1
|
Yang Q, Wang M, Dou W, Ren Y, Zhang T, Qian L, Xu Y, Li K, Wang M, Sun Y, Liu Z, Tan T. Parameter map guided explainable segmentation framework for breast cancer using amide proton transfer weighted imaging. Med Phys 2024. [PMID: 39699234 DOI: 10.1002/mp.17574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Amide proton transfer weighted (APTw) imaging has demonstrated extensive clinical applications in diagnosing, treating evaluating, and prognosis prediction of breast cancer. There is a pressing need to automatically segment breast lesions on APTw original images to facilitate downstream quantification, which is however challenging. PURPOSE To build a segmentation model on the original images of APTw imaging sequence by leveraging the varying contrasts between breast lesions and their surrounding glandular and fat tissues displayed on the original images of APTw imaging at different frequency offsets. METHODS This paper proposes a network with multiple tasks, including a breast lesion segmentation model (task I) incorporating multiple images at different frequencies with different contrasts between tumor and surrounding tissues, an automatic classification of pathological task (task II), and an APTw parameter map fitting (task III). RESULTS Compared with these advanced segmentation methods such as U-Net, segment anything model (SAM), segment anything in medical images (Med-SAM), and transfomer for MRI brain tumor segmentation (TransBTS), our method achieves higher accuracy (ACC). Furthermore, the model's interpretability facilitates the evaluation of how maps with varying gray contrasts contribute to the segmentation. Moreover, improving the ACC of segmentation can be accomplished through tasks such as pathological classification and parametric map fitting. CONCLUSIONS The pathological classification task and parameter fitting task could improve the ACC of segmentation.
Collapse
Affiliation(s)
- Qiuhui Yang
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
- Guangxi Key Laboratory of Machine Vision and Intelligent Control, Wuzhou University, Wuzhou, China
| | - Meng Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Shenzhen, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | | | - Ya Ren
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Shenzhen, China
| | - Tianyu Zhang
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Radiology, Netherlands Cancer Institute (NKI), Amsterdam, Netherlands
| | - Long Qian
- GE MR Research China, Shanghai, China
| | - Yi Xu
- Shanghai Key Lab of Digital Media Processing and Transmission, Shanghai Jiao Tong University, Shanghai, China
| | - Kefeng Li
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Mingwei Wang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yue Sun
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| | - Zhou Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Shenzhen, China
| | - Tao Tan
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, China
| |
Collapse
|
2
|
Yu J, Du X, Zhang S, Long J, Wu P, Li Z, Lyu X, Hong Q, Chen P, Gao B. Galunisertib promotes bevacizumab-induced vascular normalization in nasopharyngeal carcinoma: Multi-parameter MRI evaluation. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200858. [PMID: 39280586 PMCID: PMC11399656 DOI: 10.1016/j.omton.2024.200858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024]
Abstract
Tumor vascular normalization (TVN) is associated with antitumor therapeutic efficacy in nasopharyngeal carcinoma (NPC). However, the short time window of TVN is the biggest hindrance to its wide clinical application. We investigated whether targeting transforming growth factor beta can enhance the TVN effect of bevacizumab (BEV)-induced patient-derived xenograft (PDX) models of NPC. We constructed mouse subcutaneous PDX models of NPC and classified the mice into four drug-treatment groups, namely placebo control, galunisertib, BEV, and galunisertib + BEV. We performed MRI multi-parameter examinations at different time points and evaluated the vascular density, vascular structure, and tumor hypoxia microenvironment by histopathology. The efficacy of chemotherapy and drug delivery was evaluated by administering cisplatin. We found that combined therapy with galunisertib and BEV significantly delayed tumor growth, enhanced the TVN effect, and improved chemotherapeutic efficacy compared with monotherapy. Mechanistically, galunisertib reversed the epithelial-mesenchymal transition process and inhibited the expression of hypoxia-inducible factor 1α and vascular endothelial growth factor by downregulating LAMC2. Correlation analysis of MRI data and pathological indicators showed that there was a good correlation between them.
Collapse
Affiliation(s)
- Jing Yu
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Xia Du
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Shuai Zhang
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Jinhua Long
- Department of Head & Neck, The Affiliated Tumor Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Peng Wu
- Philips Healthcare, Shanghai 200072, China
| | - Zongxue Li
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Xinyue Lyu
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Qin Hong
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang 550001, Guizhou Province, China
| | - Pengyu Chen
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Bo Gao
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
- Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| |
Collapse
|
3
|
Gammaraccio F, Villano D, Irrera P, Anemone AA, Carella A, Corrado A, Longo DL. Development and Validation of Four Different Methods to Improve MRI-CEST Tumor pH Mapping in Presence of Fat. J Imaging 2024; 10:166. [PMID: 39057737 PMCID: PMC11277679 DOI: 10.3390/jimaging10070166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
CEST-MRI is an emerging imaging technique suitable for various in vivo applications, including the quantification of tumor acidosis. Traditionally, CEST contrast is calculated by asymmetry analysis, but the presence of fat signals leads to wrong contrast quantification and hence to inaccurate pH measurements. In this study, we investigated four post-processing approaches to overcome fat signal influences and enable correct CEST contrast calculations and tumor pH measurements using iopamidol. The proposed methods involve replacing the Z-spectrum region affected by fat peaks by (i) using a linear interpolation of the fat frequencies, (ii) applying water pool Lorentzian fitting, (iii) considering only the positive part of the Z-spectrum, or (iv) calculating a correction factor for the ratiometric value. In vitro and in vivo studies demonstrated the possibility of using these approaches to calculate CEST contrast and then to measure tumor pH, even in the presence of moderate to high fat fraction values. However, only the method based on the water pool Lorentzian fitting produced highly accurate results in terms of pH measurement in tumor-bearing mice with low and high fat contents.
Collapse
Affiliation(s)
- Francesco Gammaraccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Daisy Villano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Pietro Irrera
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Annasofia A. Anemone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| |
Collapse
|
4
|
Martinez Luque E, Liu Z, Sung D, Goldberg RM, Agarwal R, Bhattacharya A, Ahmed NS, Allen JW, Fleischer CC. An Update on MR Spectroscopy in Cancer Management: Advances in Instrumentation, Acquisition, and Analysis. Radiol Imaging Cancer 2024; 6:e230101. [PMID: 38578207 PMCID: PMC11148681 DOI: 10.1148/rycan.230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 04/06/2024]
Abstract
MR spectroscopy (MRS) is a noninvasive imaging method enabling chemical and molecular profiling of tissues in a localized, multiplexed, and nonionizing manner. As metabolic reprogramming is a hallmark of cancer, MRS provides valuable metabolic and molecular information for cancer diagnosis, prognosis, treatment monitoring, and patient management. This review provides an update on the use of MRS for clinical cancer management. The first section includes an overview of the principles of MRS, current methods, and conventional metabolites of interest. The remainder of the review is focused on three key areas: advances in instrumentation, specifically ultrahigh-field-strength MRI scanners and hybrid systems; emerging methods for acquisition, including deuterium imaging, hyperpolarized carbon 13 MRI and MRS, chemical exchange saturation transfer, diffusion-weighted MRS, MR fingerprinting, and fast acquisition; and analysis aided by artificial intelligence. The review concludes with future recommendations to facilitate routine use of MRS in cancer management. Keywords: MR Spectroscopy, Spectroscopic Imaging, Molecular Imaging in Oncology, Metabolic Reprogramming, Clinical Cancer Management © RSNA, 2024.
Collapse
Affiliation(s)
- Eva Martinez Luque
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Zexuan Liu
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Dongsuk Sung
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Rachel M. Goldberg
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Rishab Agarwal
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Aditya Bhattacharya
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Nadine S. Ahmed
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Jason W. Allen
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Candace C. Fleischer
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| |
Collapse
|
5
|
Li Y, Zhang Y, Tian L, Li J, Li H, Wang X, Wang C. 3D amide proton transfer-weighted imaging may be useful for diagnosing early-stage breast cancer: a prospective monocentric study. Eur Radiol Exp 2024; 8:41. [PMID: 38584248 PMCID: PMC10999404 DOI: 10.1186/s41747-024-00439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/17/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND We investigated the value of three-dimensional amide proton transfer-weighted imaging (3D-APTWI) in the diagnosis of early-stage breast cancer (BC) and its correlation with the immunohistochemical characteristics of malignant lesions. METHODS Seventy-eight women underwent APTWI and dynamic contrast-enhanced (DCE)-MRI. Pathological results were categorized as either benign (n = 43) or malignant (n = 37) lesions. The parameters of APTWI and DCE-MRI were compared between the benign and malignant groups. The diagnostic value of 3D-APTWI was evaluated using the area under the receiver operating characteristic curve (ROC-AUC) to establish a diagnostic threshold. Pearson's correlation was used to analyze the correlation between the magnetization transfer asymmetry (MTRasym) and immunohistochemical characteristics. RESULTS The MTRasym and time-to-peak of malignancies were significantly lower than those of benign lesions (all p < 0.010). The volume transfer constant, rate constant, and wash-in and wash-out rates of malignancies were all significantly greater than those of benign lesions (all p < 0.010). ROC-AUCs of 3D-APTWI, DCE-MRI, and 3D-APTWI+DCE to differential diagnosis between early-stage BC and benign lesions were 0.816, 0.745, and 0.858, respectively. Only the difference between AUCAPT+DCE and AUCDCE was significant (p < 0.010). When a threshold of MTRasym for malignancy for 2.42%, the sensitivity and specificity of 3D-APTWI for BC diagnosis were 86.5% and 67.6%, respectively; MTRasym was modestly positively correlated with pathological grade (r = 0.476, p = 0.003) and Ki-67 (r = 0.419, p = 0.020). CONCLUSIONS 3D-APTWI may be used as a supplementary method for patients with contraindications of DCE-MRI. MTRasym can imply the proliferation activities of early-stage BC. RELEVANCE STATEMENT 3D-APTWI can be an alternative diagnostic method for patients with early-stage BC who are not suitable for contrast injection. KEY POINTS • 3D-APTWI reflects the changes in the microenvironment of early-stage breast cancer. • Combined 3D-APTWI is superior to DCE-MRI alone for early-stage breast cancer diagnosis. • 3D-APTWI improves the diagnostic accuracy of early-stage breast cancer.
Collapse
Affiliation(s)
- Yeqin Li
- Department of Radiology, Shandong Province Hospital of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yan Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medcial University, Jinan, 250021, China
| | - Liwen Tian
- Department of Radiology, Shandong Public Health Clinical Center, Jinan, 250100, China
| | - Ju Li
- Department of Radiology, Shandong Public Health Clinical Center, Jinan, 250100, China
- Binzhou Medical University, Yantai, 264003, China
| | - Huihua Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medcial University, Jinan, 250021, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medcial University, Jinan, 250021, China
| | - Cuiyan Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medcial University, Jinan, 250021, China.
| |
Collapse
|
6
|
Zhang N, Song Q, Liang H, Wang Z, Wu Q, Zhang H, Zhang L, Liu A, Wang H, Wang J, Lin L. Early prediction of pathological response to neoadjuvant chemotherapy of breast tumors: a comparative study using amide proton transfer-weighted, diffusion weighted and dynamic contrast enhanced MRI. Front Med (Lausanne) 2024; 11:1295478. [PMID: 38298813 PMCID: PMC10827983 DOI: 10.3389/fmed.2024.1295478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
Objective To examine amide proton transfer-weighted (APTw) combined with diffusion weighed (DWI) and dynamic contrast enhanced (DCE) MRI for early prediction of pathological response to neoadjuvant chemotherapy in invasive breast cancer. Materials In this prospective study, 50 female breast cancer patients (49.58 ± 10.62 years old) administered neoadjuvant chemotherapy (NAC) were enrolled with MRI carried out both before NAC (T0) and at the end of the second cycle of NAC (T1). The patients were divided into 2 groups based on tumor response according to the Miller-Payne Grading (MPG) system. Group 1 included patients with a greater degree of decrease in major histologic responder (MHR, Miller-Payne G4-5), while group 2 included non-MHR cases (Miller-Payne G1-3). Traditional imaging protocols (T1 weighted, T2 weighted, diffusion weighted, and DCE-MRI) and APTw imaging were scanned for each subject before and after treatment. APTw value (APTw0 and APTw1), Dmax (maximum diameter, Dmax0 and Dmax1), V (3D tumor volume, V0 and V1), and ADC (apparent diffusion coefficient, ADC0 and ADC1) before and after treatment, as well as changes between the two times points (ΔAPT, ΔDmax, ΔV, ΔADC) for breast tumors were compared between the two groups. Results APT0 and APT1 values significantly differed between the two groups (p = 0.034 and 0.01). ΔAPTw values were significantly lower in non-MHR tumors compared with MHR tumors (p = 0.015). ΔDmax values were significantly higher in MHR tumors compared with non-MHR tumors (p = 0.005). ADC0 and ADC1 values were significantly higher in MHR tumors than in non-MHR tumors (p = 0.038 and 0.035). AUC (Dmax+DWI + APTw) = AUC (Dmax+APTw) > AUC (APTw) > AUC (Dmax+DWI) > AUC (Dmax). Conclusion APTw imaging along with change of tumor size showed a significant potential in early prediction of MHR for NAC treatment in breast cancer, which might allow timely regimen refinement before definitive surgical treatment.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hongbing Liang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhuo Wang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi Wu
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Haonan Zhang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lina Zhang
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huali Wang
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiazheng Wang
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| | - Liangjie Lin
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| |
Collapse
|
7
|
Yu T, Li L, Shi J, Gong X, Cheng Y, Wang W, Cao Y, Cao M, Jiang F, Wang L, Wang X, Zhang J. Predicting histopathological types and molecular subtype of breast tumors: A comparative study using amide proton transfer-weighted imaging, intravoxel incoherent motion and diffusion kurtosis imaging. Magn Reson Imaging 2024; 105:37-45. [PMID: 37890802 DOI: 10.1016/j.mri.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
PURPOSE To evaluate the predictive performance of multiparameter and histogram features derived from amide proton transfer-weighted imaging (APTWI), intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) for histopathological types of breast tumors. METHODS Region of interest (ROI) was delineated by outlining the largest slice of the tumor on the false-color images of the DKI, IVIM and APTWI parameters, and extracted the histogram features. Receiver operating characteristic (ROC) curve was used to evaluate the performance of parameters in predicting benign and malignant breast lesions, molecular prognostic biomarkers, lymph node status, and subtypes of breast lesions. The Spearman correlation coefficient was used to determine the correlations between each parameter and clinical-pathological factors. RESULTS All 52 breast lesions were enrolled in this prospective study, including 8 benign lesions and 44 breast cancers. To diagnose malignant and benign breast lesions, the value of APT (min) performed best, with the AUC reaching 0.983. According to the different imaging methods, the APTWI performed best. To predict the positive status of ER, PR, Ki67, the value of Dapp (uniformity), Dapp (uniformity), f (entropy) performed best, with the AUC values reaching 0.743, 0.770, 0.848, respectively. For the identification of Luminal B, HER2-enriched, and TNBC breast cancers, Kapp (max), f (kurtosis), and Dapp (uniformity) performed best, with AUC values reaching 0.679, 0.826, 0.771, respectively. CONCLUSION This study found the APTWI, IVIM and DKI parameters could diagnose breast cancer. The histogram features of DKI and IVIM, based on tumor heterogeneity, may help to predict breast cancer subtypes.
Collapse
Affiliation(s)
- Tao Yu
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Lan Li
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Jinfang Shi
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Xueqin Gong
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Yue Cheng
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Wei Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Ying Cao
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Meimei Cao
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Fujie Jiang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Lu Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Xiaoxia Wang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China.
| |
Collapse
|
8
|
Liu Z, Wen J, Wang M, Ren Y, Yang Q, Qian L, Luo H, Feng S, He C, Liu X, Wu Y, Luo D. Breast Amide Proton Transfer Imaging at 3 T: Diagnostic Performance and Association With Pathologic Characteristics. J Magn Reson Imaging 2023; 57:824-833. [PMID: 35816177 DOI: 10.1002/jmri.28335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Amide proton transfer (APT) imaging has been increasingly applied in tumor characterization. However, its value in evaluating breast cancer remains undetermined. PURPOSE To assess the diagnostic performance of APT imaging in breast cancer and its association with prognostic histopathologic characteristics. STUDY TYPE Prospective. SUBJECTS Eighty-four patients with breast lesions. FIELD STRENGTH/SEQUENCE A 3.0 T/single-shot fast spin echo APT imaging. ASSESSMENT APTw signal in breast lesion was quantified. Lesion malignancy, T stage, grades, Ki-67 index, molecular biomarkers (estrogen receptor [ER] expression, progesterone receptor [PR] expression, human epidermal growth factor receptor [HER-2] expression), molecular subtypes (luminal A, luminal B, triple negative, and HER-2 enriched) were determined. STATISTICAL TESTS Student t-test, one-way analysis of variance, receiver operating characteristic analysis, and Pearson's correlation with P < 0.05 as statistical significance. RESULTS APTw signal was significantly higher in malignant lesions (1.55% ± 1.24%) than in benign lesions (0.54% ± 1.13%), and in grade III lesions than in grade II lesions (1.65% ± 0.84% vs. 0.96% ± 0.96%), and in T2- (1.57% ± 0.64%) and T3-stage lesions (1.54% ± 0.63%) than in T1-stage lesions (0.81% ± 0.64%) for invasive breast carcinoma of no special type. APTw signal significantly correlated with Ki-67 index (r = 0.364) but showed no significant difference in groups of ER (P = 0.069), PR (P = 0.069), HER-2 (P = 0.961), and among molecular subtypes (P = 0.073). DATA CONCLUSION APT imaging shows potential in differentiating breast lesion malignancy and associates with prognosis-related tumor grade, T stage, and proliferative activity. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.,Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jie Wen
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Meng Wang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Ya Ren
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Qian Yang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Honghong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Sha Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Cuiju He
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dehong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.,Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Loi L, Goerke S, Zimmermann F, Korzowski A, Meissner JE, Breitling J, Schott S, Bachert P, Ladd ME, Schlemmer HP, Bickelhaupt S, Paech D. Assessing the influence of the menstrual cycle on APT CEST-MRI in the human breast. Magn Reson Imaging 2022; 91:24-31. [PMID: 35550841 DOI: 10.1016/j.mri.2022.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE In fibroglandular breast tissue, conventional dynamic contrast-enhanced MR-mammography is known to be affected by water content changes during the menstrual cycle. Likewise, amide proton transfer (APT) chemical exchange saturation transfer (CEST)-MRI might be inherently prone to the menstrual cycle, as CEST signals are indirectly detected via the water signal. The purpose of this study was to investigate the influence of the menstrual cycle on APT CEST-MRI in fibroglandular breast tissue. METHOD Ten healthy premenopausal women (19-34 years) were included in this IRB approved prospective study and examined twice during their menstrual cycle. Examination one and two were performed during the first half (day 2-8) and the second half (day 15-21) of the menstrual cycle, respectively. As a reference for the APT signal in malignant breast tumor tissue, previously reported data of nine breast cancer patients were included in this study. CEST-MRI (B1 = 0.7μT) was performed on a 7 T whole-body scanner followed by a multi-Lorentzian fit analysis. The APT signal was corrected for B0/B1-field inhomogeneities, fat signal contribution, and relaxation effects of the water signal and evaluated in the fibroglandular breast tissue. Intra-individual APT signal differences between examination one and two were compared using the Wilcoxon signed-rank test. The level of significance was set at p < 0.05. RESULTS The APT signal showed no significant difference in the fibroglandular breast tissue of healthy premenopausal volunteers throughout the menstrual cycle (p = 1.00) (examination 1 vs. examination 2: mean and standard deviation = 3.24 ± 0.68%Hz vs. 3.30 ± 0.73%Hz, median and IQR = 3.36%Hz and 0.87%Hz vs. 3.38%Hz and 0.71%Hz). CONCLUSION The present study provides an important basis for the clinical application of APT CEST-MRI as an additional contrast mechanism in MR-mammography, as menstrual cycle-related APT signal fluctuations seem to be negligible compared to the APT signal increase in breast cancer tissue.
Collapse
Affiliation(s)
- Lisa Loi
- German Cancer Research Center, Department of Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Steffen Goerke
- German Cancer Research Center, Department of Medical Physics in Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ferdinand Zimmermann
- German Cancer Research Center, Department of Medical Physics in Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Andreas Korzowski
- German Cancer Research Center, Department of Medical Physics in Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jan-Eric Meissner
- German Cancer Research Center, Department of Medical Physics in Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Johannes Breitling
- German Cancer Research Center, Department of Medical Physics in Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sarah Schott
- University Hospital Heidelberg, Department of Gynecology and Obstetrics, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Peter Bachert
- German Cancer Research Center, Department of Medical Physics in Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - Mark E Ladd
- Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany; German Cancer Research Center, Department of Medical Physics in Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- German Cancer Research Center, Department of Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Sebastian Bickelhaupt
- German Cancer Research Center, Department of Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Research Center, Junior Group Medical Imaging and Radiology - Cancer Prevention, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Daniel Paech
- German Cancer Research Center, Department of Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Song Q, Chen P, Chen X, Sun C, Wang J, Tan B, Liu H, Cheng Y. Dynamic Change of Amide Proton Transfer Imaging in Irradiated Nasopharyngeal Carcinoma and Related Histopathological Mechanism. Mol Imaging Biol 2021; 23:846-853. [PMID: 33876335 DOI: 10.1007/s11307-021-01607-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To investigate the dynamic change of amide proton transfer (APT) imaging before and after irradiation in nasopharyngeal carcinoma (NPC) and the underlying histopathological mechanism. MATERIALS AND METHODS Tumor-bearing BALB/C nude mouse models were established and randomly divided into three groups: high-dose group (20 Gy/2 fractions), low-dose group (10 Gy/2 fractions), and control group (0 Gy). MRI scanning was performed before irradiation and 3rd, 6th, and 9th day post-irradiation. Scanning sequence included T1 weighted, T2 weighted, and APT. HE staining and TUNEL immunofluorescence detection were performed to detect necrosis and apoptosis. RESULTS After high-dose irradiation, the mean tumor APT values decreased significantly on the 3rd day and 6th day (from 3.83 before radiotherapy to 2.41%, P < 0.001, 3rd day; from 2.41 to 1.80%, P = 0.001, 6th day). For low-dose irradiation, the mean tumor APT values decreased slightly on the 3rd day and 6th day (from 3.52 to 3.13%, P = 0.109, 3rd day; from 3.13 to 3.05%, P = 0.64, 6th day). The mean APT values of nonirradiated tumor changed slightly. In contrast, the average volume of high-dose irradiated tumors did not decrease obviously until the 9th day post-irradiation (from 290 before radiotherapy to 208 mm3 on the 9th day). The low-dose irradiated tumors showed slow growth, and the nonirradiated tumors showed rapid growth. Subsequent HE staining and TUNEL staining showed obvious necrosis characteristics and higher proportion of positive apoptotic cell nucleus in high-dose irradiated tumors, but not nonirradiated tumors. CONCLUSION The APT signal intensity decreased after irradiation, which is earlier than the change of tumor volume. What is more, the decrease of APT signal intensity is more significant in high-dose group. Histological analysis showed obvious apoptosis and necrosis histological characteristic in irradiated tumor, which may explain the decrease of APT signal intensity. These results indicate that APT imaging has the potential to serve as a reliable biomarker for response assessment in NPC.
Collapse
Affiliation(s)
- Qingxu Song
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xin Chen
- Department of MR, Shandong Medical Imaging Research Institute, Jinan, Shandong, People's Republic of China
| | - Cong Sun
- Department of MR, Shandong Medical Imaging Research Institute, Jinan, Shandong, People's Republic of China
| | - Jianbo Wang
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Bingxu Tan
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Hong Liu
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Gao T, Zou C, Li Y, Jiang Z, Tang X, Song X. A Brief History and Future Prospects of CEST MRI in Clinical Non-Brain Tumor Imaging. Int J Mol Sci 2021; 22:11559. [PMID: 34768990 PMCID: PMC8584005 DOI: 10.3390/ijms222111559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/12/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) MRI is a promising molecular imaging tool which allows the specific detection of metabolites that contain exchangeable amide, amine, and hydroxyl protons. Decades of development have progressed CEST imaging from an initial concept to a clinical imaging tool that is used to assess tumor metabolism. The first translation efforts involved brain imaging, but this has now progressed to imaging other body tissues. In this review, we summarize studies using CEST MRI to image a range of tumor types, including breast cancer, pelvic tumors, digestive tumors, and lung cancer. Approximately two thirds of the published studies involved breast or pelvic tumors which are sites that are less affected by body motion. Most studies conclude that CEST shows good potential for the differentiation of malignant from benign lesions with a number of reports now extending to compare different histological classifications along with the effects of anti-cancer treatments. Despite CEST being a unique 'label-free' approach with a higher sensitivity than MR spectroscopy, there are still some obstacles for implementing its clinical use. Future research is now focused on overcoming these challenges. Vigorous ongoing development and further clinical trials are expected to see CEST technology become more widely implemented as a mainstream imaging technology.
Collapse
Affiliation(s)
- Tianxin Gao
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Chuyue Zou
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Yifan Li
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Zhenqi Jiang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Xiaoying Tang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Xiaolei Song
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
13
|
Zhang N, Kang J, Wang H, Liu A, Miao Y, Ma X, Song Q, Zhang L, Wang J, Shen Z, Xu X. Differentiation of fibroadenomas versus malignant breast tumors utilizing three-dimensional amide proton transfer weighted magnetic resonance imaging. Clin Imaging 2021; 81:15-23. [PMID: 34597999 DOI: 10.1016/j.clinimag.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To explore the value of amide proton transfer-weighted (APTw) magnetic resonance imaging (MRI) for differential diagnosis of fibroadenomas and malignant breast tumors. MATERIALS AND METHODS This prospective study enrolled 56 patients with suspected breast tumors and performed APTw imaging. Based on the histopathology results, patients were divided into group 1 with malignant breast tumors (n = 41) and group 2 with fibroadenomas (n = 15). The measured image parameters (APTw value, ADC value, type of Time of Intensity Curve, maximum tumor diameter in image) and the maximal diameter of the tumors measured from surgical resection were compared between the two groups, and the diagnostic performance based on these parameters was quantified with ROC curve. Spearman's correlation coefficient was used to analyze the association between APTw or ADC values and ER, PR, HER2, and Ki-67 expressions. RESULTS The intraclass correlation coefficients (ICC = 0.87 and 0.91) indicated a good inter-observer agreement of the measured APTw values. APTw values of malignant lesions were significantly higher than those of fibroadenomas (3.21 ± 1.04% vs 1.50 ± 0.54%, p < 0.001). Area under the curve (AUC) obtained from APTw imaging, DWI, DCE, APTw imaging+DWI, APTw imaging+DWI, and APTw imaging+DWI + DCE was 0.959, 0.897, 0.976, 0.997, and 1 respectively. The APTw value showed a negative correlation with ER expression (r = -0.357). CONCLUSION APTw imaging yielded similar diagnosis performance in discriminating fibroadenomas and malignant breast tumors when compared to the DCE and better than DWI imaging, and provided supplement information on tumor cell activity to DWI images. The APTw value showed correlations with some prognostic factors for breast cancer.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Jianyun Kang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Huali Wang
- Department of Pathology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Ailian Liu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Yanwei Miao
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Xiaolu Ma
- Department of Clinical Laboratory, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China.
| | - Lina Zhang
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, No 222 zhongshan Road, Xigang district, Dalian, Liaoning 116011, PR China.
| | - Jiazheng Wang
- MSC Clinical & Technical Solutions, Philips Healthcare, 16 Tianze Road, Beijing, PR China.
| | - Zhiwei Shen
- MSC Clinical & Technical Solutions, Philips Healthcare, 16 Tianze Road, Beijing, PR China.
| | - Xiaofang Xu
- MSC Clinical & Technical Solutions, Philips Healthcare, 16 Tianze Road, Beijing, PR China.
| |
Collapse
|
14
|
Zhang S, Rauch GM, Adrada BE, Boge M, Mohamed RMM, Abdelhafez AH, Son JB, Sun J, Elshafeey NA, White JB, Musall BC, Miyoshi M, Wang X, Kotrotsou A, Wei P, Hwang KP, Ma J, Pagel MD. Assessment of Early Response to Neoadjuvant Systemic Therapy in Triple-Negative Breast Cancer Using Amide Proton Transfer-weighted Chemical Exchange Saturation Transfer MRI: A Pilot Study. Radiol Imaging Cancer 2021; 3:e200155. [PMID: 34477453 PMCID: PMC8489465 DOI: 10.1148/rycan.2021200155] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Purpose To determine if amide proton transfer-weighted chemical exchange saturation transfer (APTW CEST) MRI is useful in the early assessment of treatment response in persons with triple-negative breast cancer (TNBC). Materials and Methods In this prospective study, a total of 51 participants (mean age, 51 years [range, 26-79 years]) with TNBC were included who underwent APTW CEST MRI with 0.9- and 2.0-µT saturation power performed at baseline, after two cycles (C2), and after four cycles (C4) of neoadjuvant systemic therapy (NAST). Imaging was performed between January 31, 2019, and November 11, 2019, and was a part of a clinical trial (registry number NCT02744053). CEST MR images were analyzed using two methods-magnetic transfer ratio asymmetry (MTRasym) and Lorentzian line shape fitting. The APTW CEST signals at baseline, C2, and C4 were compared for 51 participants to evaluate the saturation power levels and analysis methods. The APTW CEST signals and their changes during NAST were then compared for the 26 participants with pathology reports for treatment response assessment. Results A significant APTW CEST signal decrease was observed during NAST when acquisition at 0.9-µT saturation power was paired with Lorentzian line shape fitting analysis and when the acquisition at 2.0 µT was paired with MTRasym analysis. Using 0.9-µT saturation power and Lorentzian line shape fitting, the APTW CEST signal at C2 was significantly different from baseline in participants with pathologic complete response (pCR) (3.19% vs 2.43%; P = .03) but not with non-pCR (2.76% vs 2.50%; P > .05). The APTW CEST signal change was not significant between pCR and non-pCR at all time points. Conclusion Quantitative APTW CEST MRI depended on optimizing acquisition saturation powers and analysis methods. APTW CEST MRI monitored treatment effects but did not differentiate participants with TNBC who had pCR from those with non-pCR. © RSNA, 2021 Clinical trial registration no. NCT02744053 Supplemental material is available for this article.Keywords Molecular Imaging-Cancer, Molecular Imaging-Clinical Translation, MR-Imaging, Breast, Technical Aspects, Tumor Response, Technology Assessment.
Collapse
|
15
|
Capozza M, Anemone A, Dhakan C, Della Peruta M, Bracesco M, Zullino S, Villano D, Terreno E, Longo DL, Aime S. GlucoCEST MRI for the Evaluation Response to Chemotherapeutic and Metabolic Treatments in a Murine Triple-Negative Breast Cancer: A Comparison with[ 18F]F-FDG-PET. Mol Imaging Biol 2021; 24:126-134. [PMID: 34383241 DOI: 10.1007/s11307-021-01637-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) patients have usually poor outcome after chemotherapy and early prediction of therapeutic response would be helpful. [18F]F-FDG-PET/CT acquisitions are often carried out to monitor variation in metabolic activity associated with response to the therapy, despite moderate accuracy and radiation exposure limit its application. The glucoCEST technique relies on the use of unlabelled D-glucose to assess glucose uptake with conventional MRI scanners and is currently under active investigations at clinical level. This work aims at validating the potential of MRI-glucoCEST in monitoring the therapeutic responses in a TNBC tumor murine model. PROCEDURES Breast tumor (4T1)-bearing mice were treated with doxorubicin or dichloroacetate for 1 week. PET/CT with [18F]F-FDG and MRI-glucoCEST were performed at baseline and after 3 cycles of treatment. Metabolic changes measured with [18F]F-FDG-PET and glucoCEST were compared and evaluated with changes in tumor volumes. RESULTS Doxorubicin-treated mice showed a significant decrease in tumor growth when compared to the control group. GlucoCEST imaging provided metabolic response after three cycles of treatment. Conversely, no variations were detected in [18F]F-FDG uptake. Dichloroacetate-treated mice did not show any decrease either in tumor volume or in tumor metabolic activity as assessed by both glucoCEST and [18F]F-FDG-PET. CONCLUSIONS Metabolic changes during doxorubicin treatment can be predicted by glucoCEST imaging that appears more sensitive than [18F]F-FDG-PET in reporting on therapeutic response. These findings support the view that glucoCEST may be a sensitive technique for monitoring metabolic response, but future studies are needed to explore the accuracy of this approach in other tumor types and treatments.
Collapse
Affiliation(s)
- Martina Capozza
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Chetan Dhakan
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Melania Della Peruta
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Martina Bracesco
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Sara Zullino
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Daisy Villano
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Enzo Terreno
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| |
Collapse
|
16
|
Meng N, Wang X, Sun J, Huang Z, Yang Z, Shang J, Bai Y, Wei W, Han D, Han H, Wang K, Shao F, Wang M. Evaluation of amide proton transfer-weighted imaging for endometrial carcinoma histological features: a comparative study with diffusion kurtosis imaging. Eur Radiol 2021; 31:8388-8398. [PMID: 33884473 DOI: 10.1007/s00330-021-07966-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/04/2021] [Accepted: 03/31/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To investigate whether amide proton transfer-weighted imaging (APTWI) and diffusion kurtosis imaging (DKI) can be used to evaluate endometrial carcinoma (EC) in terms of clinical type, histological grade, subtype, and Ki-67 index. METHODS Eighty-eight patients with EC underwent pelvic DKI and APTWI. The non-Gaussian diffusion coefficient (Dapp), apparent kurtosis coefficient (Kapp), and magnetization transfer ratio asymmetry (MTRasym (3.5 ppm)) were calculated and compared based on the clinical type (type I, II), histological grade (high- and low-grade), and subtype (endometrioid adenocarcinoma (EA) and non-EA). Correlation coefficients were calculated for each parameter with histological grades and the Ki-67 index. RESULTS The MTRasym (3.5 ppm) and Kapp values were higher in the type II group and high-grade group than in the type I and low-grade groups, respectively, while the Dapp values were lower in the type I and low-grade groups, respectively (all p < 0.05). The Kapp value was higher in the EA group than in the non-EA group (p = 0.022). The Kapp value was the only independent predictor for the histological grade of EA and the clinical type of EC. The AUC (DKI) was higher than the AUC (APTWI) in the identification of type I and II EC and high- and low-grade EA (Z = 2.042, 2.013, p = 0.041, 0.044), while in the identification of EA and non-EA, only the difference in Kapp was statistically significant. Moreover, the Kapp and MTRasym (3.5 ppm) values and Dapp values correlated positively and negatively, respectively, with histological grade (r = 0.759, 0.555, 0.624, and 0.462, all p < 0.05) and Ki-67 index (r = -0.704, -0.507, all p < 0.05). CONCLUSION Both DKI- and APTWI-related parameters have potential as imaging markers in estimating the histological features of EC, while DKI shows better performance than APTWI in this study. KEY POINTS • DKI and APTWI can be used to preliminarily evaluate the histological characteristics of endometrial carcinoma (EC). • The Kapp was the only independent predictor for the histological grade of EA and the clinical type of EC. • The Kapp, MTRasym (3.5 ppm), and Dapp correlated positively and negatively, respectively, with histological grade and Ki-67 index.
Collapse
Affiliation(s)
- Nan Meng
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuejia Wang
- Department of MR, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Jing Sun
- Department of Pediatrics, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhun Huang
- Department of Medical Imaging, Henan University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zhen Yang
- Department of Pediatrics, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, China
| | - Jie Shang
- Department of Pathology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Yan Bai
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wei
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Dongming Han
- Department of MR, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Hui Han
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Fengmin Shao
- Department of Nephrology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People's Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
17
|
von Knebel Doeberitz N, Maksimovic S, Loi L, Paech D. [Chemical exchange saturation transfer (CEST) : Magnetic resonance imaging in diagnostic oncology]. Radiologe 2021; 61:43-51. [PMID: 33337509 DOI: 10.1007/s00117-020-00786-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Contrast generation by chemical exchange saturation transfer (CEST) is a recently emerging magnetic resonance imaging (MRI) research field with high clinical potential. METHODS This review covers the methodological principles and summarizes the clinical experience of CEST imaging studies in diagnostic oncology performed to date. RESULTS AND CONCLUSION CEST enables the detection of lowly concentrated metabolites, such as peptides and glucose, through selective saturation of metabolite-bound protons and subsequent magnetization transfer to free water. This technology yields additional information about metabolic activity and the tissue microenvironment without the need for conventional contrast agents or radioactive tracers. Various studies, mainly conducted in patients with neuro-oncolgic diseases, suggest that this technology may aid to assess tumor malignancy as well as therapeutic response prior to and in the first follow-up after intervention. KEY POINTS CEST-MRI enables the indirect detection of metabolites without radioactive tracers or contrast agents. Clinical experience exists especially in the setting of neuro-oncologic imaging. In oncologic imaging, CEST-MRI may improve assessment of prognosis and therapy response.
Collapse
Affiliation(s)
- N von Knebel Doeberitz
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - S Maksimovic
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - L Loi
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - D Paech
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland.
| |
Collapse
|
18
|
Tumor-Infiltrating Lymphocytes in Low-Risk Patients With Breast Cancer Treated With Single-Dose Preoperative Partial Breast Irradiation. Int J Radiat Oncol Biol Phys 2020; 109:1325-1331. [PMID: 33333201 DOI: 10.1016/j.ijrobp.2020.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Preoperative partial breast irradiation (PBI) has the potential to induce tumor regression. We evaluated the differences in the numbers of preirradiation tumor infiltrating lymphocytes (TILs) between responders and nonresponders after preoperative PBI in low-risk patients with breast cancer. Furthermore, we evaluated the change in number of TILs before and after irradiation. METHODS AND MATERIALS In the prospective ABLATIVE study, low-risk patients with breast cancer underwent treatment with single-dose preoperative PBI (20 Gy) to the tumor and breast-conserving surgery after 6 or 8 months. In the preirradiation diagnostic biopsy and postirradiation resection specimen, numbers of TILs in 3 square regions of 450 × 450 μm were counted manually. TILs were visualized with CD3, CD4, and CD8 immunohistochemistry. Differences in numbers of preirradiation TILs between responders and nonresponders were tested using Mann-Whitney U test. Responders were defined as pathologic complete or near-complete response, and nonresponders were defined "as all other response." Changes in numbers of TILs after preoperative PBI was evaluated with the Wilcoxon signed rank test. RESULTS Preirradiation tissue was available from 28 patients, postirradiation tissue from 29 patients, resulting in 22 pairs of preirradiation and postirradiation tissue. In these 35 patients, 15 had pathologic complete response (43%), 11 had a near-complete response (31%), 7 had a partial response (20%), and 2 had stable disease (6%). The median numbers of CD3+ TILs, CD4+ TILs, and CD8+ TILs in the preirradiation tumor tissue were 49 (interquartile range [IQR], 36-80), 45 (IQR, 28-57), and 19 (IQR, 8-35), respectively. The number of preirradiation TILs did not differ significantly between responders and nonresponders. The median numbers of CD3+ TILs, CD4+ TILs, and CD8+ TILs in postirradiation tumor tissue were 17 (IQR, 13-31), 26 (IQR, 16-35), and 7 (IQR, 5-11), respectively. CONCLUSIONS After preoperative PBI in this limited cohort, the number of TILs in tumor tissue decreased. No differences in numbers of preirradiation TILs between responders and nonresponders were observed.
Collapse
|
19
|
Effectiveness of fat suppression using a water-selective binomial-pulse excitation in chemical exchange saturation transfer (CEST) magnetic resonance imaging. MAGMA (NEW YORK, N.Y.) 2020; 33:809-818. [PMID: 32462557 DOI: 10.1007/s10334-020-00851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of this study was to characterize the individual contribution of multiple fat peaks to the measured chemical exchange saturation transfer (CEST) signal when using water-selective binomial-pulse excitation and to determine the effects of multiple fat peaks in the presence of B0 inhomogeneity. METHODS The excitation profiles of multiple binomial pulses were simulated. A CEST sequence with binomial-pulse excitation and modified point-resolved spectroscopy localization was then applied to the in vivo lumbar spinal vertebrae to determine the signal contributions of three distinct groups of lipid resonances. These confounding signal contributions were measured as a function of the irradiation frequency offset to determine the effect of the multi-peak nature of the fat signal on CEST imaging of exchange sites (at 1.0, 2.0 and 3.5 ppm) and robustness in the presence of B0 inhomogeneity. RESULTS Numerical simulations and in vivo experiments showed that water excitation (WE) using a 1-3-3-1 (WE-4) pulse provided the broadest signal suppression, which provided partial robustness against B0 inhomogeneity effects. Confounding fat signal contributions to the CEST contrasts at 1.0, 2.0 and 3.5 ppm were unavoidable due to the multi-peak nature of the fat signal. However, these CEST sites only suffer from small lipid artifacts with ∆B0 spanning roughly from - 50 to 50 Hz. Especially for the CEST site at 3.5 ppm, the lipid artifacts are smaller than 1% with ∆B0 in this range. CONCLUSION In WE-4-based CEST magnetic resonance imaging, B0 inhomogeneity is the limiting factor for fat suppression. The CEST sites at 1.0, 2.0 ppm and 3.5 ppm unavoidably suffer from lipid artifacts. However, when the ∆B0 is confined to a limited range, these CEST sites are only affected by small lipid artifacts, which may be ignorable in some cases of clinical applications.
Collapse
|
20
|
Kwiatkowski G, Kozerke S. Accelerating CEST MRI in the mouse brain at 9.4 T by exploiting sparsity in the Z-spectrum domain. NMR IN BIOMEDICINE 2020; 33:e4360. [PMID: 32621367 DOI: 10.1002/nbm.4360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) is an MR contrast modality offering an enhanced sensitivity for the detection of dilute metabolites with exchangeable protons. Quantitative analysis requires the acquisition of a number of images (usually between 20 and 50 RF offsets) per Z-spectrum, leading to long acquisition times of the order of 5-40 min in practice. In this work, we explore the possibility of employing sparsity in the Z-spectrum domain (irradiation offset dimension) to provide an accelerated acquisition scheme without compromising the quality of reconstructed CEST spectra. METHOD AND THEORY Ex vivo and in vivo data were acquired on an experimental, small animal 9.4 T system. Three different reconstruction methods were tested: k-Z SPARSE, k-Z SLR and k-Z principal component analysis (PCA) using retrospective undersampling with net acceleration factors R = 2, 3, 5. The quality of the reconstructed data was compared with respect to CEST spectra and full magnetization transfer ratio (MTR) asymmetry maps. RESULTS In both phantom and in vivo data, CEST spectra and the resulting MTR asymmetry maps were reconstructed without significant deterioration in data quality. For a low acceleration factor (R = 2, 3) all applied methods resulted in similar data quality, while for high acceleration factor (R = 5) only k-Z PCA and k-Z SLR could be used. Loss in spatial resolution was observed in reconstruction with k-Z PCA for all acceleration factors. An example of prospective undersampling with acceleration factor R = 3 and k-Z PCA reconstruction demonstrates improved CEST maps when compared with fully sampled data acquisition with either three times longer scan duration or threefold prolonged acquisition window per frequency offset. CONCLUSION The acquisition time of CEST spectra can be significantly accelerated by exploiting the sparsity of the Z-domain. For prospective and retrospective analysis using k-Z PCA, an acceleration factor of up to R = 3 can be used without significant loss in data quality.
Collapse
Affiliation(s)
- Grzegorz Kwiatkowski
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Qamar S, King AD, Ai QYH, Mo FKF, Chen W, Poon DMC, Tong M, Ma BB, Yeung DKW, Wang YX, Yuan J. Pre-treatment amide proton transfer imaging predicts treatment outcome in nasopharyngeal carcinoma. Eur Radiol 2020; 30:6339-6347. [DOI: 10.1007/s00330-020-06985-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023]
|
22
|
Xu W, Chen X, Deng F, Zhang J, Zhang W, Tang J. Predictors of Neoadjuvant Chemotherapy Response in Breast Cancer: A Review. Onco Targets Ther 2020; 13:5887-5899. [PMID: 32606799 PMCID: PMC7320215 DOI: 10.2147/ott.s253056] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Neoadjuvant chemotherapy (NAC) largely increases operative chances and improves prognosis of the local advanced breast cancer patients. However, no specific means have been invented to predict the therapy responses of patients receiving NAC. Therefore, we focus on the alterations of tumor tissue-related microenvironments such as stromal tumor-infiltrating lymphocytes status, cyclin-dependent kinase expression, non-coding RNA transcription or other small molecular changes, in order to detect potentially predicted biomarkers which reflect the therapeutic efficacy of NAC in different subtypes of breast cancer. Further, possible mechanisms are also discussed to discover feasible treatment targets. Thus, these findings will be helpful to promote the prognosis of breast cancer patients who received NAC and summarized in this review.
Collapse
Affiliation(s)
- Weilin Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xiu Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Fei Deng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
23
|
Canese R. Editorial for "Comparative Analysis of Amide Proton Transfer MRI and Diffusion-Weighted Imaging in Assessing p53 and Ki-67 Expression of Rectal Adenocarcinoma". J Magn Reson Imaging 2020; 52:1497-1498. [PMID: 32557898 DOI: 10.1002/jmri.27265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rossella Canese
- MRI Unit - Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
24
|
Loi L, Zimmermann F, Goerke S, Korzowski A, Meissner JE, Deike-Hofmann K, Stieber A, Bachert P, Ladd ME, Schlemmer HP, Bickelhaupt S, Schott S, Paech D. Relaxation-compensated CEST (chemical exchange saturation transfer) imaging in breast cancer diagnostics at 7T. Eur J Radiol 2020; 129:109068. [PMID: 32574936 DOI: 10.1016/j.ejrad.2020.109068] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE To investigate whether fat-corrected and relaxation-compensated amide proton transfer (APT) and guanidyl CEST-MRI enables the detection of signal intensity differences between breast tumors and normal-appearing fibroglandular tissue in patients with newly-diagnosed breast cancer. METHOD Ten patients with newly-diagnosed breast cancer and seven healthy volunteers were included in this prospective IRB-approved study. CEST-MRI was performed on a 7 T-whole-body scanner followed by a multi-Lorentzian fit analysis. APT and guanidyl CEST signal intensities were quantified in the tumor and in healthy fibroglandular tissue after correction of B0/B1-field inhomogeneities, fat signal contribution, T1- and T2-relaxation; signal intensity differences of APT and guanidyl resonances were compared using Mann-Whitney-U-tests. Pearson correlations between tumor CEST signal intensities and the proliferation index Ki-67 were performed. RESULTS APT CEST signal in tumor tissue (6.70 ± 1.38%Hz) was increased compared to normal-appearing fibroglandular tissue of patients (3.56 ± 0.54%Hz, p = 0.001) and healthy volunteers (3.70 ± 0.68%Hz, p = 0.001). Further, a moderate positive correlation was found between the APT signal and the proliferation index Ki-67 (R2 = 0.367, r = 0.606, p = 0.11). Guanidyl CEST signal was also increased in tumor tissue (5.24 ± 1.85%Hz) compared to patients' (2.42 ± 0.45%Hz, p = 0.006) and volunteers' (2.36 ± 0.54%Hz, p < 0.001) normal-appearing fibroglandular tissue and a positive correlation with the Ki-67 level was observed (R2 = 0.365, r = 0.604, p = 0.11). APT and guanidyl CEST signal in normal-appearing fibroglandular tissue was not different between patients and healthy volunteers (p = 0.88; p = 0.93). CONCLUSION Relaxation-compensated and fat-corrected CEST-MRI allowed a non-invasive differentiation of breast cancer and normal-appearing breast tissue. Thus, this approach represents a contrast agent-free method that may help to increase diagnostic accuracy in MR-mammography.
Collapse
Affiliation(s)
- Lisa Loi
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany.
| | - Ferdinand Zimmermann
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany.
| | - Steffen Goerke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Andreas Korzowski
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Jan-Eric Meissner
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Katerina Deike-Hofmann
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Anne Stieber
- Department of Clinical and Interventional Radiology, University Hospital of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany.
| | - Mark Edward Ladd
- Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany.
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Sebastian Bickelhaupt
- Junior Group Medical Imaging and Radiology - Cancer Prevention, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Sarah Schott
- Department of Gynecology and Obstetrics, University Hospital of Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany.
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
25
|
Jia F, Wu B, Yan R, Li L, Wang K, Han D. Prediction Model for Intermediate-Stage Hepatocellular Carcinoma Response to Transarterial Chemoembolization. J Magn Reson Imaging 2020; 52:1657-1667. [PMID: 32424881 DOI: 10.1002/jmri.27189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The outcome of intermediate-stage hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) is greatly heterogeneous. Current means for predicting HCC response to TACE are lacking. PURPOSE To investigate whether the combination of parameters derived from amide proton transfer (APT) and intravoxel incoherent motion (IVIM) imaging, and morphological characteristics of tumor can establish a better prediction model than the univariant model for HCC response to TACE. STUDY TYPE Prospective. SUBJECTS 56 patients with intermediate-stage HCC (50 males and six females). FIELD STRENGTH/SEQUENCES 3.0T; T2 -weighted-fast spin echo, 3D liver acquisition with volume flex, single-shot fast spin echo-planar imaging (EPI), spin echo-EPI. ASSESSMENT Pretreatment APT signal intensities (SIs), apparent diffusion coefficient (ADC), true molecular diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) for tumor, peritumoral, and normal tissues were measured. Follow-up MRI scanning was performed, and the patients were classified as responders or nonresponders based on the modified Response Evaluation Criteria in Solid Tumors (mRECIST) criteria. STATISTICAL TESTS The imaging parameters were compared among the three tissues and between the two groups using analysis of variance (ANOVA) or two-sample t-test. The prediction model's variables were derived from univariate and multivariate logistic regression analyses. Receiver operating characteristic (ROC) curve analysis was used to explore the predictive performance. RESULTS Based on the logistic regression analysis results, we established a prediction model that integrated the APT SI and D values in the tumor tissue and the tumor size. ROC analyses revealed that the model was better able to predict tumor response to TACE (area under the ROC curve = 0.851) than the individual parameters on their own. DATA CONCLUSION A prediction model incorporating pretreatment APT SI, D in the tumor tissue and tumor size may be useful for predicting the response of intermediate-stage HCC to TACE. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 1 J. MAGN. RESON. IMAGING 2020;52:1657-1667.
Collapse
Affiliation(s)
- Fei Jia
- Department of MR, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Baolin Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Ruifang Yan
- Department of MR, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lei Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing, China
| | - Dongming Han
- Department of MR, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
26
|
Chhetri A, Li X, Rispoli JV. Current and Emerging Magnetic Resonance-Based Techniques for Breast Cancer. Front Med (Lausanne) 2020; 7:175. [PMID: 32478083 PMCID: PMC7235971 DOI: 10.3389/fmed.2020.00175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide, and early detection remains a principal factor for improved patient outcomes and reduced mortality. Clinically, magnetic resonance imaging (MRI) techniques are routinely used in determining benign and malignant tumor phenotypes and for monitoring treatment outcomes. Static MRI techniques enable superior structural contrast between adipose and fibroglandular tissues, while dynamic MRI techniques can elucidate functional characteristics of malignant tumors. The preferred clinical procedure-dynamic contrast-enhanced MRI-illuminates the hypervascularity of breast tumors through a gadolinium-based contrast agent; however, accumulation of the potentially toxic contrast agent remains a major limitation of the technique, propelling MRI research toward finding an alternative, noninvasive method. Three such techniques are magnetic resonance spectroscopy, chemical exchange saturation transfer, and non-contrast diffusion weighted imaging. These methods shed light on underlying chemical composition, provide snapshots of tissue metabolism, and more pronouncedly characterize microstructural heterogeneity. This review article outlines the present state of clinical MRI for breast cancer and examines several research techniques that demonstrate capacity for clinical translation. Ultimately, multi-parametric MRI-incorporating one or more of these emerging methods-presently holds the best potential to afford improved specificity and deliver excellent accuracy to clinics for the prediction, detection, and monitoring of breast cancer.
Collapse
Affiliation(s)
- Apekshya Chhetri
- Magnetic Resonance Biomedical Engineering Laboratory, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Xin Li
- Magnetic Resonance Biomedical Engineering Laboratory, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Joseph V. Rispoli
- Magnetic Resonance Biomedical Engineering Laboratory, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Center for Cancer Research, Purdue University, West Lafayette, IN, United States
- School of Electrical & Computer Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
27
|
Consolino L, Anemone A, Capozza M, Carella A, Irrera P, Corrado A, Dhakan C, Bracesco M, Longo DL. Non-invasive Investigation of Tumor Metabolism and Acidosis by MRI-CEST Imaging. Front Oncol 2020; 10:161. [PMID: 32133295 PMCID: PMC7040491 DOI: 10.3389/fonc.2020.00161] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Altered metabolism is considered a core hallmark of cancer. By monitoring in vivo metabolites changes or characterizing the tumor microenvironment, non-invasive imaging approaches play a fundamental role in elucidating several aspects of tumor biology. Within the magnetic resonance imaging (MRI) modality, the chemical exchange saturation transfer (CEST) approach has emerged as a new technique that provides high spatial resolution and sensitivity for in vivo imaging of tumor metabolism and acidosis. This mini-review describes CEST-based methods to non-invasively investigate tumor metabolism and important metabolites involved, such as glucose and lactate, as well as measurement of tumor acidosis. Approaches that have been exploited to assess response to anticancer therapies will also be reported for each specific technique.
Collapse
Affiliation(s)
- Lorena Consolino
- Department of Nanomedicines and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.,Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Annasofia Anemone
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Martina Capozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| | - Pietro Irrera
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| | - Chetan Dhakan
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy.,University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Bracesco
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Torino, Turin, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), Turin, Italy
| |
Collapse
|
28
|
van Rijssel MJ, Pluim JPW, Chan HSM, van den Wildenberg L, Schmitz AMT, Luijten PR, Gilhuijs KGA, Klomp DWJ. Correcting time-intensity curves in dynamic contrast-enhanced breast MRI for inhomogeneous excitation fields at 7T. Magn Reson Med 2019; 84:1000-1010. [PMID: 31880346 PMCID: PMC7217168 DOI: 10.1002/mrm.28147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022]
Abstract
Purpose Inhomogeneous excitation at ultrahigh field strengths (7T and above) compromises the reliability of quantified dynamic contrast‐enhanced breast MRI. This can hamper the introduction of ultrahigh field MRI into the clinic. Compensation for this non‐uniformity effect can consist of both hardware improvements and post‐acquisition corrections. This paper investigated the correctable radiofrequency transmit (B1+) range post‐acquisition in both simulations and patient data for 7T MRI. Methods Simulations were conducted to determine the minimum B1+ level at which corrections were still beneficial because of noise amplification. Two correction strategies leading to differences in noise amplification were tested. The effect of the corrections on a 7T patient data set (N = 38) with a wide range of B1+ levels was investigated in terms of time‐intensity curve types as well as washin, washout and peak enhancement values. Results In simulations assuming a common amount of T1 saturation, the lowest B1+ level at which the SNR of the corrected images was at least that of the original precontrast image was 43% of the nominal angle. After correction, time‐intensity curve types changed in 24% of included patients, and the distribution of curve types corresponded better to the distribution found in literature. Additionally, the overlap between the distributions of washin, washout, and peak enhancement values for grade 1 and grade 2 tumors was slightly reduced. Conclusion Although the correctable range varies with the amount of T1 saturation, post‐acquisition correction for inhomogeneous excitation was feasible down to B1+ levels of 43% of the nominal angle in vivo.
Collapse
Affiliation(s)
| | - Josien P W Pluim
- Center for Image Sciences, UMC Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
| | - Hui-Shan M Chan
- Center for Image Sciences, UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Peter R Luijten
- Center for Image Sciences, UMC Utrecht, Utrecht, The Netherlands
| | | | - Dennis W J Klomp
- Center for Image Sciences, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
29
|
Dou W, Lin CYE, Ding H, Shen Y, Dou C, Qian L, Wen B, Wu B. Chemical exchange saturation transfer magnetic resonance imaging and its main and potential applications in pre-clinical and clinical studies. Quant Imaging Med Surg 2019; 9:1747-1766. [PMID: 31728316 PMCID: PMC6828581 DOI: 10.21037/qims.2019.10.03] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/29/2019] [Indexed: 12/26/2022]
Abstract
Chemical exchange saturation transfer (CEST) imaging is a novel contrast mechanism, relying on the exchange between mobile protons in amide (-NH), amine (-NH2) and hydroxyl (-OH) groups and bulk water. Due to the targeted protons present in endogenous molecules or exogenous compounds applied externally, CEST imaging can respectively, generate endogenous or exogenous contrast. Nowadays, CEST imaging for endogenous contrast has been explored in pre-clinical and clinical studies. Amide CEST, also called amide proton transfer weighted (APT) imaging, generates CEST effect at 3.5 ppm away from the water signal and has been widely investigated. Given the sensitivity to amide proton concentration and pH level, APT imaging has shown robust performance in the assessment of ischemia, brain tumors, breast and prostate cancer as well as neurodegenerative diseases. With advanced methods proposed, pure APT and Nuclear Overhauser Effect (NOE) mediated CEST effects were separately fitted from original APT signal. Using both effects, early but promising results were obtained for glioma patients in the evaluation of tumor response to therapy and patient survival. Compared to amide CEST, amine CEST is also mobile proton concentration and pH dependent, but has a faster exchange rate between amine protons and water. The resultant CEST effect is usually introduced at 1.8-3 ppm. Glutamate and creatine, as two main metabolites with amine groups for CEST imaging, have been applied to quantitatively assess diseases in the central nervous system and muscle system, respectively. Glycosaminoglycan (Gag) as a representative metabolite with hydroxyl groups has also been measured to evaluate the cartilage of knee or intervertebral discs in CEST MRI. Due to limited frequency difference between hydroxyl protons and water, 7T for better spectral separation is preferred over 3T for GagCEST measurement. The applications of CEST MRI with exogenous contrast agents are still quite limited in clinic. While certain diamagnetic CEST agents, such as dynamic-glucose, have been tried in human for brain tumor or neck cancer assessment, most exogenous agents, i.e., paramagnetic CEST agents, are still tested in the pre-clinical stage, mainly due to potential toxicity. Engineered tissues for tissue regeneration and drug delivery have also shown a great potential in CEST imaging, as many of them, such as hydrogel and polyamide materials, contain mobile protons or can be incorporated with CEST specific chemical compounds. These engineered tissues can thus generate CEST effect in vivo, allowing a possibility to understand the fate of them in vivo longitudinally. Although the CEST MRI with engineered tissues has only been established in early stage, the obtained first evidence is crucial for further optimizing these biomaterials and finally accomplishing the translation into clinical use.
Collapse
Affiliation(s)
- Weiqiang Dou
- MR Research, GE Healthcare, Beijing 100076, China
| | | | - Hongyuan Ding
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yong Shen
- MR Enhanced Application, GE Healthcare, Beijing 100076, China
| | - Carol Dou
- Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Long Qian
- MR Research, GE Healthcare, Beijing 100076, China
| | - Baohong Wen
- Department of MRI, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bing Wu
- MR Research, GE Healthcare, Beijing 100076, China
| |
Collapse
|
30
|
Shaghaghi M, Chen W, Scotti A, Ye H, Zhang Y, Zhu W, Cai K. In vivo quantification of proton exchange rate in healthy human brains with omega plot. Quant Imaging Med Surg 2019; 9:1686-1696. [PMID: 31728312 DOI: 10.21037/qims.2019.08.06] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background To implement omega plot method for in vivo mapping of proton exchange rates in human brain by taking into account the water direct saturation (DS) effect and multiple saturation transfer exchanging species in vivo. Methods Four Z-spectra were collected with chemical exchange saturation transfer (CEST) saturation power =1, 2, 3 & 4 µT. Water DS was estimated by fitting the Z-spectrum to a linear combination of multiple Lorentzian components and its contribution to the signal was subsequently removed. Exchange rate maps were derived by the omega plot, consisting of fitting the inverse of the signal intensity, Mz /(M 0-Mz ), as a function of 1/(γB1)2. Results The exchange rate values quantified with the DS removed omega plot were significantly higher in the GM region than in the WM region (616±29 vs. 575±20 s-1, P<0.001). Phantom studies confirmed that the exchange rates from DS-removed plots varied linearly with pH (R2=0.998) for the pH range of 6.2 to 7.4, whereas exchange rates from conventional omega plots failed to show such linearity in the entire physiological pH range. Conclusions The calculated exchange rate with DS-corrected omega plot is a weighted average for all saturation transfer exchanging proton species which contribute to Z-spectral signal. The healthy brain exchange rate map provided by DS-removed omega plots may serve as a baseline for detecting any pathological changes.
Collapse
Affiliation(s)
- Mehran Shaghaghi
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Weiwei Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Alessandro Scotti
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Bioengieering, University of Illinois at Chicago, Chicago, IL, USA
| | - Haiqi Ye
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Bioengieering, University of Illinois at Chicago, Chicago, IL, USA.,Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Zimmermann F, Korzowski A, Breitling J, Meissner J, Schuenke P, Loi L, Zaiss M, Bickelhaupt S, Schott S, Schlemmer H, Paech D, Ladd ME, Bachert P, Goerke S. A novel normalization for amide proton transfer CEST MRI to correct for fat signal–induced artifacts: application to human breast cancer imaging. Magn Reson Med 2019; 83:920-934. [DOI: 10.1002/mrm.27983] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Ferdinand Zimmermann
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
| | - Andreas Korzowski
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Johannes Breitling
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
- Max‐Planck‐Institute for Nuclear Physics Heidelberg Germany
| | - Jan‐Eric Meissner
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Patrick Schuenke
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Lisa Loi
- Department of Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Moritz Zaiss
- Department of High‐field Magnetic Resonance Max‐Planck‐Institute for Biological Cybernetics Tübingen Germany
| | - Sebastian Bickelhaupt
- Medical Imaging and Radiology ‐ Cancer Prevention German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Sarah Schott
- Department of Obstetrics and Gynecology University Hospital Heidelberg Heidelberg Germany
| | - Heinz‐Peter Schlemmer
- Department of Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Daniel Paech
- Department of Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Mark E. Ladd
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
- Faculty of Medicine University of Heidelberg Heidelberg Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Faculty of Physics and Astronomy University of Heidelberg Heidelberg Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
32
|
Krikken E, van der Kemp WJ, Khlebnikov V, van Dalen T, Los M, van Laarhoven HW, Luijten PR, van den Bosch MA, Klomp DW, Wijnen JP. Contradiction between amide-CEST signal and pH in breast cancer explained with metabolic MRI. NMR IN BIOMEDICINE 2019; 32:e4110. [PMID: 31136039 PMCID: PMC6772111 DOI: 10.1002/nbm.4110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
PURPOSE Metabolic MRI is a noninvasive technique that can give new insights into understanding cancer metabolism and finding biomarkers to evaluate or monitor treatment plans. Using this technique, a previous study has shown an increase in pH during neoadjuvant chemotherapy (NAC) treatment, while recent observation in a different study showed a reduced amide proton transfer (APT) signal during NAC treatment (negative relation). These findings are counterintuitive, given the known intrinsic positive relation of APT signal to pH. METHODS In this study we combined APT MRI and 31 P-MRSI measurements to unravel the relation between the APT signal and pH in breast cancer. Twenty-two breast cancer patients were scanned with a 7 T MRI before and after the first cycle of NAC treatment. pH was determined by the chemical shift of inorganic phosphate (Pi). RESULTS While APT signals have a positive relation to pH and amide content, we observed a direct negative linear correlation between APT signals and pH in breast tumors in vivo. CONCLUSIONS As differentiation of cancer stages was confirmed by observation of a linear correlation between cell proliferation marker PE/Pi (phosphoethanolamine over inorganic phosphate) and pH in the tumor, our data demonstrates that the concentration of mobile proteins likely supersedes the contribution of the exchange rate to the APT signal.
Collapse
Affiliation(s)
- Erwin Krikken
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Vitaliy Khlebnikov
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Maartje Los
- Department of Medical OncologySt. Antonius ZiekenhuisNieuwegein/UtrechtThe Netherlands
| | - Hanneke W.M. van Laarhoven
- Department of Medical Oncology, Academic Medical Centre AmsterdamCancer Center AmsterdamAmsterdamThe Netherlands
| | - Peter R. Luijten
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Dennis W.J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jannie P. Wijnen
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
33
|
Zaric O, Farr A, Poblador Rodriguez E, Mlynarik V, Bogner W, Gruber S, Asseryanis E, Singer CF, Trattnig S. 7T CEST MRI: A potential imaging tool for the assessment of tumor grade and cell proliferation in breast cancer. Magn Reson Imaging 2019; 59:77-87. [PMID: 30880110 DOI: 10.1016/j.mri.2019.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To investigate the feasibility of chemical exchange saturation transfer (CEST) MRI in patients with breast carcinomas and possible correlations between magnetization transfer asymmetry (MTRasym) values and histological features, such as tumor grade and the Ki-67 proliferation index. MATERIALS AND METHODS Nine healthy subjects and 18 female patients were enrolled for this study. The imaging protocol for the patients consisted of diffusion-weighted imaging (DWI), CEST imaging, and T1-weighted, contrast-enhanced (CE)-MRI. CEST was performed using a 3D gradient echo (GRE) sequence, employing eight pre-saturation pulses of a duration of 50 ms and a duty cycle (DC) of 80%, with a mean amplitude of the saturation pulse train of 1 μT. The Z-spectrum was plotted and MTRasym values calculated for the frequency of the maximum of MTRasym curve, were correlated with the Ki-67 proliferation index and apparent diffusion coefficient (ADC). Patient data were statistically assessed using the Games-Howell post-hoc and Pearson's correlation test. RESULTS Different tumor types had asymmetry peaks at different positions of Z-spectrum. MTRasym (mean ± SD) (%) calculated for G1 (3.0 ± 0.3; range: 2.70-3.50) was not significantly lower than for G2 (4.50 ± 1.30; range: 3.20-6.50; p = 0.066). In contrast, the increase in MTRasym between G1 and G3 (6.40 ± 1.70; range: 4.80-9.80) lesions was significant (p = 0.007). No significant difference was observed between G2 and G3 with regard to MTRasym (p = 0.089). There was a strong positive correlation between the MTRasym, and Ki-67 proliferation index (r = 0.890; p = 0.001), while there was a moderate negative correlation between MTRasym and ADC values (r = -0.506; p = 0.027). CONCLUSIONS Calculated MTRasym demonstrates a strong positive correlation with tumor proliferation and has the potential to become a valuable biomarker for breast tumor characterization.
Collapse
Affiliation(s)
- Olgica Zaric
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alex Farr
- Breast Health Centre, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria.
| | - Esau Poblador Rodriguez
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Vladimir Mlynarik
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Karl Landsteiner Gesellschaft, St. Pölten, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stephan Gruber
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ella Asseryanis
- Breast Health Centre, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Christian F Singer
- Breast Health Centre, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria
| |
Collapse
|
34
|
He Y, Li Y, Lin C, Qi Y, Wang X, Zhou H, Yang J, Xiang Y, Xue H, Jin Z. Three‐dimensional turbo‐spin‐echo amide proton transfer‐weighted mri for cervical cancer: A preliminary study. J Magn Reson Imaging 2019; 50:1318-1325. [DOI: 10.1002/jmri.26710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/24/2022] Open
Affiliation(s)
- Yong‐Lan He
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Yuan Li
- Department of OB&GYN, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Cheng‐Yu Lin
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Ya‐Fei Qi
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | | | - Hai‐Long Zhou
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Jun‐Jun Yang
- Department of OB&GYN, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Yang Xiang
- Department of OB&GYN, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Hua‐Dan Xue
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Zheng‐Yu Jin
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| |
Collapse
|
35
|
Qamar S, King AD, Ai QY, Law BKH, Chan JSM, Poon DMC, Tong M, Mo FKF, Chen W, Bhatia KS, Ahuja AT, Ma BBY, Yeung DKW, Wang YX, Yuan J. Amide proton transfer MRI detects early changes in nasopharyngeal carcinoma: providing a potential imaging marker for treatment response. Eur Arch Otorhinolaryngol 2018; 276:505-512. [DOI: 10.1007/s00405-018-5231-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 01/05/2023]
|