1
|
An J, Kurilov R, Peccerella T, Bergmann F, Edderkaoui M, Lim A, Zhou X, Pfütze K, Schulz A, Wolf S, Hu K, Springfeld C, Mughal SS, Zezlina L, Fortunato F, Beyer G, Mayerle J, Roth S, Hulkkonen J, Merz D, Ei S, Mehrabi A, Loos M, Al-Saeedi M, Michalski CW, Büchler MW, Hackert T, Brors B, Pandol SJ, Bailey P, Neoptolemos JP. Metavert synergises with standard cytotoxics in human PDAC organoids and is associated with transcriptomic signatures of therapeutic response. Transl Oncol 2024; 49:102109. [PMID: 39217851 PMCID: PMC11402625 DOI: 10.1016/j.tranon.2024.102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Despite some recent advances, pancreatic ductal adenocarcinoma (PDAC) remains a growing oncological challenge. New drugs capable of targeting more than one oncogenic pathway may be one way to improve patient outcomes. This study characterizes the effectiveness of Metavert a first-in-class dual inhibitor of GSK3-β and histone deacetylase in treating PDAC as a single agent or in combination with standard cytotoxics. METHODS Thirty-six Patient-Derived Organoids (hPDOs) characterised by RNASeq and whole exome sequencing were treated with Metavert alone or in combination with standard cytotoxics. Transcriptomic signatures (TS) representing sensitivity to Metavert alone or sensitivity to Metavert + irinotecan (IR) were evaluated in 47 patient samples, chemo-naïve in 26 and post-chemotherapy in 21 (gemcitabine=5; FOLFIRINOX=14, both=2) with companion multiplexed immunofluorescence and RNASeq data. RESULTS Metavert combined with gemcitabine, irinotecan, 5FU, oxaliplatin, and paclitaxel was synergistic in the hPDOs. Basal-subtype hPDOs were more sensitive to Metavert alone whereas the Metavert+IR combination exhibited synergy in Classical-subtype hPDOs with increased apoptosis and autophagy. hPDO-derived TS evaluated in PDAC tissues demonstrated that Metavert-TSHi samples were enriched for mRNA splicing and DNA repair processes; they were associated with Basal-like tissues but also with GATA6+ve-chemo-naïve samples and were higher following gemcitabine but not FOLFIRINOX treatment. In contrast, Metavert+IR-TSHI samples were enriched for TP53 pathways; they were associated with Classical-like pretreatment samples and with GATA6+ve/KRT17+ve hybrid cell types following FOLFIRINOX, but not gemcitabine treatment, and were unrelated to transcriptional subtypes. CONCLUSIONS Metavert as a single agent and in combination with irinotecan offers novel strategies for treating pancreatic cancer.
Collapse
Affiliation(s)
- Jingyu An
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Roma Kurilov
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany
| | - Teresa Peccerella
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Frank Bergmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center and University of California at Los Angeles, Thalians W204 8700 Beverly Blvd. Los Angeles, California CA 90048, United States
| | - Adrian Lim
- Department of Medicine, Cedars-Sinai Medical Center and University of California at Los Angeles, Thalians W204 8700 Beverly Blvd. Los Angeles, California CA 90048, United States
| | - Xu Zhou
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Katrin Pfütze
- Sample Processing Laboratory, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Angela Schulz
- NGS Core Facility, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Wolf
- NGS Core Facility, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai Hu
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases, University Clinic Heidelberg, Heidelberg 69120, Germany
| | - Sadaf S Mughal
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany
| | - Lenart Zezlina
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany
| | - Franco Fortunato
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Georg Beyer
- Department of Internal Medicine II, Ludwig-Maximilians-University of Munich, Germany
| | - Julia Mayerle
- Department of Internal Medicine II, Ludwig-Maximilians-University of Munich, Germany
| | - Susanne Roth
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Johannes Hulkkonen
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Daniela Merz
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Shigenori Ei
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Arianeb Mehrabi
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Martin Loos
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Mohammed Al-Saeedi
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Christoph W Michalski
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Markus W Büchler
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany; Botton-Champalimaud Pancreatic Cancer Centre, Lisbon, Portugal
| | - Thilo Hackert
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany; Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany; German Cancer Consortium (DKTK), Core Center Heidelberg, Im Neuenheimer Feld 280, Heidelberg 69120, Germany; Medical Faculty and Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, Heidelberg 69120, Germany; National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg 69120, Germany
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center and University of California at Los Angeles, Thalians W204 8700 Beverly Blvd. Los Angeles, California CA 90048, United States
| | - Peter Bailey
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Berliner Str. 41, Heidelberg 69120, Germany; Botton-Champalimaud Pancreatic Cancer Centre, Lisbon, Portugal.
| | - John P Neoptolemos
- Heidelberg University Hospital, Department of General, Visceral and Transplantation Surgery, Im Neuenheimer Feld 420, Heidelberg 69120, Germany; Botton-Champalimaud Pancreatic Cancer Centre, Lisbon, Portugal.
| |
Collapse
|
2
|
Yan J, Yang A, Tu S. The relationship between keratin 18 and epithelial-derived tumors: as a diagnostic marker, prognostic marker, and its role in tumorigenesis. Front Oncol 2024; 14:1445978. [PMID: 39502314 PMCID: PMC11534658 DOI: 10.3389/fonc.2024.1445978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
As a structural protein, keratin is mainly expressed in epithelial cells and skin appendages to provide mechanical support and external resistance. The keratin family has a total of 54 members, which are divided into type I and type II. Two types of keratins connect to each other to form keratin intermediate filaments and participate in the construction of the cytoskeleton. K18 is a non-hair keratin, which is widely expressed in simple epithelial tissues with its partner, K8. Compared with mechanical support, K8/K18 pairs play more important roles in biological regulation, such as mediating anti-apoptosis, regulating cell cycle progression, and transmitting signals. Mutations in K18 can cause a variety of non-neoplastic diseases of the visceral epithelium. In addition, the expression levels of K18 are frequently altered in various epithelial-derived tumors, especially adenocarcinomas, which suggests that K18 may be involved in tumorigenesis. Due to the specific expression pattern of K18 in tumor tissues and its serum level reflecting tumor cell death, apply K18 to diagnose tumors and predict its prognosis have the potential to be simple and effective alternative methods. However, these potential roles of K18 in tumors have not been fully summarized. In this review, we focus on the relationship between K18 and epithelial-derived tumors, discuss the value of K18 as a diagnostic and prognostic marker, and summarize the interactions of K18 with various related proteins in tumorigenesis, with examples of simple epithelial tumors such as lung, breast, liver, and gastrointestinal cancers.
Collapse
Affiliation(s)
- Jiazhi Yan
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Aiwei Yang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shuo Tu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Caldeira IDS, Giovanini G, Adorno LF, Fernandes D, Ramos CR, Cruz-Visalaya SR, Pacheco-Otalora LF, Siqueira FRD, Nunes VA, Belizário JE, Garay-Malpartida HM. Antiapoptotic and Prometastatic Roles of Cytokine FAM3B in Triple-Negative Breast Cancer. Clin Breast Cancer 2024; 24:e633-e644.e2. [PMID: 38997857 DOI: 10.1016/j.clbc.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. FAM3B, a secreted protein, has been extensively studied in various types of tumors. However, its function in breast cancer remains poorly understood. METHODS We analyzed FAM3B expression data from breast cancer patients available at TCGA database and overall survival was analyzed by using the Kaplan-Meier plotter. MDA-MB-231 TNBC tumor cell line and hormone-responsive MCF-7 cell lines were transfected to overexpress FAM3B. We assessed cell death, tumorigenicity, and invasiveness in vitro through MTT analysis, flow cytometry assays, anchorage-independent tumor growth, and wound healing assays, respectively. We performed in vivo evaluation by tumor xenograft in nude mice. RESULTS In silico analysis revealed that FAM3B expression was lower in all breast tumors. However, TNBC patients with high FAM3B expression had a poor prognosis. FAM3B overexpression protected MDA-MB-231 cells from cell death, with increased expression of Bcl-2 and Bcl-xL, and reduced caspase-3 activity. MDA-MB-231 cells overexpressing FAM3B also exhibited increased tumorigenicity and migration rates in vitro, displaying increased tumor growth and reduced survival rates in xenotransplanted nude mice. This phenotype is accompanied by the upregulation of EMT-related genes Slug, Snail, TGFBR2, vimentin, N-cadherin, MMP-2, MMP-9, and MMP-14. However, these effects were not observed in the MCF-7 cells overexpressing FAM3B. CONCLUSION FAM3B overexpression contributes to tumor growth, promotion of metastasis, and, consequently, leads to a poor prognosis in the most aggressive forms of breast cancer. Future clinical research is necessary to validate FAM3B as both a diagnostic and a therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Izabela Daniel Sardinha Caldeira
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Guilherme Giovanini
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, CEP 01246-000, Sao Paulo, Brazil
| | - Lissandra Ferreira Adorno
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Debora Fernandes
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Celso Romero Ramos
- Laboratório de Esquistossomose Experimental. Instituto Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, CEP 21040-360, Rio de Janerio, Brasil
| | | | | | - Flavia Ramos de Siqueira
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Viviane Abreu Nunes
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - José Ernesto Belizário
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil
| | - Humberto Miguel Garay-Malpartida
- Multidisciplinary Research Center, School of Arts, Sciences and Humanities, University of São Paulo, CEP 03828000, Sao Paulo, Brazil.
| |
Collapse
|
4
|
García-Acosta JC, Castillo-Montoya AI, Rostro-Alonso GO, Villegas-Vázquez EY, Quintas-Granados LI, Sánchez-Sánchez L, López-Muñóz H, Cariño-Calvo L, López-Reyes I, Bustamante-Montes LP, Leyva-Gómez G, Cortés H, Jacobo-Herrera NJ, García-Aguilar R, Reyes-Hernández OD, Figueroa-González G. Unrevealing Lithium Repositioning in the Hallmarks of Cancer: Effects of Lithium Salts (LiCl and Li 2CO 3) in an In Vitro Cervical Cancer Model. Molecules 2024; 29:4476. [PMID: 39339471 PMCID: PMC11434384 DOI: 10.3390/molecules29184476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Lithium, a natural element, has been employed as a mental stabilizer in psychiatric treatments; however, some reports indicate it has an anticancer effect, prompting the consideration of repurposing lithium for cancer treatment. The potential anticancer use of lithium may depend on its form (salt type) and the type of cancer cells targeted. Little is known about the effects of Li2CO3 or LiCl on cancer cells, so we focused on exploring their effects on proliferation, apoptosis, migration, and cell cycle as part of the hallmarks of cancer. Firstly, we established the IC50 values on HeLa, SiHa, and HaCaT cells with LiCl and Li2CO3 and determined by crystal violet that cell proliferation was time-dependent in the three cell lines (IC50 values for LiCl were 23.43 mM for SiHa, 23.14 mM for HeLa, and 15.10 mM for HaCaT cells, while the IC50 values for Li2CO3 were 20.57 mM for SiHa, 11.52 mM for HeLa, and 10.52 mM for HaCaT cells.) Our findings indicate that Li2CO3 and LiCl induce DNA fragmentation and caspase-independent apoptosis, as shown by TUNEL, Western Blot, and Annexin V/IP assay by flow cytometry. Also, cell cycle analysis showed that LiCl and Li2CO3 arrested the cervical cancer cells at the G1 phase. Moreover, lithium salts displayed an anti-migratory effect on the three cell lines observed by the wound-healing assay. All these findings imply the viable anticancer effect of lithium salts by targeting several of the hallmarks of cancer.
Collapse
Affiliation(s)
- Juan Carlos García-Acosta
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (J.C.G.-A.); (A.I.C.-M.); (G.O.R.-A.); (E.Y.V.-V.); (O.D.R.-H.)
| | - Alejando Israel Castillo-Montoya
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (J.C.G.-A.); (A.I.C.-M.); (G.O.R.-A.); (E.Y.V.-V.); (O.D.R.-H.)
| | - Gareth Omar Rostro-Alonso
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (J.C.G.-A.); (A.I.C.-M.); (G.O.R.-A.); (E.Y.V.-V.); (O.D.R.-H.)
| | - Edgar Yebrán Villegas-Vázquez
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (J.C.G.-A.); (A.I.C.-M.); (G.O.R.-A.); (E.Y.V.-V.); (O.D.R.-H.)
| | - Laura Itzel Quintas-Granados
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México, Ciudad de México 07160, Mexico; (L.I.Q.-G.); (I.L.-R.)
| | - Luis Sánchez-Sánchez
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (L.S.-S.); (H.L.-M.)
| | - Hugo López-Muñóz
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (L.S.-S.); (H.L.-M.)
| | | | - Israel López-Reyes
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México, Ciudad de México 07160, Mexico; (L.I.Q.-G.); (I.L.-R.)
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco, Ciudad de México 07360, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Ciudad de México 14389, Mexico;
| | - Nadia Judith Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Ciudad de México 14080, Mexico;
| | - Rosario García-Aguilar
- Laboratorio de Citometría de Flujo y Hematología, Diagnóstico Molecular de Leucemias y Terapia Celular (DILETEC), Ciudad de México 07800, Mexico;
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (J.C.G.-A.); (A.I.C.-M.); (G.O.R.-A.); (E.Y.V.-V.); (O.D.R.-H.)
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (J.C.G.-A.); (A.I.C.-M.); (G.O.R.-A.); (E.Y.V.-V.); (O.D.R.-H.)
| |
Collapse
|
5
|
Li F, Chen L, Xia Q, Feng Z, Li N. Combined knockdown of CD151 and MMP9 may inhibit the malignant biological behaviours of triple-negative breast cancer through the GSK-3β/β-catenin-related pathway. Sci Rep 2024; 14:21786. [PMID: 39294214 PMCID: PMC11411119 DOI: 10.1038/s41598-024-71533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) represents a significant health concern for women worldwide, and the overproduction of MMP9 and CD151 is associated with various cancers, influencing tumour growth and progression. This study aimed to investigate how CD151 and MMP9 affect TNBC cell migration, apoptosis, proliferation, and invasion. Immunohistochemical experiments revealed that CD151 and MMP9 were positively expressed in triple-negative breast cancer, and lymph node metastasis, the histological grade, and CD151 and MMP9 expression were found to be independent prognostic factors for the survival of patients with triple-negative breast cancer. Cytological experiments indicated that the knockdown of CD151 or MMP9 slowed triple-negative breast cancer cell growth, migration, and invasion and increased the apoptosis rate. Compared with CD151 knockdown, double MMP9 and CD151 knockdown further promoted cell death and inhibited TNBC cell proliferation, migration, and invasion. Moreover, β-catenin and p-GSK-3β were significantly downregulated. In summary, simultaneously silencing CD151 and MMP9 further suppressed the proliferation, migration and invasion of TNBC cells and promoted their apoptosis. One possible strategy for inducing this effect is to block the GSK-3β/β-catenin pathway.
Collapse
Affiliation(s)
- Fan Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, 233004, Anhui, China
| | - Liucheng Chen
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Qing Xia
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, 233004, Anhui, China
| | - Zhenzhong Feng
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Nan Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical University, No. 287 Changhuai Road, Bengbu, 233004, Anhui, China.
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
6
|
Banerjee R, Maitra I, Bhattacharya T, Banerjee M, Ramanathan G, Rayala SK, Venkatraman G, Rajeswari D. Next-generation biomarkers for prognostic and potential therapeutic enhancement in Triple negative breast cancer. Crit Rev Oncol Hematol 2024; 201:104417. [PMID: 38901639 DOI: 10.1016/j.critrevonc.2024.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Triple-negative breast carcinoma (TNBC) is one of the most challenging subtypes of breast carcinoma and it has very limited therapeutic options as it is highly aggressive. The prognostic biomarkers are crucial for early diagnosis of the tumor, it also helps in anticipating the trajectory of the illness and optimizing the therapy options. Several therapeutic biomarkers are being used. Among them, the next-generation biomarkers that include Circulating tumor (ct) DNA, glycogen, lipid, and exosome biomarkers provide intriguing opportunities for enhancing the prognosis of TNBC. Lipid and glycogen biomarkers serve as essential details on the development of the tumor along with the efficacy of the treatment, as it exhibits metabolic alteration linked to TNBC. Several types of biomarkers have predictive abilities in TNBC. Elevated levels are associated with worse outcomes. ctDNA being a noninvasive biomarker reveals the genetic composition of the tumor, as well as helps to monitor the progression of the disease. Traditional therapies are ineffective in TNBC due to a lack of receptors, targeted drug delivery provides a tailored approach to overcome drug resistance and site-specific action by minimizing the side effects in TNBC treatment. This enhances therapeutic outcomes against the aggressive nature of breast cancer. This paper includes all the recent biomarkers which has been researched so far in TNBC and the state of art for TNBC which is explored.
Collapse
Affiliation(s)
- Risav Banerjee
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Indrajit Maitra
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Trisha Bhattacharya
- Department of Biotechnology, Indian Academy Degree College, Autonomous, Hennur cross, Kalyan Nagar, Bengaluru, Karnataka 560043, India
| | - Manosi Banerjee
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
| | - Ganesh Venkatraman
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Devi Rajeswari
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
7
|
He W, Li Y, Liu SB, Chang Y, Han S, Han X, Ma Z, Amin HM, Song YH, Zhou J. From mitochondria to tumor suppression: ACAT1's crucial role in gastric cancer. Front Immunol 2024; 15:1449525. [PMID: 39247186 PMCID: PMC11377227 DOI: 10.3389/fimmu.2024.1449525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Acetyl CoA acetyltransferase 1 (ACAT1), a mitochondrial enzyme, is mainly involved in the formation and decomposition of ketones, isoleucine, and fatty acids. Previous clinical studies showed that mutations in the ACAT1 gene lead to ketoacidosis, Notably the role of ACAT1 in human cancer' pathogenesis varies depending on cancer type, and its specific role in gastric cancer remains largely unknown. In the current study, we found that the expression of ACAT1 in primary late-stage gastric cancer tumor tissues was significantly lower than in early-stage tumors. This observation was further confirmed in high-grade gastric cancer cell line MKN45. The expression of CD44 and OCT4 was decreased, while CD24 expression was increased by overexpressing ACAT1 in MKN45 gastric cancer cells. Moreover, the ability of gastric cancer cells to form colonies on soft agar was also reduced by ACAT1 overexpression. Likewise, overexpression of ACAT1 inhibited epithelial mesenchymal transition (EMT) in gastric cancer cells evidenced by increased expression of the epithelial marker E-Cadherin, decreased expression of mesenchymal marker vimentin, and decreased expression levels of SNAI 1/3. In addition, ACAT1 overexpression inhibited cell migration and invasion, improved the response to 5-Fluorouracil (5-FU) and etoposide. In contrast, inhibition of ACAT1 activity promoted the proliferation of gastric cancer cells. The xenotransplantation results in nude mice showed that overexpression of ACAT1 in gastric cancer cells inhibited tumor growth in vivo. In addition, the low expression of ACAT1 in gastric cancer was further validated by searching public databases and conducting bioinformatic analyses. Mechanistically, bioinformatic analysis found that the inhibitory effect of ACAT1 in gastric cancer may be related to the Adipocytokine Signaling Pathway, Ppar Signaling Pathway, Propanoate Metabolism and P53 Signaling Pathway. Correlation analysis indicated ACAT1 mRNA expression was correlated with immune infiltrates. Collectively, our data show that ACAT1 induces pronounced inhibitory effects on gastric cancer initiation and development, which may impact future strategies to treat this aggressive cancer.
Collapse
Affiliation(s)
- Wei He
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Yanfang Li
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Ying Chang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Shiyuan Han
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Xingyu Han
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Zixin Ma
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Hesham M Amin
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Jin Zhou
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
DiCesare SM, Ortega AJ, Collier GE, Daniel S, Thompson KN, McCoy MK, Posner BA, Hulleman JD. GSK3 inhibition reduces ECM production and prevents age-related macular degeneration-like pathology. JCI Insight 2024; 9:e178050. [PMID: 39114980 PMCID: PMC11383595 DOI: 10.1172/jci.insight.178050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/20/2024] [Indexed: 08/22/2024] Open
Abstract
Malattia Leventinese/Doyne honeycomb retinal dystrophy (ML/DHRD) is an age-related macular degeneration-like (AMD-like) retinal dystrophy caused by an autosomal dominant R345W mutation in the secreted glycoprotein, fibulin-3 (F3). To identify new small molecules that reduce F3 production in retinal pigmented epithelium (RPE) cells, we knocked-in a luminescent peptide tag (HiBiT) into the endogenous F3 locus that enabled simple, sensitive, and high-throughput detection of the protein. The GSK3 inhibitor, CHIR99021 (CHIR), significantly reduced F3 burden (expression, secretion, and intracellular levels) in immortalized RPE and non-RPE cells. Low-level, long-term CHIR treatment promoted remodeling of the RPE extracellular matrix, reducing sub-RPE deposit-associated proteins (e.g., amelotin, complement component 3, collagen IV, and fibronectin), while increasing RPE differentiation factors (e.g., tyrosinase, and pigment epithelium-derived factor). In vivo, treatment of 8-month-old R345W+/+ knockin mice with CHIR (25 mg/kg i.p., 1 mo) was well tolerated and significantly reduced R345W F3-associated AMD-like basal laminar deposit number and size, thereby preventing the main pathological feature in these mice. This is an important demonstration of small molecule-based prevention of AMD-like pathology in ML/DHRD mice and may herald a rejuvenation of interest in GSK3 inhibition for the treatment of retinal degenerative diseases, including potentially AMD itself.
Collapse
Affiliation(s)
- Sophia M DiCesare
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Antonio J Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gracen E Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Krista N Thompson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Melissa K McCoy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John D Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Yan Q, Deng Y, Zhang Q. A comprehensive overview of metaplastic breast cancer: Features and treatments. Cancer Sci 2024; 115:2506-2514. [PMID: 38735837 PMCID: PMC11309924 DOI: 10.1111/cas.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
Metaplastic breast cancer is a rare, aggressive, and chemotherapy-resistant subtype of breast cancers, accounting for less than 1% of invasive breast cancers, characterized by adenocarcinoma with spindle cells, squamous epithelium, and/or mesenchymal tissue differentiation. The majority of metaplastic breast cancers exhibit the characteristics of triple-negative breast cancer and have unfavorable prognoses with a lower survival rate. This subtype often displays gene alterations in the PI3K/AKT pathway, Wnt/β-catenin pathway, and cell cycle dysregulation and demonstrates epithelial-mesenchymal transition, immune response changes, TP53 mutation, EGFR amplification, and so on. Currently, the optimal treatment of metaplastic breast cancer remains uncertain. This article provides a comprehensive review on the clinical features, molecular characteristics, invasion and metastasis patterns, and prognosis of metaplastic breast cancer, as well as recent advancements in treatment strategies.
Collapse
Affiliation(s)
- Qiaoke Yan
- Department of Medical OncologyHarbin Medical University Cancer HospitalHarbin CityHeilongjiang ProvinceChina
| | - Yuwei Deng
- Department of Medical OncologyHarbin Medical University Cancer HospitalHarbin CityHeilongjiang ProvinceChina
| | - Qingyuan Zhang
- Department of Medical OncologyHarbin Medical University Cancer HospitalHarbin CityHeilongjiang ProvinceChina
- Department of Medical OncologyHeilongjiang Cancer Prevention and Treatment InstituteHarbin CityHeilongjiang ProvinceChina
| |
Collapse
|
10
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Park SY, Park JH, Yang JW, Jung EJ, Ju YT, Jeong CY, Kim JY, Park T, Kim TH, Park M, Lee YJ, Jeong SH. SMARCD3 Overexpression Promotes Epithelial-Mesenchymal Transition in Gastric Cancer. Cancers (Basel) 2024; 16:2282. [PMID: 38927986 PMCID: PMC11201906 DOI: 10.3390/cancers16122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigates the role of SMARCD3 in gastric cancer by comparing its expression in signet ring cell (SRC) and well-differentiated (WD) groups within gastric cancer cell lines and tissues. We observed elevated SMARCD3 levels in the SRC group compared to the WD group. Functional analysis was conducted through both SMARCD3 knock-in and knock-out methods. Kaplan-Meier survival analysis indicated that higher SMARCD3 expression correlates with poorer overall survival in gastric cancer patients (HR 2.16, p < 0.001). SMARCD3 knock-out cells showed decreased proliferation, migration, invasion, and expression of epithelial-mesenchymal transition (EMT) markers, contrasting with results from temporary and stable SMARCD3 overexpression experiments, which demonstrated increased cell area and irregularity (p < 0.001). Further analysis revealed that SMARCD3 overexpression in MKN-74 cells significantly enhanced p-AKT-S473 and p-ERK levels (p < 0.05), and in KATO III cells, it increased β-catenin and PI3Kp85 activities (p < 0.05). Conversely, these activities decreased in SNU 601 cells following SMARCD3 depletion. The study concludes that SMARCD3 overexpression may serve as a negative prognostic marker and a potential therapeutic target in gastric cancer treatment due to its role in promoting EMT.
Collapse
Affiliation(s)
- Sun Yi Park
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Ji-Ho Park
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Jung Wook Yang
- Department of Pathology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Eun-Jung Jung
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (E.-J.J.); (T.-H.K.)
| | - Young-Tae Ju
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Chi-Young Jeong
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Ju-Yeon Kim
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Taejin Park
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (E.-J.J.); (T.-H.K.)
| | - Tae-Han Kim
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (E.-J.J.); (T.-H.K.)
| | - Miyeong Park
- Department of Anesthesiology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea
| | - Young-Joon Lee
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Sang-Ho Jeong
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (E.-J.J.); (T.-H.K.)
| |
Collapse
|
12
|
Wang QL, Wang L, Li QY, Li HY, Lin L, Wei D, Xu JY, Luo XJ. Micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in tumor cells in an USP7/AKT/GSK-3β pathway-dependent manner. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4447-4459. [PMID: 38108838 DOI: 10.1007/s00210-023-02903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Breast cancer and osteosarcoma are common cancers in women and children, respectively, but ideal drugs for treating patients with breast cancer or osteosarcoma remain to be found. Micafungin is an antifungal drug with antitumor activity on leukemia. Based on the notion of drug repurposing, this study aims to evaluate the antitumor effects of micafungin on breast cancer and osteosarcoma in vitro and in vivo, and to elucidate the underlying mechanisms. Five breast cancer cell lines (MDA-MB-231, BT-549, SK-BR-3, MCF-7, and 4T1) and one osteosarcoma cell line (143B) were chosen for the in vitro studies. Micafungin exerted an inhibitory effect on the viability of all cell lines, and MCF-7 cells were most sensitive to micafungin among the breast cancer cell lines. In addition, micafungin showed an inhibitory effect on the proliferation, clone formation, and migration in MCF7 and 143B cells. The inhibitory effect of micafungin on the growth of breast cancer and osteosarcoma was further confirmed with xenograft tumor mouse models. To explore the underlying mechanisms, the effect of micafungin on epithelial-mesenchymal transition (EMT) was examined. As expected, the levels of matrix metalloproteinase 9 and vimentin in MCF-7 and 143B cells were notably reduced in the presence of micafungin, concomitant with the decreased levels of ubiquitin-specific protease 7 (USP7), p-AKT, and p-GSK-3β. Based on these observations, we conclude that micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in an USP7/AKT/GSK-3β pathway-dependent manner.
Collapse
Affiliation(s)
- Qian-Lin Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of Laboratory Medicine, Changsha Blood Central, Changsha, 410005, China
| | - Li Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Qiong-Yu Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hui-Yin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ling Lin
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Dan Wei
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jin-Yun Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
13
|
Brugnoli F, Dell’Aira M, Tedeschi P, Grassilli S, Pierantoni M, Foschi R, Bertagnolo V. Effects of Garlic on Breast Tumor Cells with a Triple Negative Phenotype: Peculiar Subtype-Dependent Down-Modulation of Akt Signaling. Cells 2024; 13:822. [PMID: 38786044 PMCID: PMC11119207 DOI: 10.3390/cells13100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer includes tumor subgroups with morphological, molecular, and clinical differences. Intrinsic heterogeneity especially characterizes breast tumors with a triple negative phenotype, often leading to the failure of even the most advanced therapeutic strategies. To improve breast cancer treatment, the use of natural agents to integrate conventional therapies is the subject of ever-increasing attention. In this context, garlic (Allium sativum) shows anti-cancerous potential, interfering with the proliferation, motility, and malignant progression of both non-invasive and invasive breast tumor cells. As heterogeneity could be at the basis of variable effects, the main objective of our study was to evaluate the anti-tumoral activity of a garlic extract in breast cancer cells with a triple negative phenotype. Established triple negative breast cancer (TNBC) cell lines from patient-derived xenografts (PDXs) were used, revealing subtype-dependent effects on morphology, cell cycle, and invasive potential, correlated with the peculiar down-modulation of Akt signaling, a crucial regulator in solid tumors. Our results first demonstrate that the effects of garlic on TNBC breast cancer are not unique and suggest that only more precise knowledge of the mechanisms activated by this natural compound in each tumor will allow for the inclusion of garlic in personalized therapeutic approaches to breast cancer.
Collapse
Affiliation(s)
- Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (M.D.); (M.P.); (R.F.)
| | - Marcello Dell’Aira
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (M.D.); (M.P.); (R.F.)
| | - Paola Tedeschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Silvia Grassilli
- Department of Environmental Sciences and Prevention and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (M.D.); (M.P.); (R.F.)
| | - Rebecca Foschi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (M.D.); (M.P.); (R.F.)
| | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (M.D.); (M.P.); (R.F.)
| |
Collapse
|
14
|
Khan AQ, Hasan A, Mir SS, Rashid K, Uddin S, Steinhoff M. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin Cancer Biol 2024; 100:1-16. [PMID: 38503384 DOI: 10.1016/j.semcancer.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Khalid Rashid
- Department of Urology,Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India; Laboratory Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
15
|
Bagheri M, Mohamed GA, Mohamed Saleem MA, Ognjenovic NB, Lu H, Kolling FW, Wilkins OM, Das S, LaCroix IS, Nagaraj SH, Muller KE, Gerber SA, Miller TW, Pattabiraman DR. Pharmacological induction of chromatin remodeling drives chemosensitization in triple-negative breast cancer. Cell Rep Med 2024; 5:101504. [PMID: 38593809 PMCID: PMC11031425 DOI: 10.1016/j.xcrm.2024.101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/11/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Targeted therapies have improved outcomes for certain cancer subtypes, but cytotoxic chemotherapy remains a mainstay for triple-negative breast cancer (TNBC). The epithelial-to-mesenchymal transition (EMT) is a developmental program co-opted by cancer cells that promotes metastasis and chemoresistance. There are no therapeutic strategies specifically targeting mesenchymal-like cancer cells. We report that the US Food and Drug Administration (FDA)-approved chemotherapeutic eribulin induces ZEB1-SWI/SNF-directed chromatin remodeling to reverse EMT that curtails the metastatic propensity of TNBC preclinical models. Eribulin induces mesenchymal-to-epithelial transition (MET) in primary TNBC in patients, but conventional chemotherapy does not. In the treatment-naive setting, but not after acquired resistance to other agents, eribulin sensitizes TNBC cells to subsequent treatment with other chemotherapeutics. These findings provide an epigenetic mechanism of action of eribulin, supporting its use early in the disease process for MET induction to prevent metastatic progression and chemoresistance. These findings warrant prospective clinical evaluation of the chemosensitizing effects of eribulin in the treatment-naive setting.
Collapse
Affiliation(s)
- Meisam Bagheri
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Gadisti Aisha Mohamed
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Nevena B Ognjenovic
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Hanxu Lu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Fred W Kolling
- Center for Quantitative Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Owen M Wilkins
- Center for Quantitative Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Ian S LaCroix
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Shivashankar H Nagaraj
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kristen E Muller
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Scott A Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Todd W Miller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Diwakar R Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
16
|
Lin C, Yu M, Wu X, Wang H, Wei M, Zhang L. Targeting Moonlighting Enzymes in Cancer. Molecules 2024; 29:1573. [PMID: 38611852 PMCID: PMC11013064 DOI: 10.3390/molecules29071573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Moonlighting enzymes are multifunctional proteins that perform multiple functions beyond their primary role as catalytic enzymes. Extensive research and clinical practice have demonstrated their pivotal roles in the development and progression of cancer, making them promising targets for drug development. This article delves into multiple notable moonlighting enzymes, including GSK-3, GAPDH, and ENO1, and with a particular emphasis on an enigmatic phosphatase, PTP4A3. We scrutinize their distinct roles in cancer and the mechanisms that dictate their ability to switch roles. Lastly, we discuss the potential of an innovative approach to develop drugs targeting these moonlighting enzymes: target protein degradation. This strategy holds promise for effectively tackling moonlighting enzymes in the context of cancer therapy.
Collapse
Affiliation(s)
- Chunxu Lin
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (C.L.); (M.Y.); (X.W.); (H.W.)
| | - Mingyang Yu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (C.L.); (M.Y.); (X.W.); (H.W.)
| | - Ximei Wu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (C.L.); (M.Y.); (X.W.); (H.W.)
| | - Hui Wang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (C.L.); (M.Y.); (X.W.); (H.W.)
| | - Min Wei
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (C.L.); (M.Y.); (X.W.); (H.W.)
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; (C.L.); (M.Y.); (X.W.); (H.W.)
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
17
|
Liang J, Yu M, Li Y, Zhao L, Wei Q. Glycogen synthase kinase-3: A potential immunotherapeutic target in tumor microenvironment. Biomed Pharmacother 2024; 173:116377. [PMID: 38442671 DOI: 10.1016/j.biopha.2024.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
Glycogen synthase kinase-3(GSK-3) is a protein kinase that can phosphorylate over a hundred substrates and regulate cell differentiation, proliferation, and death. Researchers have acknowledged the pivotal role of abnormal activation of GSK-3 in the progression of various diseases over the past few decades. Recent studies have mostly concentrated on investigating the function of GSK-3 in the tumor microenvironment, specifically examining the interaction between TAM, NK cells, B cells, and T cells. Furthermore, GSK-3 exhibits a strong association with immunological checkpoints, such as programmed cell death protein 1. Novel GSK-3 inhibitors have potential in tumor immunotherapy, exerting beneficial effects on hematologic diseases and solid tumors. Nevertheless, there is a lack of reviews about the correlation between tumor-associated immune cells and GSK-3. This study intends to analyze the function and mechanism of GSK-3 comprehensively and systematically in the tumor microenvironment, with a special focus on its influence on various immune cells. The objective is to present novel perspectives for GSK-3 immunotherapy.
Collapse
Affiliation(s)
- Jingyi Liang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Meng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, China.
| |
Collapse
|
18
|
Nicolás-Morala J, Alonso-Juarranz M, Barahona A, Terrén S, Cabezas S, Falahat F, Gilaberte Y, Gonzalez S, Juarranz A, Mascaraque M. Comparative response to PDT with methyl-aminolevulinate and temoporfin in cutaneous and oral squamous cell carcinoma cells. Sci Rep 2024; 14:7025. [PMID: 38528037 DOI: 10.1038/s41598-024-57624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
Cutaneous and Head and Neck squamous cell carcinoma (CSCC, HNSCC) are among the most prevalent cancers. Both types of cancer can be treated with photodynamic therapy (PDT) by using the photosensitizer Temoporfin in HNSCC and the prodrug methyl-aminolevulinate (MAL) in CSCC. However, PDT is not always effective. Therefore, it is mandatory to correctly approach the therapy according to the characteristics of the tumour cells. For this reason, we have used cell lines of CSCC (A431 and SCC13) and HNSCC (HN5 and SCC9). The results obtained indicated that the better response to MAL-PDT was related to its localization in the plasma membrane (A431 and HN5 cells). However, with Temoporfin all cell lines showed lysosome localization, even the most sensitive ones (HN5). The expression of mesenchymal markers and migratory capacity was greater in HNSCC lines compared to CSCC, but no correlation with PDT response was observed. The translocation to the nucleus of β-catenin and GSK3β and the activation of NF-κβ is related to the poor response to PDT in the HNSCC lines. Therefore, we propose that intracellular localization of GSK3β could be a good marker of response to PDT in HNSCC. Although the molecular mechanism of response to PDT needs further elucidation, this work shows that the most MAL-resistant line of CSCC is more sensitive to Temoporfin.
Collapse
Affiliation(s)
- J Nicolás-Morala
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034, Madrid, Spain
| | - M Alonso-Juarranz
- Oral and Maxillofacial Surgery Service, Hospital Clínico San Carlos, 28040, Madrid, Spain
- Surgery Department, Faculty of Medicine, Universidad Complutense, 28040, Madrid, Spain
| | - A Barahona
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - S Terrén
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - S Cabezas
- Oncology Service, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - F Falahat
- Oral and Maxillofacial Surgery Service, Hospital Clínico San Carlos, 28040, Madrid, Spain
- Surgery Department, Faculty of Medicine, Universidad Complutense, 28040, Madrid, Spain
| | - Y Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, Instituto Investigación Sanitaria (IIS), Zaragoza, Aragón, Spain
| | - S Gonzalez
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034, Madrid, Spain
- Department of Medicine and Medical Specialties, Universidad de Alcalá, Madrid, Spain
| | - A Juarranz
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034, Madrid, Spain.
| | - M Mascaraque
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.
- Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034, Madrid, Spain.
| |
Collapse
|
19
|
Kalampounias G, Gardeli C, Alexis S, Anagnostopoulou E, Androutsopoulou T, Dritsas P, Aggelis G, Papanikolaou S, Katsoris P. Poly-Unsaturated Fatty Acids (PUFAs) from Cunninghamella elegans Grown on Glycerol Induce Cell Death and Increase Intracellular Reactive Oxygen Species. J Fungi (Basel) 2024; 10:130. [PMID: 38392802 PMCID: PMC10890652 DOI: 10.3390/jof10020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Cunninghamella elegans NRRL-1393 is an oleaginous fungus able to synthesize and accumulate unsaturated fatty acids, amongst which the bioactive gamma-linolenic acid (GLA) has potential anti-cancer activities. C. elegans was cultured in shake-flask nitrogen-limited media with either glycerol or glucose (both at ≈60 g/L) employed as the sole substrate. The assimilation rate of both substrates was similar, as the total biomass production reached 13.0-13.5 g/L, c. 350 h after inoculation (for both instances, c. 27-29 g/L of substrate were consumed). Lipid production was slightly higher on glycerol-based media, compared to the growth on glucose (≈8.4 g/L vs. ≈7.0 g/L). Lipids from C. elegans grown on glycerol, containing c. 9.5% w/w of GLA, were transformed into fatty acid lithium salts (FALS), and their effects were assessed on both human normal and cancerous cell lines. The FALS exhibited cytotoxic effects within a 48 h interval with an IC50 of about 60 μg/mL. Additionally, a suppression of migration was shown, as a significant elevation of oxidative stress levels, and the induction of cell death. Elementary differences between normal and cancer cells were not shown, indicating a generic mode of action; however, oxidative stress level augmentation may increase susceptibility to anticancer drugs, improving chemotherapy effectiveness.
Collapse
Affiliation(s)
- Georgios Kalampounias
- Laboratory of Cell Biology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - Chrysavgi Gardeli
- Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Spyridon Alexis
- Hematology Division, Faculty of Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Elena Anagnostopoulou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Theodosia Androutsopoulou
- Laboratory of Cell Biology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - Panagiotis Dritsas
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - George Aggelis
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Panagiotis Katsoris
- Laboratory of Cell Biology, Division of Genetics, Cell and Developmental Biology, Department of Biology, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| |
Collapse
|
20
|
DiCesare SM, Ortega AJ, Collier GE, Daniel S, Thompson KN, McCoy MK, Posner BA, Hulleman JD. GSK3 inhibition reduces ECM production and prevents age-related macular degeneration-like pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571757. [PMID: 38168310 PMCID: PMC10760106 DOI: 10.1101/2023.12.14.571757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Malattia Leventinese/Doyne Honeycomb Retinal Dystrophy (ML/DHRD) is an age-related macular degeneration (AMD)-like retinal dystrophy caused by an autosomal dominant R345W mutation in the secreted glycoprotein, fibulin-3 (F3). To identify new small molecules that reduce F3 production from retinal pigmented epithelium (RPE) cells, we knocked-in a luminescent peptide tag (HiBiT) into the endogenous F3 locus which enabled simple, sensitive, and high throughput detection of the protein. The GSK3 inhibitor, CHIR99021 (CHIR), significantly reduced F3 burden (expression, secretion, and intracellular levels) in immortalized RPE and non-RPE cells. Low-level, long-term CHIR treatment promoted remodeling of the RPE extracellular matrix (ECM), reducing sub-RPE deposit-associated proteins (e.g., amelotin, complement component 3, collagen IV, and fibronectin), while increasing RPE differentiation factors (e.g., tyrosinase, and pigment epithelium derived factor). In vivo, treatment of 8 mo R345W+/+ knockin mice with CHIR (25 mg/kg i.p., 1 mo) was well tolerated and significantly reduced R345W F3-associated AMD-like basal laminar deposit number and size, thereby preventing the main pathological feature in these mice. This is the first demonstration of small molecule-based prevention of AMD-like pathology in ML/DHRD mice and may herald a rejuvenation of interest in GSK3 inhibition for the treatment of neurodegenerative diseases, including, potentially AMD itself.
Collapse
Affiliation(s)
- Sophia M. DiCesare
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Antonio J. Ortega
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Gracen E. Collier
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Steffi Daniel
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Krista N. Thompson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Melissa K. McCoy
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, United States
| | - Bruce A. Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, United States
| | - John D. Hulleman
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
21
|
Kalinkin AI, Sigin VO, Kuznetsova EB, Ignatova EO, Vinogradov II, Vinogradov MI, Vinogradov IY, Zaletaev DV, Nemtsova MV, Kutsev SI, Tanas AS, Strelnikov VV. Epigenomic Profiling Advises Therapeutic Potential of Leukotriene Receptor Inhibitors for a Subset of Triple-Negative Breast Tumors. Int J Mol Sci 2023; 24:17343. [PMID: 38139172 PMCID: PMC10743620 DOI: 10.3390/ijms242417343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype, with a poor survival rate compared to others subtypes. For a long time, chemotherapy was the only systemic treatment for TNBC, and the identification of actionable molecular targets might ultimately improve the prognosis for TNBC patients. We performed a genome-wide analysis of DNA methylation at CpG islands on a collection of one hundred ten breast carcinoma samples and six normal breast tissue samples using reduced representation bisulfite sequencing with the XmaI restriction enzyme (XmaI-RRBS) and identified a subset of TNBC samples with significant hypomethylation at the LTB4R/LTB4R2 genes' CpG islands, including CpG dinucleotides covered with cg12853742 and cg21886367 HumanMethylation 450K microarray probes. Abnormal DNA hypomethylation of this region in TNBC compared to normal samples was confirmed by bisulfite Sanger sequencing. Gene expression generally anticorrelates with promoter methylation, and thus, the promoter hypomethylation detected and confirmed in our study might be revealed as an indirect marker of high LTB4R/LTB4R2 expression using a simple methylation-sensitive PCR test. Analysis of RNA-seq expression and DNA methylation data from the TCGA dataset demonstrates that the expression of the LTB4R and LTB4R2 genes significantly negatively correlates with DNA methylation at both CpG sites cg12853742 (R = -0.4, p = 2.6 × 10-6; R = -0.21, p = 0.015) and cg21886367 (R = -0.45, p = 7.3 × 10-8; R = -0.24, p = 0.005), suggesting the upregulation of these genes in tumors with abnormal hypomethylation of their CpG island. Kaplan-Meier analysis using the TCGA-BRCA gene expression and clinical data revealed poorer overall survival for TNBC patients with an upregulated LTB4R. To this day, only the leukotriene inhibitor LY255283 has been tested on an MCF-7/DOX cell line, which is a luminal A breast cancer molecular subtype. Other studies compare the effects of Montelukast and Zafirlukast (inhibitors of the cysteinyl leukotriene receptor, which is different from LTB4R/LTB4R2) on the MDA-MB-231 (TNBC) cell line, with high methylation and low expression levels of LTB4R. In our study, we assess the therapeutic effects of various drugs (including leukotriene receptor inhibitors) with the DepMap gene effect and drug sensitivity data for TNBC cell lines with hypomethylated and upregulated LTB4R/LTB4R2 genes. LY255283, Minocycline, Silibinin, Piceatannol, Mitiglinide, 1-Azakenpaullone, Carbetocin, and Pim-1-inhibitor-2 can be considered as candidates for the additional treatment of TNBC patients with tumors demonstrating LTB4R/LTB4R2 hypomethylation/upregulation. Finally, our results suggest that the epigenetic status of leukotriene B4 receptors is a novel, potential, predictive, and prognostic biomarker for TNBC. These findings might improve individualized therapy for TNBC patients by introducing new therapeutic adjuncts as anticancer agents.
Collapse
Affiliation(s)
- Alexey I. Kalinkin
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Vladimir O. Sigin
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Ekaterina B. Kuznetsova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Ekaterina O. Ignatova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Nikolay Nikolaevich Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Ilya I. Vinogradov
- Regional Clinical Oncology Dispensary, 390011 Ryazan, Russia;
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Maxim I. Vinogradov
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Igor Y. Vinogradov
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Dmitry V. Zaletaev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Marina V. Nemtsova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Sergey I. Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Alexander S. Tanas
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Vladimir V. Strelnikov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| |
Collapse
|
22
|
Chen L, Lv Y. Suspension state affects the stemness of breast cancer cells by regulating the glycogen synthase kinase-3β. Tissue Cell 2023; 85:102208. [PMID: 37683322 DOI: 10.1016/j.tice.2023.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Circulating tumor cells (CTCs) are considered an important factor involved in tumor metastasis and can overcome mechanical interactions to gain the ability to distant metastasis. The previous study had shown that the suspension state could regulate the stemness of breast cancer cells (BCCs). However, the specific molecular mechanisms involved have not yet been explored clearly. In this study, MCF-7 and MDA-MBA-231 BCCs were cultured in suspension and adherent. The effect of suspension state on BCCs was further elucidated by observing suspension cell clusters, sorting CD44+/CD24- cell subpopulation and detecting self-renewal ability. Furthermore, it was found that glycogen synthase kinase-3β (GSK-3β) was significantly down-regulated in MCF-7 suspension cells along with the activation of the Wnt/β-catenin signaling, but the converse was true for MDA-MB-231 cells. Subsequently, GSK-3β was differentially expressed in MCF-7 suspension cells. The activation of the Wnt/β-catenin signaling, epithelial-mesenchymal transition (EMT) and stemness were all inhibited when GSK-3 was overexpressed in suspension MCF-7 cells. While GSK-3β was down-regulated, it further promoted the Wnt/β-catenin signaling, mesenchymal characteristic and stemness of MCF-7 cells. This study demonstrated that suspension state could activate the Wnt/β-catenin signaling by inhibiting GSK-3β to promote the stemness of epithelial BCCs, providing a therapeutic strategy for targeted CTCs.
Collapse
Affiliation(s)
- Lini Chen
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
23
|
Guil-Luna S, Rivas-Crespo A, Navarrete-Sirvent C, Mantrana A, Pera A, Mena-Osuna R, Toledano-Fonseca M, García-Ortíz MV, Villar C, Sánchez-Montero MT, Krueger J, Medina-Fernández FJ, De La Haba-Rodríguez J, Gómez-España A, Aranda E, Rudd CE, Rodríguez-Ariza A. Clinical significance of glycogen synthase kinase 3 (GSK-3) expression and tumor budding grade in colorectal cancer: Implications for targeted therapy. Biomed Pharmacother 2023; 167:115592. [PMID: 37778272 DOI: 10.1016/j.biopha.2023.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Glycogen synthase kinase 3 (GSK-3) has been proposed as a novel cancer target due to its regulating role in both tumor and immune cells. However, the connection between GSK-3 and immunoevasive contexture, including tumor budding (TB) has not been previously examined. METHODS we investigated the expression levels of total GSK-3 as well as its isoforms (GSK-3β and GSK-3α) and examined their potential correlation with TB grade and the programmed cell death-ligand 1 (PD-L1) in colorectal cancer (CRC) tumor samples. Additionally, we compared the efficacy of GSK-3-inhibition with PD-1/PD-L1 blockade in humanized patient-derived (PDXs) xenografts models of high-grade TB CRC. RESULTS we show that high-grade (BD3) TB CRC is associated with elevated expression levels of total GSK-3, specifically the GSK-3β isoform, along with increased expression of PD-L1 in tumor cells. Moreover, we define an improved risk stratification of CRC patients based on the presence of GSK-3+/PD-L1+/BD3 tumors, which are associated with a worse prognosis. Significantly, in contrast to the PD-L1/PD-1 blockade approach, the inhibition GSK-3 demonstrated a remarkable enhancement in the antitumor response. This was achieved through the reduction of tumor buds via necrosis and apoptosis pathways, along with a notable increase of activated tumor-infiltrating CD8+ T cells, NK cells, and CD4- CD8- T cells. CONCLUSIONS our study provides compelling evidence for the clinical significance of GSK-3 expression and TB grade in risk stratification of CRC patients. Moreover, our findings strongly support GSK-3 inhibition as an effective therapy specifically targeting high-grade TB in CRC.
Collapse
Affiliation(s)
- Silvia Guil-Luna
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain; Department of Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain..
| | - Aurora Rivas-Crespo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain.
| | - Carmen Navarrete-Sirvent
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain.
| | - Ana Mantrana
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain.
| | - Alejandra Pera
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain.
| | - Rafael Mena-Osuna
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain.
| | - Marta Toledano-Fonseca
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain.
| | - María Victoria García-Ortíz
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain.
| | - Carlos Villar
- Pathological Anatomy Department, Reina Sofía University Hospital, Córdoba, Spain.
| | - Maria Teresa Sánchez-Montero
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain.
| | - Janna Krueger
- Division of Immunology-Oncology Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.
| | | | - Juan De La Haba-Rodríguez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain; Department of Medicine, Faculty of Medicine, University of Córdoba, Córdoba, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain.
| | - Auxiliadora Gómez-España
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain; Department of Medicine, Faculty of Medicine, University of Córdoba, Córdoba, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain.
| | - Enrique Aranda
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain; Department of Medicine, Faculty of Medicine, University of Córdoba, Córdoba, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain.
| | - Christopher E Rudd
- General and Digestive Surgery Department, Reina Sofía University Hospital, Córdoba, Spain; Faculty of Medicine, Universite de Montreal, Montreal, Canada.
| | - Antonio Rodríguez-Ariza
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain; Cancer Network Biomedical Research Centre (CIBERONC), Madrid, Spain; Andalusia-ROCHE Network Mixed Alliance in Precision Medical Oncology, Spain; Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain.
| |
Collapse
|
24
|
Zhang B, Zhao R, Wang Q, Zhang YJ, Yang L, Yuan ZJ, Yang J, Wang QJ, Yao L. An EMT-Related Gene Signature to Predict the Prognosis of Triple-Negative Breast Cancer. Adv Ther 2023; 40:4339-4357. [PMID: 37462865 PMCID: PMC10499992 DOI: 10.1007/s12325-023-02577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/05/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION Epithelial-mesenchymal transition (EMT) is an important biological process in tumor invasion and metastasis, and thus a potential indicator of the progression and drug resistance of breast cancer. This study comprehensively analyzed EMT-related genes in triple-negative breast cancer (TNBC) to develop an EMT-related prognostic gene signature. METHODS With the application of The Cancer Genome Atlas (TCGA) database, Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), and the Genotype-Tissue Expression (GTEx) database, we identified EMT-related signature genes (EMGs) by Cox univariate regression and LASSO regression analysis. Risk scores were calculated and used to divide patients with TNBC into high-risk group and low-risk groups by the median value. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curve analyses were applied for model validation. Independent prognostic predictors were used to develop nomograms. Then, we assessed the risk model in terms of the immune microenvironment, genetic alteration and DNA methylation effects on prognosis, the probability of response to immunotherapy and chemotherapy, and small molecule drugs predicted by The Connectivity Map (Cmap) database. RESULTS Thirteen EMT-related genes with independent prognostic value were identified and used to stratify the patients with TNBC into high- and low-risk groups. The survival analysis revealed that patients in the high-risk group had significantly poorer overall survival than patients in the low-risk group. Populations of immune cells, including CD4 memory resting T cells, CD4 memory activated T cells, and activated dendritic cells, significantly differed between the high- and low-risk groups. Moreover, some therapeutic drugs to which the high-risk group might show sensitivity were identified. CONCLUSIONS Our research identified the significant impact of EMGs on prognosis in TNBC, providing new strategies for personalizing TNBC treatment and improving clinical outcomes.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Breast Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Rong Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Ya-Jing Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Liu Yang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhou-Jun Yuan
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Jun Yang
- Department of Breast Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Qian-Jun Wang
- Department of Breast Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Liang Yao
- Department of Breast Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, China.
| |
Collapse
|
25
|
Ali L, Raza AA, Zaheer AB, Alhomrani M, Alamri AS, Alghamdi SA, Almalki AA, Alghamdi AA, Khawaja I, Alhadrami M, Ramzan F, Jamil M, Ali M, Jabeen N. In vitro analysis of PI3K pathway activation genes for exploring novel biomarkers and therapeutic targets in clear cell renal carcinoma. Am J Transl Res 2023; 15:4851-4872. [PMID: 37560222 PMCID: PMC10408522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVES The regulation of various cellular functions such as growth, proliferation, metabolism, and angiogenesis, is dependent on the PI3K pathway. Recent evidence has indicated that kidney renal clear cell carcinoma (KIRC) can be triggered by the deregulation of this pathway. The objective of this research was to investigate 25 genes associated with activation of the PI3K pathway in KIRC and control samples to identify four hub genes that might serve as novel molecular biomarkers and therapeutic targets for treating KIRC. METHODS Multi-omics in silico and in vitro analysis was employed to find hub genes related to the PI3K pathway that may be biomarkers and therapeutic targets for KIRC. RESULTS Using STRING software, a protein-protein interaction (PPI) network of 25 PI3K pathway-related genes was developed. Based on the degree scoring method, the top four hub genes were identified using Cytoscape's Cytohubba plug-in. TCGA datasets, KIRC (786-O and A-498), and normal (HK2) cells were used to validate the expression of hub genes. Additionally, further bioinformatic analyses were performed to investigate the mechanisms by which hub genes are involved in the development of KIRC. Out of a total of 25 PI3K pathway-related genes, we developed and validated a diagnostic and prognostic model based on the up-regulation of TP53 (tumor protein 53) and CCND1 (Cyclin D1) and the down-regulation of PTEN (Phosphatase and TENsin homolog deleted on chromosome 10), and GSK3B (Glycogen synthase kinase-3 beta) hub genes. The hub genes included in our model may be a novel therapeutic target for KIRC treatment. Additionally, associations between hub genes and infiltration of immune cells can enhance comprehension of immunotherapy for KIRC. CONCLUSION We have created a new diagnostic and prognostic model for KIRC patients that uses PI3K pathway-related hub genes (TP53, PTEN, CCND1, and GSK3B). Nevertheless, further experimental studies are required to ascertain the efficacy of our model.
Collapse
Affiliation(s)
- Liaqat Ali
- Department of Urology, Institute of Kidney Diseases, Hayatabad Medical ComplexPeshawar 25000, Pakistan
| | - Abbas Ali Raza
- Surgery Department, Bacha Khan Medical College, MTI Mardan Medical ComplexMardan 23200, Pakistan
| | | | - Majid Alhomrani
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif UniversityTaif 21944, Saudi Arabia
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Abdulhakeem S Alamri
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif UniversityTaif 21944, Saudi Arabia
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Saleh A Alghamdi
- Department of Clinical Laboratory Since, Medical Genetics, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif UniversityTaif 21944, Saudi Arabia
| | - Ahmad A Alghamdi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif UniversityP.O. Box 11099, Taif 21944, Saudi Arabia
| | - Imran Khawaja
- Department of Medicine, Ayub Teaching HospitalAbbottabad 22010, Pakistan
| | - Mai Alhadrami
- Department of Pathology, Faculty of Medicine, Umm Alqura UniversityMakkah 24373, Saudi Arabia
| | - Faiqah Ramzan
- Department of Animal and Poultry Production, Faculty of Veterinary and Animal Sciences, Gomal UniversityDera Ismail Khan 29050, Pakistan
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| | - Mubarik Ali
- Animal Science Institute, National Agricultural Research CenterIslamabad 54000, Pakistan
| | - Norina Jabeen
- Department of Rural Sociology, University of AgricultureFaisalabad 38040, Pakistan
| |
Collapse
|
26
|
Pratelli G, Carlisi D, Di Liberto D, Notaro A, Giuliano M, D'Anneo A, Lauricella M, Emanuele S, Calvaruso G, De Blasio A. MCL1 Inhibition Overcomes the Aggressiveness Features of Triple-Negative Breast Cancer MDA-MB-231 Cells. Int J Mol Sci 2023; 24:11149. [PMID: 37446326 DOI: 10.3390/ijms241311149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Triple-Negative Breast Cancer (TNBC) is a particularly aggressive subtype among breast cancers (BCs), characterized by anoikis resistance, high invasiveness, and metastatic potential as well as Epithelial-Mesenchymal Transition (EMT) and stemness features. In the last few years, our research focused on the function of MCL1, an antiapoptotic protein frequently deregulated in TNBC. Here, we demonstrate that MCL1 inhibition by A-1210477, a specific BH3-mimetic, promotes anoikis/apoptosis in the MDA-MB-231 cell line, as shown via an increase in proapoptotic markers and caspase activation. Our evidence also shows A-1210477 effects on Focal Adhesions (FAs) impairing the integrin trim and survival signaling pathways, such as FAK, AKT, ERK, NF-κB, and GSK3β-inducing anoikis, thus suggesting a putative role of MCL1 in regulation of FA dynamics. Interestingly, in accordance with these results, we observed a reduction in migratory and invasiveness capabilities as confirmed by a decrease in metalloproteinases (MMPs) levels following A-1210477 treatment. Moreover, MCL1 inhibition promotes a reduction in EMT characteristics as demonstrated by the downregulation of Vimentin, MUC1, DNMT1, and a surprising re-expression of E-Cadherin, suggesting a possible mesenchymal-like phenotype reversion. In addition, we also observed the downregulation of stemness makers such as OCT3/4, SOX2, NANOG, as well as CD133, EpCAM, and CD49f. Our findings support the idea that MCL1 inhibition in MDA-MB-231 could be crucial to reduce anoikis resistance, aggressiveness, and metastatic potential and to minimize EMT and stemness features that distinguish TNBC.
Collapse
Affiliation(s)
- Giovanni Pratelli
- Department of Physics and Chemistry (DiFC)-Emilio Segrè, University of Palermo, 90128 Palermo, Italy
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Antonella D'Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Calvaruso
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
27
|
Wang C, Liu L, Cheng Y, Shi H. Combined GSK-3β and MEK inhibitors modulate the stemness and radiotherapy sensitivity of cervical cancer stem cells through the Wnt signaling pathway. Chem Biol Interact 2023; 380:110515. [PMID: 37116855 DOI: 10.1016/j.cbi.2023.110515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Cancer stem cells (CSCs) are the basis of cancer and lead to the recurrence and metastasis of cervical cancer. The aim of this study was to investigate the effects of antineoplastic agents on the stemness and radiotherapy sensitivity of cervical CSCs. Side population (SP) and non-side population (NSP) cells from the SiHa cervical cancer cell line were separated using flow cytometry. The cell spheroidization, proliferation, and subcutaneous tumor formation abilities of SP cells were stronger than those of NSP cells, and cervical CSC marker expressions increased in SP cells. The proliferation, anti-apoptosis and migration of SP cells under ionizing radiation were higher than those of SiHa cells. GSK-3β and/or MEK inhibitors can increase the proliferation, migration and anti-apoptosis of SP cells, and CSC marker expressions. The Wnt pathway inhibitor decreased CSC stemness maintenance by combination of GSK-3β and MEK inhibitors. Injection of GSK-3β and MEK inhibitors under ionizing radiation promoted tumor growth and activated downstream factor expressions in the Wnt signaling pathway in vivo. This study demonstrated that combining GSK-3β and MEK inhibitors can activate Wnt signaling pathway in cervical CSCs, thereby affecting their stemness maintenance and radiotherapy sensitivity.
Collapse
Affiliation(s)
- Cong Wang
- Department of Gynecological Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lijun Liu
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Cheng
- Department of Gynecological Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Huirong Shi
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
28
|
Bagheri M, Aisha Mohamed G, Mohamed Saleem MA, Ognjenovic NB, Lu H, Kolling FW, Wilkins OM, Das S, La Croix IS, Nagaraj SH, Muller KE, Gerber SA, Miller TW, Pattabiraman DR. Pharmacological Induction of mesenchymal-epithelial transition chemosensitizes breast cancer cells and prevents metastatic progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537586. [PMID: 37131809 PMCID: PMC10153261 DOI: 10.1101/2023.04.19.537586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a developmental program co-opted by tumor cells that aids the initiation of the metastatic cascade. Tumor cells that undergo EMT are relatively chemoresistant, and there are currently no therapeutic avenues specifically targeting cells that have acquired mesenchymal traits. We show that treatment of mesenchymal-like triple-negative breast cancer (TNBC) cells with the microtubule-destabilizing chemotherapeutic eribulin, which is FDA-approved for the treatment of advanced breast cancer, leads to a mesenchymal-epithelial transition (MET). This MET is accompanied by loss of metastatic propensity and sensitization to subsequent treatment with other FDA-approved chemotherapeutics. We uncover a novel epigenetic mechanism of action that supports eribulin pretreatment as a path to MET induction that curtails metastatic progression and the evolution of therapy resistance.
Collapse
Affiliation(s)
- Meisam Bagheri
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Gadisti Aisha Mohamed
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | | | - Nevena B. Ognjenovic
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Hanxu Lu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Fred W. Kolling
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Owen M. Wilkins
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover NH 03755 USA
| | | | - Ian S. La Croix
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Shivashankar H. Nagaraj
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane QLD 4102, Australia
| | - Kristen E. Muller
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Scott A. Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Todd W. Miller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
| | - Diwakar R. Pattabiraman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756, USA
- Lead contact
| |
Collapse
|
29
|
Huang R, Yamamoto T, Nakata E, Ozaki T, Kurozumi K, Wei F, Tomizawa K, Fujimura A. CDKAL1 Drives the Maintenance of Cancer Stem-Like Cells by Assembling the eIF4F Translation Initiation Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206542. [PMID: 36786012 PMCID: PMC10131790 DOI: 10.1002/advs.202206542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Cancer stem-like cells (CSCs) have a unique translation mode, but little is understood about the process of elongation, especially the contribution of tRNA modifications to the maintenance of CSCs properties. Here, it is reported that, contrary to the initial aim, a tRNA-modifying methylthiotransferase CDKAL1 promotes CSC-factor SALL2 synthesis by assembling the eIF4F translation initiation complex. CDKAL1 expression is upregulated in patients with worse prognoses and is essential for maintaining CSCs in rhabdomyosarcoma (RMS) and common cancers. Translatome analysis reveals that a group of mRNAs whose translation is CDKAL1-dependent contains cytosine-rich sequences in the 5' untranslated region (5'UTR). Mechanistically, CDKAL1 promotes the translation of such mRNAs by organizing the eIF4F translation initiation complex. This complex formation does not require the enzyme activity of CDKAL1 but requires only the NH2 -terminus domain of CDKAL1. Furthermore, sites in CDKAL1 essential for forming the eIF4F complex are identified and discovered candidate inhibitors of CDKAL1-dependent translation.
Collapse
Affiliation(s)
- Rongsheng Huang
- Department of Cellular PhysiologyOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaOkayama700‐8558Japan
| | - Takahiro Yamamoto
- Department of Molecular PhysiologyKumamoto University Faculty of Life SciencesKumamotoKumamoto860‐0811Japan
| | - Eiji Nakata
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaOkayama700‐8558Japan
| | - Toshifumi Ozaki
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaOkayama700‐8558Japan
| | - Kazuhiko Kurozumi
- Department of NeurosurgeryHamamatsu University School of MedicineHamamatsuShizuoka431‐3192Japan
| | - Fanyan Wei
- Department of Modomics Biology and MedicineInstitute of Development, Aging and CancerTohoku UniversitySendaiMiyagi980‐8575Japan
| | - Kazuhito Tomizawa
- Department of Molecular PhysiologyKumamoto University Faculty of Life SciencesKumamotoKumamoto860‐0811Japan
| | - Atsushi Fujimura
- Department of Cellular PhysiologyOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaOkayama700‐8558Japan
- Neutron Therapy Research CenterOkayama UniversityOkayamaOkayama700‐8558Japan
| |
Collapse
|
30
|
Ferreira LAM, Bezerra MADS, Kawasaki-Oyama RS, Fernandes GMDM, Castanhole-Nunes MMU, Serafim Junior V, Castilho RM, Pavarino ÉC, Maniglia JV, Goloni-Bertollo EM. Effect of ZEB1 Associated with microRNAs on Tumor Stem Cells in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24065916. [PMID: 36982993 PMCID: PMC10052136 DOI: 10.3390/ijms24065916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer biologists have focused on studying cancer stem cells (CSCs) because of their ability to self-renew and recapitulate tumor heterogeneity, which increases their resistance to chemotherapy and is associated with cancer relapse. Here, we used two approaches to isolate CSCs: the first involved the metabolic enzyme aldehyde dehydrogenase ALDH, and the second involved the three cell surface markers CD44, CD117, and CD133. ALDH cells showed a higher zinc finger E-box binding homeobox 1 (ZEB1) microRNA (miRNA) expression than CD44/CD117/133 triple-positive cells, which overexpressed miRNA 200c-3p: a well-known microRNA ZEB1 inhibitor. We found that ZEB1 inhibition was driven by miR-101-3p, miR-139-5p, miR-144-3p, miR-199b-5p, and miR-200c-3p and that the FaDu Cell Line inhibition occurred at the mRNA level, whereas HN13 did not affect mRNA expression but decreased protein levels. Furthermore, we demonstrated the ability of the ZEB1 inhibitor miRNAs to modulate CSC-related genes, such as TrkB, ALDH, NANOG, and HIF1A, using transfection technology. We showed that ALDH was upregulated upon ZEB1-suppressed miRNA transfection (Mann-Whitney ** p101 = 0.009, t-test ** p139 = 0.009, t-test ** p144 = 0.002, and t-test *** p199 = 0.0006). Overall, our study enabled an improved understanding of the role of ZEB1-suppressed miRNAs in CSC biology.
Collapse
Affiliation(s)
- Letícia Antunes Muniz Ferreira
- Genetics and Molecular Biology Research Unit (UPGEM), Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Maria Antonia Dos Santos Bezerra
- Genetics and Molecular Biology Research Unit (UPGEM), Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Rosa Sayoko Kawasaki-Oyama
- Genetics and Molecular Biology Research Unit (UPGEM), Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Glaucia Maria de Mendonça Fernandes
- Genetics and Molecular Biology Research Unit (UPGEM), Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Márcia Maria Urbanin Castanhole-Nunes
- Genetics and Molecular Biology Research Unit (UPGEM), Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Vilson Serafim Junior
- Genetics and Molecular Biology Research Unit (UPGEM), Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Rogério Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Érika Cristina Pavarino
- Genetics and Molecular Biology Research Unit (UPGEM), Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, São Paulo, Brazil
| | - José Victor Maniglia
- Department of Otolaryngology and Head and Neck Surgery, Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Eny Maria Goloni-Bertollo
- Genetics and Molecular Biology Research Unit (UPGEM), Medical School of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, São Paulo, Brazil
| |
Collapse
|
31
|
Contreras-Rodríguez JA, Puente-Rivera J, Córdova-Esparza DM, Nuñez-Olvera SI, Silva-Cázares MB. Bioinformatic miRNA-mRNAs Analysis Revels to miR-934 as a Potential Regulator of the Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer. Cells 2023; 12:cells12060834. [PMID: 36980175 PMCID: PMC10047237 DOI: 10.3390/cells12060834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer and has the worst prognosis. In patients with TNBC tumors, the tumor cells have been reported to have mesenchymal features, which help them migrate and invade. Various studies on cancer have revealed the importance of microRNAs (miRNAs) in different biological processes of the cell in that aberrations, in their expression, lead to alterations and deregulations in said processes, giving rise to tumor progression and aggression. In the present work, we determined the miRNAs that are deregulated in the epithelial-mesenchymal transition process in breast cancer. We discovered that 25 miRNAs that regulate mesenchymal genes are overexpressed in patients with TNBC. We found that miRNA targets modulate different processes and pathways, such as apoptosis, FoxO signaling pathways, and Hippo. We also found that the expression level of miR-934 is specific to the molecular subtype of the triple-negative breast cancer and modulates a set of related epithelial-mesenchymal genes. We determined that miR-934 inhibition in TNBC cell lines inhibits the migratory abilities of tumor cells.
Collapse
Affiliation(s)
| | | | | | - Stephanie I Nuñez-Olvera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | |
Collapse
|
32
|
Nguyen HM, Paulishak W, Oladejo M, Wood L. Dynamic tumor microenvironment, molecular heterogeneity, and distinct immunologic portrait of triple-negative breast cancer: an impact on classification and treatment approaches. Breast Cancer 2023; 30:167-186. [PMID: 36399321 DOI: 10.1007/s12282-022-01415-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
Heterogeneity of the tumor microenvironment (TME) and the lack of a definite targetable receptor in triple-negative breast cancer (TNBC) has carved a niche for this cancer as a particularly therapeutically challenging form of breast cancer. However, recent advances in high-throughput genomic analysis have provided new insights into the unique microenvironment and defining characteristics of various subsets of TNBC. This improved understanding has contributed to the development of novel therapeutic strategies including targeted therapies such as PARP inhibitors and CDK inhibitors. Moreover, the recent FDA approval of the immune checkpoint inhibitor against programmed cell death protein 1 (PD-1), pembrolizumab and atezolizumab, holds the promise of improving the quality of life and increasing the overall survival of TNBC patients. This recent approval is one of the many therapeutically novel strategies that are currently being exploited in clinical trials toward eventual contribution to the oncologist's toolbox against TNBC. In this review, we comprehensively discuss TNBC's distinct TME and its immunophenotype. Furthermore, we highlight the histological and molecular classification of this cancer. More importantly, we describe how these characteristics and classifications contribute to the current standards of care and how they steer the development of newer and more targeted therapies toward achieving peak therapeutic goals in the treatment of TNBC.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA
| | - Wyatt Paulishak
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA
| | - Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Abilene, TX, 79601, USA.
| |
Collapse
|
33
|
Saha M, Ghosh SS. Engineered Hybrid Nanosystem for Homologous Targeting of EMT Induced Triple Negative Breast Cancer Cells. ACS APPLIED BIO MATERIALS 2023; 6:681-693. [PMID: 36662500 DOI: 10.1021/acsabm.2c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The increased mortality rate due to metastatic breast cancer with poor prognosis has raised concern over its effective therapy. Though various therapies and anticancer drugs have been approved, there is still a lack in the targeting of metastatic triple negative breast cancer (TNBC). We have developed a hybrid nanosystem that was synthesized by fusing exosomes from MCF-7 cells and nanovesicles from the MDA MB-231 cells that would be targeted. The developed nanosystem was characterized by various techniques like Western blotting, AFM, FETEM, DLS, CD, and fluorescence spectroscopy. The hybrid system was used for the delivery of an HDAC inhibitor, Trichostatin A (TSA), in combination with lapatinib (a tyrosine kinase inhibitor) for cotherapy of epithelial to mesenchymal transition (EMT) induced TNBC. This targeted cotherapy module had higher efficiency and effectivity in the reduction of metastatic ability and proliferation of EMT induced MDA MB-231 cells as compared to free inhibitor treatment or untargeted cotherapy. Reduction in the expression of the Wnt/β-catenin signaling pathway molecules like β-catenin (by 0.7 fold), Gsk3β (by 0.6 fold), and pGsk-3β (0.3 fold) was observed upon treatment. This subsequently resulted in the suppression of EMT markers, thereby resulting in reversing EMT to MET and suppressing metastatic breast cancer.
Collapse
Affiliation(s)
- Muktashree Saha
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati781039, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati781039, Assam, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
34
|
Villegas-Vázquez EY, Quintas-Granados LI, Cortés H, González-Del Carmen M, Leyva-Gómez G, Rodríguez-Morales M, Bustamante-Montes LP, Silva-Adaya D, Pérez-Plasencia C, Jacobo-Herrera N, Reyes-Hernández OD, Figueroa-González G. Lithium: A Promising Anticancer Agent. Life (Basel) 2023; 13:537. [PMID: 36836894 PMCID: PMC9966411 DOI: 10.3390/life13020537] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Lithium is a therapeutic cation used to treat bipolar disorders but also has some important features as an anti-cancer agent. In this review, we provide a general overview of lithium, from its transport into cells, to its innovative administration forms, and based on genomic, transcriptomic, and proteomic data. Lithium formulations such as lithium acetoacetate (LiAcAc), lithium chloride (LiCl), lithium citrate (Li3C6H5O7), and lithium carbonate (Li2CO3) induce apoptosis, autophagy, and inhibition of tumor growth and also participate in the regulation of tumor proliferation, tumor invasion, and metastasis and cell cycle arrest. Moreover, lithium is synergistic with standard cancer therapies, enhancing their anti-tumor effects. In addition, lithium has a neuroprotective role in cancer patients, by improving their quality of life. Interestingly, nano-sized lithium enhances its anti-tumor activities and protects vital organs from the damage caused by lipid peroxidation during tumor development. However, these potential therapeutic activities of lithium depend on various factors, such as the nature and aggressiveness of the tumor, the type of lithium salt, and its form of administration and dosage. Since lithium has been used to treat bipolar disorder, the current study provides an overview of its role in medicine and how this has changed. This review also highlights the importance of this repurposed drug, which appears to have therapeutic cancer potential, and underlines its molecular mechanisms.
Collapse
Affiliation(s)
- Edgar Yebrán Villegas-Vázquez
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Miguel Rodríguez-Morales
- Licenciatura en Médico Cirujano, Facultad de Ciencias de la Salud Universidad Anáhuac Norte, Academia de Genética Médica, Naucalpan de Juárez 52786, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México 14080, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| |
Collapse
|
35
|
Liang L, Kaufmann AM. The Significance of Cancer Stem Cells and Epithelial-Mesenchymal Transition in Metastasis and Anti-Cancer Therapy. Int J Mol Sci 2023; 24:ijms24032555. [PMID: 36768876 PMCID: PMC9917228 DOI: 10.3390/ijms24032555] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified and characterized in both hematopoietic and solid tumors. Their existence was first predicted by Virchow and Cohnheim in the 1870s. Later, many studies showed that CSCs can be identified and isolated by their expression of specific cell markers. The significance of CSCs with respect to tumor biology and anti-cancer treatment lies in their ability to maintain quiescence with very slow proliferation, indefinite self-renewal, differentiation, and trans-differentiation such as epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET). The ability for detachment, migration, extra- and intravasation, invasion and thereby of completing all necessary steps of the metastatic cascade highlights their significance for metastasis. CSCs comprise the cancer cell populations responsible for tumor growth, resistance to therapies and cancer metastasis. In this review, the history of the CSC theory, their identification and characterization and their biology are described. The contribution of the CSC ability to undergo EMT for cancer metastasis is discussed. Recently, novel strategies for drug development have focused on the elimination of the CSCs specifically. The unique functional and molecular properties of CSCs are discussed as possible therapeutic vulnerabilities for the development of novel anti-metastasis treatments. Prospectively, this may provide precise personalized anti-cancer treatments with improved therapeutic efficiency with fewer side effects and leading to better prognosis.
Collapse
|
36
|
Novel Anti-Cancer Products Targeting AMPK: Natural Herbal Medicine against Breast Cancer. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020740. [PMID: 36677797 PMCID: PMC9863744 DOI: 10.3390/molecules28020740] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Breast cancer is a common cancer in women worldwide. The existing clinical treatment strategies have been able to limit the progression of breast cancer and cancer metastasis, but abnormal metabolism, immunosuppression, and multidrug resistance involving multiple regulators remain the major challenges for the treatment of breast cancer. Adenosine 5'-monophosphate (AMP)-Activated Protein Kinase (AMPK) can regulate metabolic reprogramming and reverse the "Warburg effect" via multiple metabolic signaling pathways in breast cancer. Previous studies suggest that the activation of AMPK suppresses the growth and metastasis of breast cancer cells, as well as stimulating the responses of immune cells. However, some other reports claim that the development and poor prognosis of breast cancer are related to the overexpression and aberrant activation of AMPK. Thus, the role of AMPK in the progression of breast cancer is still controversial. In this review, we summarize the current understanding of AMPK, particularly the comprehensive bidirectional functions of AMPK in cancer progression; discuss the pharmacological activators of AMPK and some specific molecules, including the natural products (including berberine, curcumin, (-)-epigallocatechin-3-gallate, ginsenosides, and paclitaxel) that influence the efficacy of these activators in cancer therapy; and elaborate the role of AMPK as a potential therapeutic target for the treatment of breast cancer.
Collapse
|
37
|
Jusoh AR, Al-Astani Bin Tengku Din TAD, Abdullah-Zawawi MR, Abdul Rahman WFW, Nafi SNM, Romli RC, Hashim EKM, Ab Patar MNA, Yahya MM. Unraveling Roles of miR-27b-3p as a Potential Biomarker for Breast Cancer in Malay Women via Bioinformatics Analysis. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:257-274. [PMID: 38751652 PMCID: PMC11092903 DOI: 10.22088/ijmcm.bums.12.3.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 05/18/2024]
Abstract
Abnormal miRNA expression has been associated with breast cancer. Knowing miRNA and its target genes gives a better understanding of the biological mechanism behind the development of breast cancer. Here, we evaluated the potential prognostic and predictive values of miRNAs in breast cancer development by analyzing Malay women with breast cancer expression profiles. Seven differentially expressed miRNAs (DEMs) were subjected to miRNA‒target interaction network analysis (MTIN). A comprehensive MTIN was developed by integrating the information on miRNA and target gene interactions from five independent databases, including DIANA-TarBase, miRTarBase, miRNet, miRDB, and DIANA-microT. To understand the role of miRNAs in the progress of breast cancer, functional enrichment analysis of the miRNA target genes was conducted, followed by survival analysis to assess the prognostic values of the miRNAs and their target genes. In total, 1416 interactions were discovered among seven DEMs and 1274 target genes with a confidence score (CS) > 0.8. The overall survival analysis of the three most DEMs revealed a significant association of miR-27b-3p with poor prognosis in the TCGA breast cancer patient cohort. Further functional analysis of 606 miR-27b-3p target genes revealed their involvement in cancer-related processes and pathways, including the progesterone receptor signaling pathway, PI3K-Akt pathway, and EGFR transactivation. Notably, six high-confidence target genes (BTG2, DNAJC13, GRB2, GSK3B, KRAS, and UBR5) were discovered to be associated with worse overall survival in breast cancer patients, underscoring their essential roles in breast cancer development. Thus, we suggest that miR-27b-3p has significant potential as a biomarker for detecting breast cancer and can provide valuable understanding regarding the molecular mechanisms of the disease.
Collapse
Affiliation(s)
- Ab. Rashid Jusoh
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| | - Tengku Ahmad Damitri Al-Astani Bin Tengku Din
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
- Breast Cancer Awareness and Research Unit (BestARi), Hospital Universiti Sains Malaysia, Kelantan, Malaysia.
| | | | - Wan Faiziah Wan Abdul Rahman
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
- Breast Cancer Awareness and Research Unit (BestARi), Hospital Universiti Sains Malaysia, Kelantan, Malaysia.
| | - Siti Norasikin Mohd Nafi
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| | - Roslaini Che Romli
- Breast Cancer Awareness and Research Unit (BestARi), Hospital Universiti Sains Malaysia, Kelantan, Malaysia.
| | | | - Mohd Nor Azim Ab Patar
- 6 Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Health Campus, Kelantan, Malaysia.
| | - Maya Mazuwin Yahya
- Breast Cancer Awareness and Research Unit (BestARi), Hospital Universiti Sains Malaysia, Kelantan, Malaysia.
- Department of Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| |
Collapse
|
38
|
López-Tejada A, Griñán-Lisón C, González-González A, Cara FE, Luque RJ, Rosa-Garrido C, Blaya-Cánovas JL, Navarro-Ocón A, Valenzuela-Torres M, Parra-López M, Calahorra J, Blancas I, Marchal JA, Granados-Principal S. TGFβ Governs the Pleiotropic Activity of NDRG1 in Triple-Negative Breast Cancer Progression. Int J Biol Sci 2023; 19:204-224. [PMID: 36594086 PMCID: PMC9760438 DOI: 10.7150/ijbs.78738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
In triple-negative breast cancer (TNBC), the pleiotropic NDRG1 (N-Myc downstream regulated gene 1) promotes progression and worse survival, yet contradictory results were documented, and the mechanisms remain unknown. Phosphorylation and localization could drive NDRG1 pleiotropy, nonetheless, their role in TNBC progression and clinical outcome was not investigated. We found enhanced p-NDRG1 (Thr346) by TGFβ1 and explored whether it drives NDRG1 pleiotropy and TNBC progression. In tissue microarrays of 81 TNBC patients, we identified that staining and localization of NDRG1 and p-NDRG1 (Thr346) are biomarkers and risk factors associated with shorter overall survival. We found that TGFβ1 leads NDRG1, downstream of GSK3β, and upstream of NF-κB, to differentially regulate migration, invasion, epithelial-mesenchymal transition, tumor initiation, and maintenance of different populations of cancer stem cells (CSCs), depending on the progression stage of tumor cells, and the combination of TGFβ and GSK3β inhibitors impaired CSCs. The present study revealed the striking importance to assess both total NDRG1 and p-NDRG1 (Thr346) positiveness and subcellular localization to evaluate patient prognosis and their stratification. NDRG1 pleiotropy is driven by TGFβ to differentially promote metastasis and/or maintenance of CSCs at different stages of tumor progression, which could be abrogated by the inhibition of TGFβ and GSK3β.
Collapse
Affiliation(s)
- Araceli López-Tejada
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain
| | - Carmen Griñán-Lisón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain.,UGC de Oncología Médica, Hospital Universitario de Jaén, 23007 Jaén, Spain
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
| | - Rafael J. Luque
- UGC de Anatomía Patológica, Hospital Universitario de Jaén, Jaén, Spain
| | - Carmen Rosa-Garrido
- FIBAO, Hospital Universitario de Jaén, Servicio Andaluz de Salud, Jaén, Spain
| | - José L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain.,UGC de Oncología Médica, Hospital Universitario de Jaén, 23007 Jaén, Spain
| | - Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain
| | - María Valenzuela-Torres
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
| | - Marisa Parra-López
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
| | - Jesús Calahorra
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain.,UGC de Oncología Médica, Hospital Universitario de Jaén, 23007 Jaén, Spain
| | - Isabel Blancas
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain.,UGC de Oncología, Hospital Universitario “San Cecilio”, 18016 Granada, Spain
| | - Juan A. Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain.,Department of Human Anatomy and Embryology, Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18011 Granada, Spain.,Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain
| | - Sergio Granados-Principal
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain.,✉ Corresponding author: E-mail: . Phone number: +34 651 55 79 21
| |
Collapse
|
39
|
Vitaliti A, Roccatani I, Iorio E, Perta N, Gismondi A, Chirico M, Pisanu ME, Di Marino D, Canini A, De Luca A, Rossi L. AKT-driven epithelial-mesenchymal transition is affected by copper bioavailability in HER2 negative breast cancer cells via a LOXL2-independent mechanism. Cell Oncol (Dordr) 2023; 46:93-115. [PMID: 36454513 PMCID: PMC9947069 DOI: 10.1007/s13402-022-00738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The main mechanism underlying cancer dissemination is the epithelial to mesenchymal transition (EMT). This process is orchestrated by cytokines like TGFβ, involving "non-canonical" AKT- or STAT3-driven pathways. Recently, the alteration of copper homeostasis seems involved in the onset and progression of cancer. METHODS We expose different breast cancer cell lines, including two triple negative (TNBC) ones, an HER2 enriched and one cell line representative of the Luminal A molecular subtype, to short- or long-term copper-chelation by triethylenetetramine (TRIEN). We analyse changes in the expression of EMT markers (E-cadherin, fibronectin, vimentin and αSMA), in the levels and activity of extracellular matrix components (LOXL2, fibronectin and MMP2/9) and of copper homeostasis markers by Western blot analyses, immunofluorescence, enzyme activity assays and RT-qPCR. Boyden Chamber and wound healing assays revealed the impact of copper chelation on cell migration. Additionally, we explored whether perturbation of copper homeostasis affects EMT prompted by TGFβ. Metabolomic and lipidomic analyses were applied to search the effects of copper chelation on the metabolism of breast cancer cells. Finally, bioinformatics analysis of data on breast cancer patients obtained from different databases was employed to correlate changes in kinases and copper markers with patients' survival. RESULTS Remarkably, only HER2 negative breast cancer cells differently responded to short- or long-term exposure to TRIEN, initially becoming more aggressive but, upon prolonged exposure, retrieving epithelial features, reducing their invasiveness. This phenomenon may be related to the different impact of the short and prolonged activation of the AKT kinase and to the repression of STAT3 signalling. Bioinformatics analyses confirmed the positive correlation of breast cancer patients' survival with AKT activation and up-regulation of CCS. Eventually, metabolomics studies demonstrate a prevalence of glycolysis over mitochondrial energetic metabolism and of lipidome changes in TNBC cells upon TRIEN treatment. CONCLUSIONS We provide evidence of a pivotal role of copper in AKT-driven EMT activation, acting independently of HER2 in TNBC cells and via a profound change in their metabolism. Our results support the use of copper-chelators as an adjuvant therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Alessandra Vitaliti
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy ,PhD program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Ilenia Roccatani
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Egidio Iorio
- Core Facilities High Resolution NMR Unit, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Nunzio Perta
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Angelo Gismondi
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Mattea Chirico
- Core Facilities High Resolution NMR Unit, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Maria Elena Pisanu
- Core Facilities High Resolution NMR Unit, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Antonella Canini
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133, Rome, Italy.
| | - Luisa Rossi
- Department of Biology, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133, Rome, Italy.
| |
Collapse
|
40
|
GAO X, SHEN S, NIU Q, MIAO W, HAN Y, HAO Z, AN N, YANG Y, ZHANG Y, ZHANG H, STOREY KB, CHANG H. Differential bone metabolism and protein expression in mice fed a high-fat diet versus Daurian ground squirrels following natural pre-hibernation fattening. J Zhejiang Univ Sci B 2022; 23:1042-1056. [PMID: 36518056 PMCID: PMC9758712 DOI: 10.1631/jzus.b2100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study compared the effects on bone metabolism and morphology of pathological obesity induced by excessive fat intake in a non-hibernator (mice) versus healthy obesity due to pre-hibernation fattening in a hibernator (ground squirrels). Kunming mice were fed a high-fat diet to provide a model of pathological obesity (OB group). Daurian ground squirrels fattened naturally in their pre-hibernation season (PRE group) were used as a healthy obesity model. Micro-computed tomography (micro-CT) and three-point bending tests were used to determine the microstructure and mechanical properties of bone. Western blots were used to analyze protein expression levels related to bone metabolism (Runt-related transcription factor 2 (RunX2), osteocalcin (OCN), alkaline phosphatase (ALP), osteoprotegerin (OPG), receptor activator of nuclear factor-κB ligand (RANKL), cathepsin K, matrix metallopeptidase 9 (MMP9), patched protein homolog 1 (Ptch1), phosphorylated β-catenin (P-β-catenin), and glycogen synthase kinase-3β (GSK-3β)). Compared with controls, there was no obvious bone loss in the OB mice, and the stiffness of the femur was increased significantly. Compared with summer active squirrels, bone formation was enhanced but the mechanical properties did not change in the PRE group squirrels. In OB mice, western blots showed significantly increased expression levels of all proteins except RunX2, OPG, and Ptch1. PRE ground squirrels showed significantly increased expression of most proteins except OCN and Ptch1, which decreased significantly, and P-β-catenin and OPG, which did not change. In conclusion, for non-hibernating mice, moderate obesity had a certain protective effect on bones, demonstrating two-way regulation, increasing both bone loss and bone formation. For pre-hibernating ground squirrels, the healthy obesity acquired before hibernation had a positive effect on the microstructure of bones, and also enhanced the expression levels of proteins related to bone formation, bone resorption, and Wnt signaling.
Collapse
Affiliation(s)
- Xuli GAO
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an710069, China,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Shenyang SHEN
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Qiaohua NIU
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Weilan MIAO
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Yuting HAN
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Ziwei HAO
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Ning AN
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Yingyu YANG
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Yu ZHANG
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Han ZHANG
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China
| | - Kenneth B. STOREY
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hui CHANG
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an710069, China,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’an710069, China,Hui CHANG,
| |
Collapse
|
41
|
AKT/GSK3β/NFATc1 and ROS signal axes are involved in AZD1390-mediated inhibitory effects on osteoclast and OVX-induced osteoporosis. Int Immunopharmacol 2022; 113:109370. [DOI: 10.1016/j.intimp.2022.109370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
42
|
Hao S, Chen X, Zhang D, Song W, Zhou Y, Yuan Z, Liu Z, Yue X, Yuan S. GSK3β inhibitor TDZD8 ameliorates brain damage through both ROS scavenging and inhibition of apoptosis in hyperglycaemic subarachnoid haemorrhage rats. Clin Exp Pharmacol Physiol 2022; 49:1352-1360. [PMID: 36106766 DOI: 10.1111/1440-1681.13723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 01/31/2023]
Abstract
Hyperglycaemia is known to be associated with unfavourable outcomes in subarachnoid haemorrhage (SAH), but the pathogenic mechanism is unclear, and there is also a lack of effective therapeutic drugs in clinical practice. Phosphorylation of GSK3β at serine 9 can inhibit its activity to further worsen SAH. The aim of the present study was to evaluate the protective effect and the potential mechanism of the GSK3β inhibitor TDZD8 on brain injury in a hyperglycaemic SAH rat model. Hyperglycaemia was induced by intraperitoneal injection of streptozocin for 3 days. The SAH model was established by injecting fresh autologous femoral artery blood into the prechiasmatic cistern. p-GSK3β (Ser9) expression was induced by intraperitoneal injection of TDZD8 (30 min post-SAH). The expression levels of GSK3β, p-GSK3β, SOD1/2, caspase 3, Bax and Bcl-2 were detected by western blot analysis. Terminal deoxynucleotidyl transferase dUTP nick end-labelling (TUNEL) staining was used to detect neuronal apoptosis of basal temporal lobe. Neurological scores were calculated to determine behavioural recovery. Neuronal survival was detected by Nissl staining. Hyperglycaemia significantly decreased p-GSK3β expression, further exacerbated neurobehavioural deficits and increased oxidative stress and neuronal apoptosis in the brain after SAH compared to normal glycaemic SAH rats and hyperglycaemic rats. In addition, hyperglycaemic SAH rats had obvious oxidative stress and apoptosis. However, TDZD8 effectively decreased cleaved caspase 3 expression and TUNEL-positive cells and increased the Bcl2/Bax ratio, expression of SOD1/2 and activity of superoxide dismutase (SOD) enzyme compared with hyperglycaemic SAH rats. The GSK3β inhibitor TDZD8 has therapeutic potential for hyperglycaemic SAH. The neuroprotective effect of TDZD8 appears to be mediated through its antioxidative and antiapoptotic activity.
Collapse
Affiliation(s)
- Shuangying Hao
- School of Medicine, Henan Polytechnic University, Jiaozuo, People's Republic of China
| | - Xingying Chen
- School of Medicine, Henan Polytechnic University, Jiaozuo, People's Republic of China
| | - Dingding Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Wenting Song
- School of Medicine, Henan Polytechnic University, Jiaozuo, People's Republic of China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Zhiqing Yuan
- School of Medicine, Henan Polytechnic University, Jiaozuo, People's Republic of China
| | - Zhiqiang Liu
- School of Medicine, Henan Polytechnic University, Jiaozuo, People's Republic of China
| | - Xiaojing Yue
- Department of Laboratory Medicine, Jiaozuo Women's and Children's Hospital, Jiaozuo, People's Republic of China
| | - Shuai Yuan
- School of Medicine, Henan Polytechnic University, Jiaozuo, People's Republic of China
| |
Collapse
|
43
|
Li Z, Yang HY, Zhang XL, Zhang X, Huang YZ, Dai XY, Shi L, Zhou GR, Wei JF, Ding Q. Kinesin family member 23, regulated by FOXM1, promotes triple negative breast cancer progression via activating Wnt/β-catenin pathway. J Exp Clin Cancer Res 2022; 41:168. [PMID: 35524313 PMCID: PMC9077852 DOI: 10.1186/s13046-022-02373-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is highly malignant and has a worse prognosis, compared with other subtypes of breast cancer due to the absence of therapeutic targets. KIF23 plays a crucial role in the tumorigenesis and cancer progression. However, the role of KIF23 in development of TNBC and the underlying mechanism remain unknown. The study aimed to elucidate the biological function and regulatory mechanism of KIF23 in TNBC. Methods Quantitative real-time PCR and Western blot were used to determine the KIF23 expression in breast cancer tissues and cell lines. Then, functional experiments in vitro and in vivo were performed to investigate the effects of KIF23 on tumor growth and metastasis in TNBC. Chromatin immunoprecipitation assay was conducted to illustrate the potential regulatory mechanisms of KIF23 in TNBC. Results We found that KIF23 was significantly up-regulated and associated with poor prognosis in TNBC. KIF23 could promote TNBC proliferation, migration and invasion in vitro and in vivo. KIF23 could activate Wnt/β-catenin pathway and promote EMT progression in TNBC. In addition, FOXM1, upregulated by WDR5 via H3K4me3 modification, directly bound to the promoter of KIF23 gene to promote its transcription and accelerated TNBC progression via Wnt/β-catenin pathway. Both of small inhibitor of FOXM1 and WDR5 could inhibit TNBC progression. Conclusions Our findings elucidate WDR5/FOXM1/KIF23/Wnt/β-catenin axis is associated with TNBC progression and may provide a novel and promising therapeutic target for TNBC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02373-7.
Collapse
|
44
|
Gresseau L, Roy ME, Duhamel S, Annabi B. A Signaling Crosstalk Links SNAIL to the 37/67 kDa Laminin-1 Receptor Ribosomal Protein SA and Regulates the Acquisition of a Cancer Stem Cell Molecular Signature in U87 Glioblastoma Neurospheres. Cancers (Basel) 2022; 14:5944. [PMID: 36497426 PMCID: PMC9738384 DOI: 10.3390/cancers14235944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Three-dimensional in vitro neurospheres cultures recapitulate stemness features associated with poor clinical outcome in glioblastoma patients. They are commonly used to address brain cancer stem cell (CSC) signal transducing biology that regulates spheroids formation and stemness phenotype, and to assess the in vitro pharmacological impact of chemotherapeutic drugs. Objective: Here, we addressed the role of a new signaling axis involved in the regulation of in vitro spheroids formation and assessed the chemopreventive ability of diet-derived epigallocatechin gallate (EGCG) to impact the processes that govern the acquisition of spheroids CSC stemness traits. Methods: Neurospheres were generated from adherent human U87 glioblastoma cancer cell cultures under conditions that recapitulate stemness features. Total RNA and protein lysates were isolated for gene expression by RT-qPCR and protein expression by immunoblot. Transcriptomic analysis was performed through RNA-Seq. Results: Compared to their parental adherent cells, tumorspheres expressed increased levels of the CSC markers NANOG, SOX2, PROM1 (CD133), as well as of the epithelial-to-mesenchymal transition (EMT) markers Fibronectin, SNAI1, and 37/67 kDa laminin-1 receptor ribosomal protein SA (RPSA). Increased PROM1, SOX2, Fibronectin, and RPSA transcripts level were also observed in clinical grade IV glioblastoma tissues compared to normal tissue. EGCG treatment reduced dose-dependently tumorspheres size and inhibited the transcriptional regulation of those genes. An apoptotic signature was also found in spheroids with increased signal transducing events involving GSK3α/β, RSK, and CREB. These were repressed upon RPSA gene silencing and partially by SNAI1 silencing. Conclusion: This work highlights a signaling axis linking RPSA upstream of SNAIL in neurospheres genesis and supports the chemopreventive impact that diet-derived EGCG may exert on the acquisition of CSC traits.
Collapse
Affiliation(s)
- Loraine Gresseau
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada
| | - Marie-Eve Roy
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada
| | - Stéphanie Duhamel
- Goodman Cancer Institute, McGill University, Montreal, QC H3A 0G4, Canada
| | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Département de Chimie, and CERMO-FC, Université du Québec à Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
45
|
Elmadbouh OHM, Pandol SJ, Edderkaoui M. Glycogen Synthase Kinase 3β: A True Foe in Pancreatic Cancer. Int J Mol Sci 2022; 23:14133. [PMID: 36430630 PMCID: PMC9696080 DOI: 10.3390/ijms232214133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Glycogen synthase kinase 3 beta (GSK-3β) is a serine/threonine protein kinase involved in multiple normal and pathological cell functions, including cell signalling and metabolism. GSK-3β is highly expressed in the onset and progression of multiple cancers with strong involvement in the regulation of proliferation, apoptosis, and chemoresistance. Multiple studies showed pro- and anti-cancer roles of GSK-3β creating confusion about the benefit of targeting GSK-3β for treating cancer. In this mini-review, we focus on the role of GSK-3β in pancreatic cancer. We demonstrate that the proposed anti-cancer roles of GSK-3β are not relevant to pancreatic cancer, and we argue why GSK-3β is, indeed, a very promising therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Omer H. M. Elmadbouh
- Department of Medicine, Division of Gastroenterology and Hepatology, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen J. Pandol
- Department of Medicine, Division of Gastroenterology and Hepatology, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mouad Edderkaoui
- Department of Medicine, Division of Gastroenterology and Hepatology, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
46
|
He F, Furones AR, Landegren N, Fuxe J, Sarhan D. Sex dimorphism in the tumor microenvironment - From bench to bedside and back. Semin Cancer Biol 2022; 86:166-179. [PMID: 35278635 DOI: 10.1016/j.semcancer.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/20/2022] [Accepted: 03/06/2022] [Indexed: 01/27/2023]
Abstract
Cancer represents a significant cause of death and suffering in both the developed and developing countries. Key underlying issues in the mortality of cancer are delayed diagnosis and resistance to treatments. However, improvements in biomarkers represent one important step that can be taken for alleviating the suffering caused by malignancy. Precision-based medicine is promising for revolutionizing diagnostic and treatment strategies for cancer patients worldwide. Contemporary methods, including various omics and systems biology approaches, as well as advanced digital imaging and artificial intelligence, allow more accurate assessment of tumor characteristics at the patient level. As a result, treatment strategies can be specifically tailored and adapted for individual and/or groups of patients that carry certain tumor characteristics. This includes immunotherapy, which is based on characterization of the immunosuppressive tumor microenvironment (TME) and, more specifically, the presence and activity of immune cell subsets. Unfortunately, while it is increasingly clear that gender strongly affects immune regulation and response, there is a knowledge gap concerning differences in sex-specific immune responses and how these contribute to the immunosuppressive TME and the response to immunotherapy. In fact, sex dimorphism is poorly understood in cancer progression and is typically ignored in current clinical practice. In this review, we aim to survey the available literature and highlight the existing knowledge gap in order to encourage further studies that would contribute to understanding both gender-biased immunosuppression in the TME and the driver of tumor progression towards invasive and metastatic disease. The review highlights the need to include sex optimized/genderized medicine as a new concept in future medicine cancer diagnostics and treatments.
Collapse
Affiliation(s)
- Fei He
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden; Department of Urology, First affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Andrea Rodgers Furones
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden; Tumor Immunology Department, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Nils Landegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala 751 23, Sweden; Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm 171 76, Sweden
| | - Jonas Fuxe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
47
|
Ni Y, He J, Chalise P. Integration of differential expression and network structure for 'omics data analysis. Comput Biol Med 2022; 150:106133. [PMID: 36179515 DOI: 10.1016/j.compbiomed.2022.106133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/23/2022] [Accepted: 09/18/2022] [Indexed: 11/25/2022]
Abstract
Differential expression (DE) analysis has been routinely used to identify molecular features that are statistically significantly different between distinct biological groups. In recent years, differential network (DN) analysis has emerged as a powerful approach to uncover molecular network structure changes from one biological condition to the other where the molecular features with larger topological changes are selected as biomarkers. Although a large number of DE and a few DN-based methods are available, they have been usually implemented independently. DE analysis ignores the relationship among molecular features while DN analysis does not account for the expression changes at individual level. Therefore, an integrative analysis approach that accounts for both DE and DN is required to identify disease associated key features. Although, a handful of methods have been proposed, there is no method that optimizes the combination of DE and DN. We propose a novel integrative analysis method, DNrank, to identify disease-associated molecular features that leverages the strengths of both DE and DN by calculating a weight using resampling based cross validation scheme within the algorithm. First, differential expression analysis of individual molecular features is carried out. Second, a differential network structure is constructed using the differential partial correlation analysis. Third, the molecular features are ranked in the order of their significances by integrating their DE measures and DN structure using the modified Google's PageRank algorithm. In the algorithm, the optimum combination of DE and DN analyses is achieved by evaluating the prediction performance of top-ranked features utilizing support vector machine classifier with Monte Carlo cross validation. The proposed method is illustrated using both simulated data and three real data sets. The results show that the proposed method has a better performance in identifying important molecular features with respect to predictive discrimination. Also, as compared to existing feature selection methods, the top-ranked features selected by our method had a higher stability in selection. DNrank allows the researchers to identify the disease-associated features by utilizing both expression and network topology changes between two groups.
Collapse
Affiliation(s)
- Yonghui Ni
- Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Jianghua He
- Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
48
|
Liu C, Li Y, Dong C, Qu L, Zuo Y. E6E7 regulates the HK2 expression in cervical cancer via GSK3β/FTO signal. Arch Biochem Biophys 2022; 729:109389. [PMID: 36075458 DOI: 10.1016/j.abb.2022.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Cervical cancer is one of the most common cancers in women worldwide. Hexokinase 2 (HK2) is responsible for phosphorylating glucose into glucose-6-phosphate, which is required for tumorigenesis and metastasis. METHODS E6E7 and FTO were exogenously expressed, and their effects on HK2 mRNA and protein levels were detected by RT-qPCR and Western blot. RESULTS The exogenous expression of E6E7 in SiHa and C33A cells up-regulated the mRNA and protein levels of intracellular HK2, up-regulated the total m6A levels, changed the expression of m6A proteins and activated the GSK3β transcription. The expression levels of METTL3 and WTAP were enhanced, whereas the expression of FTO and ALKBH5 were decreased. In addition, FTO down-regulated the mRNA and protein levels of HK2. FTO overexpression partially inhibited the up-regulated expression of HK2 caused by E6E7. Furthermore, FTO overexpression increased the level of HK2 pre-mRNA in the nucleus and decreased the level of mature HK2 mRNA in the cytoplasm. We also found that GSK3β overexpression enhanced FTO ubiquitination and decreased FTO protein levels. CONCLUSION This study found that E6E7 oncogene activates the transcription of GSK3β; GSK3β can promote the ubiquitination-proteasomal degradation of FTO and reduce the level of FTO protein; FTO inhibits the maturation and translation of HK2 mRNA by retaining HK2 pre-mRNA in the nucleus.
Collapse
Affiliation(s)
- Chunyan Liu
- Yantai Yuhuangding Affiliated Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Yangyang Li
- Yantai Yuhuangding Affiliated Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Changyan Dong
- Yantai Yuhuangding Affiliated Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Luyun Qu
- Yantai Yuhuangding Affiliated Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Ying Zuo
- Yantai Yuhuangding Affiliated Hospital of Qingdao University, Yantai, 264000, Shandong, China.
| |
Collapse
|
49
|
Ren M, Xing L, Wang W, Bi W, Wu W, Jiang G, Wang W, Liang X, Liu M, Tang S. The Drosha-Independent MicroRNA6778-5p/GSK3 β Axis Mediates the Proliferation of Gastric Cancer Cells. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5932512. [PMID: 36210981 PMCID: PMC9546646 DOI: 10.1155/2022/5932512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Background Gastric cancer (GC) is a primary cause of cancer death around the world. Previous studies have found that Drosha plays a significant role in the development of tumor cells. Soon after, we unexpectedly found that the expression of microRNA6778-5p (miR6778-5p) is unconventionally high in the gastric cancer cells low-expressing Drosha. So, we designed the Drosha interference sequence and recombined it into a lentiviral vector to construct Drosha knockdown lentivirus and transfected the Drosha knockdown lentivirus into gastric cancer cells to establish Drosha knockdown gastric cancer cell lines. We aimed to explore the effect of microRNA6778-5p on the proliferation of gastric cancer cells with Drosha knockdown and its intrinsic mechanism. Methods We designed the Drosha interference sequence and recombined it into a lentiviral vector to construct Drosha knockdown lentivirus and transfected the Drosha knockdown lentivirus into gastric cancer cells to establish Drosha knockdown gastric cancer cell lines. After transfecting miR6778-5p mimics and inhibitor into gastric cancer cell lines with Drosha knockdown, the expression levels of miR6778-5p mimics in Drosha low-expressing gastric cancer cells increased, while miR6778-5p inhibitor decreased the expression levels of miR6778-5p. The Cell Counting Kit-8 (CCK-8) experiment was used to detect the proliferation ability of gastric cancer cells after overexpression or knockdown of miR6778-5p and bioinformatics predicted the relationship between miR6778-5p and glycogen synthase kinase-3β (GSK3β). Results After infection with the Drosha knockdown lentivirus, Drosha's mRNA and protein levels were significantly downregulated in gastric cancer cells. The expression levels of miR6778-5p mimics in Drosha low-expressing gastric cancer cells increased, while miR6778-5p inhibitor decreased the expression levels of miR6778-5p. Overexpression of miR6778-5p significantly enhanced the proliferation ability of Drosha low-expression gastric cancer cells; on the contrary, knocking down miR6778-5p weakened the proliferation ability of Drosha low-expression gastric cancer cells. Bioinformatics predicted that miR6778-5p targeted glycogen synthase kinase-3β (GSK3β) and the mRNA and protein levels of GSK3β decreased significantly after overexpression of miR6778-5p. Conclusion miR6778-5p promotes the proliferation of Drosha low-expressing gastric cancer cells by targeting GSK3β.
Collapse
Affiliation(s)
- Mingjun Ren
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou 545006, China
- Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou 545006, China
| | - Li Xing
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Wanping Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Wanying Bi
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Wanjun Wu
- Department of Laboratory Medicine, Liuzhou Traditional Chinese Medicine Hospital, Liu Zhou 545006, China
| | - Gui Jiang
- Department of Laboratory Medicine, Liuzhou Traditional Chinese Medicine Hospital, Liu Zhou 545006, China
| | - Weiji Wang
- Gastrointestinal Surgery, Liuzhou People's Hospital, Liu Zhou 545006, China
| | - Xingdong Liang
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou 545006, China
- Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou 545006, China
| | - Manran Liu
- Laboratory Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Shifu Tang
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou 545006, China
- Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou 545006, China
| |
Collapse
|
50
|
Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 2022; 15:129. [PMID: 36076302 PMCID: PMC9461252 DOI: 10.1186/s13045-022-01347-8] [Citation(s) in RCA: 265] [Impact Index Per Article: 132.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is an essential process in normal embryonic development and tissue regeneration. However, aberrant reactivation of EMT is associated with malignant properties of tumor cells during cancer progression and metastasis, including promoted migration and invasiveness, increased tumor stemness, and enhanced resistance to chemotherapy and immunotherapy. EMT is tightly regulated by a complex network which is orchestrated with several intrinsic and extrinsic factors, including multiple transcription factors, post-translational control, epigenetic modifications, and noncoding RNA-mediated regulation. In this review, we described the molecular mechanisms, signaling pathways, and the stages of tumorigenesis involved in the EMT process and discussed the dynamic non-binary process of EMT and its role in tumor metastasis. Finally, we summarized the challenges of chemotherapy and immunotherapy in EMT and proposed strategies for tumor therapy targeting EMT.
Collapse
Affiliation(s)
- Yuhe Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|