1
|
Garcia IS, Silva-Vignato B, Cesar ASM, Petrini J, da Silva VH, Morosini NS, Goes CP, Afonso J, da Silva TR, Lima BD, Clemente LG, Regitano LCDA, Mourão GB, Coutinho LL. Novel putative causal mutations associated with fat traits in Nellore cattle uncovered by eQTLs located in open chromatin regions. Sci Rep 2024; 14:10094. [PMID: 38698200 PMCID: PMC11066111 DOI: 10.1038/s41598-024-60703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Intramuscular fat (IMF) and backfat thickness (BFT) are critical economic traits impacting meat quality. However, the genetic variants controlling these traits need to be better understood. To advance knowledge in this area, we integrated RNA-seq and single nucleotide polymorphisms (SNPs) identified in genomic and transcriptomic data to generate a linkage disequilibrium filtered panel of 553,581 variants. Expression quantitative trait loci (eQTL) analysis revealed 36,916 cis-eQTLs and 14,408 trans-eQTLs. Association analysis resulted in three eQTLs associated with BFT and 24 with IMF. Functional enrichment analysis of genes regulated by these 27 eQTLs revealed noteworthy pathways that can play a fundamental role in lipid metabolism and fat deposition, such as immune response, cytoskeleton remodeling, iron transport, and phospholipid metabolism. We next used ATAC-Seq assay to identify and overlap eQTL and open chromatin regions. Six eQTLs were in regulatory regions, four in predicted insulators and possible CCCTC-binding factor DNA binding sites, one in an active enhancer region, and the last in a low signal region. Our results provided novel insights into the transcriptional regulation of IMF and BFT, unraveling putative regulatory variants.
Collapse
Affiliation(s)
- Ingrid Soares Garcia
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Bárbara Silva-Vignato
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Aline Silva Mello Cesar
- Department of Agroindustry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Juliana Petrini
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Vinicius Henrique da Silva
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Natália Silva Morosini
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Carolina Purcell Goes
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | | | - Thaís Ribeiro da Silva
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Beatriz Delcarme Lima
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Luan Gaspar Clemente
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | | | - Gerson Barreto Mourão
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- Department of Animal Science, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
2
|
Xu G, Law JA. Loops, crosstalk, and compartmentalization: it takes many layers to regulate DNA methylation. Curr Opin Genet Dev 2024; 84:102147. [PMID: 38176333 PMCID: PMC10922829 DOI: 10.1016/j.gde.2023.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
DNA methylation is a conserved epigenetic modification associated with transposon silencing and gene regulation. The stability of this modification relies on intimate connections between DNA and histone modifications that generate self-reinforcing loops wherein the presence of one mark promotes the other. However, it is becoming increasingly clear that the efficiency of these loops is affected by cross-talk between pathways and by chromatin accessibility, which is heavily influenced by histone variants. Focusing primarily on plants, this review provides an update on the aforementioned self-reinforcing loops, highlights recent advances in understanding how DNA methylation pathways are restricted to prevent encroachment on genes, and discusses the roles of histone variants in compartmentalizing epigenetic pathways within the genome. This multilayered approach facilitates two essential, yet opposing functions, the ability to maintain heritable DNA methylation patterns while retaining the flexibility to modify these patterns during development.
Collapse
Affiliation(s)
- Guanghui Xu
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA. https://twitter.com/@GuanghuiXu1
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Zhang Z, Qian H, Wang Z, Pang Y, Guan X, Poetsch A, Wang D. Characterization of histone acetyltransferases and deacetylases and their roles in response to dehydration stress in Pyropia yezoensis (Rhodophyta). FRONTIERS IN PLANT SCIENCE 2023; 14:1133021. [PMID: 37260940 PMCID: PMC10227436 DOI: 10.3389/fpls.2023.1133021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023]
Abstract
Histone acetylation is one of the most pivotal epigenetic mechanisms in eukaryotes and has been tightly linked to the regulation of various genes controlling growth, development and response to environmental stresses in both animals and plants. Till date, the association of histone acetylation to dehydration stress in red algae and genes encoding the enzymes responsible for histone acetylation: histone acetyltransferases (HATs) or histone deacetylases (HDACs), remains largely unknown. In this study, in silico analysis of the red seaweed Pyropia yezoensis identified 6 HAT genes and 10 HDAC genes. These genes displayed good synteny in genome loci with their Pyropia haitanensis orthologs except for a putative gene duplication event in HDAC and a loss of one HAT gene in P. yezoensis. According to the conserved domains and phylogenetic analysis, they encoded three GCNA5-, one TAFII250- and one MYST-HAT, as well as five HDA1-and five SIRT-HDACs. The sirtuin-domain of Py06502 harbored a ~100 aa insert and interestingly, this insertion was specifically observed in Bangiales species. Two nuclear-localized HATs were transcriptionally up-regulated at the early stage of dehydration and so were two nuclear HDA1s when moderate dehydration started, suggesting their potential roles in modulating downstream gene expression to facilitate dehydration adaptation by changing histone acetylation patterns on relevant regulatory elements. This was experimentally confirmed by the increased decline in photosynthesis efficiency during dehydration when HAT and HDAC activities were inhibited by SAHA and MB-3, respectively. Transcriptional patterns of multiple dehydration-responsive genes after water loss were strongly affected by MB-3 or SAHA treatment. This study provides the first insight into the regulation and function of HAT/HDAC during stress adaptation in red algae.
Collapse
Affiliation(s)
- Zehao Zhang
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Huijuan Qian
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhongshi Wang
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ying Pang
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaowei Guan
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ansgar Poetsch
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia, Germany
| | - Dongmei Wang
- Key Laboratory of Marine Genetics and Breeding (OUC), Ministry of Education, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Kumar S, Seem K, Mohapatra T. Biochemical and Epigenetic Modulations under Drought: Remembering the Stress Tolerance Mechanism in Rice. Life (Basel) 2023; 13:life13051156. [PMID: 37240801 DOI: 10.3390/life13051156] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
A plant, being a sessile organism, needs to modulate biochemical, physiological, and molecular responses to the environment in a quick and efficient manner to be protected. Drought stress is a frequently occurring abiotic stress that severely affects plant growth, development, and productivity. Short- and long-term memories are well-known phenomena in animals; however, the existence of such remembrance in plants is still being discovered. In this investigation, different rice genotypes were imposed with drought stress just before flowering and the plants were re-watered for recovery from the stress. Seeds collected from the stress-treated (stress-primed) plants were used to raise plants for the subsequent two generations under a similar experimental setup. Modulations in physio-biochemical (chlorophyll, total phenolics and proline contents, antioxidant potential, lipid peroxidation) and epigenetic [5-methylcytosine (5-mC)] parameters were analyzed in the leaves of the plants grown under stress as well as after recovery. There was an increase in proline (>25%) and total phenolic (>19%) contents, antioxidant activity (>7%), and genome-wide 5-mC level (>56%), while a decrease (>9%) in chlorophyll content was recorded to be significant under the stress. Interestingly, a part of the increased proline content, total phenolics content, antioxidant activity, and 5-mC level was retained even after the withdrawal of the stress. Moreover, the increased levels of biochemical and epigenetic parameters were observed to be transmitted/inherited to the subsequent generations. These might help in developing stress-tolerant crops and improving crop productivity under the changing global climate for sustainable food production and global food security.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | |
Collapse
|
5
|
Abiraami TV, Sanyal RP, Misra HS, Saini A. Genome-wide analysis of bromodomain gene family in Arabidopsis and rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1120012. [PMID: 36968369 PMCID: PMC10030601 DOI: 10.3389/fpls.2023.1120012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The bromodomain-containing proteins (BRD-proteins) belongs to family of 'epigenetic mark readers', integral to epigenetic regulation. The BRD-members contain a conserved 'bromodomain' (BRD/BRD-fold: interacts with acetylated-lysine in histones), and several additional domains, making them structurally/functionally diverse. Like animals, plants also contain multiple Brd-homologs, however the extent of their diversity and impact of molecular events (genomic duplications, alternative splicing, AS) therein, is relatively less explored. The present genome-wide analysis of Brd-gene families of Arabidopsis thaliana and Oryza sativa showed extensive diversity in structure of genes/proteins, regulatory elements, expression pattern, domains/motifs, and the bromodomain (w.r.t. length, sequence, location) among the Brd-members. Orthology analysis identified thirteen ortholog groups (OGs), three paralog groups (PGs) and four singleton members (STs). While more than 40% Brd-genes were affected by genomic duplication events in both plants, AS-events affected 60% A. thaliana and 41% O. sativa genes. These molecular events affected various regions (promoters, untranslated regions, exons) of different Brd-members with potential impact on expression and/or structure-function characteristics. RNA-Seq data analysis indicated differences in tissue-specificity and stress response of Brd-members. Analysis by RT-qPCR revealed differential abundance and salt stress response of duplicate A. thaliana and O. sativa Brd-genes. Further analysis of AtBrd gene, AtBrdPG1b showed salinity-induced modulation of splicing pattern. Bromodomain (BRD)-region based phylogenetic analysis placed the A. thaliana and O. sativa homologs into clusters/sub-clusters, mostly consistent with ortholog/paralog groups. The bromodomain-region displayed several conserved signatures in key BRD-fold elements (α-helices, loops), along with variations (1-20 sites) and indels among the BRD-duplicates. Homology modeling and superposition identified structural variations in BRD-folds of divergent and duplicate BRD-members, which might affect their interaction with the chromatin histones, and associated functions. The study also showed contribution of various duplication events in Brd-gene family expansion among diverse plants, including several monocot and dicot plant species.
Collapse
Affiliation(s)
- T. V. Abiraami
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Ravi Prakash Sanyal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Ajay Saini
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Vaquero-Sedas MI, Vega-Palas MA. Epigenetic nature of Arabidopsis thaliana telomeres. PLANT PHYSIOLOGY 2023; 191:47-55. [PMID: 36218957 PMCID: PMC9806604 DOI: 10.1093/plphys/kiac471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/22/2022] [Indexed: 05/15/2023]
Abstract
The epigenetic features of defined chromosomal domains condition their biochemical and functional properties. Therefore, there is considerable interest in studying the epigenetic marks present at relevant chromosomal loci. Telomeric regions, which include telomeres and subtelomeres, have been traditionally considered heterochromatic. However, whereas the heterochromatic nature of subtelomeres has been widely accepted, the epigenetic status of telomeres remains controversial. Here, we studied the epigenetic features of Arabidopsis (Arabidopsis thaliana) telomeres by analyzing multiple genome-wide ChIP-seq experiments. Our analyses revealed that Arabidopsis telomeres are not significantly enriched either in euchromatic marks like H3K4me2, H3K9ac, and H3K27me3 or in heterochromatic marks such as H3K27me1 and H3K9me2. Thus, telomeric regions in Arabidopsis have a bimodal chromatin organization with telomeres lacking significant levels of canonical euchromatic and heterochromatic marks followed by heterochromatic subtelomeres. Since heterochromatin is known to influence telomere function, the heterochromatic modifications present at Arabidopsis subtelomeres could play a relevant role in telomere biology.
Collapse
Affiliation(s)
- María I Vaquero-Sedas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-US), Seville E41092, Spain
| | | |
Collapse
|
7
|
Varotto S, Krugman T, Aiese Cigliano R, Kashkush K, Kondić-Špika A, Aravanopoulos FA, Pradillo M, Consiglio F, Aversano R, Pecinka A, Miladinović D. Exploitation of epigenetic variation of crop wild relatives for crop improvement and agrobiodiversity preservation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3987-4003. [PMID: 35678824 PMCID: PMC9729329 DOI: 10.1007/s00122-022-04122-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
Crop wild relatives (CWRs) are recognized as the best potential source of traits for crop improvement. However, successful crop improvement using CWR relies on identifying variation in genes controlling desired traits in plant germplasms and subsequently incorporating them into cultivars. Epigenetic diversity may provide an additional layer of variation within CWR and can contribute novel epialleles for key traits for crop improvement. There is emerging evidence that epigenetic variants of functional and/or agronomic importance exist in CWR gene pools. This provides a rationale for the conservation of epigenotypes of interest, thus contributing to agrobiodiversity preservation through conservation and (epi)genetic monitoring. Concepts and techniques of classical and modern breeding should consider integrating recent progress in epigenetics, initially by identifying their association with phenotypic variations and then by assessing their heritability and stability in subsequent generations. New tools available for epigenomic analysis offer the opportunity to capture epigenetic variation and integrate it into advanced (epi)breeding programmes. Advances in -omics have provided new insights into the sources and inheritance of epigenetic variation and enabled the efficient introduction of epi-traits from CWR into crops using epigenetic molecular markers, such as epiQTLs.
Collapse
Affiliation(s)
- Serena Varotto
- Department of Agronomy Animal Food Natural Resources and Environment, University of Padova, Viale dell'Università, 16 35020, Legnaro, Italy.
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beersheba, 84105, Israel
| | - Ankica Kondić-Špika
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| | - Fillipos A Aravanopoulos
- Faculty of Agriculture, Forest Science & Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, GR54006, Greece
| | - Monica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Federica Consiglio
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Università 133, 80055, Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Ales Pecinka
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Acad Sci, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| |
Collapse
|
8
|
Kang H, Fan T, Wu J, Zhu Y, Shen WH. Histone modification and chromatin remodeling in plant response to pathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:986940. [PMID: 36262654 PMCID: PMC9574397 DOI: 10.3389/fpls.2022.986940] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
As sessile organisms, plants are constantly exposed to changing environments frequently under diverse stresses. Invasion by pathogens, including virus, bacterial and fungal infections, can severely impede plant growth and development, causing important yield loss and thus challenging food/feed security worldwide. During evolution, plants have adapted complex systems, including coordinated global gene expression networks, to defend against pathogen attacks. In recent years, growing evidences indicate that pathogen infections can trigger local and global epigenetic changes that reprogram the transcription of plant defense genes, which in turn helps plants to fight against pathogens. Here, we summarize up plant defense pathways and epigenetic mechanisms and we review in depth current knowledge's about histone modifications and chromatin-remodeling factors found in the epigenetic regulation of plant response to biotic stresses. It is anticipated that epigenetic mechanisms may be explorable in the design of tools to generate stress-resistant plant varieties.
Collapse
Affiliation(s)
- Huijia Kang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France
| | - Tianyi Fan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiabing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
Gutierrez C. A Journey to the Core of the Plant Cell Cycle. Int J Mol Sci 2022; 23:8154. [PMID: 35897730 PMCID: PMC9330084 DOI: 10.3390/ijms23158154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Production of new cells as a result of progression through the cell division cycle is a fundamental biological process for the perpetuation of both unicellular and multicellular organisms. In the case of plants, their developmental strategies and their largely sessile nature has imposed a series of evolutionary trends. Studies of the plant cell division cycle began with cytological and physiological approaches in the 1950s and 1960s. The decade of 1990 marked a turn point with the increasing development of novel cellular and molecular protocols combined with advances in genetics and, later, genomics, leading to an exponential growth of the field. In this article, I review the current status of plant cell cycle studies but also discuss early studies and the relevance of a multidisciplinary background as a source of innovative questions and answers. In addition to advances in a deeper understanding of the plant cell cycle machinery, current studies focus on the intimate interaction of cell cycle components with almost every aspect of plant biology.
Collapse
Affiliation(s)
- Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Topoisomerase VI participates in an insulator-like function that prevents H3K9me2 spreading. Proc Natl Acad Sci U S A 2022; 119:e2001290119. [PMID: 35759655 PMCID: PMC9271158 DOI: 10.1073/pnas.2001290119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The organization of the genome into transcriptionally active and inactive chromatin domains requires well-delineated chromatin boundaries and insulator functions in order to maintain the identity of adjacent genomic loci with antagonistic chromatin marks and functionality. In plants that lack known chromatin insulators, the mechanisms that prevent heterochromatin spreading into euchromatin remain to be identified. Here, we show that DNA Topoisomerase VI participates in a chromatin boundary function that safeguards the expression of genes in euchromatin islands within silenced heterochromatin regions. While some transposable elements are reactivated in mutants of the Topoisomerase VI complex, genes insulated in euchromatin islands within heterochromatic regions of the Arabidopsis thaliana genome are specifically down-regulated. H3K9me2 levels consistently increase at euchromatin island loci and decrease at some transposable element loci. We further show that Topoisomerase VI physically interacts with S-adenosylmethionine synthase methionine adenosyl transferase 3 (MAT3), which is required for H3K9me2. A Topoisomerase VI defect affects MAT3 occupancy on heterochromatic elements and its exclusion from euchromatic islands, thereby providing a possible mechanistic explanation to the essential role of Topoisomerase VI in the delimitation of chromatin domains.
Collapse
|
11
|
Wu H, Song X, Lyu S, Ren Y, Liu T, Hou X, Li Y, Zhang C. Integrated Analysis of Hi-C and RNA-Seq Reveals the Molecular Mechanism of Autopolyploid Growth Advantages in Pak Choi ( Brassica rapa ssp. chinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:905202. [PMID: 35812944 PMCID: PMC9263584 DOI: 10.3389/fpls.2022.905202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Polyploids generated by the replication of a single genome (autopolyploid) or synthesis of two or more distinct genomes (allopolyploid) usually show significant advantages over their diploid progenitors in biological characteristics, including growth and development, nutrient accumulation, and plant resistance. Whereas, the impacts of genomic replication on transcription regulation and chromatin structure in pak choi have not been explored fully. In this study, we observed the transcriptional and genomic structural alterations between diploid B. rapa (AA) and artificial autotetraploid B. rapa (AAAA) using RNA-seq and Hi-C. RNA-seq revealed 1,786 differentially expressed genes (DEGs) between the diploids and autotetraploids, including 717 down-regulated and 1,069 up-regulated genes in autotetraploids. Of all the 1,786 DEGs, 23 DEGs (10 down-regulated DEGs in autotetraploids) were involved in Compartment A-B shifts, while 28 DEGs (20 up-regulated DEGs in autotetraploids) participated in Compartment B-A shifts. Moreover, there were 15 DEGs in activated topologically associating domains (TADs) (9 up-regulated DEGs in diploids) and 80 DEGs in repressed TADs (49 down-regulated DEGs in diploids). Subsequently, eight DEGs with genomic structural variants were selected as potential candidate genes, including four DEGs involved in photosynthesis (BraA01003143, BraA09002798, BraA04002224, and BraA08000594), three DEGs related to chloroplast (BraA05002974, BraA05001662, and BraA04001148), and one DEG associated with disease resistance (BraA09004451), which all showed high expression in autotetraploids. Overall, our results demonstrated that integrative RNA-seq and Hi-C analysis can identify related genes to phenotypic traits and also provided new insights into the molecular mechanism of the growth advantage of polyploids.
Collapse
Affiliation(s)
- Huiyuan Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Song
- Center for Genomics and Bio-Computing, School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Shanwu Lyu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yiming Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Hummel G, Liu C. Organization and epigenomic control of RNA polymerase III-transcribed genes in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102199. [PMID: 35364484 DOI: 10.1016/j.pbi.2022.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The genetic information linearly scripted in chromosomes is wrapped in a ribonucleoprotein complex called chromatin. The adaptation of its compaction level and spatiotemporal organization refines gene expression in response to developmental and environmental cues. RNA polymerase III (RNAPIII) is responsible for the biogenesis of elementary non-coding RNAs. Their genes are subjected to high duplication and mutational rates, and invade nuclear genomes. Their insertion into different epigenomic environments raises the question of how chromatin packing affects their individual transcription. In this review, we provide a unique perspective to this issue in plants. In addition, we discuss how the genomic organization of RNAPIII-transcribed loci, combined with epigenetic differences, might participate to plant trait variations.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
13
|
Halder K, Chaudhuri A, Abdin MZ, Majee M, Datta A. Chromatin-Based Transcriptional Reprogramming in Plants under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:1449. [PMID: 35684223 PMCID: PMC9182740 DOI: 10.3390/plants11111449] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Plants' stress response machinery is characterized by an intricate network of signaling cascades that receive and transmit environmental cues and ultimately trigger transcriptional reprogramming. The family of epigenetic regulators that are the key players in the stress-induced signaling cascade comprise of chromatin remodelers, histone modifiers, DNA modifiers and regulatory non-coding RNAs. Changes in the histone modification and DNA methylation lead to major alterations in the expression level and pattern of stress-responsive genes to adjust with abiotic stress conditions namely heat, cold, drought and salinity. The spotlight of this review falls primarily on the chromatin restructuring under severe abiotic stresses, crosstalk between epigenetic regulators along with a brief discussion on stress priming in plants.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (K.H.); (A.C.); (M.M.)
| |
Collapse
|
14
|
Lopez L, Perrella G, Calderini O, Porceddu A, Panara F. Genome-Wide Identification of Histone Modification Gene Families in the Model Legume Medicago truncatula and Their Expression Analysis in Nodules. PLANTS 2022; 11:plants11030322. [PMID: 35161303 PMCID: PMC8838541 DOI: 10.3390/plants11030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 01/22/2023]
Abstract
Histone methylation and acetylation are key processes in the epigenetic regulation of plant growth, development, and responses to environmental stimuli. The genes encoding for the enzymes that are responsible for these chromatin post-translational modifications, referred to as histone modification genes (HMGs), have been poorly investigated in Leguminosae species, despite their importance for establishment and activity of nitrogen-fixing nodules. In silico analysis of Medicago truncatula HMGs identified 81 histone methyltransferases, 46 histone demethylases, 64 histone acetyltransferases, and 15 histone deacetylases. MtHMGs were analyzed for their structure and domain composition, and some combinations that were not yet reported in other plant species were identified. Genes have been retrieved from M. truncatula A17 and R108 genotypes as well as M. sativa CADL and Zhongmu No.1; the gene number and distribution were compared with Arabidopsis thaliana. Furthermore, by analyzing the expression data that were obtained at various developmental stages and in different zones of nitrogen-fixing nodules, we identified MtHMG loci that could be involved in nodule development and function. This work sets a reference for HMG genomic organization in legumes which will be useful for functional investigation that is aimed at elucidating HMGs involvement in nodule development and symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Loredana Lopez
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
| | - Giorgio Perrella
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
| | - Ornella Calderini
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, 06128 Perugia, Italy
- Correspondence: (O.C.); (F.P.); Tel.: +39-075-501-4858 (O.C.); +39-0835-974-523 (F.P.)
| | - Andrea Porceddu
- Department of Agriculture, University of Sassari, Viale Italia, 39a, 07100 Sassari, Italy;
| | - Francesco Panara
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
- Correspondence: (O.C.); (F.P.); Tel.: +39-075-501-4858 (O.C.); +39-0835-974-523 (F.P.)
| |
Collapse
|
15
|
Lei Z, Wang L, Kim EY, Cho J. Phase separation of chromatin and small RNA pathways in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1256-1265. [PMID: 34585805 DOI: 10.1111/tpj.15517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Gene expression can be modulated by epigenetic mechanisms, including chromatin modifications and small regulatory RNAs. These pathways are unevenly distributed within a cell and usually take place in specific intracellular regions. Unfortunately, the fundamental driving force and biological relevance of such spatial differentiation is largely unknown. Liquid-liquid phase separation (LLPS) is a natural propensity of demixing liquid phases and has been recently suggested to mediate the formation of biomolecular condensates that are relevant to diverse cellular processes. LLPS provides a mechanistic explanation for the self-assembly of subcellular structures by which the efficiency and specificity of certain cellular reactions are achieved. In plants, LLPS has been observed for several key factors in the chromatin and small RNA pathways. For example, the formation of facultative and obligate heterochromatin involves the LLPS of multiple relevant factors. In addition, phase separation is observed in a set of proteins acting in microRNA biogenesis and the small interfering RNA pathway. In this Focused Review, we highlight and discuss the recent findings regarding phase separation in the epigenetic mechanisms of plants.
Collapse
Affiliation(s)
- Zhen Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Eun Yu Kim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jungnam Cho
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
16
|
Rashid MM, Vaishnav A, Verma RK, Sharma P, Suprasanna P, Gaur RK. Epigenetic regulation of salinity stress responses in cereals. Mol Biol Rep 2021; 49:761-772. [PMID: 34773178 DOI: 10.1007/s11033-021-06922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Cereals are important crops and are exposed to various types of environmental stresses that affect the overall growth and yield. Among the various abiotic stresses, salt stress is a major environmental factor that influences the genetic, physiological, and biochemical responses of cereal crops. Epigenetic regulation which includes DNA methylation, histone modification, and chromatin remodelling plays an important role in salt stress tolerance. Recent studies in rice genomics have highlighted that the epigenetic changes are heritable and therefore can be considered as molecular signatures. An epigenetic mechanism under salinity induces phenotypic responses involving modulations in gene expression. Association between histone modification and altered DNA methylation patterns and differential gene expression has been evidenced for salt sensitivity in rice and other cereal crops. In addition, epigenetics also creates stress memory that helps the plant to better combat future stress exposure. In the present review, we have discussed epigenetic influences in stress tolerance, adaptation, and evolution processes. Understanding the epigenetic regulation of salinity could help for designing salt-tolerant varieties leading to improved crop productivity.
Collapse
Affiliation(s)
- Md Mahtab Rashid
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.,Department of Plant Pathology, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - Anukool Vaishnav
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281121, India.,Agroecology and Environment, Agroscope (Reckenholz), 8046, Zürich, Switzerland
| | - Rakesh Kumar Verma
- Department of Biosciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Pradeep Sharma
- Department of Biotechnology, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - P Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - R K Gaur
- Department of Biotechnology, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India.
| |
Collapse
|
17
|
Yamaguchi N, Ito T. Expression profiling of H3K27me3 demethylase genes during plant development and in response to environmental stress in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2021; 16:1950445. [PMID: 34227901 PMCID: PMC8526033 DOI: 10.1080/15592324.2021.1950445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 05/21/2023]
Abstract
Histone modification influences gene expression. Among histone modifications, H3K27me3 is associated with downregulation of nearby genes via chromatin compaction. In Arabidopsis thaliana, a subset of JUMONJI C DOMAIN-CONTAINING PROTEIN (JMJ) proteins play a critical role in removal of H3K27me3 during plant development or in response to environmental cues. However, the regulation of H3K27me3 demethylase gene expression is not yet fully characterized. In this study, we computationally characterized the expression patterns of JMJ H3K27me3 demethylase genes using public transcriptome datasets created across plant development and after various environmental cues. Consistent with the available transcriptome datasets, GUS staining validated that JMJ30 was highly expressed in the L1 layer of the shoot apical meristem. Furthermore, expression data for panel of five H3K27me3 demethylase genes revealed JMJ30 to be the most highly affected by abiotic and biotic stress. In addition, JMJ30 expression was variable between Arabidopsis thaliana accessions. Finally, the expression of a JMJ30 orthologue from the related species Arabidopsis halleri, AhgJMJ30, fluctuated under field conditions. Taken together, our results suggest that transcriptional changes of H3K27me3 demethylase genes may play key roles in development and environmental responses.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi-shi, Saitama, Japan
- CONTACT Nobutoshi Yamaguchi
| | - Toshiro Ito
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
- Toshiro Ito Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
18
|
Kumimoto RW, Ellison CT, Toruño TY, Bak A, Zhang H, Casteel CL, Coaker G, Harmer SL. XAP5 CIRCADIAN TIMEKEEPER Affects Both DNA Damage Responses and Immune Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:707923. [PMID: 34659282 PMCID: PMC8517334 DOI: 10.3389/fpls.2021.707923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/30/2021] [Indexed: 06/02/2023]
Abstract
Numerous links have been reported between immune response and DNA damage repair pathways in both plants and animals but the precise nature of the relationship between these fundamental processes is not entirely clear. Here, we report that XAP5 CIRCADIAN TIMEKEEPER (XCT), a protein highly conserved across eukaryotes, acts as a negative regulator of immunity in Arabidopsis thaliana and plays a positive role in responses to DNA damaging radiation. We find xct mutants have enhanced resistance to infection by a virulent bacterial pathogen, Pseudomonas syringae pv. tomato DC3000, and are hyper-responsive to the defense-activating hormone salicylic acid (SA) when compared to wild-type. Unlike most mutants with constitutive effector-triggered immunity (ETI), xct plants do not have increased levels of SA and retain enhanced immunity at elevated temperatures. Genetic analysis indicates XCT acts independently of NONEXPRESSOR OF PATHOGENESIS RELATED GENES1 (NPR1), which encodes a known SA receptor. Since DNA damage has been reported to potentiate immune responses, we next investigated the DNA damage response in our mutants. We found xct seedlings to be hypersensitive to UV-C and γ radiation and deficient in phosphorylation of the histone variant H2A.X, one of the earliest known responses to DNA damage. These data demonstrate that loss of XCT causes a defect in an early step of the DNA damage response pathway. Together, our data suggest that alterations in DNA damage response pathways may underlie the enhanced immunity seen in xct mutants.
Collapse
Affiliation(s)
- Roderick W. Kumimoto
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Cory T. Ellison
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Tania Y. Toruño
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Aurélie Bak
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Hongtao Zhang
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Clare L. Casteel
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, United States
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Stacey L. Harmer
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Genome-wide mapping of genomic DNA damage: methods and implications. Cell Mol Life Sci 2021; 78:6745-6762. [PMID: 34463773 PMCID: PMC8558167 DOI: 10.1007/s00018-021-03923-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
Exposures from the external and internal environments lead to the modification of genomic DNA, which is implicated in the cause of numerous diseases, including cancer, cardiovascular, pulmonary and neurodegenerative diseases, together with ageing. However, the precise mechanism(s) linking the presence of damage, to impact upon cellular function and pathogenesis, is far from clear. Genomic location of specific forms of damage is likely to be highly informative in understanding this process, as the impact of downstream events (e.g. mutation, microsatellite instability, altered methylation and gene expression) on cellular function will be positional—events at key locations will have the greatest impact. However, until recently, methods for assessing DNA damage determined the totality of damage in the genomic location, with no positional information. The technique of “mapping DNA adductomics” describes the molecular approaches that map a variety of forms of DNA damage, to specific locations across the nuclear and mitochondrial genomes. We propose that integrated comparison of this information with other genome-wide data, such as mutational hotspots for specific genotoxins, tumour-specific mutation patterns and chromatin organisation and transcriptional activity in non-cancerous lesions (such as nevi), pre-cancerous conditions (such as polyps) and tumours, will improve our understanding of how environmental toxins lead to cancer. Adopting an analogous approach for non-cancer diseases, including the development of genome-wide assays for other cellular outcomes of DNA damage, will improve our understanding of the role of DNA damage in pathogenesis more generally.
Collapse
|
20
|
Deciphering Plant Chromatin Regulation via CRISPR/dCas9-Based Epigenome Engineering. EPIGENOMES 2021; 5:epigenomes5030017. [PMID: 34968366 PMCID: PMC8594717 DOI: 10.3390/epigenomes5030017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 01/23/2023] Open
Abstract
CRISPR-based epigenome editing uses dCas9 as a platform to recruit transcription or chromatin regulators at chosen loci. Despite recent and ongoing advances, the full potential of these approaches to studying chromatin functions in vivo remains challenging to exploit. In this review we discuss how recent progress in plants and animals provides new routes to investigate the function of chromatin regulators and address the complexity of associated regulations that are often interconnected. While efficient transcriptional engineering methodologies have been developed and can be used as tools to alter the chromatin state of a locus, examples of direct manipulation of chromatin regulators remain scarce in plants. These reports also reveal pitfalls and limitations of epigenome engineering approaches that are nevertheless informative as they are often associated with locus- and context-dependent features, which include DNA accessibility, initial chromatin and transcriptional state or cellular dynamics. Strategies implemented in different organisms to overcome and even take advantage of these limitations are highlighted, which will further improve our ability to establish the causality and hierarchy of chromatin dynamics on genome regulation.
Collapse
|
21
|
Han SH, Kim JY, Lee JH, Park CM. Safeguarding genome integrity under heat stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab355. [PMID: 34343307 DOI: 10.1093/jxb/erab355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Heat stress adversely affects an array of molecular and cellular events in plant cells, such as denaturation of protein and lipid molecules and malformation of cellular membranes and cytoskeleton networks. Genome organization and DNA integrity are also disturbed under heat stress, and accordingly, plants have evolved sophisticated adaptive mechanisms that either protect their genomes from deleterious heat-induced damages or stimulate genome restoration responses. In particular, it is emerging that DNA damage responses are a critical defense process that underlies the acquirement of thermotolerance in plants, during which molecular players constituting the DNA repair machinery are rapidly activated. In recent years, thermotolerance genes that mediate the maintenance of genome integrity or trigger DNA repair responses have been functionally characterized in various plant species. Furthermore, accumulating evidence supports that genome integrity is safeguarded through multiple layers of thermoinduced protection routes in plant cells, including transcriptome adjustment, orchestration of RNA metabolism, protein homeostasis, and chromatin reorganization. In this review, we summarize topical progresses and research trends in understanding how plants cope with heat stress to secure genome intactness. We focus on molecular regulatory mechanisms by which plant genomes are secured against the DNA-damaging effects of heat stress and DNA damages are effectively repaired. We will also explore the practical interface between heat stress response and securing genome integrity in view of developing biotechnological ways of improving thermotolerance in crop species under global climate changes, a worldwide ecological concern in agriculture.
Collapse
Affiliation(s)
- Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
22
|
Yamaguchi N. Removal of H3K27me3 by JMJ Proteins Controls Plant Development and Environmental Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:687416. [PMID: 34220908 PMCID: PMC8248668 DOI: 10.3389/fpls.2021.687416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/26/2021] [Indexed: 05/26/2023]
Abstract
Trimethylation of histone H3 lysine 27 (H3K27me3) is a highly conserved repressive histone modification that signifies transcriptional repression in plants and animals. In Arabidopsis thaliana, the demethylation of H3K27 is regulated by a group of JUMONJI DOMAIN-CONTANING PROTEIN (JMJ) genes. Transcription of JMJ genes is spatiotemporally regulated during plant development and in response to the environment. Once JMJ genes are transcribed, recruitment of JMJs to target genes, followed by demethylation of H3K27, is critically important for the precise control of gene expression. JMJs function synergistically and antagonistically with transcription factors and/or other epigenetic regulators on chromatin. This review summarizes the latest advances in our understanding of Arabidopsis H3K27me3 demethylases that provide robust and flexible epigenetic regulation of gene expression to direct appropriate development and environmental responses in plants.
Collapse
|
23
|
Rabara RC, Msanne J, Basu S, Ferrer MC, Roychoudhury A. Coping with inclement weather conditions due to high temperature and water deficit in rice: An insight from genetic and biochemical perspectives. PHYSIOLOGIA PLANTARUM 2021; 172:487-504. [PMID: 33179306 DOI: 10.1111/ppl.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Climatic fluctuations, temperature extremes, and water scarcity are becoming increasingly unpredictable with the passage of time. Such environmental atrocities have been the scourge of agriculture over the ages, bringing with them poor harvests and threat of famine. Rice production, owing to its high-water requirement for cultivation, is highly vulnerable to the threat of changing climate, particularly prolonged drought and high temperature, individually or in combination. Amidst all the abiotic stresses, heat and drought are considered as the most important concurrent stressors, largely affecting rice yield and productivity under the current scenario. Such threats heighten the need for new breeding and cultivation strategies in generating abiotic stress-resilient rice varieties with better yield potential. Responses of rice to these stresses can be categorized at the morphological, physiological and biochemical levels. This review examines the physiological and molecular mechanism, in the form of up regulation of several defense machineries of rice varieties to cope with drought stress (DS), high temperature stress (HTS), and their combination (DS-HTS). Genotypic differences among rice varieties in their tolerance ability have also been addressed. The review also appraises research studies conducted in rice regarding various phenotypic traits, genetic loci and response mechanisms to stress conditions to help craft new breeding strategies for improved tolerance to DS and HTS, singly or in combination. The review also encompasses the gene regulatory networks and transcription factors, and their cross-talks in mediating tolerance to such stresses. Understanding the epigenetic regulation, involving DNA methylation and histone modification during such hostile situations, will also play a crucial role in our comprehensive understanding of combinatorial stress responses. Taken together, this review consolidates current research and available information on promising rice cultivars with desirable traits as well as advocates synergistic and complementary approaches in molecular and systems biology to develop new rice breeds that favorably respond to DS-HTS-induced abiotic stress.
Collapse
Affiliation(s)
- Roel C Rabara
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Joseph Msanne
- New Mexico Consortium, Los Alamos, NM, New Mexico, United States of America
| | - Supratim Basu
- New Mexico Consortium, Los Alamos, NM, New Mexico, United States of America
| | - Marilyn C Ferrer
- Genetic Resources Division, Philippine Rice Research Institute, Science City of Muñoz, Nueva Ecija, Philippines
| | - Aryadeep Roychoudhury
- Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, West Bengal, India
| |
Collapse
|
24
|
Pelayo MA, Yamaguchi N, Ito T. One factor, many systems: the floral homeotic protein AGAMOUS and its epigenetic regulatory mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102009. [PMID: 33640614 DOI: 10.1016/j.pbi.2021.102009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 05/15/2023]
Abstract
Tissue-specific transcription factors allow cells to specify new fates by exerting control over gene regulatory networks and the epigenetic landscape of a cell. However, our knowledge of the molecular mechanisms underlying cell fate decisions is limited. In Arabidopsis, the MADS-box transcription factor AGAMOUS (AG) plays a central role in regulating reproductive organ identity and meristem determinacy during flower development. During the vegetative phase, AG transcription is repressed by Polycomb complexes and intronic noncoding RNA. Once AG is transcribed in a spatiotemporally regulated manner during the reproductive phase, AG functions with chromatin regulators to change the chromatin structure at key target gene loci. The concerted actions of AG and the transcription factors functioning downstream of AG recruit general transcription machinery for proper cell fate decision. In this review, we describe progress in AG research that has provided important insights into the regulatory and epigenetic mechanisms underlying cell fate determination in plants.
Collapse
Affiliation(s)
- Margaret Anne Pelayo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
25
|
Garcia-Lozano M, Natarajan P, Levi A, Katam R, Lopez-Ortiz C, Nimmakayala P, Reddy UK. Altered chromatin conformation and transcriptional regulation in watermelon following genome doubling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:588-600. [PMID: 33788333 DOI: 10.1111/tpj.15256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Polyploidy has played a crucial role in plant evolution, development and function. Synthetic autopolyploid represents an ideal system to investigate the effects of polyploidization on transcriptional regulation. In this study, we deciphered the impact of genome duplication at phenotypic and molecular levels in watermelon. Overall, 88% of the genes in tetraploid watermelon followed a >1:1 dosage effect, and accordingly, differentially expressed genes were largely upregulated. In addition, a great number of hypomethylated regions (1688) were identified in an isogenic tetraploid watermelon. These differentially methylated regions were localized in promoters and intergenic regions and near transcriptional start sites of the identified upregulated genes, which enhances the importance of methylation in gene regulation. These changes were reflected in sophisticated higher-order chromatin structures. The genome doubling caused switching of 108 A and 626 B compartments that harbored genes associated with growth, development and stress responses.
Collapse
Affiliation(s)
- Marleny Garcia-Lozano
- Department of Biology, Gus R. Douglass Institute, West Virginia State University Institute, Charleston, WV, USA
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University Institute, Charleston, WV, USA
| | - Amnon Levi
- USDA, ARS, U.S. Vegetable Lab, Charleston, SC, USA
| | - Ramesh Katam
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University Institute, Charleston, WV, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University Institute, Charleston, WV, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University Institute, Charleston, WV, USA
| |
Collapse
|
26
|
Quantitative Proteomics and Phosphoproteomics Support a Role for Mut9-Like Kinases in Multiple Metabolic and Signaling Pathways in Arabidopsis. Mol Cell Proteomics 2021; 20:100063. [PMID: 33677124 PMCID: PMC8066427 DOI: 10.1016/j.mcpro.2021.100063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/14/2021] [Accepted: 02/05/2021] [Indexed: 11/27/2022] Open
Abstract
Protein phosphorylation is one of the most prevalent posttranslational modifications found in eukaryotic systems. It serves as a key molecular mechanism that regulates protein function in response to environmental stimuli. The Mut9-like kinases (MLKs) are a plant-specific family of Ser/Thr kinases linked to light, circadian, and abiotic stress signaling. Here we use quantitative phosphoproteomics in conjunction with global proteomic analysis to explore the role of the MLKs in daily protein dynamics. Proteins involved in light, circadian, and hormone signaling, as well as several chromatin-modifying enzymes and DNA damage response factors, were found to have altered phosphorylation profiles in the absence of MLK family kinases. In addition to altered phosphorylation levels, mlk mutant seedlings have an increase in glucosinolate metabolism enzymes. Subsequently, we show that a functional consequence of the changes to the proteome and phosphoproteome in mlk mutant plants is elevated glucosinolate accumulation and increased sensitivity to DNA damaging agents. Combined with previous reports, this work supports the involvement of MLKs in a diverse set of stress responses and developmental processes, suggesting that the MLKs serve as key regulators linking environmental inputs to developmental outputs. MUT9-LIKE KINASE mutant quantitative proteome and phosphoproteome measured. Changes to proteome and phosphoproteome are specific to genotype and environment. Loss of MLKs alters glucosinolate enzyme abundance and metabolism. Loss of MLKs increases plant sensitivity to UV radiation and DNA damage agents.
Collapse
|
27
|
Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response. Int J Mol Sci 2021; 22:ijms22042013. [PMID: 33670556 PMCID: PMC7922328 DOI: 10.3390/ijms22042013] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023] Open
Abstract
Sessile plants are exposed throughout their existence to environmental abiotic and biotic stress factors, such as cold, heat, salinity, drought, dehydration, submergence, waterlogging, and pathogen infection. Chromatin organization affects genome stability, and its dynamics are crucial in plant stress responses. Chromatin dynamics are epigenetically regulated and are required for stress-induced transcriptional regulation or reprogramming. Epigenetic regulators facilitate the phenotypic plasticity of development and the survival and reproduction of plants in unfavorable environments, and they are highly diversified, including histone and DNA modifiers, histone variants, chromatin remodelers, and regulatory non-coding RNAs. They contribute to chromatin modifications, remodeling and dynamics, and constitute a multilayered and multifaceted circuitry for sophisticated and robust epigenetic regulation of plant stress responses. However, this complicated epigenetic regulatory circuitry creates challenges for elucidating the common or differential roles of chromatin modifications for transcriptional regulation or reprogramming in different plant stress responses. Particularly, interacting chromatin modifications and heritable stress memories are difficult to identify in the aspect of chromatin-based epigenetic regulation of transcriptional reprogramming and memory. Therefore, this review discusses the recent updates from the three perspectives—stress specificity or dependence of transcriptional reprogramming, the interplay of chromatin modifications, and transcriptional stress memory in plants. This helps solidify our knowledge on chromatin-based transcriptional reprogramming for plant stress response and memory.
Collapse
|
28
|
Schulze WX, Altenbuchinger M, He M, Kränzlein M, Zörb C. Proteome profiling of repeated drought stress reveals genotype-specific responses and memory effects in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:67-79. [PMID: 33341081 DOI: 10.1016/j.plaphy.2020.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Drought has become a major stress for agricultural productivity in temperate regions, such as central Europe. Thus, information on how crop plants respond to drought is important to develop tolerant hybrids and to ensure yield stability. Posttranscriptional regulation through changed protein abundances is an important mechanism of short-term response to stress events that has not yet been widely exploited in breeding strategies. Here, we investigated the response to repeated drought exposure of a tolerant and a sensitive maize hybrid in order to understand general protein abundance changes induced by singular drought or repeated drought events. In general, drought affected protein abundance of multiple pathways in the plant. We identified starch metabolism, aquaporin abundance, PSII proteins and histones as strongly associated with typical drought-induced phenotypes such as increased membrane leakage, osmolality or effects on stomatal conductance and assimilation rate. In addition, we found a strong effect of drought on nutrient assimilation, especially the sulfur metabolism. In general, pre-experience of mild drought before exposure to a more severe drought resulted in visible adaptations resulting in dampened phenotypes as well as lower magnitude of protein abundance changes.
Collapse
Affiliation(s)
- Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Michael Altenbuchinger
- Research Group Computational Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mingjie He
- Department of Plant Systems Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Markus Kränzlein
- Institute of Crop Sciences, University of Hohenheim, 70593, Stuttgart, Germany
| | - Christian Zörb
- Institute of Crop Sciences, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
29
|
Fal K, Tomkova D, Vachon G, Chabouté ME, Berr A, Carles CC. Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants. Int J Mol Sci 2021; 22:E512. [PMID: 33419220 PMCID: PMC7825600 DOI: 10.3390/ijms22020512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022] Open
Abstract
An ongoing challenge in functional epigenomics is to develop tools for precise manipulation of epigenetic marks. These tools would allow moving from correlation-based to causal-based findings, a necessary step to reach conclusions on mechanistic principles. In this review, we describe and discuss the advantages and limits of tools and technologies developed to impact epigenetic marks, and which could be employed to study their direct effect on nuclear and chromatin structure, on transcription, and their further genuine role in plant cell fate and development. On one hand, epigenome-wide approaches include drug inhibitors for chromatin modifiers or readers, nanobodies against histone marks or lines expressing modified histones or mutant chromatin effectors. On the other hand, locus-specific approaches consist in targeting precise regions on the chromatin, with engineered proteins able to modify epigenetic marks. Early systems use effectors in fusion with protein domains that recognize a specific DNA sequence (Zinc Finger or TALEs), while the more recent dCas9 approach operates through RNA-DNA interaction, thereby providing more flexibility and modularity for tool designs. Current developments of "second generation", chimeric dCas9 systems, aiming at better targeting efficiency and modifier capacity have recently been tested in plants and provided promising results. Finally, recent proof-of-concept studies forecast even finer tools, such as inducible/switchable systems, that will allow temporal analyses of the molecular events that follow a change in a specific chromatin mark.
Collapse
Affiliation(s)
- Kateryna Fal
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France; (K.F.); (G.V.)
| | - Denisa Tomkova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg CEDEX, France; (D.T.); (M.-E.C.)
| | - Gilles Vachon
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France; (K.F.); (G.V.)
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg CEDEX, France; (D.T.); (M.-E.C.)
| | - Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg CEDEX, France; (D.T.); (M.-E.C.)
| | - Cristel C. Carles
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France; (K.F.); (G.V.)
| |
Collapse
|
30
|
Pramanik D, Shelake RM, Kim MJ, Kim JY. CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. MOLECULAR PLANT 2021; 14:127-150. [PMID: 33152519 DOI: 10.1016/j.molp.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The central dogma (CD) of molecular biology is the transfer of genetic information from DNA to RNA to protein. Major CD processes governing genetic flow include the cell cycle, DNA replication, chromosome packaging, epigenetic changes, transcription, posttranscriptional alterations, translation, and posttranslational modifications. The CD processes are tightly regulated in plants to maintain genetic integrity throughout the life cycle and to pass genetic materials to next generation. Engineering of various CD processes involved in gene regulation will accelerate crop improvement to feed the growing world population. CRISPR technology enables programmable editing of CD processes to alter DNA, RNA, or protein, which would have been impossible in the past. Here, an overview of recent advancements in CRISPR tool development and CRISPR-based CD modulations that expedite basic and applied plant research is provided. Furthermore, CRISPR applications in major thriving areas of research, such as gene discovery (allele mining and cryptic gene activation), introgression (de novo domestication and haploid induction), and application of desired traits beneficial to farmers or consumers (biotic/abiotic stress-resilient crops, plant cell factories, and delayed senescence), are described. Finally, the global regulatory policies, challenges, and prospects for CRISPR-mediated crop improvement are discussed.
Collapse
Affiliation(s)
- Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Mi Jung Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
31
|
Meschichi A, Rosa S. Visualizing and Measuring Single Locus Dynamics in Arabidopsis thaliana. Methods Mol Biol 2021; 2200:213-224. [PMID: 33175380 DOI: 10.1007/978-1-0716-0880-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In eukaryotes, DNA is packed into an incredibly complex structure called chromatin. Although chromatin was often considered as a static entity, it is now clear that chromatin proteins and the chromatin fiber itself are in fact very dynamic. For instance, the packaging of the DNA into the nucleus requires an extraordinary degree of compaction but this should be achieved without compromising the accessibility to the transcription machinery and other nuclear processes. Approaches such as gene tagging have been established for living cells in order to detect, track, and analyze the mobility of single loci. In this chapter, we provide an experimental protocol for performing locus tracking in Arabidopsis thaliana roots and for characterizing locus mobility behavior via a Mean Square Displacement analysis.
Collapse
Affiliation(s)
- Anis Meschichi
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefanie Rosa
- Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
32
|
Falk M, Hausmann M. A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers (Basel) 2020; 13:E18. [PMID: 33374540 PMCID: PMC7793109 DOI: 10.3390/cancers13010018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
DNA double-strand breaks (DSBs) have been recognized as the most serious lesions in irradiated cells. While several biochemical pathways capable of repairing these lesions have been identified, the mechanisms by which cells select a specific pathway for activation at a given DSB site remain poorly understood. Our knowledge of DSB induction and repair has increased dramatically since the discovery of ionizing radiation-induced foci (IRIFs), initiating the possibility of spatiotemporally monitoring the assembly and disassembly of repair complexes in single cells. IRIF exploration revealed that all post-irradiation processes-DSB formation, repair and misrepair-are strongly dependent on the characteristics of DSB damage and the microarchitecture of the whole affected chromatin domain in addition to the cell status. The microscale features of IRIFs, such as their morphology, mobility, spatiotemporal distribution, and persistence kinetics, have been linked to repair mechanisms. However, the influence of various biochemical and structural factors and their specific combinations on IRIF architecture remains unknown, as does the hierarchy of these factors in the decision-making process for a particular repair mechanism at each individual DSB site. New insights into the relationship between the physical properties of the incident radiation, chromatin architecture, IRIF architecture, and DSB repair mechanisms and repair efficiency are expected from recent developments in optical superresolution microscopy (nanoscopy) techniques that have shifted our ability to analyze chromatin and IRIF architectures towards the nanoscale. In the present review, we discuss this relationship, attempt to correlate still rather isolated nanoscale studies with already better-understood aspects of DSB repair at the microscale, and consider whether newly emerging "correlated multiscale structuromics" can revolutionarily enhance our knowledge in this field.
Collapse
Affiliation(s)
- Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
33
|
Probst AV, Desvoyes B, Gutierrez C. Similar yet critically different: the distribution, dynamics and function of histone variants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5191-5204. [PMID: 32392582 DOI: 10.1093/jxb/eraa230] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 05/23/2023]
Abstract
Organization of the genetic information into chromatin plays an important role in the regulation of all DNA template-based reactions. The incorporation of different variant versions of the core histones H3, H2A, and H2B, or the linker histone H1 results in nucleosomes with unique properties. Histone variants can differ by only a few amino acids or larger protein domains and their incorporation may directly affect nucleosome stability and higher order chromatin organization or indirectly influence chromatin function through histone variant-specific binding partners. Histone variants employ dedicated histone deposition machinery for their timely and locus-specific incorporation into chromatin. Plants have evolved specific histone variants with unique expression patterns and features. In this review, we discuss our current knowledge on histone variants in Arabidopsis, their mode of deposition, variant-specific post-translational modifications, and genome-wide distribution, as well as their role in defining different chromatin states.
Collapse
Affiliation(s)
- Aline V Probst
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Bénédicte Desvoyes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| |
Collapse
|
34
|
Zhang M, Li W, Feng J, Gong Z, Yao Y, Zheng C. Integrative transcriptomics and proteomics analysis constructs a new molecular model for ovule abortion in the female-sterile line of Pinus tabuliformis Carr. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110462. [PMID: 32234230 DOI: 10.1016/j.plantsci.2020.110462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Ovule development is critical to plant reproduction and free nuclear mitosis of megagametophyte (FNMM) is vital for ovule development. However, most results of ovule development were based on the studies in angiosperms, and its molecular regulation remained largely unknown in gymnosperms, particularly, during FNMM. In this context, we studied the genome-wide difference between sterile line (SL) and fertile line (FL) ovules using transcriptomics and proteomics approaches in Pinus tabuliformis Carr. Comparative analyses revealed that genes involved in DNA replication, DNA damage repair, Cell cycle, Apoptosis and Energy metabolism were highlighted. Further results showed the low expressions of MCM 2-7, RRM1, etc. perhaps led to abnormal DNA replication and damage repair, and the significantly different expressions of PARP2, CCs1, CCs3, etc. implied that the accumulated DNA double-stranded breaks were failed to be repaired and the cell cycle was arrested at G2/M in SL ovules, potentially resulting in the occurrence of apoptosis. Moreover, the deficiency of ETF-QO might hinder FNMM. Consequently, FNMM stopped and ovule aborted in SL ovules. Our results suggested a selective regulatory mechanism led to FNMM half-stop and ovule abortion in P. tabuliformis and these insights could be exploited to investigate the molecular regulations of ovule development in woody gymnosperms.
Collapse
Affiliation(s)
- Min Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Wenhai Li
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Jun Feng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Zaixin Gong
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Yang Yao
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China.
| |
Collapse
|
35
|
Nicolau M, Picault N, Descombin J, Jami-Alahmadi Y, Feng S, Bucher E, Jacobsen SE, Deragon JM, Wohlschlegel J, Moissiard G. The plant mobile domain proteins MAIN and MAIL1 interact with the phosphatase PP7L to regulate gene expression and silence transposable elements in Arabidopsis thaliana. PLoS Genet 2020; 16:e1008324. [PMID: 32287271 PMCID: PMC7156037 DOI: 10.1371/journal.pgen.1008324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) are DNA repeats that must remain silenced to ensure cell integrity. Several epigenetic pathways including DNA methylation and histone modifications are involved in the silencing of TEs, and in the regulation of gene expression. In Arabidopsis thaliana, the TE-derived plant mobile domain (PMD) proteins have been involved in TE silencing, genome stability, and control of developmental processes. Using a forward genetic screen, we found that the PMD protein MAINTENANCE OF MERISTEMS (MAIN) acts synergistically and redundantly with DNA methylation to silence TEs. We found that MAIN and its close homolog MAIN-LIKE 1 (MAIL1) interact together, as well as with the phosphoprotein phosphatase (PPP) PP7-like (PP7L). Remarkably, main, mail1, pp7l single and mail1 pp7l double mutants display similar developmental phenotypes, and share common subsets of upregulated TEs and misregulated genes. Finally, phylogenetic analyses of PMD and PP7-type PPP domains among the Eudicot lineage suggest neo-association processes between the two protein domains to potentially generate new protein function. We propose that, through this interaction, the PMD and PPP domains may constitute a functional protein module required for the proper expression of a common set of genes, and for silencing of TEs. The plant mobile domain (PMD) is a protein domain of unknown function that is widely spread in the angiosperm plants. Although most PMDs are associated with repeated DNA sequences called transposable elements (TEs), plants have domesticated the PMD to produce genic versions that play important roles within the cell. In Arabidopsis thaliana, MAINTENANCE OF MERISTEMS (MAIN) and MAIN-LIKE 1 (MAIL1) are genic PMDs that are involved in genome stability, developmental processes, and silencing of TEs. The mechanisms involving MAIN and MAIL1 in these cellular processes remain elusive. Here, we show that MAIN, MAIL1 and the phosphoprotein phosphatase (PPP) named PP7-like (PP7L) interact to form a protein complex that is required for the proper expression of genes, and the silencing of TEs. Phylogenetic analyses revealed that PMD and PP7-type PPP domains are evolutionary connected, and several plant species express proteins carrying both PMD and PPP domains. We propose that interaction of PMD and PPP domains would create a functional protein module involved in mechanisms regulating gene expression and repressing TEs.
Collapse
Affiliation(s)
- Melody Nicolau
- LGDP-UMR5096, CNRS, Perpignan, France
- LGDP-UMR5096, Université de Perpignan, France
| | - Nathalie Picault
- LGDP-UMR5096, CNRS, Perpignan, France
- LGDP-UMR5096, Université de Perpignan, France
| | - Julie Descombin
- LGDP-UMR5096, CNRS, Perpignan, France
- LGDP-UMR5096, Université de Perpignan, France
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Etienne Bucher
- Plant Breeding and Genetic Resources, Agroscope, Nyon, Switzerland
| | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Jean-Marc Deragon
- LGDP-UMR5096, CNRS, Perpignan, France
- LGDP-UMR5096, Université de Perpignan, France
- Institut Universitaire de France, Paris, France
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Guillaume Moissiard
- LGDP-UMR5096, CNRS, Perpignan, France
- LGDP-UMR5096, Université de Perpignan, France
- * E-mail:
| |
Collapse
|
36
|
Forestan C, Farinati S, Zambelli F, Pavesi G, Rossi V, Varotto S. Epigenetic signatures of stress adaptation and flowering regulation in response to extended drought and recovery in Zea mays. PLANT, CELL & ENVIRONMENT 2020; 43:55-75. [PMID: 31677283 DOI: 10.1111/pce.13660] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 05/22/2023]
Abstract
During their lifespan, plants respond to a multitude of stressful factors. Dynamic changes in chromatin and concomitant transcriptional variations control stress response and adaptation, with epigenetic memory mechanisms integrating environmental conditions and appropriate developmental programs over the time. Here we analyzed transcriptome and genome-wide histone modifications of maize plants subjected to a mild and prolonged drought stress just before the flowering transition. Stress was followed by a complete recovery period to evaluate drought memory mechanisms. Three categories of stress-memory genes were identified: i) "transcriptional memory" genes, with stable transcriptional changes persisting after the recovery; ii) "epigenetic memory candidate" genes in which stress-induced chromatin changes persist longer than the stimulus, in absence of transcriptional changes; iii) "delayed memory" genes, not immediately affected by the stress, but perceiving and storing stress signal for a delayed response. This last memory mechanism is described for the first time in drought response. In addition, applied drought stress altered floral patterning, possibly by affecting expression and chromatin of flowering regulatory genes. Altogether, we provided a genome-wide map of the coordination between genes and chromatin marks utilized by plants to adapt to a stressful environment, describing how this serves as a backbone for setting stress memory.
Collapse
Affiliation(s)
- Cristian Forestan
- Department of Agronomy Animals Food Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Silvia Farinati
- Department of Agronomy Animals Food Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Federico Zambelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Vincenzo Rossi
- CREA - Centro di Cerealicoltura e Colture Industriali (CREA-CI), Via Stezzano 24, 24126, Bergamo, Italy
| | - Serena Varotto
- Department of Agronomy Animals Food Natural Resources and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| |
Collapse
|
37
|
Abstract
Maintenance of genome integrity is a key process in all organisms. DNA polymerases (Pols) are central players in this process as they are in charge of the faithful reproduction of the genetic information, as well as of DNA repair. Interestingly, all eukaryotes possess a large repertoire of polymerases. Three protein complexes, DNA Pol α, δ, and ε, are in charge of nuclear DNA replication. These enzymes have the fidelity and processivity required to replicate long DNA sequences, but DNA lesions can block their progression. Consequently, eukaryotic genomes also encode a variable number of specialized polymerases (between five and 16 depending on the organism) that are involved in the replication of damaged DNA, DNA repair, and organellar DNA replication. This diversity of enzymes likely stems from their ability to bypass specific types of lesions. In the past 10–15 years, our knowledge regarding plant DNA polymerases dramatically increased. In this review, we discuss these recent findings and compare acquired knowledge in plants to data obtained in other eukaryotes. We also discuss the emerging links between genome and epigenome replication.
Collapse
|
38
|
Kim JH. Chromatin Remodeling and Epigenetic Regulation in Plant DNA Damage Repair. Int J Mol Sci 2019; 20:ijms20174093. [PMID: 31443358 PMCID: PMC6747262 DOI: 10.3390/ijms20174093] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
DNA damage response (DDR) in eukaryotic cells is initiated in the chromatin context. DNA damage and repair depend on or have influence on the chromatin dynamics associated with genome stability. Epigenetic modifiers, such as chromatin remodelers, histone modifiers, DNA (de-)methylation enzymes, and noncoding RNAs regulate DDR signaling and DNA repair by affecting chromatin dynamics. In recent years, significant progress has been made in the understanding of plant DDR and DNA repair. SUPPRESSOR OF GAMMA RESPONSE1, RETINOBLASTOMA RELATED1 (RBR1)/E2FA, and NAC103 have been proven to be key players in the mediation of DDR signaling in plants, while plant-specific chromatin remodelers, such as DECREASED DNA METHYLATION1, contribute to chromatin dynamics for DNA repair. There is accumulating evidence that plant epigenetic modifiers are involved in DDR and DNA repair. In this review, I examine how DDR and DNA repair machineries are concertedly regulated in Arabidopsis thaliana by a variety of epigenetic modifiers directing chromatin remodeling and epigenetic modification. This review will aid in updating our knowledge on DDR and DNA repair in plants.
Collapse
Affiliation(s)
- Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212, Korea.
| |
Collapse
|
39
|
Rutowicz K, Lirski M, Mermaz B, Teano G, Schubert J, Mestiri I, Kroteń MA, Fabrice TN, Fritz S, Grob S, Ringli C, Cherkezyan L, Barneche F, Jerzmanowski A, Baroux C. Linker histones are fine-scale chromatin architects modulating developmental decisions in Arabidopsis. Genome Biol 2019; 20:157. [PMID: 31391082 PMCID: PMC6685187 DOI: 10.1186/s13059-019-1767-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chromatin provides a tunable platform for gene expression control. Besides the well-studied core nucleosome, H1 linker histones are abundant chromatin components with intrinsic potential to influence chromatin function. Well studied in animals, little is known about the evolution of H1 function in other eukaryotic lineages for instance plants. Notably, in the model plant Arabidopsis, while H1 is known to influence heterochromatin and DNA methylation, its contribution to transcription, molecular, and cytological chromatin organization remains elusive. RESULTS We provide a multi-scale functional study of Arabidopsis linker histones. We show that H1-deficient plants are viable yet show phenotypes in seed dormancy, flowering time, lateral root, and stomata formation-complemented by either or both of the major variants. H1 depletion also impairs pluripotent callus formation. Fine-scale chromatin analyses combined with transcriptome and nucleosome profiling reveal distinct roles of H1 on hetero- and euchromatin: H1 is necessary to form heterochromatic domains yet dispensable for silencing of most transposable elements; H1 depletion affects nucleosome density distribution and mobility in euchromatin, spatial arrangement of nanodomains, histone acetylation, and methylation. These drastic changes affect moderately the transcription but reveal a subset of H1-sensitive genes. CONCLUSIONS H1 variants have a profound impact on the molecular and spatial (nuclear) chromatin organization in Arabidopsis with distinct roles in euchromatin and heterochromatin and a dual causality on gene expression. Phenotypical analyses further suggest the novel possibility that H1-mediated chromatin organization may contribute to the epigenetic control of developmental and cellular transitions.
Collapse
Affiliation(s)
- Kinga Rutowicz
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Benoît Mermaz
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
- Department of Molecular, Cellular & Developmental Biology, Yale University, 352a Osborn memorial laboratories, New Haven, CT, 06511, USA
| | - Gianluca Teano
- Département de Biologie, IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, F-75005, Paris, France
| | - Jasmin Schubert
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Imen Mestiri
- Département de Biologie, IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, F-75005, Paris, France
| | - Magdalena A Kroteń
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-089, Warsaw, Poland
| | - Tohnyui Ndinyanka Fabrice
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Simon Fritz
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Stefan Grob
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Christoph Ringli
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Lusik Cherkezyan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Fredy Barneche
- Département de Biologie, IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, F-75005, Paris, France
| | - Andrzej Jerzmanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Célia Baroux
- Institute of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
40
|
Torres ES, Deal RB. The histone variant H2A.Z and chromatin remodeler BRAHMA act coordinately and antagonistically to regulate transcription and nucleosome dynamics in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:144-162. [PMID: 30742338 PMCID: PMC7259472 DOI: 10.1111/tpj.14281] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 05/17/2023]
Abstract
Plants adapt to environmental changes by regulating transcription and chromatin organization. The histone H2A variant H2A.Z and the SWI2/SNF2 ATPase BRAHMA (BRM) have overlapping roles in positively and negatively regulating environmentally responsive genes in Arabidopsis, but the extent of this overlap was uncharacterized. Both factors have been associated with various changes in nucleosome positioning and stability in different contexts, but their specific roles in transcriptional regulation and chromatin organization need further characterization. We show that H2A.Z and BRM co-localize at thousands of sites, where they interact both cooperatively and antagonistically in transcriptional repression and activation of genes involved in development and responses to environmental stimuli. We identified eight classes of genes that show distinct relationships between H2A.Z and BRM with respect to their roles in transcription. These include activating and silencing transcription both redundantly and antagonistically. We found that H2A.Z contributes to a range of different nucleosome properties, while BRM stabilizes nucleosomes where it binds and destabilizes or repositions flanking nucleosomes. We also found that, at many genes regulated by both BRM and H2A.Z, both factors overlap with binding sites of the light-regulated transcription factor FAR1-Related Sequence 9 (FRS9) and that a subset of these FRS9 binding sites are dependent on H2A.Z and BRM for accessibility. Collectively, we comprehensively characterized the antagonistic and cooperative contributions of H2A.Z and BRM to transcriptional regulation, and illuminated several interrelated roles in chromatin organization. The variability observed in their individual functions implies that both BRM and H2A.Z have more context-dependent roles than previously assumed.
Collapse
Affiliation(s)
- E. Shannon Torres
- Department of Biology, Emory University, Atlanta, GA 30322
- Graduate Program in Genetics and Molecular Biology of the Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Roger B. Deal
- Department of Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
41
|
Pontier D, Picart C, El Baidouri M, Roudier F, Xu T, Lahmy S, Llauro C, Azevedo J, Laudié M, Attina A, Hirtz C, Carpentier MC, Shen L, Lagrange T. The m 6A pathway protects the transcriptome integrity by restricting RNA chimera formation in plants. Life Sci Alliance 2019; 2:2/3/e201900393. [PMID: 31142640 PMCID: PMC6545605 DOI: 10.26508/lsa.201900393] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 11/24/2022] Open
Abstract
This study reveals that an m6A-assisted polyadenylation pathway comprising conserved m6A writer proteins and a plant-specific m6A reader contributes to transcriptome integrity in Arabidopsis thaliana by restricting RNA chimera formation at rearranged loci. Global, segmental, and gene duplication–related processes are driving genome size and complexity in plants. Despite their evolutionary potentials, those processes can also have adverse effects on genome regulation, thus implying the existence of specialized corrective mechanisms. Here, we report that an N6-methyladenosine (m6A)–assisted polyadenylation (m-ASP) pathway ensures transcriptome integrity in Arabidopsis thaliana. Efficient m-ASP pathway activity requires the m6A methyltransferase-associated factor FIP37 and CPSF30L, an m6A reader corresponding to an YT512-B Homology Domain-containing protein (YTHDC)-type domain containing isoform of the 30-kD subunit of cleavage and polyadenylation specificity factor. Targets of the m-ASP pathway are enriched in recently rearranged gene pairs, displayed an atypical chromatin signature, and showed transcriptional readthrough and mRNA chimera formation in FIP37- and CPSF30L-deficient plants. Furthermore, we showed that the m-ASP pathway can also restrict the formation of chimeric gene/transposable-element transcript, suggesting a possible implication of this pathway in the control of transposable elements at specific locus. Taken together, our results point to selective recognition of 3′-UTR m6A as a safeguard mechanism ensuring transcriptome integrity at rearranged genomic loci in plants.
Collapse
Affiliation(s)
- Dominique Pontier
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France.,Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Perpignan, France
| | - Claire Picart
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France.,Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Perpignan, France
| | - Moaine El Baidouri
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France.,Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Perpignan, France
| | - François Roudier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Lyon, France
| | - Tao Xu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sylvie Lahmy
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France.,Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Perpignan, France
| | - Christel Llauro
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France.,Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Perpignan, France
| | - Jacinthe Azevedo
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France.,Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Perpignan, France
| | - Michèle Laudié
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France.,Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Perpignan, France
| | - Aurore Attina
- Platform SMART/Laboratoire de Biochimie et Protéomique Clinique/Plateforme de Protéomique Clinique, University of Montpellier, Institut de Médecine Régénérative et de Biothérapie , Centre Hospitalier Universitaire Montpellier, Institut national de la santé et de la Recherche Médicale, Montpeller, France
| | - Christophe Hirtz
- Platform SMART/Laboratoire de Biochimie et Protéomique Clinique/Plateforme de Protéomique Clinique, University of Montpellier, Institut de Médecine Régénérative et de Biothérapie , Centre Hospitalier Universitaire Montpellier, Institut national de la santé et de la Recherche Médicale, Montpeller, France
| | - Marie-Christine Carpentier
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France.,Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Perpignan, France
| | - Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, NUS, Singapore
| | - Thierry Lagrange
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan, France .,Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Perpignan, France
| |
Collapse
|
42
|
Fiorucci AS, Bourbousse C, Concia L, Rougée M, Deton-Cabanillas AF, Zabulon G, Layat E, Latrasse D, Kim SK, Chaumont N, Lombard B, Stroebel D, Lemoine S, Mohammad A, Blugeon C, Loew D, Bailly C, Bowler C, Benhamed M, Barneche F. Arabidopsis S2Lb links AtCOMPASS-like and SDG2 activity in H3K4me3 independently from histone H2B monoubiquitination. Genome Biol 2019; 20:100. [PMID: 31113491 PMCID: PMC6528313 DOI: 10.1186/s13059-019-1705-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background The functional determinants of H3K4me3, their potential dependency on histone H2B monoubiquitination, and their contribution to defining transcriptional regimes are poorly defined in plant systems. Unlike in Saccharomyces cerevisiae, where a single SET1 protein catalyzes H3K4me3 as part of COMPlex of proteins ASsociated with Set1 (COMPASS), in Arabidopsis thaliana, this activity involves multiple histone methyltransferases. Among these, the plant-specific SET DOMAIN GROUP 2 (SDG2) has a prominent role. Results We report that SDG2 co-regulates hundreds of genes with SWD2-like b (S2Lb), a plant ortholog of the Swd2 axillary subunit of yeast COMPASS. We show that S2Lb co-purifies with the AtCOMPASS core subunit WDR5, and both S2Lb and SDG2 directly influence H3K4me3 enrichment over highly transcribed genes. S2Lb knockout triggers pleiotropic developmental phenotypes at the vegetative and reproductive stages, including reduced fertility and seed dormancy. However, s2lb seedlings display little transcriptomic defects as compared to the large repertoire of genes targeted by S2Lb, SDG2, or H3K4me3, suggesting that H3K4me3 enrichment is important for optimal gene induction during cellular transitions rather than for determining on/off transcriptional status. Moreover, unlike in budding yeast, most of the S2Lb and H3K4me3 genomic distribution does not rely on a trans-histone crosstalk with histone H2B monoubiquitination. Conclusions Collectively, this study unveils that the evolutionarily conserved COMPASS-like complex has been co-opted by the plant-specific SDG2 histone methyltransferase and mediates H3K4me3 deposition through an H2B monoubiquitination-independent pathway in Arabidopsis. Electronic supplementary material The online version of this article (10.1186/s13059-019-1705-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne-Sophie Fiorucci
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France.,Present address: Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Clara Bourbousse
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Lorenzo Concia
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
| | - Martin Rougée
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Anne-Flore Deton-Cabanillas
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Gérald Zabulon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Elodie Layat
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, 75005, Paris, France
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
| | - Soon Kap Kim
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
| | - Nicole Chaumont
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, 75005, Paris, France
| | - Bérangère Lombard
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Sophie Lemoine
- Genomic Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, 75005, France
| | - Ammara Mohammad
- Genomic Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, 75005, France
| | - Corinne Blugeon
- Genomic Facility, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, Paris, 75005, France
| | - Damarys Loew
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Christophe Bailly
- Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, 75005, Paris, France
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405, Orsay, France
| | - Fredy Barneche
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL University, 75005, Paris, France.
| |
Collapse
|
43
|
Sequeira-Mendes J, Vergara Z, Peiró R, Morata J, Aragüez I, Costas C, Mendez-Giraldez R, Casacuberta JM, Bastolla U, Gutierrez C. Differences in firing efficiency, chromatin, and transcription underlie the developmental plasticity of the Arabidopsis DNA replication origins. Genome Res 2019; 29:784-797. [PMID: 30846531 PMCID: PMC6499314 DOI: 10.1101/gr.240986.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Eukaryotic genome replication depends on thousands of DNA replication origins (ORIs). A major challenge is to learn ORI biology in multicellular organisms in the context of growing organs to understand their developmental plasticity. We have identified a set of ORIs of Arabidopsis thaliana and their chromatin landscape at two stages of post-embryonic development. ORIs associate with multiple chromatin signatures including transcription start sites (TSS) but also proximal and distal regulatory regions and heterochromatin, where ORIs colocalize with retrotransposons. In addition, quantitative analysis of ORI activity led us to conclude that strong ORIs have high GC content and clusters of GGN trinucleotides. Development primarily influences ORI firing strength rather than ORI location. ORIs that preferentially fire at early developmental stages colocalize with GC-rich heterochromatin, but at later stages with transcribed genes, perhaps as a consequence of changes in chromatin features associated with developmental processes. Our study provides the set of ORIs active in an organism at the post-embryo stage that should allow us to study ORI biology in response to development, environment, and mutations with a quantitative approach. In a wider scope, the computational strategies developed here can be transferred to other eukaryotic systems.
Collapse
Affiliation(s)
- Joana Sequeira-Mendes
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Zaida Vergara
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Ramon Peiró
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Jordi Morata
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus Universitat Autónoma de Barcelona, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain
| | - Irene Aragüez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Celina Costas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Raul Mendez-Giraldez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Josep M Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus Universitat Autónoma de Barcelona, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain
| | - Ugo Bastolla
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
44
|
Hobza R, Hudzieczek V, Kubat Z, Cegan R, Vyskot B, Kejnovsky E, Janousek B. Sex and the flower - developmental aspects of sex chromosome evolution. ANNALS OF BOTANY 2018; 122:1085-1101. [PMID: 30032185 PMCID: PMC6324748 DOI: 10.1093/aob/mcy130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 05/07/2023]
Abstract
Background The evolution of dioecious plants is occasionally accompanied by the establishment of sex chromosomes: both XY and ZW systems have been found in plants. Structural studies of sex chromosomes are now being followed up by functional studies that are gradually shedding light on the specific genetic and epigenetic processes that shape the development of separate sexes in plants. Scope This review describes sex determination diversity in plants and the genetic background of dioecy, summarizes recent progress in the investigation of both classical and emerging model dioecious plants and discusses novel findings. The advantages of interspecies hybrids in studies focused on sex determination and the role of epigenetic processes in sexual development are also overviewed. Conclusions We integrate the genic, genomic and epigenetic levels of sex determination and stress the impact of sex chromosome evolution on structural and functional aspects of plant sexual development. We also discuss the impact of dioecy and sex chromosomes on genome structure and expression.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Vojtech Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| |
Collapse
|
45
|
Kaiserli E, Perrella G, Davidson ML. Light and temperature shape nuclear architecture and gene expression. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:103-111. [PMID: 29909288 PMCID: PMC6250907 DOI: 10.1016/j.pbi.2018.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 05/10/2023]
Abstract
Environmental stimuli play a major role in modulating growth and development throughout the life-cycle of a plant. Quantitative and qualitative variations in light and temperature trigger changes in gene expression that ultimately shape plant morphology for adaptation and survival. Although the phenotypic and transcriptomic basis of plant responses to the constantly changing environment have been examined for decades, the relationship between global changes in nuclear architecture and adaption to environmental stimuli is just being uncovered. This review presents recent discoveries investigating how changes in light and temperature trigger changes in chromatin structure and nuclear organization with a focus on the role of gene repositioning and chromatin accessibility in regulating gene expression.
Collapse
Affiliation(s)
- Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Giorgio Perrella
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mhairi Lh Davidson
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
46
|
Ramirez-Prado JS, Abulfaraj AA, Rayapuram N, Benhamed M, Hirt H. Plant Immunity: From Signaling to Epigenetic Control of Defense. TRENDS IN PLANT SCIENCE 2018; 23:833-844. [PMID: 29970339 DOI: 10.1016/j.tplants.2018.06.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 05/21/2023]
Abstract
Pathogen recognition by plants results in the activation of signaling pathways that induce defense reactions. There is growing evidence indicating that epigenetic mechanisms directly participate in plant immune memory. Here, we discuss current knowledge of diverse epigenomic processes and elements, such as noncoding RNAs, DNA and RNA methylation, histone post-translational modifications, and chromatin remodeling, that have been associated with the regulation of immune responses in plants. Furthermore, we discuss the currently limited evidence of transgenerational inheritance of pathogen-induced defense priming, together with its potentials, challenges, and limitations for crop improvement and biotechnological applications.
Collapse
Affiliation(s)
- Juan S Ramirez-Prado
- Desert Agriculture Initiative, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Institut des Sciences des Plantes de Paris Saclay, IPS2, Bâtiment 630, Plateau du Moulon, Rue Noetzlin CS 80004, 91192 Gif-sur-Yvette, France; These authors contributed equally
| | - Aala A Abulfaraj
- Desert Agriculture Initiative, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Department of Biology, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21589, Saudi Arabia; These authors contributed equally
| | - Naganand Rayapuram
- Desert Agriculture Initiative, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; These authors contributed equally
| | - Moussa Benhamed
- Institut des Sciences des Plantes de Paris Saclay, IPS2, Bâtiment 630, Plateau du Moulon, Rue Noetzlin CS 80004, 91192 Gif-sur-Yvette, France.
| | - Heribert Hirt
- Desert Agriculture Initiative, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Institut des Sciences des Plantes de Paris Saclay, IPS2, Bâtiment 630, Plateau du Moulon, Rue Noetzlin CS 80004, 91192 Gif-sur-Yvette, France.
| |
Collapse
|
47
|
Doğan ES, Liu C. Three-dimensional chromatin packing and positioning of plant genomes. NATURE PLANTS 2018; 4:521-529. [PMID: 30061747 DOI: 10.1038/s41477-018-0199-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 05/18/2023]
Abstract
Information and function of a genome are not only decorated with epigenetic marks in the linear DNA sequence but also in their non-random spatial organization in the nucleus. Recent research has revealed that three-dimensional (3D) chromatin organization is highly correlated with the functionality of the genome, contributing to many cellular processes. Driven by the improvements in chromatin conformation capture methods and visualization techniques, the past decade has been an exciting period for the study of plants' 3D genome structures, and our knowledge in this area has been substantially advanced. This Review describes our current understanding of plant chromatin organization and positioning beyond the nucleosomal level, and discusses future directions.
Collapse
Affiliation(s)
- Ezgi Süheyla Doğan
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
48
|
Sotelo-Silveira M, Chávez Montes RA, Sotelo-Silveira JR, Marsch-Martínez N, de Folter S. Entering the Next Dimension: Plant Genomes in 3D. TRENDS IN PLANT SCIENCE 2018; 23:598-612. [PMID: 29703667 DOI: 10.1016/j.tplants.2018.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 05/07/2023]
Abstract
After linear sequences of genomes and epigenomic landscape data, the 3D organization of chromatin in the nucleus is the next level to be explored. Different organisms present a general hierarchical organization, with chromosome territories at the top. Chromatin interaction maps, obtained by chromosome conformation capture (3C)-based methodologies, for eight plant species reveal commonalities, but also differences, among them and with animals. The smallest structures, found in high-resolution maps of the Arabidopsis genome, are single genes. Epigenetic marks (histone modification and DNA methylation), transcriptional activity, and chromatin interaction appear to be correlated, and whether structure is the cause or consequence of the function of interacting regions is being actively investigated.
Collapse
Affiliation(s)
- Mariana Sotelo-Silveira
- Departamento de Biología Vegetal, Laboratorio de Bioquímica, Facultad de Agronomía, Garzón 809, 12900 Montevideo, Uruguay
| | - Ricardo A Chávez Montes
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36824 Irapuato, Guanajuato, Mexico
| | - Jose R Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600 Montevideo, Uruguay; Sección Biología Celular, Dept. Cell and Molecular Biology, Facultad de Ciencias, Universidad de la Republica, Igua 4225, Montevideo, Uruguay
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36824 Irapuato, Guanajuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, 36824 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
49
|
Cremer T, Cremer M, Cremer C. The 4D Nucleome: Genome Compartmentalization in an Evolutionary Context. BIOCHEMISTRY (MOSCOW) 2018; 83:313-325. [PMID: 29626919 DOI: 10.1134/s000629791804003x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
4D nucleome research aims to understand the impact of nuclear organization in space and time on nuclear functions, such as gene expression patterns, chromatin replication, and the maintenance of genome integrity. In this review we describe evidence that the origin of 4D genome compartmentalization can be traced back to the prokaryotic world. In cell nuclei of animals and plants chromosomes occupy distinct territories, built up from ~1 Mb chromatin domains, which in turn are composed of smaller chromatin subdomains and also form larger chromatin domain clusters. Microscopic evidence for this higher order chromatin landscape was strengthened by chromosome conformation capture studies, in particular Hi-C. This approach demonstrated ~1 Mb sized, topologically associating domains in mammalian cell nuclei separated by boundaries. Mutations, which destroy boundaries, can result in developmental disorders and cancer. Nucleosomes appeared first as tetramers in the Archaea kingdom and later evolved to octamers built up each from two H2A, two H2B, two H3, and two H4 proteins. Notably, nucleosomes were lost during the evolution of the Dinoflagellata phylum. Dinoflagellate chromosomes remain condensed during the entire cell cycle, but their chromosome architecture differs radically from the architecture of other eukaryotes. In summary, the conservation of fundamental features of higher order chromatin arrangements throughout the evolution of metazoan animals suggests the existence of conserved, but still unknown mechanism(s) controlling this architecture. Notwithstanding this conservation, a comparison of metazoans and protists also demonstrates species-specific structural and functional features of nuclear organization.
Collapse
Affiliation(s)
- T Cremer
- Biocenter, Department of Biology II, Ludwig Maximilian University (LMU), Munich, Germany.
| | | | | |
Collapse
|
50
|
Gaiti F, Degnan BM, Tanurdžić M. Long non-coding regulatory RNAs in sponges and insights into the origin of animal multicellularity. RNA Biol 2018; 15:696-702. [PMID: 29616867 PMCID: PMC6152434 DOI: 10.1080/15476286.2018.1460166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/01/2023] Open
Abstract
How animals evolved from a single-celled ancestor over 700 million years ago is poorly understood. Recent transcriptomic and chromatin analyses in the sponge Amphimedon queenslandica, a morphologically-simple representative of one of the oldest animal phyletic lineages, have shed light on what innovations in the genome and its regulation underlie the emergence of animal multicellularity. Comparisons of the regulatory genome of this sponge with those of more complex bilaterian model species and even simpler unicellular relatives have revealed that fundamental changes in genome regulatory complexity accompanied the evolution of animal multicellularity. Here, we review and discuss the results of these recent investigations by specifically focusing on the contribution of long non-coding RNAs to the evolution of the animal regulatory genome.
Collapse
Affiliation(s)
- Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Bernard M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|