1
|
Bertolini E, Manjunath M, Ge W, Murphy MD, Inaoka M, Fliege C, Eveland AL, Lipka AE. Genomic prediction of cereal crop architectural traits using models informed by gene regulatory circuitries from maize. Genetics 2024:iyae162. [PMID: 39441092 DOI: 10.1093/genetics/iyae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Plant architecture is a major determinant of planting density, which enhances productivity potential for crops per unit area. Genomic prediction is well positioned to expedite genetic gain of plant architectural traits since they are typically highly heritable. Additionally, the adaptation of genomic prediction models to query predictive abilities of markers tagging certain genomic regions could shed light on the genetic architecture of these traits. Here, we leveraged transcriptional networks from a prior study that contextually described developmental progression during tassel and leaf organogenesis in maize (Zea mays) to inform genomic prediction models for architectural traits. Since these developmental processes underlie tassel branching and leaf angle, 2 important agronomic architectural traits, we tested whether genes prioritized from these networks quantitatively contribute to the genetic architecture of these traits. We used genomic prediction models to evaluate the ability of markers in the vicinity of prioritized network genes to predict breeding values of tassel branching and leaf angle traits for 2 diversity panels in maize and diversity panels from sorghum (Sorghum bicolor) and rice (Oryza sativa). Predictive abilities of markers near these prioritized network genes were similar to those using whole-genome marker sets. Notably, markers near highly connected transcription factors from core network motifs in maize yielded predictive abilities that were significantly greater than expected by chance in not only maize but also closely related sorghum. We expect that these highly connected regulators are key drivers of architectural variation that are conserved across closely related cereal crop species.
Collapse
Affiliation(s)
| | - Mohith Manjunath
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weihao Ge
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew D Murphy
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mirai Inaoka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christina Fliege
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Zebosi B, Vollbrecht E, Best NB. Brassinosteroid biosynthesis and signaling: Conserved and diversified functions of core genes across multiple plant species. PLANT COMMUNICATIONS 2024; 5:100982. [PMID: 38816993 DOI: 10.1016/j.xplc.2024.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Brassinosteroids (BRs) are important regulators that control myriad aspects of plant growth and development, including biotic and abiotic stress responses, such that modulating BR homeostasis and signaling presents abundant opportunities for plant breeding and crop improvement. Enzymes and other proteins involved in the biosynthesis and signaling of BRs are well understood from molecular genetics and phenotypic analysis in Arabidopsis thaliana; however, knowledge of the molecular functions of these genes in other plant species, especially cereal crop plants, is minimal. In this manuscript, we comprehensively review functional studies of BR genes in Arabidopsis, maize, rice, Setaria, Brachypodium, and soybean to identify conserved and diversified functions across plant species and to highlight cases for which additional research is in order. We performed phylogenetic analysis of gene families involved in the biosynthesis and signaling of BRs and re-analyzed publicly available transcriptomic data. Gene trees coupled with expression data provide a valuable guide to supplement future research on BRs in these important crop species, enabling researchers to identify gene-editing targets for BR-related functional studies.
Collapse
Affiliation(s)
- Brian Zebosi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Erik Vollbrecht
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA 50011, USA.
| | - Norman B Best
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65201, USA.
| |
Collapse
|
3
|
Zheng S, Zhao W, Liu Z, Geng Z, Li Q, Liu B, Li B, Bai J. Establishment and Maintenance of Heat-Stress Memory in Plants. Int J Mol Sci 2024; 25:8976. [PMID: 39201662 PMCID: PMC11354667 DOI: 10.3390/ijms25168976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Among the rich repertoire of strategies that allow plants to adapt to high-temperature stress is heat-stress memory. The mechanisms underlying the establishment and maintenance of heat-stress memory are poorly understood, although the chromatin opening state appears to be an important structural basis for maintaining heat-stress memory. The chromatin opening state is influenced by epigenetic modifications, making DNA and histone modifications important entry points for understanding heat-shock memory. Current research suggests that traditional heat-stress signaling pathway components might be involved in chromatin opening, thereby promoting the establishment of heat-stress memory in plants. In this review, we discuss the relationship between chromatin structure-based maintenance and the establishment of heat-stress memory. We also discuss the association between traditional heat-stress signals and epigenetic modifications. Finally, we discuss potential research ideas for exploring plant adaptation to high-temperature stress in the future.
Collapse
Affiliation(s)
- Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weishuang Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zimeng Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziyue Geng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiang Li
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Science, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China
| | - Binhui Liu
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Science, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China
| | - Bing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
4
|
Yan Y, Duan F, Li X, Zhao R, Hou P, Zhao M, Li S, Wang Y, Dai T, Zhou W. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density. PLANT PHYSIOLOGY 2024; 195:2652-2667. [PMID: 38590166 PMCID: PMC11288763 DOI: 10.1093/plphys/kiae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
Photosynthesis is a major trait of interest for the development of high-yield crop plants. However, little is known about the effects of high-density planting on photosynthetic responses at the whole-canopy level. Using the high-yielding maize (Zea mays L.) cultivars "LY66," "MC670," and "JK968," we conducted a 2-yr field experiment to assess ear development in addition to leaf characteristics and photosynthetic parameters in each canopy layer at 4 planting densities. Increased planting density promoted high grain yield and population-scale biomass accumulation despite reduced per-plant productivity. MC670 had the strongest adaptability to high-density planting conditions. A physiological analysis showed that increased planting density primarily led to decreases in the single-leaf area above the ear for LY66 and MC670 and below the ear for JK968. Furthermore, high planting density decreased chlorophyll content and the photosynthetic rate due to decreased canopy transmission, leading to severe decreases in single-plant biomass accumulation in the lower canopy. Moreover, increased planting density improved presilking biomass transfer, especially in the lower canopy. The yield showed significant positive relationships with photosynthesis and biomass in the lower canopy, demonstrating the important contributions of these leaves to grain yield under dense planting conditions. Increased planting density led to retarded ear development as a consequence of reduced glucose and fructose contents in the ears, indicating reductions in sugar transport that were associated with limited sink organ development, reduced kernel number, and yield loss. Overall, these findings highlighted the photosynthetic capacities of the lower canopy as promising targets for improving maize yield under dense planting conditions.
Collapse
Affiliation(s)
- Yanyan Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengying Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rulang Zhao
- Ningxia Academy of Agriculture and Forestry Sciences, Crops Research Institute, Yinchuan 750105, China
| | - Peng Hou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaokun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yonghong Wang
- Ningxia Academy of Agriculture and Forestry Sciences, Crops Research Institute, Yinchuan 750105, China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Fahad M, Tariq L, Muhammad S, Wu L. Underground communication: Long non-coding RNA signaling in the plant rhizosphere. PLANT COMMUNICATIONS 2024; 5:100927. [PMID: 38679911 PMCID: PMC11287177 DOI: 10.1016/j.xplc.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as integral gene-expression regulators underlying plant growth, development, and adaptation. To adapt to the heterogeneous and dynamic rhizosphere, plants use interconnected regulatory mechanisms to optimally fine-tune gene-expression-governing interactions with soil biota, as well as nutrient acquisition and heavy metal tolerance. Recently, high-throughput sequencing has enabled the identification of plant lncRNAs responsive to rhizosphere biotic and abiotic cues. Here, we examine lncRNA biogenesis, classification, and mode of action, highlighting the functions of lncRNAs in mediating plant adaptation to diverse rhizosphere factors. We then discuss studies that reveal the significance and target genes of lncRNAs during developmental plasticity and stress responses at the rhizobium interface. A comprehensive understanding of specific lncRNAs, their regulatory targets, and the intricacies of their functional interaction networks will provide crucial insights into how these transcriptomic switches fine-tune responses to shifting rhizosphere signals. Looking ahead, we foresee that single-cell dissection of cell-type-specific lncRNA regulatory dynamics will enhance our understanding of the precise developmental modulation mechanisms that enable plant rhizosphere adaptation. Overcoming future challenges through multi-omics and genetic approaches will more fully reveal the integral roles of lncRNAs in governing plant adaptation to the belowground environment.
Collapse
Affiliation(s)
- Muhammad Fahad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sajid Muhammad
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liang Wu
- Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Gonzales LR, Blom S, Henriques R, Bachem CWB, Immink RGH. LncRNAs: the art of being influential without protein. TRENDS IN PLANT SCIENCE 2024; 29:770-785. [PMID: 38368122 DOI: 10.1016/j.tplants.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
The plant long noncoding (lnc)RNA field is on the brink of transitioning from large-scale identification of lncRNAs to their functional characterization. Due to the cross-kingdom conservation of interaction types and molecular functions, there is much to be learned from mammalian lncRNA research. Here, we discuss the different molecular processes involving lncRNAs from the regulation of chromatin to splicing. Furthermore, we discuss the lncRNA interactome, which includes proteins, other RNAs, and DNA. We explore and discuss how mammalian lncRNA functionalities could be reflected in similar pathways in plants and hypothesize that several breakthroughs in mammalian research could lead to the discovery of novel plant lncRNA molecular functions. Expanding our knowledge of the biological role of lncRNAs and their multiple applications paves the way for future agricultural applications.
Collapse
Affiliation(s)
| | - Suze Blom
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands
| | - Rossana Henriques
- School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Christian W B Bachem
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands; Bioscience, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Huo Q, Song R, Ma Z. Recent advances in exploring transcriptional regulatory landscape of crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1421503. [PMID: 38903438 PMCID: PMC11188431 DOI: 10.3389/fpls.2024.1421503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security.
Collapse
Affiliation(s)
| | | | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Galli M, Chen Z, Ghandour T, Chaudhry A, Gregory J, Li M, Zhang X, Dong Y, Song G, Walley JW, Chuck G, Whipple C, Kaeppler HF, Huang SSC, Gallavotti A. Transcription factor binding site divergence across maize inbred lines drives transcriptional and phenotypic variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596834. [PMID: 38895211 PMCID: PMC11185568 DOI: 10.1101/2024.05.31.596834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Regulatory elements are important constituents of plant genomes that have shaped ancient and modern crops. Their identification, function, and diversity in crop genomes however are poorly characterized, thus limiting our ability to harness their power for further agricultural advances using induced or natural variation. Here, we use DNA affinity purification-sequencing (DAP-seq) to map transcription factor (TF) binding events for 200 maize TFs belonging to 30 distinct families and heterodimer pairs in two distinct inbred lines historically used for maize hybrid plant production, providing empirical binding site annotation for 5.3% of the maize genome. TF binding site comparison in B73 and Mo17 inbreds reveals widespread differences, driven largely by structural variation, that correlate with gene expression changes. TF binding site presence-absence variation helps clarify complex QTL such as vgt1, an important determinant of maize flowering time, and DICE, a distal enhancer involved in herbivore resistance. Modification of TF binding regions via CRISPR-Cas9 mediated editing alters target gene expression and phenotype. Our functional catalog of maize TF binding events enables collective and comparative TF binding analysis, and highlights its value for agricultural improvement.
Collapse
Affiliation(s)
- Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Tara Ghandour
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Amina Chaudhry
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Jason Gregory
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Miaomiao Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Xuan Zhang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Yinxin Dong
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Gaoyuan Song
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University; Ames, IA, 50011
| | - Justin W. Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University; Ames, IA, 50011
| | - George Chuck
- Plant Gene Expression Center, Albany, CA 94710, USA
| | - Clinton Whipple
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, USA
| | - Heidi F. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI, USA
- Wisconsin Crop Innovation Center, University of Wisconsin, Middleton, WI, USA
| | - Shao-shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
9
|
Hu G, Grover CE, Vera DL, Lung PY, Girimurugan SB, Miller ER, Conover JL, Ou S, Xiong X, Zhu D, Li D, Gallagher JP, Udall JA, Sui X, Zhang J, Bass HW, Wendel JF. Evolutionary Dynamics of Chromatin Structure and Duplicate Gene Expression in Diploid and Allopolyploid Cotton. Mol Biol Evol 2024; 41:msae095. [PMID: 38758089 PMCID: PMC11140268 DOI: 10.1093/molbev/msae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.
Collapse
Affiliation(s)
- Guanjing Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated, Chinese Academy of Agricultural Sciences, Institute of Cotton Research, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Daniel L Vera
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | | | - Emma R Miller
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Justin L Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Shujun Ou
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Dongming Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Joseph P Gallagher
- Forage Seed and Cereal Research Unit, USDA/Agricultural Research Service, Corvallis, OR 97331, USA
| | - Joshua A Udall
- Crop Germplasm Research Unit, USDA/Agricultural Research Service, College Station, TX 77845, USA
| | - Xin Sui
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Hank W Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Huang Y, Maurer A, Giehl RFH, Zhao S, Golan G, Thirulogachandar V, Li G, Zhao Y, Trautewig C, Himmelbach A, Börner A, Jayakodi M, Stein N, Mascher M, Pillen K, Schnurbusch T. Dynamic Phytomeric Growth Contributes to Local Adaptation in Barley. Mol Biol Evol 2024; 41:msae011. [PMID: 38243866 PMCID: PMC10837018 DOI: 10.1093/molbev/msae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Vascular plants have segmented body axes with iterative nodes and internodes. Appropriate node initiation and internode elongation are fundamental to plant fitness and crop yield; however, how these events are spatiotemporally coordinated remains elusive. We show that in barley (Hordeum vulgare L.), selections during domestication have extended the apical meristematic phase to promote node initiation, but constrained subsequent internode elongation. In both vegetative and reproductive phases, internode elongation displays a dynamic proximal-distal gradient, and among subpopulations of domesticated barleys worldwide, node initiation and proximal internode elongation are associated with latitudinal and longitudinal gradients, respectively. Genetic and functional analyses suggest that, in addition to their converging roles in node initiation, flowering-time genes have been repurposed to specify the timing and duration of internode elongation. Our study provides an integrated view of barley node initiation and internode elongation and suggests that plant architecture should be recognized as a collection of dynamic phytomeric units in the context of crop adaptive evolution.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Andreas Maurer
- Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120 Halle, Germany
| | - Ricardo F H Giehl
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Shuangshuang Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Guy Golan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | | | - Guoliang Li
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Corinna Trautewig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Klaus Pillen
- Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120 Halle, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany
- Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120 Halle, Germany
| |
Collapse
|
11
|
Marand AP, Eveland AL, Kaufmann K, Springer NM. cis-Regulatory Elements in Plant Development, Adaptation, and Evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:111-137. [PMID: 36608347 PMCID: PMC9881396 DOI: 10.1146/annurev-arplant-070122-030236] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
cis-Regulatory elements encode the genomic blueprints that ensure the proper spatiotemporal patterning of gene expression necessary for appropriate development and responses to the environment. Accumulating evidence implicates changes to gene expression as a major source of phenotypic novelty in eukaryotes, including acute phenotypes such as disease and cancer in mammals. Moreover, genetic and epigenetic variation affecting cis-regulatory sequences over longer evolutionary timescales has become a recurring theme in studies of morphological divergence and local adaptation. Here, we discuss the functions of and methods used to identify various classes of cis-regulatory elements, as well as their role in plant development and response to the environment. We highlight opportunities to exploit cis-regulatory variants underlying plant development and environmental responses for crop improvement efforts. Although a comprehensive understanding of cis-regulatory mechanisms in plants has lagged behind that in animals, we showcase several breakthrough findings that have profoundly influenced plant biology and shaped the overall understanding of transcriptional regulation in eukaryotes.
Collapse
Affiliation(s)
| | | | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany;
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA;
| |
Collapse
|
12
|
Wang Y, Bi Y, Jiang F, Shaw RK, Sun J, Hu C, Guo R, Fan X. Mapping and Functional Analysis of QTL for Kernel Number per Row in Tropical and Temperate-Tropical Introgression Lines of Maize ( Zea mays L.). Curr Issues Mol Biol 2023; 45:4416-4430. [PMID: 37232750 DOI: 10.3390/cimb45050281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Kernel number per row (KNR) is an essential component of maize (Zea mays L.) grain yield (GY), and understanding its genetic mechanism is crucial to improve GY. In this study, two F7 recombinant inbred line (RIL) populations were created using a temperate-tropical introgression line TML418 and a tropical inbred line CML312 as female parents and a backbone maize inbred line Ye107 as the common male parent. Bi-parental quantitative trait locus (QTL) mapping and genome-wide association analysis (GWAS) were then performed on 399 lines of the two maize RIL populations for KNR in two different environments using 4118 validated single nucleotide polymorphism (SNP) markers. This study aimed to: (1) detect molecular markers and/or the genomic regions associated with KNR; (2) identify the candidate genes controlling KNR; and (3) analyze whether the candidate genes are useful in improving GY. The authors reported a total of 7 QTLs tightly linked to KNR through bi-parental QTL mapping and identified 21 SNPs significantly associated with KNR through GWAS. Among these, a highly confident locus qKNR7-1 was detected at two locations, Dehong and Baoshan, with both mapping approaches. At this locus, three novel candidate genes (Zm00001d022202, Zm00001d022168, Zm00001d022169) were identified to be associated with KNR. These candidate genes were primarily involved in the processes related to compound metabolism, biosynthesis, protein modification, degradation, and denaturation, all of which were related to the inflorescence development affecting KNR. These three candidate genes were not reported previously and are considered new candidate genes for KNR. The progeny of the hybrid Ye107 × TML418 exhibited strong heterosis for KNR, which the authors believe might be related to qKNR7-1. This study provides a theoretical foundation for future research on the genetic mechanism underlying KNR in maize and the use of heterotic patterns to develop high-yielding hybrids.
Collapse
Affiliation(s)
- Yuling Wang
- Institute of Resource Plants, Yunnan University, Kunming 650504, China
| | - Yaqi Bi
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Ranjan Kumar Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jiachen Sun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650500, China
| | - Can Hu
- Institute of Resource Plants, Yunnan University, Kunming 650504, China
| | - Ruijia Guo
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| |
Collapse
|
13
|
Weng X, Song H, Sreedasyam A, Haque T, Zhang L, Chen C, Yoshinaga Y, Williams M, O'Malley RC, Grimwood J, Schmutz J, Juenger TE. Transcriptome and DNA methylome divergence of inflorescence development between two ecotypes in Panicum hallii. PLANT PHYSIOLOGY 2023:kiad209. [PMID: 37018475 DOI: 10.1093/plphys/kiad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
The morphological diversity of the inflorescence determines flower and seed production, which is critical for plant adaptation. Hall's panicgrass (Panicum hallii, P. hallii) is a wild perennial grass that has been developed as a model to study perennial grass biology and adaptive evolution. Highly divergent inflorescences have evolved between the two major ecotypes in P. hallii, the upland ecotype (P. hallii var hallii, HAL2 genotype) with compact inflorescence and large seed and the lowland ecotype (P. hallii var filipes, FIL2 genotype) with an open inflorescence and small seed. Here we conducted a comparative analysis of the transcriptome and DNA methylome, an epigenetic mark that influences gene expression regulation, across different stages of inflorescence development using genomic references for each ecotype. Global transcriptome analysis of differentially expressed genes (DEGs) and co-expression modules underlying the inflorescence divergence revealed the potential role of cytokinin signaling in heterochronic changes. Comparing DNA methylome profiles revealed a remarkable level of differential DNA methylation associated with the evolution of P. hallii inflorescence. We found that a large proportion of differentially methylated regions (DMRs) were located in the flanking regulatory regions of genes. Intriguingly, we observed a substantial bias of CHH hypermethylation in the promoters of FIL2 genes. The integration of DEGs, DMRs, and Ka/Ks ratio results characterized the evolutionary features of DMRs-associated DEGs that contribute to the divergence of the P. hallii inflorescence. This study provides insights into the transcriptome and epigenetic landscape of inflorescence divergence in P. hallii and a genomic resource for perennial grass biology.
Collapse
Affiliation(s)
- Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Haili Song
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Taslima Haque
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Li Zhang
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Cindy Chen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yuko Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Ronan C O'Malley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
14
|
Zhou J, Liu G, Zhao Y, Zhang R, Tang X, Li L, Jia X, Guo Y, Wu Y, Han Y, Bao Y, He Y, Han Q, Yang H, Zheng X, Qi Y, Zhang T, Zhang Y. An efficient CRISPR-Cas12a promoter editing system for crop improvement. NATURE PLANTS 2023; 9:588-604. [PMID: 37024659 DOI: 10.1038/s41477-023-01384-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Promoter editing represents an innovative approach to introduce quantitative trait variation (QTV) in crops. However, an efficient promoter editing system for QTV needs to be established. Here we develop a CRISPR-Cas12a promoter editing (CAPE) system that combines a promoter key-region estimating model and an efficient CRISPR-Cas12a-based multiplexed or singular editing system. CAPE is benchmarked in rice to produce QTV continuums for grain starch content and size by targeting OsGBSS1 and OsGS3, respectively. We then apply CAPE for promoter editing of OsD18, a gene encoding GA3ox in the gibberellin biosynthesis pathway. The resulting lines carry a QTV continuum of semidwarfism without significantly compromising grain measures. Field trials demonstrated that the OsD18 promoter editing lines have the same yield performance and antilodging phenotype as the Green Revolution OsSD1 mutants in different genetic backgrounds. Hence, promoter editing of OsD18 generates a quantitative Green Revolution trait. Together, we demonstrate a CAPE-based promoter editing and tuning pipeline for efficient production of useful QTV continuum in crops.
Collapse
Affiliation(s)
- Jianping Zhou
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yuxin Zhao
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Rui Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xu Tang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyu Jia
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yachong Guo
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yangshuo Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yao He
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qinqin Han
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Han Yang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuelian Zheng
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Rockville, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China.
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China.
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
15
|
Zhang X, Wang H, Sun H, Li Y, Feng Y, Jiao C, Li M, Song X, Wang T, Wang Z, Yuan C, Sun L, Lu R, Zhang W, Xiao J, Wang X. A chromosome-scale genome assembly of Dasypyrum villosum provides insights into its application as a broad-spectrum disease resistance resource for wheat improvement. MOLECULAR PLANT 2023; 16:432-451. [PMID: 36587241 DOI: 10.1016/j.molp.2022.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Dasypyrum villosum is one of the most valuable gene resources in wheat improvement, especially for disease resistance. The mining of favorable genes from D. villosum is frustrated by the lack of a whole genome sequence. In this study, we generated a doubled-haploid line, 91C43DH, using microspore culture and obtained a 4.05-GB high-quality, chromosome-scale genome assembly for D. villosum. The assembly contains39 727 high-confidence genes, and 85.31% of the sequences are repetitive. Two reciprocal translocation events were detected, and 7VS-4VL is a unique translocation in D. villosum. The prolamin seed storage protein-coding genes were found to be duplicated; in particular, the genes encoding low-molecular-weight glutenin at the Glu-V3 locus were significantly expanded. RNA sequencing (RNA-seq) analysis indicated that, after Blumeria graminearum f.sp tritici (Bgt) inoculation, there were more upregulated genes involved in the pattern-triggered immunity and effector-triggered immunity defense pathways in D. villosum than in Triticum urartu. MNase hypersensitive sequencing (MH-seq) identified two Bgt-inducible MH sites (MHSs), one in the promoter and one in the 3' terminal region of the powdery mildew resistance (Pm) gene NLR1-V. Each site had two subpeaks and they were termed MHS1 (MHS1.1/1.2) and MHS2 (MHS2.1/2.2). Bgt-inducible MHS2.2 was uniquely present in D. villosum, and MHS1.1 was more inducible in D. villosum than in wheat, suggesting that MHSs may be critical for regulation of NLR1-V expression and plant defense. In summary, this study provides a valuable genome resource for functional genomics studies and wheat-D. villosum introgression breeding. The identified regulatory mechanisms may also be exploited to develop new strategies for enhancing Pm resistance by optimizing gene expression in wheat.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Yingbo Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Chengzhi Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Mengli Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Xinying Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Tong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Zongkuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Chunxia Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Li Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Ruiju Lu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China.
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
16
|
Chen Y, Guo Y, Guan P, Wang Y, Wang X, Wang Z, Qin Z, Ma S, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Guo W, Peng H. A wheat integrative regulatory network from large-scale complementary functional datasets enables trait-associated gene discovery for crop improvement. MOLECULAR PLANT 2023; 16:393-414. [PMID: 36575796 DOI: 10.1016/j.molp.2022.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/28/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Gene regulation is central to all aspects of organism growth, and understanding it using large-scale functional datasets can provide a whole view of biological processes controlling complex phenotypic traits in crops. However, the connection between massive functional datasets and trait-associated gene discovery for crop improvement is still lacking. In this study, we constructed a wheat integrative gene regulatory network (wGRN) by combining an updated genome annotation and diverse complementary functional datasets, including gene expression, sequence motif, transcription factor (TF) binding, chromatin accessibility, and evolutionarily conserved regulation. wGRN contains 7.2 million genome-wide interactions covering 5947 TFs and 127 439 target genes, which were further verified using known regulatory relationships, condition-specific expression, gene functional information, and experiments. We used wGRN to assign genome-wide genes to 3891 specific biological pathways and accurately prioritize candidate genes associated with complex phenotypic traits in genome-wide association studies. In addition, wGRN was used to enhance the interpretation of a spike temporal transcriptome dataset to construct high-resolution networks. We further unveiled novel regulators that enhance the power of spike phenotypic trait prediction using machine learning and contribute to the spike phenotypic differences among modern wheat accessions. Finally, we developed an interactive webserver, wGRN (http://wheat.cau.edu.cn/wGRN), for the community to explore gene regulation and discover trait-associated genes. Collectively, this community resource establishes the foundation for using large-scale functional datasets to guide trait-associated gene discovery for crop improvement.
Collapse
Affiliation(s)
- Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yiwen Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Panfeng Guan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaobo Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhen Qin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Shengwei Ma
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Wang G, Li X, Shen W, Li MW, Huang M, Zhang J, Li H. The chromatin accessibility landscape of pistils and anthers in rice. PLANT PHYSIOLOGY 2022; 190:2797-2811. [PMID: 36149297 PMCID: PMC9706442 DOI: 10.1093/plphys/kiac448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Transcription activation is tightly associated with the openness of chromatin and allows direct contact between transcriptional regulators and their targeted DNA for gene expression. However, there are limited studies on the annotation of open chromatin regions (OCRs) in rice (Oryza sativa), especially those in reproductive organs. Here, we characterized OCRs in rice pistils and anthers with an assay for transposase-accessible chromatin using sequencing. Despite a large overlap, we found more OCRs in pistils than in anthers. These OCRs were enriched in gene transcription start sites (TSSs) and showed tight associations with gene expression. Transcription factor (TF) binding motifs were enriched at these OCRs as validated by TF chromatin immunoprecipitation followed by sequencing. Pistil-specific OCRs provided potential regulatory networks by binding directly to the targets, indicating that pistil-specific OCRs may be indicators of cis-regulatory elements in regulating pistil development, which are absent in anthers. We also found that open chromatin of pistils and anthers responded differently to low temperature (LT). These data offer a comprehensive overview of OCRs regulating reproductive organ development and LT responses in rice.
Collapse
Affiliation(s)
- Guanqun Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Xiaozheng Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China
| | - Wei Shen
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Man-Wah Li
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Mingkun Huang
- Lushan Botanical Garden Jiangxi Province, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
- Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong
| | - Haoxuan Li
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
- Department of Biology, Hong Kong Baptist University, Kowloon 999077, Hong Kong
| |
Collapse
|
18
|
Li S, Meng S, Weng J, Wu Q. Fine-tuning shoot meristem size to feed the world. TRENDS IN PLANT SCIENCE 2022; 27:355-363. [PMID: 34743928 DOI: 10.1016/j.tplants.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
In order to maintain food security for the world's growing population, crop yields need to be significantly improved. Domestication and crop improvement involve modification of traits such as fruit size and seed number to optimize productivity. Although these traits are selected at the mature stage, they are determined during the development of shoot meristem, a tissue that forms successive meristems and reproductive organs that make edible fruits or seeds. Therefore, the architecture of reproductive organs and yield-related traits are determined during the maturation of shoot meristem. Here, we highlight recent progress in understanding how shoot meristem size affects yield-related traits and outline the strategies to fine-tune meristem regulatory genes to meet the demands of a growing population and promote sustainable agriculture.
Collapse
Affiliation(s)
- Shuping Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100091, China
| | - Shujun Meng
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jianfeng Weng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingyu Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
19
|
Basu U, Hegde VS, Daware A, Jha UC, Parida SK. Transcriptome landscape of early inflorescence developmental stages identifies key flowering time regulators in chickpea. PLANT MOLECULAR BIOLOGY 2022; 108:565-583. [PMID: 35106703 DOI: 10.1007/s11103-022-01247-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Transcriptome landscape during early inflorescence developmental stages identified candidate flowering time regulators including Early Flowering 3a. Further genomics approaches validated the role of this gene in flowering time regulation. The early stages of inflorescence development in plants are as crucial as the later floral developmental stages. Several traits, such as inflorescence architecture and flower developmental timings, are determined during those early stages. In chickpea, diverse forms of inflorescence architectures regarding meristem determinacy and the number of flowers per node are observed within the germplasm. Transcriptome analysis in four desi chickpea accessions with such unique inflorescence characteristics identifies the underlying shared regulatory events leading to inflorescence development. The vegetative to reproductive stage transition brings about major changes in the transcriptome landscape. The inflorescence development progression associated genes identified through co-expression network analysis includes both protein-coding genes and long non-coding RNAs (lncRNAs). Few lncRNAs identified in our study positively regulate flowering-related mRNA stability by acting competitively with miRNAs. Bulk segregrant analysis and association mapping narrowed down an InDel marker regulating flowering time in chickpea. Deletion of 11 bp in first exon of a negative flowering time regulator, Early Flowering 3a gene, leads to early flowering phenotype in chickpea. Understanding the key players involved in vegetative to reproductive stage transition and floral meristem development will be useful in manipulating flowering time and inflorescence architecture in chickpea and other legumes.
Collapse
Affiliation(s)
- Udita Basu
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Venkatraman S Hegde
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Anurag Daware
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Uday Chand Jha
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Swarup K Parida
- Genomics-Assisted Breeding and Crop Improvement Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
20
|
Chao H, Hu Y, Zhao L, Xin S, Ni Q, Zhang P, Chen M. Biogenesis, Functions, Interactions, and Resources of Non-Coding RNAs in Plants. Int J Mol Sci 2022; 23:ijms23073695. [PMID: 35409060 PMCID: PMC8998614 DOI: 10.3390/ijms23073695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Plant transcriptomes encompass a large number of functional non-coding RNAs (ncRNAs), only some of which have protein-coding capacity. Since their initial discovery, ncRNAs have been classified into two broad categories based on their biogenesis and mechanisms of action, housekeeping ncRNAs and regulatory ncRNAs. With advances in RNA sequencing technology and computational methods, bioinformatics resources continue to emerge and update rapidly, including workflow for in silico ncRNA analysis, up-to-date platforms, databases, and tools dedicated to ncRNA identification and functional annotation. In this review, we aim to describe the biogenesis, biological functions, and interactions with DNA, RNA, protein, and microorganism of five major regulatory ncRNAs (miRNA, siRNA, tsRNA, circRNA, lncRNA) in plants. Then, we systematically summarize tools for analysis and prediction of plant ncRNAs, as well as databases. Furthermore, we discuss the silico analysis process of these ncRNAs and present a protocol for step-by-step computational analysis of ncRNAs. In general, this review will help researchers better understand the world of ncRNAs at multiple levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Peijing Zhang
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| | - Ming Chen
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| |
Collapse
|
21
|
Schmitz RJ, Grotewold E, Stam M. Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. THE PLANT CELL 2022; 34:718-741. [PMID: 34918159 PMCID: PMC8824567 DOI: 10.1093/plcell/koab281] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/20/2021] [Indexed: 05/19/2023]
Abstract
The identification and characterization of cis-regulatory DNA sequences and how they function to coordinate responses to developmental and environmental cues is of paramount importance to plant biology. Key to these regulatory processes are cis-regulatory modules (CRMs), which include enhancers and silencers. Despite the extraordinary advances in high-quality sequence assemblies and genome annotations, the identification and understanding of CRMs, and how they regulate gene expression, lag significantly behind. This is especially true for their distinguishing characteristics and activity states. Here, we review the current knowledge on CRMs and breakthrough technologies enabling identification, characterization, and validation of CRMs; we compare the genomic distributions of CRMs with respect to their target genes between different plant species, and discuss the role of transposable elements harboring CRMs in the evolution of gene expression. This is an exciting time to study cis-regulomes in plants; however, significant existing challenges need to be overcome to fully understand and appreciate the role of CRMs in plant biology and in crop improvement.
Collapse
Affiliation(s)
- Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
22
|
Dai X, Tu X, Du B, Dong P, Sun S, Wang X, Sun J, Li G, Lu T, Zhong S, Li P. Chromatin and regulatory differentiation between bundle sheath and mesophyll cells in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:675-692. [PMID: 34783109 DOI: 10.1111/tpj.15586] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
C4 plants partition photosynthesis enzymes between the bundle sheath (BS) and the mesophyll (M) cells for the better delivery of CO2 to RuBisCO and to reduce photorespiration. To better understand how C4 photosynthesis is regulated at the transcriptional level, we performed RNA-seq, ATAC-seq, ChIP-seq and Bisulfite-seq (BS-seq) on BS and M cells isolated from maize leaves. By integrating differentially expressed genes with chromatin features, we found that chromatin accessibility coordinates with epigenetic features, especially H3K27me3 modification and CHH methylation, to regulate cell type-preferentially enriched gene expression. Not only the chromatin-accessible regions (ACRs) proximal to the genes (pACRs) but also the distal ACRs (dACRs) are determinants of cell type-preferentially enriched expression. We further identified cell type-preferentially enriched motifs, e.g. AAAG for BS cells and TGACC/T for M cells, and determined their corresponding transcription factors: DOFs and WRKYs. The complex interaction between cis and trans factors in the preferential expression of C4 genes was also observed. Interestingly, cell type-preferentially enriched gene expression can be fine-tuned by the coordination of multiple chromatin features. Such coordination may be critical in ensuring the cell type-specific function of key C4 genes. Based on the observed cell type-preferentially enriched expression pattern and coordinated chromatin features, we predicted a set of functionally unknown genes, e.g. Zm00001d042050 and Zm00001d040659, to be potential key C4 genes. Our findings provide deep insight into the architectures associated with C4 gene expression and could serve as a valuable resource to further identify the regulatory mechanisms present in C4 species.
Collapse
Affiliation(s)
- Xiuru Dai
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaoyu Tu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baijuan Du
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Pengfei Dong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shilei Sun
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xianglan Wang
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jing Sun
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Gene Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
23
|
Marand AP, Schmitz RJ. Single-cell analysis of cis-regulatory elements. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102094. [PMID: 34390932 DOI: 10.1016/j.pbi.2021.102094] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Plant tissues and organs are composed of functionally discrete cell types that are all defined by the same genome sequence. Cell-type variation in part arises from differential accessibility of cis-regulatory elements that encode the blueprints for transcriptional programs underlying cell identity and function. Owing to technical limitations, the role of cis-regulatory elements in cell identity maintenance, differentiation, and functional specialization has remained relatively unexplored in plant systems. Single-cell profiling has emerged as a powerful tool to circumvent these past obstacles by enabling unbiased charting of transcriptional and cis-regulatory states at the resolution of individual cells. Here, we review state-of-the-art single-cell approaches and analytical frameworks that have paved the way for establishing the link between cellular phenotypic variation and cis-regulatory mechanisms in plants.
Collapse
Affiliation(s)
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
24
|
Abraham-Juárez MJ, Barnes AC, Aragón-Raygoza A, Tyson D, Kur A, Strable J, Rellán-Álvarez R. The arches and spandrels of maize domestication, adaptation, and improvement. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102124. [PMID: 34715472 DOI: 10.1016/j.pbi.2021.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
People living in the Balsas River basin in southwest México domesticated maize from the bushy grass teosinte. Nine thousand years later, in 2021, Ms. Deb Haaland - a member of the Pueblo of Laguna tribe of New Mexico - wore a dress adorned with a cornstalk when she was sworn in as the Secretary of Interior of the United States of America. This choice of garment highlights the importance of the coevolution of maize and the farmers who, through careful selection over thousands of years, domesticated maize and adapted the physiology and shoot architecture of maize to fit local environments and growth habits. Some traits such as tillering were directly selected on (arches), and others such as tassel size are the by-products (spandrels) of maize evolution. Here, we review current knowledge of the underlying cellular, developmental, physiological, and metabolic processes that were selected by farmers and breeders, which have positioned maize as a top global staple crop.
Collapse
Affiliation(s)
- María Jazmín Abraham-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Irapuato, 36821, Mexico
| | - Allison C Barnes
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alejandro Aragón-Raygoza
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA; Unidad de Genómica Avanzada, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, Guanajuato, Mexico
| | - Destiny Tyson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Andi Kur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Josh Strable
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Rubén Rellán-Álvarez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
25
|
An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nat Commun 2021; 12:5832. [PMID: 34611160 PMCID: PMC8492687 DOI: 10.1038/s41467-021-26123-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Maize ear size and kernel number differ among lines, however, little is known about the molecular basis of ear length and its impact on kernel number. Here, we characterize a quantitative trait locus, qEL7, to identify a maize gene controlling ear length, flower number and fertility. qEL7 encodes 1-aminocyclopropane-1- carboxylate oxidase2 (ACO2), a gene that functions in the final step of ethylene biosynthesis and is expressed in specific domains in developing inflorescences. Confirmation of qEL7 by gene editing of ZmACO2 leads to a reduction in ethylene production in developing ears, and promotes meristem and flower development, resulting in a ~13.4% increase in grain yield per ear in hybrids lines. Our findings suggest that ethylene serves as a key signal in inflorescence development, affecting spikelet number, floral fertility, ear length and kernel number, and also provide a tool to improve grain productivity by optimizing ethylene levels in maize or in other cereals. Considerable genetic variation exists in maize ear size and kernel number. Here the authors show that variation in a gene encoding an ethylene biosynthetic enzyme impacts ear length, flower fertility and kernel yield suggesting an important role for ethylene signaling during inflorescence development.
Collapse
|
26
|
Savadel SD, Hartwig T, Turpin ZM, Vera DL, Lung PY, Sui X, Blank M, Frommer WB, Dennis JH, Zhang J, Bass HW. The native cistrome and sequence motif families of the maize ear. PLoS Genet 2021; 17:e1009689. [PMID: 34383745 PMCID: PMC8360572 DOI: 10.1371/journal.pgen.1009689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/30/2021] [Indexed: 01/22/2023] Open
Abstract
Elucidating the transcriptional regulatory networks that underlie growth and development requires robust ways to define the complete set of transcription factor (TF) binding sites. Although TF-binding sites are known to be generally located within accessible chromatin regions (ACRs), pinpointing these DNA regulatory elements globally remains challenging. Current approaches primarily identify binding sites for a single TF (e.g. ChIP-seq), or globally detect ACRs but lack the resolution to consistently define TF-binding sites (e.g. DNAse-seq, ATAC-seq). To address this challenge, we developed MNase-defined cistrome-Occupancy Analysis (MOA-seq), a high-resolution (< 30 bp), high-throughput, and genome-wide strategy to globally identify putative TF-binding sites within ACRs. We used MOA-seq on developing maize ears as a proof of concept, able to define a cistrome of 145,000 MOA footprints (MFs). While a substantial majority (76%) of the known ATAC-seq ACRs intersected with the MFs, only a minority of MFs overlapped with the ATAC peaks, indicating that the majority of MFs were novel and not detected by ATAC-seq. MFs were associated with promoters and significantly enriched for TF-binding and long-range chromatin interaction sites, including for the well-characterized FASCIATED EAR4, KNOTTED1, and TEOSINTE BRANCHED1. Importantly, the MOA-seq strategy improved the spatial resolution of TF-binding prediction and allowed us to identify 215 motif families collectively distributed over more than 100,000 non-overlapping, putatively-occupied binding sites across the genome. Our study presents a simple, efficient, and high-resolution approach to identify putative TF footprints and binding motifs genome-wide, to ultimately define a native cistrome atlas. Understanding gene regulation remains a central goal of modern biology. Delineating the full set of regulatory DNA elements that orchestrate this regulation requires information at two scales; the broad landscape of accessible chromatin, and the site-specific binding of transcription factors (TFs) at discrete cis-regulatory DNA elements. Here we describe a single assay that uses micrococcal nuclease (MNase) as a structural probe to simultaneously reveal regions of accessible chromatin in addition to high-resolution footprints with signatures of TF-occupied cis-elements. We have used maize developing ear tissue as proof of concept, showing the method detects known TF-binding sites. This genome-wide assay not only defines chromatin landscapes, but crucially enables global discovery and mapping of sequence motifs underlying small footprints of ~30 bp to produce an atlas of candidate TF occupancy.
Collapse
Affiliation(s)
- Savannah D. Savadel
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Thomas Hartwig
- Institute for Molecular Physiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Independent research groups, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Zachary M. Turpin
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Daniel L. Vera
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Xin Sui
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Max Blank
- Institute for Molecular Physiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Independent research groups, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Wolf B. Frommer
- Institute for Molecular Physiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Independent research groups, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jonathan H. Dennis
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Hank W. Bass
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
27
|
Park M, Williams DS, Turpin ZM, Wiggins ZJ, Tsolova VM, Onokpise OU, Bass HW. Differential nuclease sensitivity profiling uncovers a drought responsive change in maize leaf chromatin structure for two large retrotransposon derivatives, Uloh and Vegu. PLANT DIRECT 2021; 5:e337. [PMID: 34430792 PMCID: PMC8365550 DOI: 10.1002/pld3.337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Plant chromatin dynamics are generally recognized as playing a role in the genomic response to environmental stress. Although stress-induced transcriptional activities of LTR-retrotransposons have been reported, whether the stress response can be detected at the level of chromatin structure for LTR-retrotransposons is largely unknown. Using differential nuclease sensitivity profiling, we identified that two out of 29 maize LTR-retrotransposon families change their chromatin structure in response to drought stress in leaf tissue. The two LTR-retrotransposon families, uloh and vegu, are classified as nonautonomous LTR-retrotransposons. Differently from other families, the chromatin structure of these two families shifted from more open in normal conditions to more closed following drought stress. Although uloh and vegu lack sequence similarity, most of them shared an intriguing feature of having a new and uncharacterized insertion of a DNA sequence near one side of an LTR. In the uloh family, nine members with a strong drought response also exhibited a drought-induced reduction of published H3K4me3 histone modification in the inserted DNA region, implicating this modification in the chromatin structural changes. Our results provide new insight into how LTR-retrotransposons can alter their chromatin structure following stress response in plants.
Collapse
Affiliation(s)
- Minkyu Park
- Center for Viticulture and Small Fruit ResearchFlorida A&M UniversityTallahasseeFloridaUSA
| | - Delvin S. Williams
- College of Agriculture and Food SciencesFlorida A&M UniversityTallahasseeFloridaUSA
| | - Zachary M. Turpin
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | | | - Violeta M. Tsolova
- Center for Viticulture and Small Fruit ResearchFlorida A&M UniversityTallahasseeFloridaUSA
| | | | - Hank W. Bass
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
28
|
Song B, Buckler ES, Wang H, Wu Y, Rees E, Kellogg EA, Gates DJ, Khaipho-Burch M, Bradbury PJ, Ross-Ibarra J, Hufford MB, Romay MC. Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Res 2021; 31:1245-1257. [PMID: 34045362 PMCID: PMC8256870 DOI: 10.1101/gr.266528.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/21/2021] [Indexed: 01/16/2023]
Abstract
Thousands of species will be sequenced in the next few years; however, understanding how their genomes work, without an unlimited budget, requires both molecular and novel evolutionary approaches. We developed a sensitive sequence alignment pipeline to identify conserved noncoding sequences (CNSs) in the Andropogoneae tribe (multiple crop species descended from a common ancestor ∼18 million years ago). The Andropogoneae share similar physiology while being tremendously genomically diverse, harboring a broad range of ploidy levels, structural variation, and transposons. These contribute to the potential of Andropogoneae as a powerful system for studying CNSs and are factors we leverage to understand the function of maize CNSs. We found that 86% of CNSs were comprised of annotated features, including introns, UTRs, putative cis-regulatory elements, chromatin loop anchors, noncoding RNA (ncRNA) genes, and several transposable element superfamilies. CNSs were enriched in active regions of DNA replication in the early S phase of the mitotic cell cycle and showed different DNA methylation ratios compared to the genome-wide background. More than half of putative cis-regulatory sequences (identified via other methods) overlapped with CNSs detected in this study. Variants in CNSs were associated with gene expression levels, and CNS absence contributed to loss of gene expression. Furthermore, the evolution of CNSs was associated with the functional diversification of duplicated genes in the context of maize subgenomes. Our results provide a quantitative understanding of the molecular processes governing the evolution of CNSs in maize.
Collapse
Affiliation(s)
- Baoxing Song
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
- Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853, USA
| | - Hai Wang
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yaoyao Wu
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Evan Rees
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | - Daniel J Gates
- Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA
| | - Merritt Khaipho-Burch
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Peter J Bradbury
- Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA
- Center for Population Biology and Genome Center, University of California Davis, Davis, California 95616, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - M Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
29
|
Chen Z, Gallavotti A. Improving architectural traits of maize inflorescences. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:21. [PMID: 37309422 PMCID: PMC10236070 DOI: 10.1007/s11032-021-01212-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 06/13/2023]
Abstract
The domestication and improvement of maize resulted in radical changes in shoot architecture relative to its wild progenitor teosinte. In particular, critical modifications involved a reduction of branching and an increase in inflorescence size to meet the needs for human consumption and modern agricultural practices. Maize is a major contributor to global agricultural production by providing large and inexpensive quantities of food, animal feed, and ethanol. Maize is also a classic system for studying the genetic regulation of inflorescence formation and its enlarged female inflorescences directly influence seed production and yield. Studies on the molecular and genetic networks regulating meristem proliferation and maintenance, including receptor-ligand interactions, transcription factor regulation, and hormonal control, provide important insights into maize inflorescence development and reveal potential avenues for the targeted modification of specific architectural traits. In this review, we summarize recent findings on the molecular mechanisms controlling inflorescence formation and discuss how this knowledge can be applied to improve maize productivity in the face of present and future environmental challenges.
Collapse
Affiliation(s)
- Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020 USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020 USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| |
Collapse
|
30
|
Liu L, Gallagher J, Arevalo ED, Chen R, Skopelitis T, Wu Q, Bartlett M, Jackson D. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. NATURE PLANTS 2021; 7:287-294. [PMID: 33619356 DOI: 10.1038/s41477-021-00858-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/21/2021] [Indexed: 05/04/2023]
Abstract
Several yield-related traits selected during crop domestication and improvement1,2 are associated with increases in meristem size3, which is controlled by CLE peptide signals in the CLAVATA-WUSCHEL pathway4-13. Here, we engineered quantitative variation for yield-related traits in maize by making weak promoter alleles of CLE genes, and a null allele of a newly identified partially redundant compensating CLE gene, using CRISPR-Cas9 genome editing. These strategies increased multiple maize grain-yield-related traits, supporting the enormous potential for genomic editing in crop enhancement.
Collapse
Affiliation(s)
- Lei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Joseph Gallagher
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Richelle Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Qingyu Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Madelaine Bartlett
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
31
|
Yocca AE, Lu Z, Schmitz RJ, Freeling M, Edger PP. Evolution of Conserved Noncoding Sequences in Arabidopsis thaliana. Mol Biol Evol 2021; 38:2692-2703. [PMID: 33565589 PMCID: PMC8233505 DOI: 10.1093/molbev/msab042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent pangenome studies have revealed a large fraction of the gene content within a species exhibits presence-absence variation (PAV). However, coding regions alone provide an incomplete assessment of functional genomic sequence variation at the species level. Little to no attention has been paid to noncoding regulatory regions in pangenome studies, though these sequences directly modulate gene expression and phenotype. To uncover regulatory genetic variation, we generated chromosome-scale genome assemblies for thirty Arabidopsis thaliana accessions from multiple distinct habitats and characterized species level variation in Conserved Noncoding Sequences (CNS). Our analyses uncovered not only PAV and positional variation (PosV) but that diversity in CNS is nonrandom, with variants shared across different accessions. Using evolutionary analyses and chromatin accessibility data, we provide further evidence supporting roles for conserved and variable CNS in gene regulation. Additionally, our data suggests that transposable elements contribute to CNS variation. Characterizing species-level diversity in all functional genomic sequences may later uncover previously unknown mechanistic links between genotype and phenotype.
Collapse
Affiliation(s)
- Alan E Yocca
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
32
|
Xu X, Crow M, Rice BR, Li F, Harris B, Liu L, Demesa-Arevalo E, Lu Z, Wang L, Fox N, Wang X, Drenkow J, Luo A, Char SN, Yang B, Sylvester AW, Gingeras TR, Schmitz RJ, Ware D, Lipka AE, Gillis J, Jackson D. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev Cell 2021; 56:557-568.e6. [PMID: 33400914 DOI: 10.1016/j.devcel.2020.12.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/31/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
Abstract
Crop productivity depends on activity of meristems that produce optimized plant architectures, including that of the maize ear. A comprehensive understanding of development requires insight into the full diversity of cell types and developmental domains and the gene networks required to specify them. Until now, these were identified primarily by morphology and insights from classical genetics, which are limited by genetic redundancy and pleiotropy. Here, we investigated the transcriptional profiles of 12,525 single cells from developing maize ears. The resulting developmental atlas provides a single-cell RNA sequencing (scRNA-seq) map of an inflorescence. We validated our results by mRNA in situ hybridization and by fluorescence-activated cell sorting (FACS) RNA-seq, and we show how these data may facilitate genetic studies by predicting genetic redundancy, integrating transcriptional networks, and identifying candidate genes associated with crop yield traits.
Collapse
Affiliation(s)
- Xiaosa Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Megan Crow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brian R Rice
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Forrest Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Harris
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Liya Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nathan Fox
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaofei Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jorg Drenkow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Anding Luo
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Si Nian Char
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Anne W Sylvester
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; USDA-ARS, Robert W. Holley Center, Ithaca, NY 14853, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
33
|
Galli M, Feng F, Gallavotti A. Mapping Regulatory Determinants in Plants. Front Genet 2020; 11:591194. [PMID: 33193733 PMCID: PMC7655918 DOI: 10.3389/fgene.2020.591194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
The domestication and improvement of many plant species have frequently involved modulation of transcriptional outputs and continue to offer much promise for targeted trait engineering. The cis-regulatory elements (CREs) controlling these trait-associated transcriptional variants however reside within non-coding regions that are currently poorly annotated in most plant species. This is particularly true in large crop genomes where regulatory regions constitute only a small fraction of the total genomic space. Furthermore, relatively little is known about how CREs function to modulate transcription in plants. Therefore understanding where regulatory regions are located within a genome, what genes they control, and how they are structured are important factors that could be used to guide both traditional and synthetic plant breeding efforts. Here, we describe classic examples of regulatory instances as well as recent advances in plant regulatory genomics. We highlight valuable molecular tools that are enabling large-scale identification of CREs and offering unprecedented insight into how genes are regulated in diverse plant species. We focus on chromatin environment, transcription factor (TF) binding, the role of transposable elements, and the association between regulatory regions and target genes.
Collapse
Affiliation(s)
- Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | - Fan Feng
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States.,Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|