-Ntansah
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Neil D Tran
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Soujanya Viswanathan
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Bryanna Canales
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Pengfei Ding
- Department of Chemistry and Biochemistry, University of Maryland Baltimore CountyBaltimoreUnited States
| | - Young-Sam Lee
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Rachel Brewster
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimoreUnited States
| |
Collapse
|
26
|
Abdelaal G, Carter A, Panayiotides MI, Tetard D, Veuger S. Novel iron chelator SK4 demonstrates cytotoxicity in a range of tumour derived cell lines. Front Mol Biosci 2022; 9:1005092. [PMID: 36213122 PMCID: PMC9540520 DOI: 10.3389/fmolb.2022.1005092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Iron is an essential micronutrient due to its involvement in many cellular processes including DNA replication and OXPHOS. Tumors overexpress iron metabolism linked proteins which allow for iron accumulation driving high levels of proliferation. Our group has designed novel iron chelator SK4 which targets cancer’s “iron addiction.” SK4 comprises of two key moieties: an iron chelation moiety responsible for cytotoxicity and an amino acid moiety which allows entry through amino acid transporter LAT1. We selected LAT1 as a route of entry as it is commonly overexpressed in malignant tumors. SK4 has previously demonstrated promising results in an in vitro model for melanoma. We hypothesized SK4 would be effective against a range of tumor types. We have screened a panel of tumor-derived cell lines from different origins including breast, prostate, ovarian and cervical cancer for SK4 sensitivity and we have found a range of differential sensitivities varying from 111.3 to >500 μM. We validated the iron chelation moiety as responsible for inducing cytotoxicity through control compounds; each lacking a key moiety. Following the screen, we conducted a series of assays to elucidate the mechanism of action behind SK4 cytotoxicity. SK4 was shown to induce apoptosis in triple negative breast cancer cell line MDA MB 231 but not ovarian cancer cell line SKOV3 suggesting SK4 may induce different modes of cell death in each cell line. As MDA MB 231 cells harbor a mutation in p53, we conclude SK4 is capable of inducing apoptosis in a p53-independent manner. SK4 upregulated NDRG1 expression in MDA MB 231 and SKOV3 cells. Interestingly, knockdown of NDRG1 antagonized SK4 in MDA MB 231 cells but not SKOV3 cells suggesting SK4’s mechanism of action may be mediated through NDRG1 in MDA MB 231 cells. In conclusion, we have shown tagging iron chelators with an amino acid moiety to allow entry through the LAT1 transporter represents a double pronged approach to cancer therapy, targeting “iron addiction” and amino acid metabolism dysregulation.
Collapse
Affiliation(s)
- Gina Abdelaal
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Gina Abdelaal, ; Stephany Veuger,
| | - Andrew Carter
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Mihalis I. Panayiotides
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - David Tetard
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Stephany Veuger
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Gina Abdelaal, ; Stephany Veuger,
| |
Collapse
|
27
|
Aberrant Neuregulin 1/ErbB Signaling in Charcot-Marie-Tooth Type 4D Disease. Mol Cell Biol 2022; 42:e0055921. [PMID: 35708320 DOI: 10.1128/mcb.00559-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Charcot-Marie-Tooth type 4D (CMT4D) is an autosomal recessive demyelinating form of CMT characterized by progressive motor and sensory neuropathy. N-myc downstream regulated gene 1 (NDRG1) is the causative gene for CMT4D. Although more CMT4D cases have been reported, the comprehensive molecular mechanism underlying CMT4D remains elusive. Here, we generated a novel knockout mouse model in which the fourth and fifth exons of the Ndrg1 gene were removed. Ndrg1-deficient mice develop early progressive demyelinating neuropathy and limb muscle weakness. The expression pattern of myelination-related transcriptional factors, including SOX10, OCT6, and EGR2, was abnormal in Ndrg1-deficient mice. We further investigated the activation of the ErbB2/3 receptor tyrosine kinases in Ndrg1-deficient sciatic nerves, as these proteins play essential roles in Schwann cell myelination. In the absence of NDRG1, although the total ErbB2/3 receptors expressed by Schwann cells were significantly increased, levels of the phosphorylated forms of ErbB2/3 and their downstream signaling cascades were decreased. This change was not associated with the level of the neuregulin 1 ligand, which was increased in Ndrg1-deficient mice. In addition, the integrin β4 receptor, which interacts with ErbB2/3 and positively regulates neuregulin 1/ErbB signaling, was significantly reduced in the Ndrg1-deficient nerve. In conclusion, our data suggest that the demyelinating phenotype of CMT4D disease is at least in part a consequence of molecular defects in neuregulin 1/ErbB signaling.
Collapse
|
28
|
New Insights into the Neuromyogenic Spectrum of a Gain of Function Mutation in SPTLC1. Genes (Basel) 2022; 13:genes13050893. [PMID: 35627278 PMCID: PMC9140917 DOI: 10.3390/genes13050893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Serine palmitoyltransferase long chain base subunit 1 (SPTLC1) encodes a serine palmitoyltransferase (SPT) resident in the endoplasmic reticulum (ER). Pathological SPTLC1 variants cause a form of hereditary sensory and autonomic neuropathy (HSAN1A), and have recently been linked to unrestrained sphingoid base synthesis, causing a monogenic form of amyotrophic lateral sclerosis (ALS). It was postulated that the phenotypes associated with dominant variants in SPTLC1 may represent a continuum between neuropathy and ALS in some cases, complicated by additional symptoms such as cognitive impairment. A biochemical explanation for this clinical observation does not exist. By performing proteomic profiling on immortalized lymphoblastoid cells derived from one patient harbouring an alanine to serine amino acid substitution at position 20, we identified a subset of dysregulated proteins playing significant roles in neuronal homeostasis and might have a potential impact on the manifestation of symptoms. Notably, the identified p.(A20S)-SPTLC1 variant is associated with decrease of transcript and protein level. Moreover, we describe associated muscle pathology findings, including signs of mild inflammation accompanied by dysregulation of respective markers on both the protein and transcript levels. By performing coherent anti-Stokes Raman scattering microscopy, presence of protein and lipid aggregates could be excluded.
Collapse
|
29
|
Chang X, Xing P. Identification of a novel lipid metabolism-related gene signature within the tumour immune microenvironment for breast cancer. Lipids Health Dis 2022; 21:43. [PMID: 35562758 PMCID: PMC9103058 DOI: 10.1186/s12944-022-01651-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Systemic factors can strongly affect how tumour cells behave, grow, and communicate with other cells in breast cancer. Lipid metabolic reprogramming is a systemic process that tumour cells undergo; however, the formation and dynamics of lipids associated with the tumour immune microenvironment (TIME) remain unclear. The investigation of the sophisticated bidirectional crosstalk of tumour cells with cancer metabolism, gene expression, and TIME could have the potential to identify novel biomarkers for diagnosis, prognosis, and immunotherapy. This study aimed to construct a prognostic signature to detect the bicrosstalk between the lipid metabolic system and the TIME of breast cancer. Methods To detect the expression of LRGs and execute GO/KEGG analysis, the R program was chosen. Considering the clinical information and pathological features, a prognostic gene signature was constructed by LASSO Cox regression analysis. TMB, MSI, and immune infiltration analyses were performed, and consensus cluster analysis of LRGs was also performed. Results These 16 lipid metabolism-related genes (LRGs) were mainly involved in the process of lipid metabolism and fatty acid binding in breast cancer. Prognosis analysis identified the prognostic value of FABP7(Fatty acid binding protein 7) and NDUFAB1(NADH:ubiquinone oxidoreductase subunit AB1) in breast cancer patients. The prognostic gene signature constructed with FABP7 and NDUFAB1 was significantly related to immune cell infiltration and could predict the overall survival rate with above average correctness of breast cancer patients. FABP7 and NDUFAB1 were proven to have relevance in immune cell infiltration and tumour mutation burden (TMB). Consensus cluster analysis identified that the upregulated mRNAs were mostly related to the oncogenesis process, while the downregulated mRNAs were associated with immune-related signalling pathways. Conclusion A comprehensive analysis was performed to evaluate the lipid metabolic system and identified a signature constructed by two prognostic genes for immunotherapies in breast cancer. The results also revealed evidence of vulnerabilities in the interplay between the lipid metabolic system and the TIME in breast cancer. Further data with clinical studies and experiments are warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01651-9.
Collapse
Affiliation(s)
- Xu Chang
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Affiliated Hospital of China Medical University, No.77 PuHe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Affiliated Hospital of China Medical University, No.77 PuHe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
30
|
You GR, Chang JT, Li HF, Cheng AJ. Multifaceted and Intricate Oncogenic Mechanisms of NDRG1 in Head and Neck Cancer Depend on Its C-Terminal 3R-Motif. Cells 2022; 11:cells11091581. [PMID: 35563887 PMCID: PMC9104279 DOI: 10.3390/cells11091581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
N-Myc downstream-regulated 1 (NDRG1) has inconsistent oncogenic functions in various cancers. We surveyed and characterized the role of NDRG1 in head and neck cancer (HNC). Cellular methods included spheroid cell formation, clonogenic survival, cell viability, and Matrigel invasion assays. Molecular techniques included transcriptomic profiling, RT-qPCR, immunoblotting, in vitro phosphorylation, immunofluorescent staining, and confocal microscopy. Prognostic significance was assessed by Kaplan–Meier analysis. NDRG1 participated in diverse oncogenic functions in HNC cells, mainly stress response and cell motility. Notably, NDRG1 contributed to spheroid cell growth, radio-chemoresistance, and upregulation of stemness-related markers (CD44 and Twist1). NDRG1 facilitated cell migration and invasion, and was associated with modulation of the extracellular matrix molecules (fibronectin, vimentin). Characterizing the 3R-motif in NDRG1 revealed its mechanism in the differential regulation of the phenotypes. The 3R-motif displayed minimal effect on cancer stemness but was crucial for cell motility. Phosphorylating the motif by GSK3b at serine residues led to its nuclear translocation to promote motility. Clinical analyses supported the oncogenic function of NDRG1, which was overexpressed in HNC and associated with poor prognosis. The data elucidate the multifaceted and intricate mechanisms of NDRG1 in HNC. NDRG1 may be a prognostic indicator or therapeutic target for refractory HNC.
Collapse
Affiliation(s)
- Guo-Rung You
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Joseph T. Chang
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33302, Taiwan;
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiao-Fan Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Radiation Oncology and Proton Therapy Center, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33302, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Correspondence: ; Tel.: +886-3-211-8800
| |
Collapse
|
31
|
HJURP regulates cell proliferation and chemo-resistance via YAP1/NDRG1 transcriptional axis in triple-negative breast cancer. Cell Death Dis 2022; 13:396. [PMID: 35459269 PMCID: PMC9033877 DOI: 10.1038/s41419-022-04833-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023]
Abstract
Triple-negative breast cancer is still a difficult point in clinical treatment at present, and a deep study of its pathogenesis has great clinical value. Therefore, our research mainly focuses on exploring the progression of triple-negative breast cancer and determines the important role of the HJURP/YAP1/NDRG1 transcriptional regulation axis in triple-negative breast cancer. We observed significantly increased HJURP expression levels in triple-negative breast cancer compared to other subtypes. HJURP could affect the level of ubiquitination modification of YAP1 protein and then regulate its downstream transcriptional activity. Mechanistically, we found that YAP1 positively regulates NDRG1 transcription by binding the promoter region of the NDRG1 gene. And HJURP/YAP1/NDRG1 axis could affect cell proliferation and chemotherapy sensitivity in triple-negative breast cancer. Taken together, these findings provide insights into the transcriptional regulation axis of HJURP/YAP1/NDRG1 in triple-negative breast cancer progression and therapeutic response.
Collapse
|
32
|
Villodre ES, Hu X, Eckhardt BL, Larson R, Huo L, Yoon EC, Gong Y, Song J, Liu S, Ueno NT, Krishnamurthy S, Pusch S, Tripathy D, Woodward WA, Debeb BG. NDRG1 in Aggressive Breast Cancer Progression and Brain Metastasis. J Natl Cancer Inst 2022; 114:579-591. [PMID: 34893874 PMCID: PMC9002276 DOI: 10.1093/jnci/djab222] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND N-Myc downstream regulated gene 1 (NDRG1) suppresses metastasis in many human malignancies, including breast cancer, yet has been associated with worse survival in patients with inflammatory breast cancer. The role of NDRG1 in the pathobiology of aggressive breast cancers remains elusive. METHODS To study the role of NDRG1 in tumor growth and brain metastasis in vivo, we transplanted cells into cleared mammary fat pads or injected them in tail veins of SCID/Beige mice (n = 7-10 per group). NDRG1 protein expression in patient breast tumors (n = 216) was assessed by immunohistochemical staining. Kaplan-Meier method with 2-sided log-rank test was used to analyze the associations between NDRG1 and time-to-event outcomes. A multivariable Cox regression model was used to determine independent prognostic factors. All statistical tests were 2-sided. RESULTS We generated new sublines that exhibited a distinct propensity to metastasize to the brain. NDRG1-high-expressing cells produced more prevalent brain metastases (100% vs 44.4% for NDRG1-low sublines, P = .01, Fisher's exact test), greater tumor burden, and reduced survival in mice. In aggressive breast cancer cell lines, silencing NDRG1 led to reduced migration, invasion, and tumor-initiating cell subpopulations. In xenograft models, depleting NDRG1 inhibited primary tumor growth and brain metastasis. In patient breast tumors, NDRG1 was associated with aggressiveness: NDRG1-high expression was also associated with shorter overall survival (hazard ratio [HR] = 2.27, 95% confidence interval [95% CI] = 1.20 to 4.29, P = .009) and breast cancer-specific survival (HR = 2.19, 95% CI = 1.07 to 4.48, P = .03). Multivariable analysis showed NDRG1 to be an independent predictor of overall survival (HR = 2.17, 95% CI = 1.10 to 4.30, P = .03) and breast cancer-specific survival rates (HR = 2.27, 95% CI = 1.05 to 4.92, P = .04). CONCLUSIONS We demonstrated that NDRG1 drives tumor progression and brain metastasis in aggressive breast cancers and that NDRG1-high expression correlates with worse clinical outcomes, suggesting that NDRG1 may serve as a therapeutic target and prognostic biomarker in aggressive breast cancers.
Collapse
Affiliation(s)
- Emilly S Villodre
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoding Hu
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bedrich L Eckhardt
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Richard Larson
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ester C Yoon
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Gong
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juhee Song
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shuying Liu
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Savitri Krishnamurthy
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stefan Pusch
- German Cancer Consortium Clinical Cooperation Unit Neuropathology, German Cancer Research Center, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy A Woodward
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bisrat G Debeb
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Morgan Welch Inflammatory Breast Cancer Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Hong X, Wang G, Liu X, Wu M, Zhang X, Hua X, Jiang P, Wang S, Tang S, Shi X, Huang Y, Shen T. Lipidomic biomarkers: Potential mediators of associations between urinary bisphenol A exposure and colorectal cancer. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127863. [PMID: 34848068 DOI: 10.1016/j.jhazmat.2021.127863] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Previous research reported associations between bisphenol A (BPA) exposure and some malignant tumor incidences, yet the underlying mechanism remains largely uncertain. This investigation was aimed to explore the association of BPA exposure burden with colorectal cancer (CRC) and the role of tumor tissue lipid metabolism in the associations between BPA and CRC using lipidomic approach. Urinary BPA levels in CRC cases were significantly higher than those in controls (P value < 0.05). BPA was positively correlated with all three serum CRC biomarkers, with an estimated odds ratio (OR) of 4.45 (95% confidence interval (95% CI): [1.31, 15.14]) between the highest and lowest tertiles of exposure. Lipidomic screening of tumor samples suggested significant perturbation in the glycerophospholipid metabolism pathway, of which phosphatidylcholine (PC 34:0), phosphatidylcholine (PC 37:1), phosphatidylethanolamine (PE 34:2), triacylglycerol (TG 56:4) demonstrated mediation contribution of 21.9%, 18.7%, 18.4% and 27.39%, respectively, in the association between BPA exposure and CRC. Our work provides novel findings that cancer tissue metabolites may be playing vital mediating roles in the associations between BPA exposure burden and CRC risk. These findings contribute to better understanding of the etiology of CRC induced by environmental stressors.
Collapse
Affiliation(s)
- Xu Hong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Gengfu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Xingcun Liu
- Department of Gastrointestinal surgery, First Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Ming Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xindong Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Pengpeng Jiang
- Department of Gastrointestinal surgery, First Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Sheng Wang
- The Center for Scientific Research of Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Xiaoming Shi
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China.
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China.
| |
Collapse
|
34
|
García-Cárdenas JM, Armendáriz-Castillo I, Pérez-Villa A, Indacochea A, Jácome-Alvarado A, López-Cortés A, Guerrero S. Integrated In Silico Analyses Identify PUF60 and SF3A3 as New Spliceosome-Related Breast Cancer RNA-Binding Proteins. BIOLOGY 2022; 11:biology11040481. [PMID: 35453681 PMCID: PMC9030152 DOI: 10.3390/biology11040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022]
Abstract
More women are diagnosed with breast cancer (BC) than any other type of cancer. Although large-scale efforts have completely redefined cancer, a cure remains unattainable. In that respect, new molecular functions of the cell should be investigated, such as post-transcriptional regulation. RNA-binding proteins (RBPs) are emerging as critical post-transcriptional modulators of tumorigenesis, but only a few have clear roles in BC. To recognize new putative breast cancer RNA-binding proteins, we performed integrated in silico analyses of all human RBPs (n = 1392) in three major cancer databases and identified five putative BC RBPs (PUF60, TFRC, KPNB1, NSF, and SF3A3), which showed robust oncogenic features related to their genomic alterations, immunohistochemical changes, high interconnectivity with cancer driver genes (CDGs), and tumor vulnerabilities. Interestingly, some of these RBPs have never been studied in BC, but their oncogenic functions have been described in other cancer types. Subsequent analyses revealed PUF60 and SF3A3 as central elements of a spliceosome-related cluster involving RBPs and CDGs. Further research should focus on the mechanisms by which these proteins could promote breast tumorigenesis, with the potential to reveal new therapeutic pathways along with novel drug-development strategies.
Collapse
Affiliation(s)
- Jennyfer M. García-Cárdenas
- Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito 170113, Ecuador; (J.M.G.-C.); (A.J.-A.)
- Facultade de Ciencias, Universidade da Coruña, 15071 A Coruna, Spain
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (I.A.-C.); (A.P.-V.)
| | - Isaac Armendáriz-Castillo
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (I.A.-C.); (A.P.-V.)
- Instituto Nacional de Investigación en Salud Pública, Quito 170136, Ecuador
- Facultad de Ingenierías y Ciencias Aplicadas, Universidad Internacional SEK, Quito 170302, Ecuador
| | - Andy Pérez-Villa
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (I.A.-C.); (A.P.-V.)
| | - Alberto Indacochea
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain;
| | - Andrea Jácome-Alvarado
- Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito 170113, Ecuador; (J.M.G.-C.); (A.J.-A.)
| | - Andrés López-Cortés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (I.A.-C.); (A.P.-V.)
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170302, Ecuador
- Facultad de Medicina, Universidad de Las Américas, Quito 170124, Ecuador
- Correspondence: (A.L.-C.); (S.G.)
| | - Santiago Guerrero
- Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito 170113, Ecuador; (J.M.G.-C.); (A.J.-A.)
- Facultade de Ciencias, Universidade da Coruña, 15071 A Coruna, Spain
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (I.A.-C.); (A.P.-V.)
- Correspondence: (A.L.-C.); (S.G.)
| |
Collapse
|
35
|
Qi X, Li Q, Che X, Wang Q, Wu G. Application of Regulatory Cell Death in Cancer: Based on Targeted Therapy and Immunotherapy. Front Immunol 2022; 13:837293. [PMID: 35359956 PMCID: PMC8960167 DOI: 10.3389/fimmu.2022.837293] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The development of cancer treatment methods is constantly changing. For common cancers, our treatment methods are still based on conventional treatment methods, such as chemotherapy, radiotherapy, and targeted drug therapy. Nevertheless, the emergence of tumor resistance has a negative impact on treatment. Regulated cell death is a gene-regulated mode of programmed cell death. After receiving specific signal transduction, cells change their physical and chemical properties and the extracellular microenvironment, resulting in structural destruction and decomposition. As research accumulates, we now know that by precisely inducing specific cell death patterns, we can treat cancer with less collateral damage than other treatments. Many newly discovered types of RCD are thought to be useful for cancer treatment. However, some experimental results suggest that some RCDs are not sensitive to cancer cell death, and some may even promote cancer progression. This review summarizes the discovered types of RCDs, reviews their clinical efficacy in cancer treatment, explores their anticancer mechanisms, and discusses the feasibility of some newly discovered RCDs for cancer treatment in combination with the immune and tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | - Qifei Wang
- *Correspondence: Guangzhen Wu, ; Qifei Wang,
| | | |
Collapse
|
36
|
Marechal D, Dansu DK, Castro K, Patzig J, Magri L, Inbar B, Gacias M, Moyon S, Casaccia P. N-myc downstream regulated family member 1 (NDRG1) is enriched in myelinating oligodendrocytes and impacts myelin degradation in response to demyelination. Glia 2022; 70:321-336. [PMID: 34687571 PMCID: PMC8753715 DOI: 10.1002/glia.24108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 02/03/2023]
Abstract
The N-myc downstream regulated gene family member 1 (NDRG1) is a gene whose mutation results in peripheral neuropathy with central manifestations. While most of previous studies characterized NDRG1 role in Schwann cells, the detection of central nervous system symptoms and the identification of NDRG1 as a gene silenced in the white matter of multiple sclerosis brains raise the question regarding its role in oligodendrocytes. Here, we show that NDRG1 is enriched in oligodendrocytes and myelin preparations, and we characterize its expression using a novel reporter mouse (TgNdrg1-EGFP). We report NDRG1 expression during developmental myelination and during remyelination after cuprizone-induced demyelination of the adult corpus callosum. The transcriptome of Ndrg1-EGFP+ cells further supports the identification of late myelinating oligodendrocytes, characterized by expression of genes regulating lipid metabolism and bioenergetics. We also generate a lineage specific conditional knockout (Olig1cre/+ ;Ndrg1fl/fl ) line to study its function. Null mice develop normally, and despite similar numbers of progenitor cells as wild type, they have fewer mature oligodendrocytes and lower levels of myelin proteins than controls, thereby suggesting NDRG1 as important for the maintenance of late myelinating oligodendrocytes. In addition, when control and Ndrg1 null mice are subject to cuprizone-induced demyelination, we observe a higher degree of demyelination in the mutants. Together these data identify NDRG1 as an important molecule for adult myelinating oligodendrocytes, whose decreased levels in the normal appearing white matter of human MS brains may result in greater susceptibility of myelin to damage.
Collapse
Affiliation(s)
- Damien Marechal
- Neuroscience Initiative, Advanced Science Research Center, CUNY, 85 St Nicholas Terrace, New York, NY 10031, USA
| | - David K. Dansu
- Neuroscience Initiative, Advanced Science Research Center, CUNY, 85 St Nicholas Terrace, New York, NY 10031, USA,Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA
| | - Kamilah Castro
- Neuroscience Initiative, Advanced Science Research Center, CUNY, 85 St Nicholas Terrace, New York, NY 10031, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia Patzig
- Neuroscience Initiative, Advanced Science Research Center, CUNY, 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Laura Magri
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin Inbar
- Neuroscience Initiative, Advanced Science Research Center, CUNY, 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Mar Gacias
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah Moyon
- Neuroscience Initiative, Advanced Science Research Center, CUNY, 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, CUNY, 85 St Nicholas Terrace, New York, NY 10031, USA,Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA,Corresponding author:
| |
Collapse
|
37
|
Lipid droplets are beneficial for rabies virus replication by facilitating viral budding. J Virol 2021; 96:e0147321. [PMID: 34757839 DOI: 10.1128/jvi.01473-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rabies is an old zoonotic disease caused by rabies virus (RABV), but the pathogenic mechanism of RABV is still not completely understood. Lipid droplets have been reported to play a role in pathogenesis of several viruses. However, its role on RABV infection remains unclear. Here, we initially found that RABV infection upregulated lipid droplet (LD) production in multiple cells and mouse brains. After the treatment of atorvastatin, a specific inhibitor of LD, RABV replication in N2a cells decreased. Then we found that RABV infection could upregulate N-myc downstream regulated gene-1 (NDRG1), which in turn enhance the expression of diacylglycerol acyltransferase 1/2 (DGAT1/2). DGAT1/2 could elevate cellular triglycerides synthesis and ultimately promote intracellular LD formation. Furthermore, we found that RABV-M and RABV-G, which were mainly involved in the viral budding process, could colocalize with LDs, indicating that RABV might utilize LDs as a carrier to facilitate viral budding and eventually increase virus production. Taken together, our study reveals that lipid droplets are beneficial for RABV replication and their biogenesis is regulated via NDRG1-DGAT1/2 pathway, which provides novel potential targets for developing anti-RABV drugs. IMPORTANCE Lipid droplets have been proven to play an important role in viral infections, but its role in RABV infection has not yet been elaborated. Here, we find that RABV infection upregulates the generation of LDs by enhancing the expression of N-myc downstream regulated gene-1 (NDRG1). Then NDRG1 elevated cellular triglycerides synthesis by increasing the activity of diacylglycerol acyltransferase 1/2 (DGAT1/2), which promotes the biogenesis of LDs. RABV-M and RABV-G, which are the major proteins involved in viral budding, could utilize LDs as a carrier and transport to cell membrane, resulting in enhanced virus budding. Our findings will extend the knowledge of lipid metabolism in RABV infection and help to explore potential therapeutic targets for RABV.
Collapse
|
38
|
Macrophages M1-Related Prognostic Signature in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:6347592. [PMID: 34745260 PMCID: PMC8486543 DOI: 10.1155/2021/6347592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 02/08/2023]
Abstract
A large number of studies have found that macrophages M1 play an important role in the occurrence and development of tumors. The aim of our study is to explore the causes of differential infiltration of macrophages M1 in hepatocellular carcinoma from the perspective of transcriptome and establish a prognostic model of hepatocellular carcinoma. We downloaded gene expression and clinical data from the public database, estimated the content of macrophages M1 in different samples with R software, and found the different genes between high- and low-infiltration groups. Using differentially expressed genes, we constructed a model composed of 7 genes. The risk score of the model has a good ability to predict the prognosis, has a positive correlation with immune checkpoints, and is closely related to other immune cells and immune function. Our model shows good prognostic function and has wide application value.
Collapse
|
39
|
Bahcecioglu G, Yue X, Howe E, Guldner I, Stack MS, Nakshatri H, Zhang S, Zorlutuna P. Aged Breast Extracellular Matrix Drives Mammary Epithelial Cells to an Invasive and Cancer-Like Phenotype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100128. [PMID: 34617419 PMCID: PMC8596116 DOI: 10.1002/advs.202100128] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/26/2021] [Indexed: 05/04/2023]
Abstract
Age is a major risk factor for cancer. While the importance of age related genetic alterations in cells on cancer progression is well documented, the effect of aging extracellular matrix (ECM) has been overlooked. This study shows that the aging breast ECM alone is sufficient to drive normal human mammary epithelial cells (KTB21) to a more invasive and cancer-like phenotype, while promoting motility and invasiveness in MDA-MB-231 cells. Decellularized breast matrix from aged mice leads to loss of E-cadherin membrane localization in KTB21 cells, increased cell motility and invasion, and increased production of inflammatory cytokines and cancer-related proteins. The aged matrix upregulates cancer-related genes in KTB21 cells and enriches a cell subpopulation highly expressing epithelial-mesenchymal transition-related genes. Lysyl oxidase knockdown reverts the aged matrix-induced changes to the young levels; it relocalizes E-cadherin to cell membrane, and reduces cell motility, invasion, and cytokine production. These results show for the first time that the aging ECM harbors key biochemical, physical, and mechanical cues contributing to invasive and cancer-like behavior in healthy and cancer mammary cells. Differential response of cells to young and aged ECMs can lead to identification of new targets for cancer treatment and prevention.
Collapse
Affiliation(s)
- Gokhan Bahcecioglu
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
| | - Xiaoshan Yue
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
| | - Erin Howe
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Ian Guldner
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - M. Sharon Stack
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIN46556USA
| | - Harikrishna Nakshatri
- Department of SurgerySchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biochemistry and Molecular BiologySchool of MedicineIndiana UniversityIndianapolisIN46202USA
| | - Siyuan Zhang
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIN46556USA
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIN46556USA
| |
Collapse
|
40
|
Luo H, Chen CY, Li X, Zhang X, Su CW, Liu Y, Cao T, Hao L, Wang M, Kang JX. Increased lipogenesis is critical for self-renewal and growth of breast cancer stem cells: Impact of omega-3 fatty acids. Stem Cells 2021; 39:1660-1670. [PMID: 34486791 PMCID: PMC9292025 DOI: 10.1002/stem.3452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022]
Abstract
Aberrant lipid metabolism has recently been recognized as a new hallmark of malignancy, but the characteristics of fatty acid metabolism in breast cancer stem cells (BCSC) and potential interventions targeting this pathway remain to be addressed. Here, by using the in vitro BCSC models, mammosphere‐derived MCF‐7 cells and HMLE‐Twist‐ER cells, we found that the cells with stem cell‐like properties exhibited a very distinct profile of fatty acid metabolism compared with that of their parental cancer cells, characterized by increased lipogenesis, especially the activity of stearoyl‐CoA desaturase 1 (SCD1) responsible for the production of monounsaturated fatty acids, and augmented synthesis and utilization of the omega‐6 arachidonic acid (AA). Suppression of SCD1 activity by either enzyme inhibitors or small interfering RNA (siRNA) knockdown strikingly limited self‐renewal and growth of the BCSC, suggesting a key role for SCD1 in BCSC proliferation. Furthermore, elevated levels of SCD1 and other lipogenic enzymes were observed in human breast cancer tissues relative to the noncancer tissues from the same patients and correlated with the pathological grades. Interestingly, treatment of BCSC with omega‐3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, effectively downregulated the expression of the lipogenic enzymes and markedly suppressed BCSC self‐renewal and growth. Dietary supplementation of nude mice bearing BCSC‐derived tumors with omega‐3 fatty acids also significantly reduced their tumor load. These findings have demonstrated that increased lipogenesis is critical for self‐renewal and growth of BCSC, and that omega‐3 fatty acids are effective in targeting this pathway to exert their anticancer effect.
Collapse
Affiliation(s)
- Haiqing Luo
- Center of Oncology, The Affiliated Hospital of Guangdong Medical University, Guangdong, People's Republic of China.,Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Chih-Yu Chen
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiangyong Li
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Xin Zhang
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, People's Republic of China
| | - Chien-Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yinghua Liu
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tinglan Cao
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lei Hao
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Meng Wang
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology (LLMT), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Zembroski AS, Andolino C, Buhman KK, Teegarden D. Proteomic Characterization of Cytoplasmic Lipid Droplets in Human Metastatic Breast Cancer Cells. Front Oncol 2021; 11:576326. [PMID: 34141606 PMCID: PMC8204105 DOI: 10.3389/fonc.2021.576326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
One of the characteristic features of metastatic breast cancer is increased cellular storage of neutral lipid in cytoplasmic lipid droplets (CLDs). CLD accumulation is associated with increased cancer aggressiveness, suggesting CLDs contribute to metastasis. However, how CLDs contribute to metastasis is not clear. CLDs are composed of a neutral lipid core, a phospholipid monolayer, and associated proteins. Proteins that associate with CLDs regulate both cellular and CLD metabolism; however, the proteome of CLDs in metastatic breast cancer and how these proteins may contribute to breast cancer progression is unknown. Therefore, the purpose of this study was to identify the proteome and assess the characteristics of CLDs in the MCF10CA1a human metastatic breast cancer cell line. Utilizing shotgun proteomics, we identified over 1500 proteins involved in a variety of cellular processes in the isolated CLD fraction. Interestingly, unlike other cell lines such as adipocytes or enterocytes, the most enriched protein categories were involved in cellular processes outside of lipid metabolism. For example, cell-cell adhesion was the most enriched category of proteins identified, and many of these proteins have been implicated in breast cancer metastasis. In addition, we characterized CLD size and area in MCF10CA1a cells using transmission electron microscopy. Our results provide a hypothesis-generating list of potential players in breast cancer progression and offers a new perspective on the role of CLDs in cancer.
Collapse
Affiliation(s)
- Alyssa S Zembroski
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Chaylen Andolino
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
42
|
Simeone P, Tacconi S, Longo S, Lanuti P, Bravaccini S, Pirini F, Ravaioli S, Dini L, Giudetti AM. Expanding Roles of De Novo Lipogenesis in Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3575. [PMID: 33808259 PMCID: PMC8036647 DOI: 10.3390/ijerph18073575] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/27/2021] [Indexed: 12/23/2022]
Abstract
In recent years, lipid metabolism has gained greater attention in several diseases including cancer. Dysregulation of fatty acid metabolism is a key component in breast cancer malignant transformation. In particular, de novo lipogenesis provides the substrate required by the proliferating tumor cells to maintain their membrane composition and energetic functions during enhanced growth. However, it appears that not all breast cancer subtypes depend on de novo lipogenesis for fatty acid replenishment. Indeed, while breast cancer luminal subtypes rely on de novo lipogenesis, the basal-like receptor-negative subtype overexpresses genes involved in the utilization of exogenous-derived fatty acids, in the synthesis of triacylglycerols and lipid droplets, and fatty acid oxidation. These metabolic differences are specifically associated with genomic and proteomic changes that can perturb lipogenic enzymes and related pathways. This behavior is further supported by the observation that breast cancer patients can be stratified according to their molecular profiles. Moreover, the discovery that extracellular vesicles act as a vehicle of metabolic enzymes and oncometabolites may provide the opportunity to noninvasively define tumor metabolic signature. Here, we focus on de novo lipogenesis and the specific differences exhibited by breast cancer subtypes and examine the functional contribution of lipogenic enzymes and associated transcription factors in the regulation of tumorigenic processes.
Collapse
Affiliation(s)
- Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (P.S.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Tacconi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (P.S.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Sara Ravaioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Luciana Dini
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, 73100 Lecce, Italy
| | - Anna M. Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| |
Collapse
|
43
|
Song LB, Luan JC, Zhang QJ, Chen L, Wang HY, Cao XC, Song NH, Lu Y. The Identification and Validation of a Robust Immune-Associated Gene Signature in Cutaneous Melanoma. J Immunol Res 2021; 2021:6686284. [PMID: 33688507 PMCID: PMC7911606 DOI: 10.1155/2021/6686284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/21/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cutaneous melanoma is defined as one of the most aggressive skin tumors in the world. An increasing body of evidence suggested an indispensable association between immune-associated gene (IAG) signature and melanoma. This article is aimed at formulating an IAG signature to estimate prognosis of melanoma. METHODS 434 melanoma patients were extracted from The Cancer Genome Atlas (TCGA) database, and 1811 IAGs were downloaded from the ImmPort database in our retrospective study. The Cox regression analysis and LASSO regression analysis were utilized to establish a prognostic IAG signature. The Kaplan-Meier (KM) survival analysis was performed, and the time-dependent receiver operating characteristic curve (ROC) analysis was further applied to assess the predictive value. Besides, the propensity score algorithm was utilized to balance the confounding clinical factors between the high- and low-risk groups. RESULTS A total of six prognostic IAGs comprising of INHA, NDRG1, IFITM1, LHB, GBP2, and CCL8 were eventually filtered out. According to the KM survival analysis, the results displayed a shorter overall survival (OS) in the high-risk group compared to the low-risk group. In the multivariate Cox model, the gene signature was testified as a remarkable prognostic factor (HR = 45.423, P < 0.001). Additionally, the ROC curve analyses were performed which demonstrated our IAG signature was superior to four known biomarkers mentioned in the study. Moreover, the IAG signature was significantly related to immunotherapy-related biomarkers. CONCLUSION Our study demonstrated that the six IAG signature played a critical role in the prognosis and immunotherapy of melanoma, which might help clinicians predict patients' survival and provide individualized treatment.
Collapse
Affiliation(s)
- Le-Bin Song
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiao-Chen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi-Jie Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao-Yang Wang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue-Chen Cao
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning-Hong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, Xinjiang, China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
44
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
45
|
Mustonen V, Muruganandam G, Loris R, Kursula P, Ruskamo S. Crystal and solution structure of NDRG1, a membrane-binding protein linked to myelination and tumour suppression. FEBS J 2021; 288:3507-3529. [PMID: 33305529 DOI: 10.1111/febs.15660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023]
Abstract
N-myc downstream-regulated gene 1 (NDRG1) is a tumour suppressor involved in vesicular trafficking and stress response. NDRG1 participates in peripheral nerve myelination, and mutations in the NDRG1 gene lead to Charcot-Marie-Tooth neuropathy. The 43-kDa NDRG1 is considered as an inactive member of the α/β hydrolase superfamily. In addition to a central α/β hydrolase fold domain, NDRG1 consists of a short N terminus and a C-terminal region with three 10-residue repeats. We determined the crystal structure of the α/β hydrolase domain of human NDRG1 and characterised the structure and dynamics of full-length NDRG1. The structure of the α/β hydrolase domain resembles the canonical α/β hydrolase fold with a central β sheet surrounded by α helices. Small-angle X-ray scattering and CD spectroscopy indicated a variable conformation for the N- and C-terminal regions. NDRG1 binds to various types of lipid vesicles, and the conformation of the C-terminal region is modulated upon lipid interaction. Intriguingly, NDRG1 interacts with metal ions, such as nickel, but is prone to aggregation in their presence. Our results uncover the structural and dynamic features of NDRG1, as well as elucidate its interactions with metals and lipids, and encourage studies to identify a putative hydrolase activity of NDRG1. DATABASES: The coordinates and structure factors for the crystal structure of human NDRG1 were deposited to PDB (PDB ID: 6ZMM).
Collapse
Affiliation(s)
- Venla Mustonen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.,Department of Biomedicine, University of Bergen, Norway
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| |
Collapse
|
46
|
Trailblazing perspectives on targeting breast cancer stem cells. Pharmacol Ther 2021; 223:107800. [PMID: 33421449 DOI: 10.1016/j.pharmthera.2021.107800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BCa) is one of the most prevalent malignant tumors affecting women's health worldwide. The recurrence and metastasis of BCa have made it a long-standing challenge to achieve remission-persistent or disease-undetectable clinical outcomes. Cancer stem cells (CSCs) possess the ability to self-renew and generate heterogeneous tumor bulk. The existence of CSCs has been found to be vital in the initiation, metastasis, therapy resistance, and recurrence of tumors across cancer types. Because CSCs grow slowly in their dormant state, they are insensitive to conventional chemotherapies; however, when CSCs emerge from their dormant state and become clinically evident, they usually acquire genetic traits that make them resistant to existing therapies. Moreover, CSCs also show evidence of acquired drug resistance in synchrony with tumor relapses. The concept of CSCs provides a new treatment strategy for BCa. In this review, we highlight the recent advances in research on breast CSCs and their association with epithelial-mesenchymal transition (EMT), circulating tumor cells (CTCs), plasticity of tumor cells, tumor microenvironment (TME), T-cell modulatory protein PD-L1, and non-coding RNAs. On the basis that CSCs are associated with multiple dysregulated biological processes, we envisage that increased understanding of disease sub-classification, selected combination of conventional treatment, molecular aberration directed therapy, immunotherapy, and CSC targeting/sensitizing strategy might improve the treatment outcome of patients with advanced BCa. We also discuss novel perspectives on new drugs and therapeutics purposing the potent and selective expunging of CSCs.
Collapse
|
47
|
Liu J, Chen Z, Li W. Machine Learning for Building Immune Genetic Model in Hepatocellular Carcinoma Patients. JOURNAL OF ONCOLOGY 2021; 2021:6676537. [PMID: 33790969 PMCID: PMC7994091 DOI: 10.1155/2021/6676537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading liver cancer with special immune microenvironment, which played vital roles in tumor relapse and poor drug responses. In this study, we aimed to explore the prognostic immune signatures in HCC and tried to construct an immune-risk model for patient evaluation. METHODS RNA sequencing profiles of HCC patients were collected from the cancer genome Atlas (TCGA), international cancer genome consortium (ICGC), and gene expression omnibus (GEO) databases (GSE14520). Differentially expressed immune genes, derived from ImmPort database and MSigDB signaling pathway lists, between tumor and normal tissues were analyzed with Limma package in R environment. Univariate Cox regression was performed to find survival-related immune genes in TCGA dataset, and in further random forest algorithm analysis, significantly changed immune genes were used to generate a multivariate Cox model to calculate the corresponding immune-risk score. The model was examined in the other two datasets with recipient operation curve (ROC) and survival analysis. Risk effects of immune-risk score and clinical characteristics of patients were individually evaluated, and significant factors were then used to generate a nomogram. RESULTS There were 52 downregulated and 259 upregulated immune genes between tumor and relatively normal tissues, and the final immune-risk model (based on SPP1, BRD8, NDRG1, KITLG, HSPA4, TRAF3, ITGAV and MAP4K2) can better differentiate patients into high and low immune-risk subpopulations, in which high score patients showed worse outcomes after resection (p < 0.05). The differentially enriched pathways between the two groups were mainly about cell proliferation and cytokine production, and calculated immune-risk score was also highly correlated with immune infiltration levels. The nomogram, constructed with immune-risk score and tumor stages, showed high accuracy and clinical benefits in prediction of 1-, 3- and 5-year overall survival, which is useful in clinical practice. CONCLUSION The immune-risk model, based on expression of SPP1, BRD8, NDRG1, KITLG, HSPA4, TRAF3, ITGAV, and MAP4K2, can better differentiate patients into high and low immune-risk groups. Combined nomogram, using immune-risk score and tumor stages, could make accurate prediction of 1-, 3- and 5-year survival in HCC patients.
Collapse
Affiliation(s)
- Jun Liu
- Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Zheng Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong, China
| |
Collapse
|
48
|
Berghoff AS, Liao Y, Karreman MA, Ilhan-Mutlu A, Gunkel K, Sprick MR, Eisen C, Kessler T, Osswald M, Wünsche S, Feinauer M, Gril B, Marmé F, Michel LL, Bago-Horvath Z, Sahm F, Becker N, Breckwoldt MO, Solecki G, Gömmel M, Huang L, Rübmann P, Thome CM, Ratliff M, Trumpp A, Steeg PS, Preusser M, Wick W, Winkler F. Identification and Characterization of Cancer Cells That Initiate Metastases to the Brain and Other Organs. Mol Cancer Res 2020; 19:688-701. [PMID: 33443114 DOI: 10.1158/1541-7786.mcr-20-0863] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/08/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022]
Abstract
Specific biological properties of those circulating cancer cells that are the origin of brain metastases (BM) are not well understood. Here, single circulating breast cancer cells were fate-tracked during all steps of the brain metastatic cascade in mice after intracardial injection over weeks. A novel in vivo two-photon microscopy methodology was developed that allowed to determine the specific cellular and molecular features of breast cancer cells that homed in the brain, extravasated, and successfully established a brain macrometastasis. Those BM-initiating breast cancer cells (BMIC) were mainly originating from a slow-cycling subpopulation that included only 16% to 20% of all circulating cancer cells. BMICs showed enrichment of various markers of cellular stemness. As a proof of principle for the principal usefulness of this approach, expression profiling of BMICs versus non-BMICs was performed, which revealed upregulation of NDRG1 in the slow-cycling BMIC subpopulation in one BM model. Here, BM development was completely suppressed when NDRG1 expression was downregulated. In accordance, in primary human breast cancer, NDRG1 expression was heterogeneous, and high NDRG1 expression was associated with shorter metastasis-free survival. In conclusion, our data identify temporary slow-cycling breast cancer cells as the dominant source of brain and other metastases and demonstrates that this can lead to better understanding of BMIC-relevant pathways, including potential new approaches to prevent BM in patients. IMPLICATIONS: Cancer cells responsible for successful brain metastasis outgrowth are slow cycling and harbor stemness features. The molecular characteristics of these metastasis-initiating cells can be studied using intravital microscopy technology.
Collapse
Affiliation(s)
- Anna S Berghoff
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - Yunxiang Liao
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Katharina Gunkel
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin R Sprick
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christian Eisen
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tobias Kessler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Osswald
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Susanne Wünsche
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel Feinauer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Brunhilde Gril
- Women's Malignancies Branch, Laboratory of Pathology, Center for Cancer Research, Biostatistics and Data Management Section, NCI, NIH, Bethesda; Laboratory Animal Sciences Program, SAIC-Frederick, NCI, NIH, Frederick, Maryland
| | - Frederic Marmé
- Department of Gynecology and Obstetrics and National Center for Tumor Diseases, University Hospital, Heidelberg, Germany
| | - Laura L Michel
- Department of Gynecology and Obstetrics and National Center for Tumor Diseases, University Hospital, Heidelberg, Germany
| | | | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls University Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natalia Becker
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Gergely Solecki
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Miriam Gömmel
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Lulu Huang
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Petra Rübmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Carina M Thome
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Miriam Ratliff
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Patricia S Steeg
- Women's Malignancies Branch, Laboratory of Pathology, Center for Cancer Research, Biostatistics and Data Management Section, NCI, NIH, Bethesda; Laboratory Animal Sciences Program, SAIC-Frederick, NCI, NIH, Frederick, Maryland
| | - Matthias Preusser
- Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
49
|
NDRG1 Expression Is an Independent Prognostic Factor in Inflammatory Breast Cancer. Cancers (Basel) 2020; 12:cancers12123711. [PMID: 33321961 PMCID: PMC7763268 DOI: 10.3390/cancers12123711] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Inflammatory breast cancer (IBC) is a rare and aggressive variant of breast cancer that is responsible for a significant number of breast cancer-related deaths. Herein, we describe how the expression of a specific protein named N-myc downstream-regulated gene 1 (NDRG1), commonly described as a gene that prevents the spread of cancer cells to distant organs, may have a paradoxical role in cancer progression in IBC. We found that the level of expression of NDRG1 in tumor tissues predicts the survival outcome of patients with IBC. We also observed that NDRG1, together with other important prognostic factors such as estrogen receptor status and stage, could be used to further analyze prognostic outcome or treatment response of patients. Abstract NDRG1 is widely described as a metastasis suppressor in breast cancer. However, we found that NDRG1 is critical in promoting tumorigenesis and brain metastasis in mouse models of inflammatory breast cancer (IBC), a rare but highly aggressive form of breast cancer. We hypothesized that NDRG1 is a prognostic marker associated with poor outcome in patients with IBC. NDRG1 levels in tissue microarrays from 64 IBC patients were evaluated by immunohistochemical staining with NDRG1 (32 NDRG1-low (≤median), 32 NDRG1-high (>median)). Overall and disease-free survival (OS and DSS) were analyzed with Kaplan–Meier curves and log-rank test. Univariate analysis showed NDRG1 expression, tumor grade, disease stage, estrogen receptor (ER) status, and receipt of adjuvant radiation to be associated with OS and DSS. NDRG1-high patients had poorer 10-year OS and DSS than NDRG1-low patients (OS, 19% vs. 45%, p = 0.0278; DSS, 22% vs. 52%, p = 0.0139). On multivariable analysis, NDRG1 independently predicted OS (hazard ratio (HR) = 2.034, p = 0.0274) and DSS (HR = 2.287, p = 0.0174). NDRG1-high ER-negative tumors had worse outcomes OS, p = 0.0003; DSS, p = 0.0003; and NDRG1-high tumors that received adjuvant radiation treatment had poor outcomes (OS, p = 0.0088; DSS, p = 0.0093). NDRG1 was a significant independent prognostic factor for OS and DSS in IBC patients. Targeting NDRG1 may represent a novel strategy for improving clinical outcomes for patients with IBC.
Collapse
|
50
|
Skedsmo FS, Espenes A, Tranulis MA, Matiasek K, Gunnes G, Bjerkås I, Moe L, Røed SS, Berendt M, Fredholm M, Rohdin C, Shelton GD, Bruheim P, Stafsnes MH, Bartosova Z, Hermansen LC, Stigen Ø, Jäderlund KH. Impaired NDRG1 functions in Schwann cells cause demyelinating neuropathy in a dog model of Charcot-Marie-Tooth type 4D. Neuromuscul Disord 2020; 31:56-68. [PMID: 33334662 DOI: 10.1016/j.nmd.2020.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022]
Abstract
Mutations in the N-myc downstream-regulated gene 1 (NDRG1) cause degenerative polyneuropathy in ways that are poorly understood. We have investigated Alaskan Malamute dogs with neuropathy caused by a missense mutation in NDRG1. In affected animals, nerve levels of NDRG1 protein were reduced by more than 70% (p< 0.03). Nerve fibers were thinly myelinated, loss of large myelinated fibers was pronounced and teased fiber preparations showed both demyelination and remyelination. Inclusions of filamentous material containing actin were present in adaxonal Schwann cell cytoplasm and Schmidt-Lanterman clefts. This condition strongly resembles the human Charcot-Marie-Tooth type 4D. However, the focally folded myelin with adaxonal infoldings segregating the axon found in this study are ultrastructural changes not described in the human disease. Furthermore, lipidomic analysis revealed a profound loss of peripheral nerve lipids. Our data suggest that the low levels of mutant NDRG1 is insufficient to support Schwann cells in maintaining myelin homeostasis.
Collapse
Affiliation(s)
- Fredrik S Skedsmo
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway.
| | - Arild Espenes
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Michael A Tranulis
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität, Veterinärstr. 13, D-80539 Munich, Germany
| | - Gjermund Gunnes
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Inge Bjerkås
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Lars Moe
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Susan Skogtvedt Røed
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Mette Berendt
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg C, Denmark
| | - Merete Fredholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg C, Denmark
| | - Cecilia Rohdin
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Ultunaalléen 5A, 756 51 Uppsala, Sweden; Anicura Albano Small Animal Hospital, Rinkebyvägen 21, 182 36 Danderyd, Sweden
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0709, United States of America
| | - Per Bruheim
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Sem Sælands vei 6, 7034 Trondheim, Norway
| | - Marit H Stafsnes
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Sem Sælands vei 6, 7034 Trondheim, Norway
| | - Zdenka Bartosova
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Sem Sælands vei 6, 7034 Trondheim, Norway
| | - Lene C Hermansen
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Universitetstunet 3, 1433 Ås, Norway
| | - Øyvind Stigen
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - Karin H Jäderlund
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| |
Collapse
|