1
|
Li C, Bonder MJ, Syed S, Jensen M, Gerstein MB, Zody MC, Chaisson MJP, Talkowski ME, Marschall T, Korbel JO, Eichler EE, Lee C, Shi X. An integrative TAD catalog in lymphoblastoid cell lines discloses the functional impact of deletions and insertions in human genomes. Genome Res 2024; 34:2304-2318. [PMID: 39638559 DOI: 10.1101/gr.279419.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/04/2024] [Indexed: 12/07/2024]
Abstract
The human genome is packaged within a three-dimensional (3D) nucleus and organized into structural units known as compartments, topologically associating domains (TADs), and loops. TAD boundaries, separating adjacent TADs, have been found to be well conserved across mammalian species and more evolutionarily constrained than TADs themselves. Recent studies show that structural variants (SVs) can modify 3D genomes through the disruption of TADs, which play an essential role in insulating genes from outside regulatory elements' aberrant regulation. However, how SV affects the 3D genome structure and their association among different aspects of gene regulation and candidate cis-regulatory elements (cCREs) have rarely been studied systematically. Here, we assess the impact of SVs intersecting with TAD boundaries by developing an integrative Hi-C analysis pipeline, which enables the generation of an in-depth catalog of TADs and TAD boundaries in human lymphoblastoid cell lines (LCLs) to fill the gap of limited resources. Our catalog contains 18,865 TADs, including 4596 sub-TADs, with 185 SVs (TAD-SVs) that alter chromatin architecture. By leveraging the ENCODE registry of cCREs in humans, we determine that 34 of 185 TAD-SVs intersect with cCREs and observe significant enrichment of TAD-SVs within cCREs. This study provides a database of TADs and TAD-SVs in the human genome that will facilitate future investigations of the impact of SVs on chromatin structure and gene regulation in health and disease.
Collapse
Affiliation(s)
- Chong Li
- Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Marc Jan Bonder
- Department of Genetics, Groningen, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, Netherlands
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sabriya Syed
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
| | - Matthew Jensen
- Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, Connecticut 06510, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Mark B Gerstein
- Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, Connecticut 06510, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | | | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital, Heinrich Heine University, 40225 Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195-5065, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut 06030-6403, USA
| | - Xinghua Shi
- Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA;
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
2
|
Dimartino P, Zadorozhna M, Yumiceba V, Basile A, Cani I, Melo US, Henck J, Breur M, Tonon C, Lodi R, Brusco A, Pippucci T, Koufi FD, Boschetti E, Ramazzotti G, Manzoli L, Ratti S, Pinto E Vairo F, Delatycki MB, Vaula G, Cortelli P, Bugiani M, Spielmann M, Giorgio E. Structural Variants at the LMNB1 Locus: Deciphering Pathomechanisms in Autosomal Dominant Adult-Onset Demyelinating Leukodystrophy. Ann Neurol 2024; 96:855-870. [PMID: 39078102 DOI: 10.1002/ana.27038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE We aimed to elucidate the pathogenic mechanisms underlying autosomal dominant adult-onset demyelinating leukodystrophy (ADLD), and to understand the genotype/phenotype correlation of structural variants (SVs) in the LMNB1 locus. BACKGROUND Since the discovery of 3D genome architectures and topologically associating domains (TADs), new pathomechanisms have been postulated for SVs, regardless of gene dosage changes. ADLD is a rare genetic disease associated with duplications (classical ADLD) or noncoding deletions (atypical ADLD) in the LMNB1 locus. METHODS High-throughput chromosome conformation capture, RNA sequencing, histopathological analyses of postmortem brain tissues, and clinical and neuroradiological investigations were performed. RESULTS We collected data from >20 families worldwide carrying SVs in the LMNB1 locus and reported strong clinical variability, even among patients carrying duplications of the entire LMNB1 gene, ranging from classical and atypical ADLD to asymptomatic carriers. We showed that patients with classic ADLD always carried intra-TAD duplications, resulting in a simple gene dose gain. Atypical ADLD was caused by LMNB1 forebrain-specific misexpression due to inter-TAD deletions or duplications. The inter-TAD duplication, which extends centromerically and crosses the 2 TAD boundaries, did not cause ADLD. Our results provide evidence that astrocytes are key players in ADLD pathology. INTERPRETATION Our study sheds light on the 3D genome and TAD structural changes associated with SVs in the LMNB1 locus, and shows that a duplication encompassing LMNB1 is not sufficient per se to diagnose ADLD, thereby strongly affecting genetic counseling. Our study supports breaking TADs as an emerging pathogenic mechanism that should be considered when studying brain diseases. ANN NEUROL 2024;96:855-870.
Collapse
Affiliation(s)
- Paola Dimartino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mariia Zadorozhna
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Verónica Yumiceba
- Institute of Human Genetics, Universitätsklinikum Schleswig Holstein, University of Lübeck and University of Kiel, Lübeck, Germany
| | - Anna Basile
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Ilaria Cani
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, Human Molecular Genomics Group, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, Berlin, Germany
| | - Jana Henck
- Max Planck Institute for Molecular Genetics, Human Molecular Genomics Group, Berlin, Germany
| | - Marjolein Breur
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Caterina Tonon
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin, Italy
- Unit of Medical Genetics, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Foteini-Dionysia Koufi
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Elisa Boschetti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine and Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Martin B Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Giovanna Vaula
- Department of Neuroscience, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marianna Bugiani
- Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Malte Spielmann
- Institute of Human Genetics, Universitätsklinikum Schleswig Holstein, University of Lübeck and University of Kiel, Lübeck, Germany
- Max Planck Institute for Molecular Genetics, Human Molecular Genomics Group, Berlin, Germany
- Institute of Human Genetics, Universitätsklinikum Schleswig Holstein Campus Kiel and Christian-Albrechts-Universität, Kiel, Germany
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
3
|
Conte M, Abraham A, Esposito A, Yang L, Gibcus JH, Parsi KM, Vercellone F, Fontana A, Di Pierno F, Dekker J, Nicodemi M. Polymer Physics Models Reveal Structural Folding Features of Single-Molecule Gene Chromatin Conformations. Int J Mol Sci 2024; 25:10215. [PMID: 39337699 PMCID: PMC11432541 DOI: 10.3390/ijms251810215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
Here, we employ polymer physics models of chromatin to investigate the 3D folding of a 2 Mb wide genomic region encompassing the human LTN1 gene, a crucial DNA locus involved in key cellular functions. Through extensive Molecular Dynamics simulations, we reconstruct in silico the ensemble of single-molecule LTN1 3D structures, which we benchmark against recent in situ Hi-C 2.0 data. The model-derived single molecules are then used to predict structural folding features at the single-cell level, providing testable predictions for super-resolution microscopy experiments.
Collapse
Affiliation(s)
- Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Johan H. Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Krishna M. Parsi
- Diabetes Center of Excellence and Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Francesca Vercellone
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Fontana
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Florinda Di Pierno
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy
- INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| |
Collapse
|
4
|
Afanasyev AY, Kim Y, Tolokh IS, Sharakhov IV, Onufriev AV. The probability of chromatin to be at the nuclear lamina has no systematic effect on its transcription level in fruit flies. Epigenetics Chromatin 2024; 17:13. [PMID: 38705995 PMCID: PMC11071202 DOI: 10.1186/s13072-024-00528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Multiple studies have demonstrated a negative correlation between gene expression and positioning of genes at the nuclear envelope (NE) lined by nuclear lamina, but the exact relationship remains unclear, especially in light of the highly stochastic, transient nature of the gene association with the NE. RESULTS In this paper, we ask whether there is a causal, systematic, genome-wide relationship between the expression levels of the groups of genes in topologically associating domains (TADs) of Drosophila nuclei and the probabilities of TADs to be found at the NE. To investigate the nature of this possible relationship, we combine a coarse-grained dynamic model of the entire Drosophila nucleus with genome-wide gene expression data; we analyze the TAD averaged transcription levels of genes against the probabilities of individual TADs to be in contact with the NE in the control and lamins-depleted nuclei. Our findings demonstrate that, within the statistical error margin, the stochastic positioning of Drosophila melanogaster TADs at the NE does not, by itself, systematically affect the mean level of gene expression in these TADs, while the expected negative correlation is confirmed. The correlation is weak and disappears completely for TADs not containing lamina-associated domains (LADs) or TADs containing LADs, considered separately. Verifiable hypotheses regarding the underlying mechanism for the presence of the correlation without causality are discussed. These include the possibility that the epigenetic marks and affinity to the NE of a TAD are determined by various non-mutually exclusive mechanisms and remain relatively stable during interphase. CONCLUSIONS At the level of TADs, the probability of chromatin being in contact with the nuclear envelope has no systematic, causal effect on the transcription level in Drosophila. The conclusion is reached by combining model-derived time-evolution of TAD locations within the nucleus with their experimental gene expression levels.
Collapse
Affiliation(s)
- Alexander Y Afanasyev
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Yoonjin Kim
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor S Tolokh
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Alexey V Onufriev
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
5
|
Dion C, Laberthonnière C, Magdinier F. [Epigenetics, principles and examples of applications]. Rev Med Interne 2023; 44:594-601. [PMID: 37438189 DOI: 10.1016/j.revmed.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Since the discovery of DNA as the support of genetic information, the challenge for generations of life scientists was to understand the mechanisms underlying the process that translate the sequence of a gene to a phenotype. In the 1950s, the concept of epigenetics was defined by the British biologist Conrad H. Waddington as the study of "epigenesis" that governs the biological processes involved in the development of any organism. The term epigenetics, now best defined as "above the DNA sequence" reflects the gene-environment interactions by which genes determine traits. Since, its first description, studies underlying the mechanisms involved in these processes has led to an increasing understanding of the regulation all genome transactions such as transcription, replication, repair and the biological pathways coordinated by these mechanisms. We will discuss here the main principles regulating epigenetic processes, their roles in physiology, their evolution over the life time and their implications in medicine.
Collapse
Affiliation(s)
- C Dion
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, 13000 Marseille, France; MRC London Institute of Medical Sciences (LMS), London, United Kingdom; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - C Laberthonnière
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, 13000 Marseille, France; Molecular Developmental Biology, Faculty of Science, Radboud University, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - F Magdinier
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, 13000 Marseille, France.
| |
Collapse
|
6
|
Sánchez-Gaya V, Rada-Iglesias A. POSTRE: a tool to predict the pathological effects of human structural variants. Nucleic Acids Res 2023; 51:e54. [PMID: 36999617 PMCID: PMC10201441 DOI: 10.1093/nar/gkad225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Understanding the pathological impact of non-coding genetic variation is a major challenge in medical genetics. Accumulating evidences indicate that a significant fraction of genetic alterations, including structural variants (SVs), can cause human disease by altering the function of non-coding regulatory elements, such as enhancers. In the case of SVs, described pathomechanisms include changes in enhancer dosage and long-range enhancer-gene communication. However, there is still a clear gap between the need to predict and interpret the medical impact of non-coding variants, and the existence of tools to properly perform these tasks. To reduce this gap, we have developed POSTRE (Prediction Of STRuctural variant Effects), a computational tool to predict the pathogenicity of SVs implicated in a broad range of human congenital disorders. By considering disease-relevant cellular contexts, POSTRE identifies SVs with either coding or long-range pathological consequences with high specificity and sensitivity. Furthermore, POSTRE not only identifies pathogenic SVs, but also predicts the disease-causative genes and the underlying pathological mechanism (e.g, gene deletion, enhancer disconnection, enhancer adoption, etc.). POSTRE is available at https://github.com/vicsanga/Postre.
Collapse
Affiliation(s)
- Víctor Sánchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Albert Einstein 22, 39011 Santander, Spain
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria, Albert Einstein 22, 39011 Santander, Spain
| |
Collapse
|
7
|
Keough KC, Whalen S, Inoue F, Przytycki PF, Fair T, Deng C, Steyert M, Ryu H, Lindblad-Toh K, Karlsson E, Nowakowski T, Ahituv N, Pollen A, Pollard KS. Three-dimensional genome rewiring in loci with human accelerated regions. Science 2023; 380:eabm1696. [PMID: 37104607 PMCID: PMC10999243 DOI: 10.1126/science.abm1696] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/01/2023] [Indexed: 04/29/2023]
Abstract
Human accelerated regions (HARs) are conserved genomic loci that evolved at an accelerated rate in the human lineage and may underlie human-specific traits. We generated HARs and chimpanzee accelerated regions with an automated pipeline and an alignment of 241 mammalian genomes. Combining deep learning with chromatin capture experiments in human and chimpanzee neural progenitor cells, we discovered a significant enrichment of HARs in topologically associating domains containing human-specific genomic variants that change three-dimensional (3D) genome organization. Differential gene expression between humans and chimpanzees at these loci suggests rewiring of regulatory interactions between HARs and neurodevelopmental genes. Thus, comparative genomics together with models of 3D genome folding revealed enhancer hijacking as an explanation for the rapid evolution of HARs.
Collapse
Affiliation(s)
- Kathleen C Keough
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Sean Whalen
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Pawel F Przytycki
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Tyler Fair
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Chengyu Deng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Marilyn Steyert
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Hane Ryu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elinor Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Tomasz Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Alex Pollen
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics and Bakar Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
8
|
Davidson C, Wordsworth BP, Cohen CJ, Knight JC, Vecellio M. Chromosome conformation capture approaches to investigate 3D genome architecture in Ankylosing Spondylitis. Front Genet 2023; 14:1129207. [PMID: 36760998 PMCID: PMC9905691 DOI: 10.3389/fgene.2023.1129207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Ankylosing Spondylitis (AS) is a chronic inflammatory arthritis of the spine exhibiting a strong genetic background. The mechanistic and functional understanding of the AS-associated genomic loci, identified with Genome Wide Association Studies (GWAS), remains challenging. Chromosome conformation capture (3C) and derivatives are recent techniques which are of great help in elucidating the spatial genome organization and of enormous support in uncover a mechanistic explanation for disease-associated genetic variants. The perturbation of three-dimensional (3D) genome hierarchy may lead to a plethora of human diseases, including rheumatological disorders. Here we illustrate the latest approaches and related findings on the field of genome organization, highlighting how the instability of 3D genome conformation may be among the causes of rheumatological disease phenotypes. We suggest a new perspective on the inclusive potential of a 3C approach to inform GWAS results in rheumatic diseases. 3D genome organization may ultimately lead to a more precise and comprehensive functional interpretation of AS association, which is the starting point for emerging and more specific therapies.
Collapse
Affiliation(s)
- Connor Davidson
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - B. Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Carla J. Cohen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute for Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Julian C. Knight
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
- Centro Ricerche Fondazione Italiana Ricerca Sull’Artrite (FIRA), Fondazione Pisana x la Scienza ONLUS, San Giuliano Terme, Italy
| |
Collapse
|
9
|
Higgins S, Akpokiro V, Westcott A, Oluwadare O. TADMaster: a comprehensive web-based tool for the analysis of topologically associated domains. BMC Bioinformatics 2022; 23:463. [PMID: 36333787 PMCID: PMC9636664 DOI: 10.1186/s12859-022-05020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Background Chromosome conformation capture and its derivatives have provided substantial genetic data for understanding how chromatin self-organizes. These techniques have identified regions of high intrasequence interactions called topologically associated domains (TADs). TADs are structural and functional units that shape chromosomes and influence genomic expression. Many of these domains differ across cell development and can be impacted by diseases. Thus, analysis of the identified domains can provide insight into genome regulation. Hence, there are many approaches to identifying such domains across many cell lines. Despite the availability of multiple tools for TAD detection, TAD callers' speed, flexibility, result inconsistency, and reproducibility remain challenges in this research area. Results In this work, we developed a computational webserver called TADMaster that provides an analysis suite to directly evaluate the concordance level and robustness of two or more TAD data on any given genome region. The suite provides multiple visual and quantitative metrics to compare the identified domains' number, size, and various comparisons of shared domains, domain boundaries, and domain overlap. Conclusions TADMaster is an efficient and easy-to-use web application that provides a set of consensus and unique TADs to inform the choice of TADs. It can be accessed at http://tadmaster.io and is also available as a containerized application that can be deployed and run locally on any platform or operating system. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-05020-2.
Collapse
|
10
|
Meinel JA, Yumiceba V, Künstner A, Schultz K, Kruse N, Kaiser FJ, Holterhus PM, Claviez A, Hiort O, Busch H, Spielmann M, Werner R. Disruption of the topologically associated domain at Xp21.2 is related to 46,XY gonadal dysgenesis. J Med Genet 2022; 60:469-476. [PMID: 36227713 PMCID: PMC10176412 DOI: 10.1136/jmg-2022-108635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/25/2022] [Indexed: 11/03/2022]
Abstract
BackgroundDuplications at the Xp21.2 locus have previously been linked to 46,XY gonadal dysgenesis (GD), which is thought to result from gene dosage effects of NR0B1 (DAX1), but the exact disease mechanism remains unknown.MethodsPatients with 46,XY GD were analysed by whole genome sequencing. Identified structural variants were confirmed by array CGH and analysed by high-throughput chromosome conformation capture (Hi-C).ResultsWe identified two unrelated patients: one showing a complex rearrangement upstream of NR0B1 and a second harbouring a 1.2 Mb triplication, including NR0B1. Whole genome sequencing and Hi-C analysis revealed the rewiring of a topological-associated domain (TAD) boundary close to NR0B1 associated with neo-TAD formation and may cause enhancer hijacking and ectopic NR0B1 expression. Modelling of previous Xp21.2 structural variations associated with isolated GD support our hypothesis and predict similar neo-TAD formation as well as TAD fusion.ConclusionHere we present a general mechanism how deletions, duplications or inversions at the NR0B1 locus can lead to partial or complete GD by disrupting the cognate TAD in the vicinity of NR0B1. This model not only allows better diagnosis of GD with copy number variations (CNVs) at Xp21.2, but also gives deeper insight on how spatiotemporal activation of developmental genes can be disrupted by reorganised TADs causing impairment of gonadal development.
Collapse
Affiliation(s)
- Jakob A Meinel
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Universität zu Lübeck, Lubeck, Germany
| | | | - Axel Künstner
- Group of Medical Systems Biology, Lübeck Institute of Experimental Dermatology, Universität zu Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, Universität zu Lübeck, Lübeck, Germany
| | - Kristin Schultz
- Institute of Human Genetics, Universität zu Lübeck, Lübeck, Germany
| | - Nathalie Kruse
- Institute of Human Genetics, Universität zu Lübeck, Lübeck, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, Universität Duisburg-Essen, Duisburg, Germany
- Essen Center for Rare Diseases (EZSE), University Hospital Essen, Essen, Germany
| | - Paul-Martin Holterhus
- University Medical Center for Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine I, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Alexander Claviez
- Department of Pediatrics and Adolescent Medicine I, Division of Pediatric Oncology and Hematology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Olaf Hiort
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Universität zu Lübeck, Lubeck, Germany
| | - Hauke Busch
- Group of Medical Systems Biology, Lübeck Institute of Experimental Dermatology, Universität zu Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, Universität zu Lübeck, Lübeck, Germany
| | - Malte Spielmann
- Institute of Human Genetics, Universität zu Lübeck, Lübeck, Germany
- Partner Site Hamburg/Kiel/Lübeck, German Center for Cardiovascular Disease, Berlin, Germany
| | - Ralf Werner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, Universität zu Lübeck, Lubeck, Germany
- Institute of Molecular Medicine, Universität zu Lübeck, Lübeck, Germany
| |
Collapse
|
11
|
Poszewiecka B, Pienkowski VM, Nowosad K, Robin JD, Gogolewski K, Gambin A. TADeus2: a web server facilitating the clinical diagnosis by pathogenicity assessment of structural variations disarranging 3D chromatin structure. Nucleic Acids Res 2022; 50:W744-W752. [PMID: 35524567 PMCID: PMC9252839 DOI: 10.1093/nar/gkac318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 01/01/2023] Open
Abstract
In recent years great progress has been made in identification of structural variants (SV) in the human genome. However, the interpretation of SVs, especially located in non-coding DNA, remains challenging. One of the reasons stems in the lack of tools exclusively designed for clinical SVs evaluation acknowledging the 3D chromatin architecture. Therefore, we present TADeus2 a web server dedicated for a quick investigation of chromatin conformation changes, providing a visual framework for the interpretation of SVs affecting topologically associating domains (TADs). This tool provides a convenient visual inspection of SVs, both in a continuous genome view as well as from a rearrangement’s breakpoint perspective. Additionally, TADeus2 allows the user to assess the influence of analyzed SVs within flaking coding/non-coding regions based on the Hi-C matrix. Importantly, the SVs pathogenicity is quantified and ranked using TADA, ClassifyCNV tools and sampling-based P-value. TADeus2 is publicly available at https://tadeus2.mimuw.edu.pl.
Collapse
Affiliation(s)
- Barbara Poszewiecka
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, 2 Banacha street, 02-097 Warsaw, Poland
| | - Victor Murcia Pienkowski
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France.,Department of Medical Genetics, Medical University of Warsaw, Adolfa Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Karol Nowosad
- Department of Cell Biology, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, Netherlands.,Department of Biomedical Sciences, Laboratory of Molecular Genetics, Medical University of Lublin, Doktora Witolda Chodźki 1, 20-400 Lublin, Poland.,The Postgraduate School of Molecular Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Jérôme D Robin
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Krzysztof Gogolewski
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, 2 Banacha street, 02-097 Warsaw, Poland
| | - Anna Gambin
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, 2 Banacha street, 02-097 Warsaw, Poland
| |
Collapse
|
12
|
InsuLock: A Weakly Supervised Learning Approach for Accurate Insulator Prediction, and Variant Impact Quantification. Genes (Basel) 2022; 13:genes13040621. [PMID: 35456427 PMCID: PMC9026820 DOI: 10.3390/genes13040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Mapping chromatin insulator loops is crucial to investigating genome evolution, elucidating critical biological functions, and ultimately quantifying variant impact in diseases. However, chromatin conformation profiling assays are usually expensive, time-consuming, and may report fuzzy insulator annotations with low resolution. Therefore, we propose a weakly supervised deep learning method, InsuLock, to address these challenges. Specifically, InsuLock first utilizes a Siamese neural network to predict the existence of insulators within a given region (up to 2000 bp). Then, it uses an object detection module for precise insulator boundary localization via gradient-weighted class activation mapping (~40 bp resolution). Finally, it quantifies variant impacts by comparing the insulator score differences between the wild-type and mutant alleles. We applied InsuLock on various bulk and single-cell datasets for performance testing and benchmarking. We showed that it outperformed existing methods with an AUROC of ~0.96 and condensed insulator annotations to ~2.5% of their original size while still demonstrating higher conservation scores and better motif enrichments. Finally, we utilized InsuLock to make cell-type-specific variant impacts from brain scATAC-seq data and identified a schizophrenia GWAS variant disrupting an insulator loop proximal to a known risk gene, indicating a possible new mechanism of action for the disease.
Collapse
|
13
|
Duester G. Towards a Better Vision of Retinoic Acid Signaling during Eye Development. Cells 2022; 11:cells11030322. [PMID: 35159132 PMCID: PMC8834304 DOI: 10.3390/cells11030322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Retinoic acid (RA) functions as an essential signal for development of the vertebrate eye by controlling the transcriptional regulatory activity of RA receptors (RARs). During eye development, the optic vesicles and later the retina generate RA as a metabolite of vitamin A (retinol). Retinol is first converted to retinaldehyde by retinol dehydrogenase 10 (RDH10) and then to RA by all three retinaldehyde dehydrogenases (ALDH1A1, ALDH1A2, and ALDH1A3). In early mouse embryos, RA diffuses to tissues throughout the optic placode, optic vesicle, and adjacent mesenchyme to stimulate folding of the optic vesicle to form the optic cup. RA later generated by the retina is needed for further morphogenesis of the optic cup and surrounding perioptic mesenchyme; loss of RA at this stage leads to microphthalmia and cornea plus eyelid defects. RA functions by binding to nuclear RARs at RA response elements (RAREs) that either activate or repress transcription of key genes. Binding of RA to RARs regulates recruitment of transcriptional coregulators such as nuclear receptor coactivator (NCOA) or nuclear receptor corepressor (NCOR), which in turn control binding of the generic coactivator p300 or the generic corepressor PRC2. No genes have been identified as direct targets of RA signaling during eye development, so future studies need to focus on identifying such genes and their RAREs. Studies designed to learn how RA normally controls eye development in vivo will provide basic knowledge valuable for determining how developmental eye defects occur and for improving strategies to treat eye defects.
Collapse
Affiliation(s)
- Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
MacPhillamy C, Pitchford WS, Alinejad-Rokny H, Low WY. Opportunity to improve livestock traits using 3D genomics. Anim Genet 2021; 52:785-798. [PMID: 34494283 DOI: 10.1111/age.13135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
The advent of high-throughput chromosome conformation capture and sequencing (Hi-C) has enabled researchers to probe the 3D architecture of the mammalian genome in a genome-wide manner. Simultaneously, advances in epigenomic assays, such as chromatin immunoprecipitation and sequencing (ChIP-seq) and DNase-seq, have enabled researchers to study cis-regulatory interactions and chromatin accessibility across the same genome-wide scale. The use of these data has revealed many unique insights into gene regulation and disease pathomechanisms in several model organisms. With the advent of these high-throughput sequencing technologies, there has been an ever-increasing number of datasets available for study; however, this is often limited to model organisms. Livestock species play critical roles in the economies of developing and developed nations alike. Despite this, they are greatly underrepresented in the 3D genomics space; Hi-C and related technologies have the potential to revolutionise livestock breeding by enabling a more comprehensive understanding of how production traits are controlled. The growth in human and model organism Hi-C data has seen a surge in the availability of computational tools for use in 3D genomics, with some tools using machine learning techniques to predict features and improve dataset quality. In this review, we provide an overview of the 3D genome and discuss the status of 3D genomics in livestock before delving into advancing the field by drawing inspiration from research in human and mouse. We end by offering future directions for livestock research in the field of 3D genomics.
Collapse
Affiliation(s)
- C MacPhillamy
- Davies Livestock Research Centre, The University of Adelaide, Roseworthy Campus, Mudla Wirra Rd, Roseworthy, SA, 5371, Australia
| | - W S Pitchford
- Davies Livestock Research Centre, The University of Adelaide, Roseworthy Campus, Mudla Wirra Rd, Roseworthy, SA, 5371, Australia
| | - H Alinejad-Rokny
- Biological & Medical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia.,School of Computer Science and Engineering, The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - W Y Low
- Davies Livestock Research Centre, The University of Adelaide, Roseworthy Campus, Mudla Wirra Rd, Roseworthy, SA, 5371, Australia
| |
Collapse
|
15
|
Tena JJ, Santos-Pereira JM. Topologically Associating Domains and Regulatory Landscapes in Development, Evolution and Disease. Front Cell Dev Biol 2021; 9:702787. [PMID: 34295901 PMCID: PMC8290416 DOI: 10.3389/fcell.2021.702787] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/17/2021] [Indexed: 01/02/2023] Open
Abstract
Animal genomes are folded in topologically associating domains (TADs) that have been linked to the regulation of the genes they contain by constraining regulatory interactions between cis-regulatory elements and promoters. Therefore, TADs are proposed as structural scaffolds for the establishment of regulatory landscapes (RLs). In this review, we discuss recent advances in the connection between TADs and gene regulation, their relationship with gene RLs and their dynamics during development and differentiation. Moreover, we describe how restructuring TADs may lead to pathological conditions, which explains their high evolutionary conservation, but at the same time it provides a substrate for the emergence of evolutionary innovations that lay at the origin of vertebrates and other phylogenetic clades.
Collapse
Affiliation(s)
- Juan J. Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - José M. Santos-Pereira
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
16
|
Cytogenetic and Array-CGH Characterization of a Simple Case of Reciprocal t(3;10) Translocation Reveals a Hidden Deletion at 5q12. Genes (Basel) 2021; 12:genes12060877. [PMID: 34200357 PMCID: PMC8226940 DOI: 10.3390/genes12060877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosome deletions, including band 5q12, have rarely been reported and have been associated with a wide range of clinical manifestations, such as postnatal growth retardation, intellectual disability, hyperactivity, nonspecific ocular defects, facial dysmorphism, and epilepsy. In this study, we describe for the first time a child with growth retardation in which we identified a balanced t(3;10) translocation by conventional cytogenetic analysis in addition to an 8.6 Mb 5q12 deletion through array-CGH. Our results show that the phenotypic abnormalities of a case that had been interpreted as "balanced" by conventional cytogenetics are mainly due to a cryptic deletion, highlighting the need for molecular investigation in subjects with an abnormal phenotype before assuming the cause is an apparently simple cytogenetic rearrangement. Finally, we identify PDE4D and PIK3R1 genes as the two major candidates responsible for the clinical features expressed in our patient.
Collapse
|
17
|
Radke DW, Sul JH, Balick DJ, Akle S, Green RC, Sunyaev SR. Purifying selection on noncoding deletions of human regulatory loci detected using their cellular pleiotropy. Genome Res 2021; 31:935-946. [PMID: 33963077 PMCID: PMC8168579 DOI: 10.1101/gr.275263.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022]
Abstract
Genomic deletions provide a powerful loss-of-function model in noncoding regions to assess the role of purifying selection on genetic variation. Regulatory element function is characterized by nonuniform tissue and cell type activity, necessarily linking the study of fitness consequences from regulatory variants to their corresponding cellular activity. We generated a callset of deletions from genomes in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and used deletions from The 1000 Genomes Project Consortium (1000GP) in order to examine whether purifying selection preserves noncoding sites of chromatin accessibility marked by DNase I hypersensitivity (DHS), histone modification (enhancer, transcribed, Polycomb-repressed, heterochromatin), and chromatin loop anchors. To examine this in a cellular activity-aware manner, we developed a statistical method, pleiotropy ratio score (PlyRS), which calculates a correlation-adjusted count of "cellular pleiotropy" for each noncoding base pair by analyzing shared regulatory annotations across tissues and cell types. By comparing real deletion PlyRS values to simulations in a length-matched framework and by using genomic covariates in analyses, we found that purifying selection acts to preserve both DHS and enhancer noncoding sites. However, we did not find evidence of purifying selection for noncoding transcribed, Polycomb-repressed, or heterochromatin sites beyond that of the noncoding background. Additionally, we found evidence that purifying selection is acting on chromatin loop integrity by preserving colocalized CTCF binding sites. At regions of DHS, enhancer, and CTCF within chromatin loop anchors, we found evidence that both sites of activity specific to a particular tissue or cell type and sites of cellularly pleiotropic activity are preserved by selection.
Collapse
Affiliation(s)
- David W Radke
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Jae Hoon Sul
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California 90095, USA
| | - Daniel J Balick
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Sebastian Akle
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
- Ariadne Labs, Boston, Massachusetts 02115, USA
| | - Shamil R Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
18
|
George RM, Firulli AB. Epigenetics and Heart Development. Front Cell Dev Biol 2021; 9:637996. [PMID: 34026751 PMCID: PMC8136428 DOI: 10.3389/fcell.2021.637996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/26/2021] [Indexed: 11/24/2022] Open
Abstract
Epigenetic control of gene expression during cardiac development and disease has been a topic of intense research in recent years. Advances in experimental methods to study DNA accessibility, transcription factor occupancy, and chromatin conformation capture technologies have helped identify regions of chromatin structure that play a role in regulating access of transcription factors to the promoter elements of genes, thereby modulating expression. These chromatin structures facilitate enhancer contacts across large genomic distances and function to insulate genes from cis-regulatory elements that lie outside the boundaries for the gene of interest. Changes in transcription factor occupancy due to changes in chromatin accessibility have been implicated in congenital heart disease. However, the factors controlling this process and their role in changing gene expression during development or disease remain unclear. In this review, we focus on recent advances in the understanding of epigenetic factors controlling cardiac morphogenesis and their role in diseases.
Collapse
Affiliation(s)
- Rajani M George
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
19
|
Zamariolli M, Burssed B, Moysés-Oliveira M, Colovati M, Bellucco FTDS, Dos Santos LC, Alvarez Perez AB, Bragagnolo S, Melaragno MI. Novel MYT1 variants expose the complexity of oculo-auriculo-vertebral spectrum genetic mechanisms. Am J Med Genet A 2021; 185:2056-2064. [PMID: 33880880 DOI: 10.1002/ajmg.a.62217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder characterized by anomalies mainly involving the structures derived from the first and second pharyngeal arches. The spectrum presents with heterogeneous clinical features and complex etiology with genetic factors not yet completely understood. To date, MYT1 is the most important gene unambiguously associated with the spectrum and with functional data confirmation. In this work, we aimed to identify new single nucleotide variants (SNVs) affecting MYT1 in a cohort of 73 Brazilian patients diagnosed with OAVS. In addition, we investigated copy number variations (CNVs) encompassing this gene or its cis-regulatory elements and compared the frequency of these events in patients versus a cohort of 455 Brazilian control individuals. A new SNV, predicted as likely deleterious, was identified in five unrelated patients with OAVS. All five patients presented hearing impairment and orbital asymmetry suggesting an association with the variant. CNVs near MYT1, located in its neighboring topologically associating domain (TAD), were found to be enriched in patients when compared to controls, indicating a possible involvement of this region with OAVS pathogenicity. Our findings highlight the genetic complexity of the spectrum that seems to involve more than one variant type and inheritance patterns.
Collapse
Affiliation(s)
- Malú Zamariolli
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bruna Burssed
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana Moysés-Oliveira
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mileny Colovati
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Leonardo Caires Dos Santos
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Beatriz Alvarez Perez
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Silvia Bragagnolo
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Hochstenbach R, Liehr T, Hastings RJ. Chromosomes in the genomic age. Preserving cytogenomic competence of diagnostic genome laboratories. Eur J Hum Genet 2021; 29:541-552. [PMID: 33311710 PMCID: PMC8115145 DOI: 10.1038/s41431-020-00780-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Participation of clinical genetic laboratories in External Quality Assessment schemes (EQAs) is a powerful method to ascertain if any improvement or additional training is required in the diagnostic service. Here, we provide evidence from recent EQAs that the competence in recognizing and interpreting cytogenetic aberrations is variable and could impact patient management. We identify several trends that could affect cytogenomic competence. Firstly, as a result of the age distribution among clinical laboratory geneticists (CLGs) registered at the European Board of Medical Genetics, about 25-30% of those with experience in cytogenetics will retire during the next decade. At the same time, there are about twice as many molecular geneticists to cytogeneticists among the younger CLGs. Secondly, when surveying training programs for CLG, we observed that not all programs guarantee that candidates gather sufficient experience in clinical cytogenomics. Thirdly, we acknowledge that whole genome sequencing (WGS) has a great attraction to biomedical scientists that wish to enter a training program for CLG. This, with a larger number of positions available, makes a choice for specialization in molecular genetics logical. However, current WGS technology cannot provide a diagnosis in all cases. Understanding the etiology of chromosomal rearrangements is essential for appropriate follow-up and for ascertaining recurrence risks. We define the minimal knowledge a CLG should have about cytogenomics in a world dominated by WGS, and discuss how laboratory directors and boards of professional organizations in clinical genetics can uphold cytogenomic competence by providing adequate CLG training programs and attracting sufficient numbers of trainees.
Collapse
Affiliation(s)
- Ron Hochstenbach
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Clinical Genetics, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands.
| | - Thomas Liehr
- University Clinic Jena, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Rosalind J Hastings
- GenQA, Level 1, The Women's Centre, John Radcliffe Hospital, Oxford University Hospitals Foundation Trust, Headley Way, Headington, Oxford, OX3 9DU, UK
| |
Collapse
|
21
|
Casas-Tintó S, Ferrús A. The haplolethality paradox of the wupA gene in Drosophila. PLoS Genet 2021; 17:e1009108. [PMID: 33739971 PMCID: PMC8011728 DOI: 10.1371/journal.pgen.1009108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/31/2021] [Accepted: 02/15/2021] [Indexed: 11/18/2022] Open
Abstract
Haplolethals (HL) are regions of diploid genomes that in one dose are fatal for the organism. Their biological meaning is obscure because heterozygous loss-of-function mutations result in dominant lethality (DL) and, consequently, should be under strong negative selection. We report an in depth study of the HL associated to the gene wings up A (wupA). It encodes 13 transcripts (A-M) that yield 11 protein isoforms (A-K) of Troponin I (TnI). They are functionally diverse in their control of muscle contraction, cell polarity and cell proliferation. Isoform K transfers to the nucleus where it increases transcription of the cell proliferation related genes CDK2, CDK4, Rap and Rab5. The nuclear translocation of isoform K is prevented by the co-expression of A or B isoforms, which illustrates isoform interactions. The corresponding DL mutations are, either DNA rearrangements clustered towards the gene 3’ end, thus affecting the genomic organization of all transcripts, or CRISPR-induced mutations in one of the two ATG sites which eliminate a subset of wupA products. The joint elimination of isoforms C, F, G and H, however, do not cause DL phenotypes. Genetically driven expression of single isoforms rescue neither DL nor any of the mutants known in the gene, suggesting that normal function requires properly regulated expression of specific combinations, rather than single, TnI isoforms. We conclude that the wupA associated HL results from the combined haploinsufficiency of a large set of TnI isoforms. The qualitative and quantitative normal expression of which, requires the chromosomal integrity of the wupA genomic region. Since all fly TnI isoforms are encoded in the same gene, its HL condition becomes unavoidable. These wupA features are comparable to those of dpp, the only other HL studied to some extent, and reveal a scenario of strict dosage dependence with implications for gene expression regulation and splitting. Most species contain two copies of their genetic endowment, each received from each progenitor. If one of the duplicated genes is non-functional, the remaining copy may supply enough product as to cover the requirements for normal function or, alternatively, may reflect the insufficiency through a visible phenotype. In rare occasions, however, having one copy is so deleterious that causes lethality. These so called “haplolethal regions”, exist across species and represent an evolutionary paradox since they should have been subject to intense negative selection. The inherent difficulties to study haplolethals have precluded their study so far. Here, we analyzed the case of one of the five haplolethal regions of Drosophila, the one associated to the Troponin I encoding gene wupA, by measuring the transcriptional effects of mutations and chromosomal rearrangements affecting this gene. The data show that this haplolethality results from the combined insufficiency of a large number of Troponin I isoforms, which are functionally specialized, show interference and require the integrity of the native chromatin structure for their quantitatively regulated expression. These features unveil novel aspects of gene expression and, possibly, on evolutionary gene splitting. Also, haplolethals underscore the biological significance of protein dosage, in particular for functionally related products.
Collapse
Affiliation(s)
- Sergio Casas-Tintó
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alberto Ferrús
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| |
Collapse
|
22
|
Eres IE, Gilad Y. A TAD Skeptic: Is 3D Genome Topology Conserved? Trends Genet 2021; 37:216-223. [PMID: 33203573 PMCID: PMC8120795 DOI: 10.1016/j.tig.2020.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
The notion that topologically associating domains (TADs) are highly conserved across species is prevalent in the field of 3D genomics. However, what exactly is meant by 'highly conserved' and what are the actual comparative data that support this notion? To address these questions, we performed a historical review of the relevant literature and retraced numerous citation chains to reveal the primary data that were used as the basis for the widely accepted conclusion that TADs are highly conserved across evolution. A thorough review of the available evidence suggests the answer may be more complex than what is commonly presented.
Collapse
Affiliation(s)
- Ittai E Eres
- Department of Human Genetics, University of Chicago, Cummings Life Science Center, 928 E. 58th St., Chicago, IL 60637, USA
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Cummings Life Science Center, 928 E. 58th St., Chicago, IL 60637, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Ave., N417, MC6091, Chicago, IL 60637, USA.
| |
Collapse
|
23
|
Beccari L, Jaquier G, Lopez-Delisle L, Rodriguez-Carballo E, Mascrez B, Gitto S, Woltering J, Duboule D. Dbx2 regulation in limbs suggests interTAD sharing of enhancers. Dev Dyn 2021; 250:1280-1299. [PMID: 33497014 PMCID: PMC8451760 DOI: 10.1002/dvdy.303] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND During tetrapod limb development, the HOXA13 and HOXD13 transcription factors are critical for the emergence and organization of the autopod, the most distal aspect where digits will develop. Since previous work had suggested that the Dbx2 gene is a target of these factors, we set up to analyze in detail this potential regulatory interaction. RESULTS We show that HOX13 proteins bind to mammalian-specific sequences at the vicinity of the Dbx2 locus that have enhancer activity in developing digits. However, the functional inactivation of the DBX2 protein did not elicit any particular phenotype related to Hox genes inactivation in digits, suggesting either redundant or compensatory mechanisms. We report that the neighboring Nell2 and Ano6 genes are also expressed in distal limb buds and are in part controlled by the same Dbx2 enhancers despite being localized into two different topologically associating domains (TADs) flanking the Dbx2 locus. CONCLUSIONS We conclude that Hoxa13 and Hoxd genes cooperatively activate Dbx2 expression in developing digits through binding to mammalian specific regulatory sequences in the Dbx2 neighborhood. Furthermore, these enhancers can overcome TAD boundaries in either direction to co-regulate a set of genes located in distinct chromatin domains.
Collapse
Affiliation(s)
- Leonardo Beccari
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, University Claude Bernard Lyon1, Lyon, France
| | - Gabriel Jaquier
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Eddie Rodriguez-Carballo
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Sandra Gitto
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Joost Woltering
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,School of Life Sciences, Federal School of Technology (EPFL), Lausanne, Switzerland.,Collège de France, Paris, France
| |
Collapse
|
24
|
Henriques BJ, Katrine Jentoft Olsen R, Gomes CM, Bross P. Electron transfer flavoprotein and its role in mitochondrial energy metabolism in health and disease. Gene 2021; 776:145407. [PMID: 33450351 DOI: 10.1016/j.gene.2021.145407] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Electron transfer flavoprotein (ETF) is an enzyme with orthologs from bacteria to humans. Human ETF is nuclear encoded by two separate genes, ETFA and ETFB, respectively. After translation, the two subunits are imported to the mitochondrial matrix space and assemble into a heterodimer containing one FAD and one AMP as cofactors. ETF functions as a hub taking up electrons from at least 14 flavoenzymes, feeding them into the respiratory chain. This represents a major source of reducing power for the electron transport chain from fatty acid oxidation and amino acid degradation. Transfer of electrons from the donor enzymes to ETF occurs by direct transfer between the enzyme bound flavins, a process that is tightly regulated by the polypeptide chain and by protein:protein interactions. ETF, in turn relays electrons to the iron sulfur cluster of the inner membrane protein ETF:QO, from where they travel via the FAD in ETF:QO to ubiquinone, entering the respiratory chain at the level of complex III. ETF recognizes its dehydrogenase partners via a recognition loop that anchors the protein on its partner followed by dynamic movements of the ETF flavin domain that bring redox cofactors in close proximity, thus promoting electron transfer. Genetic mutations in the ETFA or ETFB genes cause the Mendelian disorder multiple acyl-CoA dehydrogenase deficiency (MADD; OMIM #231680). We here review the knowledge on human ETF and investigations of the effects of disease-associated missense mutations in this protein that have promoted the understanding of the essential role that ETF plays in cellular metabolism and human disease.
Collapse
Affiliation(s)
- Bárbara J Henriques
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark.
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark.
| |
Collapse
|
25
|
Independence of chromatin conformation and gene regulation during Drosophila dorsoventral patterning. Nat Genet 2021; 53:487-499. [PMID: 33795866 PMCID: PMC8035076 DOI: 10.1038/s41588-021-00799-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/21/2021] [Indexed: 02/01/2023]
Abstract
The relationship between chromatin organization and gene regulation remains unclear. While disruption of chromatin domains and domain boundaries can lead to misexpression of developmental genes, acute depletion of regulators of genome organization has a relatively small effect on gene expression. It is therefore uncertain whether gene expression and chromatin state drive chromatin organization or whether changes in chromatin organization facilitate cell-type-specific activation of gene expression. Here, using the dorsoventral patterning of the Drosophila melanogaster embryo as a model system, we provide evidence for the independence of chromatin organization and dorsoventral gene expression. We define tissue-specific enhancers and link them to expression patterns using single-cell RNA-seq. Surprisingly, despite tissue-specific chromatin states and gene expression, chromatin organization is largely maintained across tissues. Our results indicate that tissue-specific chromatin conformation is not necessary for tissue-specific gene expression but rather acts as a scaffold facilitating gene expression when enhancers become active.
Collapse
|
26
|
Spector JD, Wiita AP. A Guide to Using ClinTAD for Interpretation of DNA Copy Number Variants in the Context of Topologically Associated Domains. ACTA ACUST UNITED AC 2020; 108:e106. [PMID: 33170544 DOI: 10.1002/cphg.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
DNA copy number variants (CNVs) are routinely evaluated as part of clinical diagnosis in both the prenatal and postnatal genetic settings. Current guidelines for interpreting the potential clinical significance of these CNVs, typically identified by chromosomal microarray, focus entirely on genes localized within the CNV region. However, recent work has suggested that some CNVs can actually produce clinical impacts by influencing transcription of genes outside the CNV region. These alterations of transcription appear to occur by disrupting the composition of DNA topologically associated domains (TADs), which strongly influence contacts between gene promoters and their associated enhancers. Here we present a set of detailed protocols for the use of the free software tool ClinTAD (https://www.clintad.com). This decision-support software allows for prediction as to whether a given CNV may potentially disrupt a TAD boundary, and offers phenotype matching to genes near, but not within the CNV region, whose expression could be influenced by altered TAD architecture and that have phenotypic impacts related to that reported in a given patient. Our protocols here provide specific examples of how to implement these tools. In addition, the software has the capability to impact genomic research by evaluating multiple cases in parallel. We propose that this decision-support tool can benefit and improve genetic diagnosis. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Evaluating a single case using ClinTAD Basic Protocol 2: Evaluating a single case with multiple variants using ClinTAD Basic Protocol 3: Evaluating multiple cases using ClinTAD Basic Protocol 4: Creating tracks with custom data.
Collapse
Affiliation(s)
- Jacob D Spector
- University of California, San Francisco, Department of Laboratory Medicine, San Francisco, California
| | - Arun P Wiita
- University of California, San Francisco, Department of Laboratory Medicine, San Francisco, California
| |
Collapse
|
27
|
Wallis M, Pope-Couston R, Mansour J, Amor DJ, Tang P, Stock-Myer S. Lymphedema distichiasis syndrome may be caused by FOXC2 promoter-enhancer dissociation and disruption of a topological associated domain. Am J Med Genet A 2020; 185:150-156. [PMID: 33107170 DOI: 10.1002/ajmg.a.61935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/20/2020] [Accepted: 10/03/2020] [Indexed: 01/05/2023]
Abstract
Lymphedema distichiasis syndrome (LDS) is a rare autosomal dominant condition characterized by lower limb lymphedema, distichiasis, and variable additional features. LDS is usually caused by heterozygous sequence variants in the FOXC2 gene located at 16q24, but in one previous instance LDS has resulted from a balanced reciprocal translocation with a breakpoint at 16q24, 120 kb distal to the FOXC2 gene suggesting a position effect. Here, we describe a second family with LDS caused by a translocation involving 16q24. The family were ascertained after detection of a paternally inherited balanced reciprocal translocation t(16;22)(q24;q13.1) in a pregnancy complicated by severe fetal hydrops. There was a past history of multiple miscarriages in the father's family, and a personal and family history of lymphedema and distichiasis, consistent with the diagnosis of LDS. Using whole genome amplified DNA from single sperm of the male proband, bead array analysis demonstrated that the FOXC2 gene was intact and the chromosome 16 breakpoint mapped to the same region 120Kb distal to the FOXC2 gene. This case highlights the clinical consequences that can arise from a translocation of genomic material without dosage imbalance, and that it is increasingly feasible to predict and characterize possible effects with improved access to molecular techniques.
Collapse
Affiliation(s)
- Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, C/- The Royal Hobart Hospital, Hobart, Tasmania, Australia.,School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Rachel Pope-Couston
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, C/- The Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Julia Mansour
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, C/- The Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - David J Amor
- Department of Pediatrics, University of Melbourne.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Paisu Tang
- Virtus Diagnostics, East Melbourne, Victoria, Australia
| | | |
Collapse
|
28
|
Liu X, Xu W, Leng F, Hao C, Kolora SRR, Li W. Prioritizing long range interactions in noncoding regions using GWAS and deletions perturbed TADs. Comput Struct Biotechnol J 2020; 18:2945-2952. [PMID: 33209206 PMCID: PMC7642798 DOI: 10.1016/j.csbj.2020.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/22/2023] Open
Abstract
Genome-wide association studies (GWAS) have contributed significantly to predisposing the disease etiology by associating single nucleotide polymorphisms (SNPs) with complex diseases. However, most GWAS-SNPs are in the noncoding regions that may affect distal genes via long range enhancer-promoter interactions. Thus, the common practice on GWAS discoveries cannot fully reveal the molecular mechanisms underpinning complex diseases. It is known that perturbations of topological associated domains (TADs) lead to long range interactions which underlie disease etiology. To identify the probable long range interactions in noncoding regions via GWAS and TADs perturbed by deletions, we integrated datasets from GWAS-SNPs, enhancers, TADs, and deletions. After ranking and clustering, we prioritized 201,132 high confident pairs of GWAS-SNPs and target genes. In this study, we performed a systematic inference on noncoding regions via GWAS-SNPs and deletion-perturbed TADs to boost GWAS discovery power. The high confident pairs of GWAS-SNPs and target genes (SE-Gs) provide the promising candidates to understand the molecular mechanisms underlying complex diseases with emphasis on the three-dimensional genome.
Collapse
Affiliation(s)
- Xuanshi Liu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Beijing, China.,Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenjian Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Beijing, China.,Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Fei Leng
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Beijing, China.,Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Beijing, China.,Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Sree Rohit Raj Kolora
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China.,MOE Key Laboratory of Major Diseases in Children, Beijing, China.,Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
29
|
Sánchez-Gaya V, Mariner-Faulí M, Rada-Iglesias A. Rare or Overlooked? Structural Disruption of Regulatory Domains in Human Neurocristopathies. Front Genet 2020; 11:688. [PMID: 32765580 PMCID: PMC7379850 DOI: 10.3389/fgene.2020.00688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022] Open
Abstract
In the last few years, the role of non-coding regulatory elements and their involvement in human disease have received great attention. Among the non-coding regulatory sequences, enhancers are particularly important for the proper establishment of cell type-specific gene-expression programs. Furthermore, the disruption of enhancers can lead to human disease through two main mechanisms: (i) Mutations or copy number variants can directly alter the enhancer sequences and thereby affect expression of their target genes; (ii) structural variants can provoke changes in 3-D chromatin organization that alter neither the enhancers nor their target genes, but rather the physical communication between them. In this review, these pathomechanisms are mostly discussed in the context of neurocristopathies, congenital disorders caused by defects that occur during neural crest development. We highlight why, due to its contribution to multiple tissues and organs, the neural crest represents an important, yet understudied, cell type involved in multiple congenital disorders. Moreover, we discuss currently available resources and experimental models for the study of human neurocristopathies. Last, we provide some practical guidelines that can be followed when investigating human neurocristopathies caused by structural variants. Importantly, these guidelines can be useful not only to uncover the etiology of human neurocristopathies, but also of other human congenital disorders in which enhancer disruption is involved.
Collapse
Affiliation(s)
- Víctor Sánchez-Gaya
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
| | - Maria Mariner-Faulí
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-University of Cantabria-Sociedad para el Desarrollo de Cantabria, Santander, Spain
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
van der Lee R, Correard S, Wasserman WW. Deregulated Regulators: Disease-Causing cis Variants in Transcription Factor Genes. Trends Genet 2020; 36:523-539. [DOI: 10.1016/j.tig.2020.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
|
31
|
Marcho C, Oluwayiose OA, Pilsner JR. The preconception environment and sperm epigenetics. Andrology 2020; 8:924-942. [PMID: 31901222 PMCID: PMC7346722 DOI: 10.1111/andr.12753] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/12/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Infertility is a common reproductive disorder, with male factor infertility accounting for approximately half of all cases. Taking a paternal perceptive, recent research has shown that sperm epigenetics, such as changes in DNA methylation, histone modification, chromatin structure, and noncoding RNA expression, can impact reproductive and offspring health. Importantly, environmental conditions during the preconception period has been demonstrated to shape sperm epigenetics. OBJECTIVES To provide an overview on epigenetic modifications that regulate normal gene expression and epigenetic remodeling that occurs during spermatogenesis, and to discuss the epigenetic alterations that may occur to the paternal germline as a consequence of preconception environmental conditions and exposures. MATERIALS AND METHODS We examined published literature available on databases (PubMed, Google Scholar, ScienceDirect) focusing on adult male preconception environmental exposures and sperm epigenetics in epidemiologic studies and animal models. RESULTS The preconception period is a sensitive developmental window in which a variety of exposures such as toxicants, nutrition, drugs, stress, and exercise, affects sperm epigenetics. DISCUSSION AND CONCLUSION Understanding the environmental legacy of the sperm epigenome during spermatogenesis will enhance our understanding of reproductive health and improve reproductive success and offspring well-being.
Collapse
Affiliation(s)
| | | | - J. Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
32
|
Melo US, Schöpflin R, Acuna-Hidalgo R, Mensah MA, Fischer-Zirnsak B, Holtgrewe M, Klever MK, Türkmen S, Heinrich V, Pluym ID, Matoso E, Bernardo de Sousa S, Louro P, Hülsemann W, Cohen M, Dufke A, Latos-Bieleńska A, Vingron M, Kalscheuer V, Quintero-Rivera F, Spielmann M, Mundlos S. Hi-C Identifies Complex Genomic Rearrangements and TAD-Shuffling in Developmental Diseases. Am J Hum Genet 2020; 106:872-884. [PMID: 32470376 PMCID: PMC7273525 DOI: 10.1016/j.ajhg.2020.04.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Genome-wide analysis methods, such as array comparative genomic hybridization (CGH) and whole-genome sequencing (WGS), have greatly advanced the identification of structural variants (SVs) in the human genome. However, even with standard high-throughput sequencing techniques, complex rearrangements with multiple breakpoints are often difficult to resolve, and predicting their effects on gene expression and phenotype remains a challenge. Here, we address these problems by using high-throughput chromosome conformation capture (Hi-C) generated from cultured cells of nine individuals with developmental disorders (DDs). Three individuals had previously been identified as harboring duplications at the SOX9 locus and six had been identified with translocations. Hi-C resolved the positions of the duplications and was instructive in interpreting their distinct pathogenic effects, including the formation of new topologically associating domains (neo-TADs). Hi-C was very sensitive in detecting translocations, and it revealed previously unrecognized complex rearrangements at the breakpoints. In several cases, we observed the formation of fused-TADs promoting ectopic enhancer-promoter interactions that were likely to be involved in the disease pathology. In summary, we show that Hi-C is a sensible method for the detection of complex SVs in a clinical setting. The results help interpret the possible pathogenic effects of the SVs in individuals with DDs.
Collapse
Affiliation(s)
- Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, RG Development and Disease, 13353 Berlin, Germany; Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, RG Development and Disease, 13353 Berlin, Germany; Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Rocio Acuna-Hidalgo
- Max Planck Institute for Molecular Genetics, RG Development and Disease, 13353 Berlin, Germany; Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Martin Atta Mensah
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Björn Fischer-Zirnsak
- Max Planck Institute for Molecular Genetics, RG Development and Disease, 13353 Berlin, Germany; Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Manuel Holtgrewe
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Core Unit Bioinformatics, 10117 Berlin, Germany
| | - Marius-Konstantin Klever
- Max Planck Institute for Molecular Genetics, RG Development and Disease, 13353 Berlin, Germany; Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Seval Türkmen
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Verena Heinrich
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, 13353 Berlin, Germany
| | - Ilina Datkhaeva Pluym
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eunice Matoso
- Medical Genetics Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; Center of Investigation on Environment Genetics and Oncobiology (iCBR-CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Pedro Louro
- Medical Genetics Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; Familial Risk Clinic, Instituto Português de Oncologia de Lisboa Francisco Gentil, 1099-023 Lisboa, Portugal; Faculty of Health Sciences, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Wiebke Hülsemann
- Handchirurgie Kinderkrankenhaus Wilhelmstift, 22149 Hamburg, Germany
| | - Monika Cohen
- kbo-Kinderzentrum München, 81377 München, Germany
| | - Andreas Dufke
- Institut für Medizinische Genetik und Angewandte Genomik, 72076 Tübingen, Germany
| | - Anna Latos-Bieleńska
- Department of Medical Genetics, University of Medical Sciences in Poznan, 60-806 Poznan, Poland; Centers for Medical Genetics GENESIS, Grudzieniec st, 60-601 Poznan, Poland
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, 13353 Berlin, Germany
| | - Vera Kalscheuer
- Max Planck Institute for Molecular Genetics, RG Development and Disease, 13353 Berlin, Germany
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, Human Molecular Genomics Group, 13353 Berlin, Germany; Institut für Humangenetik Lübeck, Universität zu Lübeck, 23538 Lübeck, Germany.
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development and Disease, 13353 Berlin, Germany; Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
33
|
Cresswell KG, Dozmorov MG. TADCompare: An R Package for Differential and Temporal Analysis of Topologically Associated Domains. Front Genet 2020; 11:158. [PMID: 32211023 PMCID: PMC7076128 DOI: 10.3389/fgene.2020.00158] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/11/2020] [Indexed: 12/02/2022] Open
Abstract
Recent research using chromatin conformation capture technologies, such as Hi-C, has demonstrated the importance of topologically associated domains (TADs) and smaller chromatin loops, collectively referred hereafter as "interacting domains." Many such domains change during development or disease, and exhibit cell- and condition-specific differences. Quantification of the dynamic behavior of interacting domains will help to better understand genome regulation. Methods for comparing interacting domains between cells and conditions are highly limited. We developed TADCompare, a method for differential analysis of boundaries of interacting domains between two or more Hi-C datasets. TADCompare is based on a spectral clustering-derived measure called the eigenvector gap, which enables a loci-by-loci comparison of boundary differences. Using this measure, we introduce methods for identifying differential and consensus boundaries of interacting domains and tracking boundary changes over time. We further propose a novel framework for the systematic classification of boundary changes. Colocalization- and gene enrichment analysis of different types of boundary changes demonstrated distinct biological functionality associated with them. TADCompare is available on https://github.com/dozmorovlab/TADCompare and Bioconductor (submitted).
Collapse
|
34
|
Akdemir KC, Le VT, Chandran S, Li Y, Verhaak RG, Beroukhim R, Campbell PJ, Chin L, Dixon JR, Futreal PA. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat Genet 2020; 52:294-305. [PMID: 32024999 PMCID: PMC7058537 DOI: 10.1038/s41588-019-0564-y] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
Abstract
Chromatin is folded into successive layers to organize linear DNA. Genes within the same topologically associating domains (TADs) demonstrate similar expression and histone-modification profiles, and boundaries separating different domains have important roles in reinforcing the stability of these features. Indeed, domain disruptions in human cancers can lead to misregulation of gene expression. However, the frequency of domain disruptions in human cancers remains unclear. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we analyzed 288,457 somatic structural variations (SVs) to understand the distributions and effects of SVs across TADs. Notably, SVs can lead to the fusion of discrete TADs, and complex rearrangements markedly change chromatin folding maps in the cancer genomes. Notably, only 14% of the boundary deletions resulted in a change in expression in nearby genes of more than twofold.
Collapse
Affiliation(s)
- Kadir C Akdemir
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Victoria T Le
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Yilong Li
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - Roel G Verhaak
- Division of Computational Biology, The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Peter J Campbell
- Wellcome Trust Sanger Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Lynda Chin
- Institute for Health Transformation University of Texas, Houston, TX, USA
| | - Jesse R Dixon
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
35
|
Kentepozidou E, Aitken SJ, Feig C, Stefflova K, Ibarra-Soria X, Odom DT, Roller M, Flicek P. Clustered CTCF binding is an evolutionary mechanism to maintain topologically associating domains. Genome Biol 2020; 21:5. [PMID: 31910870 PMCID: PMC6945661 DOI: 10.1186/s13059-019-1894-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND CTCF binding contributes to the establishment of a higher-order genome structure by demarcating the boundaries of large-scale topologically associating domains (TADs). However, despite the importance and conservation of TADs, the role of CTCF binding in their evolution and stability remains elusive. RESULTS We carry out an experimental and computational study that exploits the natural genetic variation across five closely related species to assess how CTCF binding patterns stably fixed by evolution in each species contribute to the establishment and evolutionary dynamics of TAD boundaries. We perform CTCF ChIP-seq in multiple mouse species to create genome-wide binding profiles and associate them with TAD boundaries. Our analyses reveal that CTCF binding is maintained at TAD boundaries by a balance of selective constraints and dynamic evolutionary processes. Regardless of their conservation across species, CTCF binding sites at TAD boundaries are subject to stronger sequence and functional constraints compared to other CTCF sites. TAD boundaries frequently harbor dynamically evolving clusters containing both evolutionarily old and young CTCF sites as a result of the repeated acquisition of new species-specific sites close to conserved ones. The overwhelming majority of clustered CTCF sites colocalize with cohesin and are significantly closer to gene transcription start sites than nonclustered CTCF sites, suggesting that CTCF clusters particularly contribute to cohesin stabilization and transcriptional regulation. CONCLUSIONS Dynamic conservation of CTCF site clusters is an apparently important feature of CTCF binding evolution that is critical to the functional stability of a higher-order chromatin structure.
Collapse
Affiliation(s)
- Elissavet Kentepozidou
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD UK
| | - Sarah J. Aitken
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
- Department of Histopathology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ UK
| | - Christine Feig
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
| | - Klara Stefflova
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
| | - Ximena Ibarra-Soria
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
| | - Duncan T. Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
- Division Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maša Roller
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| |
Collapse
|
36
|
Hu X, Liu J, Guo R, Guo J, Zhao Z, Li W, Xu B, Hao C. A novel 14q13.1-21.1 deletion identified by CNV-Seq in a patient with brain-lung-thyroid syndrome, tooth agenesis and immunodeficiency. Mol Cytogenet 2019; 12:51. [PMID: 31890031 PMCID: PMC6924084 DOI: 10.1186/s13039-019-0463-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Background Chromosome 14q11-q22 deletion syndrome (OMIM 613457) is a rare genomic disorder. The phenotype heterogeneity depends on the deletion size, breakpoints and genes deleted. Critical genes like FOXG1, NKX2–1, PAX9 were identified. Case presentation We performed whole exome sequencing (WES) and copy number variation sequencing (CNV-seq) for a patient with mild speech and motor developmental delay, short stature, recurrent pulmonary infections, tooth agenesis and triad of brain-lung-thyroid syndrome. By using CNV-seq, we identified a 3.1 Mb de novo interstitial deletion of the 14q13.2q21.1 region encompassing 17 OMIM genes including NKX2–1, PAX9 and NFKBIA. Our patient’s phenotype is consistent with other published 14q13 deletion patients. Conclusion Our results showed the combination of WES and CNV-seq is an effective diagnostic strategy for patients with genetic or genomic disorders. After reviewing published patients, we also proposed a new critical region for 14q13 deletion syndrome with is a more benign disorder compared to 14q11-q22 deletion syndrome.
Collapse
Affiliation(s)
- Xuyun Hu
- 1Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Jun Liu
- 2China National Clinical Research Center of Respiratory Diseases, Respiratory Department of Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Ruolan Guo
- 1Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Jun Guo
- 1Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Zhipeng Zhao
- 2China National Clinical Research Center of Respiratory Diseases, Respiratory Department of Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Wei Li
- 1Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Baoping Xu
- 2China National Clinical Research Center of Respiratory Diseases, Respiratory Department of Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| | - Chanjuan Hao
- 1Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045 China
| |
Collapse
|
37
|
Muro EM, Ibn-Salem J, Andrade-Navarro MA. The distributions of protein coding genes within chromatin domains in relation to human disease. Epigenetics Chromatin 2019; 12:72. [PMID: 31805995 PMCID: PMC6894242 DOI: 10.1186/s13072-019-0317-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/19/2019] [Indexed: 12/02/2022] Open
Abstract
Background Our understanding of the nuclear chromatin structure has increased hugely during the last years mainly as a consequence of the advances in chromatin conformation capture methods like Hi-C. The unprecedented resolution of genome-wide interaction maps shows functional consequences that extend the initial thought of an efficient DNA packaging mechanism: gene regulation, DNA repair, chromosomal translocations and evolutionary rearrangements seem to be only the peak of the iceberg. One key concept emerging from this research is the topologically associating domains (TADs) whose functional role in gene regulation and their association with disease is not fully untangled. Results We report that the lower the number of protein coding genes inside TADs, the higher the tendency of those genes to be associated with disease (p-value = 4 × \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$10^{-54}$$\end{document}10-54). Moreover, housekeeping genes are less associated with disease than other genes. Accordingly, they are depleted in TADs containing less than three protein coding genes (p-value = 3.9 × \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$10^{-34}$$\end{document}10-34). We observed that TADs with higher ratios of enhancers versus genes contained higher numbers of disease-associated genes. We interpret these results as an indication that sharing enhancers among genes reduces their involvement in disease. Larger TADs would have more chances to accommodate many genes and select for enhancer sharing along evolution. Conclusions Genes associated with human disease do not distribute randomly over the TADs. Our observations suggest general rules that confer functional stability to TADs, adding more evidence to the role of TADs as regulatory units.
Collapse
Affiliation(s)
- Enrique M Muro
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Hans-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.
| | - Jonas Ibn-Salem
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Hans-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Hans-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| |
Collapse
|
38
|
Middelkamp S, Vlaar JM, Giltay J, Korzelius J, Besselink N, Boymans S, Janssen R, de la Fonteijne L, van Binsbergen E, van Roosmalen MJ, Hochstenbach R, Giachino D, Talkowski ME, Kloosterman WP, Cuppen E. Prioritization of genes driving congenital phenotypes of patients with de novo genomic structural variants. Genome Med 2019; 11:79. [PMID: 31801603 PMCID: PMC6894143 DOI: 10.1186/s13073-019-0692-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. METHODS We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. RESULTS In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. CONCLUSIONS These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs.
Collapse
Affiliation(s)
- Sjors Middelkamp
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Judith M Vlaar
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Jacques Giltay
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Jerome Korzelius
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Nicolle Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Roel Janssen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Lisanne de la Fonteijne
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Markus J van Roosmalen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Ron Hochstenbach
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Daniela Giachino
- Medical Genetics Unit, Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Italy
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wigard P Kloosterman
- Department of Genetics, University Medical Center Utrecht, 3584 EA, Utrecht, the Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
39
|
Roychowdhury T, Abyzov A. Chromatin organization modulates the origin of heritable structural variations in human genome. Nucleic Acids Res 2019; 47:2766-2777. [PMID: 30773596 PMCID: PMC6451188 DOI: 10.1093/nar/gkz103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Structural variations (SVs) in the human genome originate from different mechanisms related to DNA repair, replication errors, and retrotransposition. Our analyses of 26 927 SVs from the 1000 Genomes Project revealed differential distributions and consequences of SVs of different origin, e.g. deletions from non-allelic homologous recombination (NAHR) are more prone to disrupt chromatin organization while processed pseudogenes can create accessible chromatin. Spontaneous double stranded breaks (DSBs) are the best predictor of enrichment of NAHR deletions in open chromatin. This evidence, along with strong physical interaction of NAHR breakpoints belonging to the same deletion suggests that majority of NAHR deletions are non-meiotic i.e. originate from errors during homology directed repair (HDR) of spontaneous DSBs. In turn, the origin of the spontaneous DSBs is associated with transcription factor binding in accessible chromatin revealing the vulnerability of functional, open chromatin. The chromatin itself is enriched with repeats, particularly fixed Alu elements that provide the homology required to maintain stability via HDR. Through co-localization of fixed Alus and NAHR deletions in open chromatin we hypothesize that old Alu expansion had a stabilizing role on the human genome.
Collapse
Affiliation(s)
- Tanmoy Roychowdhury
- Mayo Clinic, Department of Health Sciences Research, Center for Individualized Medicine, Rochester, MN 55905, USA
| | - Alexej Abyzov
- Mayo Clinic, Department of Health Sciences Research, Center for Individualized Medicine, Rochester, MN 55905, USA
| |
Collapse
|
40
|
Jiang S, Postovit L, Cattaneo A, Binder EB, Aitchison KJ. Epigenetic Modifications in Stress Response Genes Associated With Childhood Trauma. Front Psychiatry 2019; 10:808. [PMID: 31780969 PMCID: PMC6857662 DOI: 10.3389/fpsyt.2019.00808] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Adverse childhood experiences (ACEs) may be referred to by other terms (e.g., early life adversity or stress and childhood trauma) and have a lifelong impact on mental and physical health. For example, childhood trauma has been associated with posttraumatic stress disorder (PTSD), anxiety, depression, bipolar disorder, diabetes, and cardiovascular disease. The heritability of ACE-related phenotypes such as PTSD, depression, and resilience is low to moderate, and, moreover, is very variable for a given phenotype, which implies that gene by environment interactions (such as through epigenetic modifications) may be involved in the onset of these phenotypes. Currently, there is increasing interest in the investigation of epigenetic contributions to ACE-induced differential health outcomes. Although there are a number of studies in this field, there are still research gaps. In this review, the basic concepts of epigenetic modifications (such as methylation) and the function of the hypothalamic-pituitary-adrenal (HPA) axis in the stress response are outlined. Examples of specific genes undergoing methylation in association with ACE-induced differential health outcomes are provided. Limitations in this field, e.g., uncertain clinical diagnosis, conceptual inconsistencies, and technical drawbacks, are reviewed, with suggestions for advances using new technologies and novel research directions. We thereby provide a platform on which the field of ACE-induced phenotypes in mental health may build.
Collapse
Affiliation(s)
- Shui Jiang
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Lynne Postovit
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Elisabeth B. Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine J. Aitchison
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
41
|
Ghavi-Helm Y. Functional Consequences of Chromosomal Rearrangements on Gene Expression: Not So Deleterious After All? J Mol Biol 2019; 432:665-675. [PMID: 31626801 DOI: 10.1016/j.jmb.2019.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Chromosomes are folded and organized into topologically associating domains (TADs) which provide a framework for the interaction of enhancers with the promoter of their target gene(s). Structural rearrangements observed during evolution or in disease contexts suggest that changes in genome organization strongly affect gene expression and can have drastic phenotypic effects. In this review, I will discuss how recent genomic engineering experiments reveal a more contrasted picture, suggesting that TADs are important but not always essential for gene expression regulation.
Collapse
Affiliation(s)
- Yad Ghavi-Helm
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 46 Allée D'Italie, F-69364 Lyon, France.
| |
Collapse
|
42
|
Ing-Simmons E, Vaquerizas JM. Visualising three-dimensional genome organisation in two dimensions. Development 2019; 146:146/19/dev177162. [PMID: 31558569 DOI: 10.1242/dev.177162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The three-dimensional organisation of the genome plays a crucial role in developmental gene regulation. In recent years, techniques to investigate this organisation have become more accessible to labs worldwide due to improvements in protocols and decreases in the cost of high-throughput sequencing. However, the resulting datasets are complex and can be challenging to analyse and interpret. Here, we provide a guide to visualisation approaches that can aid the interpretation of such datasets and the communication of biological results.
Collapse
Affiliation(s)
- Elizabeth Ing-Simmons
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, DE-48149 Muenster, Germany
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, DE-48149 Muenster, Germany
| |
Collapse
|
43
|
Zhang Y, Li T, Preissl S, Amaral ML, Grinstein JD, Farah EN, Destici E, Qiu Y, Hu R, Lee AY, Chee S, Ma K, Ye Z, Zhu Q, Huang H, Fang R, Yu L, Izpisua Belmonte JC, Wu J, Evans SM, Chi NC, Ren B. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat Genet 2019; 51:1380-1388. [PMID: 31427791 PMCID: PMC6722002 DOI: 10.1038/s41588-019-0479-7] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/09/2019] [Indexed: 12/24/2022]
Abstract
Chromatin architecture has been implicated in cell type-specific gene regulatory programs, yet how chromatin remodels during development remains to be fully elucidated. Here, by interrogating chromatin reorganization during human pluripotent stem cell (hPSC) differentiation, we discover a role for the primate-specific endogenous retrotransposon human endogenous retrovirus subfamily H (HERV-H) in creating topologically associating domains (TADs) in hPSCs. Deleting these HERV-H elements eliminates their corresponding TAD boundaries and reduces the transcription of upstream genes, while de novo insertion of HERV-H elements can introduce new TAD boundaries. The ability of HERV-H to create TAD boundaries depends on high transcription, as transcriptional repression of HERV-H elements prevents the formation of boundaries. This ability is not limited to hPSCs, as these actively transcribed HERV-H elements and their corresponding TAD boundaries also appear in pluripotent stem cells from other hominids but not in more distantly related species lacking HERV-H elements. Overall, our results provide direct evidence for retrotransposons in actively shaping cell type- and species-specific chromatin architecture.
Collapse
Affiliation(s)
- Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Ting Li
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Sebastian Preissl
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Maria Luisa Amaral
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Jonathan D Grinstein
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Elie N Farah
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Eugin Destici
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Rong Hu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Ah Young Lee
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Sora Chee
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Kaiyue Ma
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Zhen Ye
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Quan Zhu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Hui Huang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Rongxin Fang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sylvia M Evans
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Neil C Chi
- Department of Medicine, Division of Cardiology, University of California San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
44
|
Abstract
Structural and quantitative chromosomal rearrangements, collectively referred to as structural variation (SV), contribute to a large extent to the genetic diversity of the human genome and thus are of high relevance for cancer genetics, rare diseases and evolutionary genetics. Recent studies have shown that SVs can not only affect gene dosage but also modulate basic mechanisms of gene regulation. SVs can alter the copy number of regulatory elements or modify the 3D genome by disrupting higher-order chromatin organization such as topologically associating domains. As a result of these position effects, SVs can influence the expression of genes distant from the SV breakpoints, thereby causing disease. The impact of SVs on the 3D genome and on gene expression regulation has to be considered when interpreting the pathogenic potential of these variant types.
Collapse
Affiliation(s)
- Malte Spielmann
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany. .,Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
45
|
Zheng H, Xie W. The role of 3D genome organization in development and cell differentiation. Nat Rev Mol Cell Biol 2019; 20:535-550. [DOI: 10.1038/s41580-019-0132-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Krumm A, Duan Z. Understanding the 3D genome: Emerging impacts on human disease. Semin Cell Dev Biol 2019; 90:62-77. [PMID: 29990539 PMCID: PMC6329682 DOI: 10.1016/j.semcdb.2018.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
Recent burst of new technologies that allow for quantitatively delineating chromatin structure has greatly expanded our understanding of how the genome is organized in the three-dimensional (3D) space of the nucleus. It is now clear that the hierarchical organization of the eukaryotic genome critically impacts nuclear activities such as transcription, replication, as well as cellular and developmental events such as cell cycle, cell fate decision and embryonic development. In this review, we discuss new insights into how the structural features of the 3D genome hierarchy are established and maintained, how this hierarchy undergoes dynamic rearrangement during normal development and how its perturbation will lead to human disease, highlighting the accumulating evidence that links the diverse 3D genome architecture components to a multitude of human diseases and the emerging mechanisms by which 3D genome derangement causes disease phenotypes.
Collapse
Affiliation(s)
- Anton Krumm
- Department of Microbiology, University of Washington, USA.
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, USA; Division of Hematology, Department of Medicine, University of Washington, USA.
| |
Collapse
|
47
|
Chahal G, Tyagi S, Ramialison M. Navigating the non-coding genome in heart development and Congenital Heart Disease. Differentiation 2019; 107:11-23. [PMID: 31102825 DOI: 10.1016/j.diff.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/14/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022]
Abstract
Congenital Heart Disease (CHD) is characterised by a wide range of cardiac defects, from mild to life-threatening, which occur in babies worldwide. To date, there is no cure to CHD, however, progress in surgery has reduced its mortality allowing children affected by CHD to reach adulthood. In an effort to understand its genetic basis, several studies involving whole-genome sequencing (WGS) of patients with CHD have been undertaken and generated a great wealth of information. The majority of putative causative mutations identified in WGS studies fall into the non-coding part of the genome. Unfortunately, due to the lack of understanding of the function of these non-coding mutations, it is challenging to establish a causal link between the non-coding mutation and the disease. Thus, here we review the state-of-the-art approaches to interpret non-coding mutations in the context of CHD and address the following questions: What are the non-coding sequences important for cardiac function? Which technologies are used to identify them? Which resources are available to analyse them? What mutations are expected in these non-coding sequences? Learning from developmental process, what is their expected role in CHD?
Collapse
Affiliation(s)
- Gulrez Chahal
- Australian Regenerative Medicine Institute (ARMI), 15 Innovation Walk, Monash University, Wellington Road, Clayton, 3800, VIC, Australia; Systems Biology Institute (SBI), Wellington Road, Clayton, 3800, VIC, Australia
| | - Sonika Tyagi
- School of Biological Sciences, Monash University, Wellington Road, Clayton, 3800, VIC, Australia; Australian Genome Research Facility, 305 Grattan Street, Melbourne, VIC, 3000, Australia.
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute (ARMI), 15 Innovation Walk, Monash University, Wellington Road, Clayton, 3800, VIC, Australia; Systems Biology Institute (SBI), Wellington Road, Clayton, 3800, VIC, Australia.
| |
Collapse
|
48
|
Brookes E, Riccio A. Location, location, location: nuclear structure regulates gene expression in neurons. Curr Opin Neurobiol 2019; 59:16-25. [PMID: 31005709 DOI: 10.1016/j.conb.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 12/27/2022]
Abstract
Genome architecture plays a critical role in regulating the expression of genes that are essential for nervous system development. During neuronal differentiation, spatially and temporally regulated transcription allows neuronal migration, the growth of dendrites and axons, and at later stages, synaptic formation and the establishment of neuronal circuitry. Genome topology and relocation of gene loci within the nucleus are now regarded as key factors that contribute to transcriptional regulation. Here, we review recent work supporting the hypothesis that the dynamic organization of chromatin within the nucleus impacts gene activation in response to extrinsic signalling and during neuronal differentiation. The consequences of disruption of the genome architecture on neuronal health will be also discussed.
Collapse
Affiliation(s)
- Emily Brookes
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Antonella Riccio
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
49
|
ClinTAD: a tool for copy number variant interpretation in the context of topologically associated domains. J Hum Genet 2019; 64:437-443. [PMID: 30765865 DOI: 10.1038/s10038-019-0573-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
Standard clinical interpretation of DNA copy number variants (CNVs) identified by cytogenomic microarray involves examining protein-coding genes within the region and comparison to other CNVs. Emerging basic research suggests that CNVs can also exert a pathogenic effect through disruption of DNA structural elements such as topologically associated domains (TADs). To begin to integrate these discoveries with current practice, we developed ClinTAD, a free browser-based tool to assist with interpretation of CNVs in the context of TADs ( www.clintad.com ). We used ClinTAD to examine 209 randomly selected single-nucleotide polymorphism microarray cases with a total of 236 CNVs. We compared 118 CNVs classified as variants of uncertain clinical significance (VUS), where additional insight into pathogenicity of these CNVs would be of greatest utility, to 118 CNVs classified as benign. We found that a higher proportion of VUS had at least two genes in a nearby TAD related to a phenotype seen in the patient based on Human Phenotype Ontology (HPO) annotation. We present example cases demonstrating scenarios where ClinTAD may either increase or decrease clinical suspicion of pathogenicity for VUS, depending on disruption of TAD boundaries and HPO phenotype match. ClinTAD is an easy-to-use tool, based on emerging research in chromatin architecture, that can help inform CNV interpretation.
Collapse
|
50
|
Abstract
Noncoding DNA sequences play crucial roles in gene regulation, including via three-dimensional genome organization where they define chromatin boundaries and segment the genome into a sequence of insulated neighborhoods. However, the relative importance of noncoding DNA elements, particularly in comparison with protein-coding DNA sequences, remains more poorly characterized. Here, we systematically test if chromatin boundary disruptions are under purifying selection. Our analyses uncover a genomewide depletion of structural variants that would have the potential to alter chromatin structure. This in turn has implications for predicting not only which variants are likely pathogenic in clinical genetics settings, but also which are likely key innovations in primate evolution, and argues for expanding the current gene-centric paradigm for interpreting structural variants. The potential impact of structural variants includes not only the duplication or deletion of coding sequences, but also the perturbation of noncoding DNA regulatory elements and structural chromatin features, including topological domains (TADs). Structural variants disrupting TAD boundaries have been implicated both in cancer and developmental disease; this likely occurs via “enhancer hijacking,” whereby removal of the TAD boundary exposes enhancers to new target transcription start sites (TSSs). With this functional role, we hypothesized that boundaries would display evidence for negative selection. Here we demonstrate that the chromatin landscape constrains structural variation both within healthy humans and across primate evolution. In contrast, in patients with developmental delay, variants occur remarkably uniformly across genomic features, suggesting a potentially broad role for enhancer hijacking in human disease.
Collapse
|