1
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2025; 68:5-102. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
2
|
Huang B, Chen Y, Yuan S. Application of Spatial Transcriptomics in Digestive System Tumors. Biomolecules 2024; 15:21. [PMID: 39858416 PMCID: PMC11761220 DOI: 10.3390/biom15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
In the field of digestive system tumor research, spatial transcriptomics technologies are used to delve into the spatial structure and the spatial heterogeneity of tumors and to analyze the tumor microenvironment (TME) and the inter-cellular interactions within it by revealing gene expression in tumors. These technologies are also instrumental in the diagnosis, prognosis, and treatment of digestive system tumors. This review provides a concise introduction to spatial transcriptomics and summarizes recent advances, application prospects, and technical challenges of these technologies in digestive system tumor research. This review also discusses the importance of combining spatial transcriptomics with single-cell RNA sequencing (scRNA-seq), artificial intelligence, and machine learning in digestive system cancer research.
Collapse
Affiliation(s)
- Bowen Huang
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China;
| | - Yingjia Chen
- Health Science Center, Peking University, Beijing 100191, China
| | - Shuqiang Yuan
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China;
| |
Collapse
|
3
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2770-x. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Agrawal A, Thomann S, Basu S, Grün D. NiCo identifies extrinsic drivers of cell state modulation by niche covariation analysis. Nat Commun 2024; 15:10628. [PMID: 39639035 PMCID: PMC11621405 DOI: 10.1038/s41467-024-54973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Cell states are modulated by intrinsic driving forces such as gene expression noise and extrinsic signals from the tissue microenvironment. The distinction between intrinsic and extrinsic cell state determinants is essential for understanding the regulation of cell fate in tissues during development, homeostasis and disease. The rapidly growing availability of single-cell resolution spatial transcriptomics makes it possible to meet this challenge. However, available computational methods to infer topological tissue domains, spatially variable genes, or ligand-receptor interactions are limited in their capacity to capture cell state changes driven by crosstalk between individual cell types within the same niche. We present NiCo, a computational framework for integrating single-cell resolution spatial transcriptomics with matched single-cell RNA-sequencing reference data to infer the influence of the spatial niche on the cell state. By applying NiCo to mouse embryogenesis, adult small intestine and liver data, we demonstrate the ability to predict novel niche interactions that govern cell state variation underlying tissue development and homeostasis. In particular, NiCo predicts a feedback mechanism between Kupffer cells and neighboring stellate cells dampening stellate cell activation in the normal liver. NiCo provides a powerful tool to elucidate tissue architecture and to identify drivers of cellular states in local niches.
Collapse
Affiliation(s)
- Ankit Agrawal
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Stefan Thomann
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sukanya Basu
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Dominic Grün
- Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- CAIDAS - Center for Artificial Intelligence and Data Science, Würzburg, Germany.
| |
Collapse
|
5
|
Wang X, Almet AA, Nie Q. Detecting global and local hierarchical structures in cell-cell communication using CrossChat. Nat Commun 2024; 15:10542. [PMID: 39627184 PMCID: PMC11615294 DOI: 10.1038/s41467-024-54821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Cell-cell communication (CCC) occurs across different biological scales, ranging from interactions between large groups of cells to interactions between individual cells, forming a hierarchical structure. Globally, CCC may exist between clusters or only subgroups of a cluster with varying size, while locally, a group of cells as sender or receiver may exhibit distinct signaling properties. Current existing methods infer CCC from single-cell RNA-seq or Spatial Transcriptomics only between predefined cell groups, neglecting the existing hierarchical structure within CCC that are determined by signaling molecules, in particular, ligands and receptors. Here, we develop CrossChat, a novel computational framework designed to infer and analyze the hierarchical cell-cell communication structures using two complementary approaches: a global hierarchical structure using a multi-resolution clustering method, and multiple local hierarchical structures using a tree detection method. This framework provides a comprehensive approach to understand the hierarchical relationships within CCC that govern complex tissue functions. By applying our method to two nonspatial scRNA-seq datasets sampled from COVID-19 patients and mouse embryonic skin, and two spatial transcriptomics datasets generated from Stereo-seq of mouse embryo and 10x Visium of mouse wounded skin, we showcase CrossChat's functionalities for analyzing both global and local hierarchical structures within cell-cell communication.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Mathematics, University of California, Irvine, CA, USA
| | - Axel A Almet
- Department of Mathematics, University of California, Irvine, CA, USA.
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA.
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA, USA.
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA.
| |
Collapse
|
6
|
Ji B, Wang X, Wang X, Xu L, Peng S. scDCA: deciphering the dominant cell communication assembly of downstream functional events from single-cell RNA-seq data. Brief Bioinform 2024; 26:bbae663. [PMID: 39694816 DOI: 10.1093/bib/bbae663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Cell-cell communications (CCCs) involve signaling from multiple sender cells that collectively impact downstream functional processes in receiver cells. Currently, computational methods are lacking for quantifying the contribution of pairwise combinations of cell types to specific functional processes in receiver cells (e.g. target gene expression or cell states). This limitation has impeded understanding the underlying mechanisms of cancer progression and identifying potential therapeutic targets. Here, we proposed a deep learning-based method, scDCA, to decipher the dominant cell communication assembly (DCA) that have a higher impact on a particular functional event in receiver cells from single-cell RNA-seq data. Specifically, scDCA employed a multi-view graph convolution network to reconstruct the CCCs landscape at single-cell resolution, and then identified DCA by interpreting the model with the attention mechanism. Taking the samples from advanced renal cell carcinoma as a case study, the scDCA was successfully applied and validated in revealing the DCA affecting the crucial gene expression in immune cells. The scDCA was also applied and validated in revealing the DCA responsible for the variation of 14 typical functional states of malignant cells. Furthermore, the scDCA was applied and validated to explore the alteration of CCCs under clinical intervention by comparing the DCA for certain cytotoxic factors between patients with and without immunotherapy. In summary, scDCA provides a valuable and practical tool for deciphering the cell type combinations with the most dominant impact on a specific functional process of receiver cells, which is of great significance for precise cancer treatment. Our data and code are free available at a public GitHub repository: https://github.com/pengsl-lab/scDCA.git.
Collapse
Affiliation(s)
- Boya Ji
- College of Computer Science and Electronic Engineering, Hunan University, Yuelu, 410006 Changsha, China
| | - Xiaoqi Wang
- College of Computer Science and Electronic Engineering, Hunan University, Yuelu, 410006 Changsha, China
| | - Xiang Wang
- The Second Xiangya Hospital, Central South University, Yuelu, 410006 Changsha, China
| | - Liwen Xu
- College of Computer Science and Electronic Engineering, Hunan University, Yuelu, 410006 Changsha, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Yuelu, 410006 Changsha, China
| |
Collapse
|
7
|
Phalip A, Netser S, Wagner S. Understanding the neurobiology of social behavior through exploring brain-wide dynamics of neural activity. Neurosci Biobehav Rev 2024; 165:105856. [PMID: 39159735 DOI: 10.1016/j.neubiorev.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in social behavior and suggested the existence of partially overlapping functional brain networks underlying various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and integrate those different levels. These include studying the expression of immediate-early genes throughout the entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across neuronal populations at the single-cell level.
Collapse
Affiliation(s)
- Adèle Phalip
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
8
|
Tang Z, Luo S, Zeng H, Huang J, Sui X, Wu M, Wang X. Search and match across spatial omics samples at single-cell resolution. Nat Methods 2024; 21:1818-1829. [PMID: 39294367 PMCID: PMC11529703 DOI: 10.1038/s41592-024-02410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Spatial omics technologies characterize tissue molecular properties with spatial information, but integrating and comparing spatial data across different technologies and modalities is challenging. A comparative analysis tool that can search, match and visualize both similarities and differences of molecular features in space across multiple samples is lacking. To address this, we introduce CAST (cross-sample alignment of spatial omics), a deep graph neural network-based method enabling spatial-to-spatial searching and matching at the single-cell level. CAST aligns tissues based on intrinsic similarities of spatial molecular features and reconstructs spatially resolved single-cell multi-omic profiles. CAST further allows spatially resolved differential analysis (∆Analysis) to pinpoint and visualize disease-associated molecular pathways and cell-cell interactions and single-cell relative translational efficiency profiling to reveal variations in translational control across cell types and regions. CAST serves as an integrative framework for seamless single-cell spatial data searching and matching across technologies, modalities and sample conditions.
Collapse
Affiliation(s)
- Zefang Tang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shuchen Luo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hu Zeng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiahao Huang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Sui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Morgan Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiao Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Shi M, Cheng X, Dai Y. STPDA: Leveraging spatial-temporal patterns for downstream analysis in spatial transcriptomic data. Comput Biol Chem 2024; 112:108127. [PMID: 38870559 DOI: 10.1016/j.compbiolchem.2024.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Spatial transcriptomics, a groundbreaking field in cellular biology, faces the challenge of effectively deciphering complex spatial-temporal gene expression patterns. Traditional data analysis methods often fail to capture the intricate nuances of this data, limiting the depth of understanding in spatial distribution and gene interactions. In response, we present Spatial-Temporal Patterns for Downstream Analysis (STPDA), a sophisticated computational framework tailored for spatial transcriptomic data analysis. STPDA leverages high-resolution mapping to bridge the gap between genomics and histopathology, offering a comprehensive perspective on the spatial dynamics of gene expression within tissues. This approach enables a view of cellular function and organization, marking a paradigm shift in our comprehension of biological systems. By employing Autoregressive Moving Average (ARMA) and Long Short-Term Memory (LSTM) models, STPDA effectively deciphers both global and local spatio-temporal dynamics in cellular environments. This integration of spatial-temporal patterns for downstream analysis offers a transformative approach to spatial transcriptomics data analysis. STPDA excels in various single-cell analytical tasks, including the identification of ligand-receptor interactions and cell type classification. Its ability to harness spatial-temporal patterns not only matches but frequently surpasses the performance of existing state-of-the-art methods. To ensure widespread usability and impact, we have encapsulated STPDA in a scalable and accessible Python package, addressing single-cell tasks through advanced spatial-temporal pattern analysis. This development promises to enhance our understanding of cellular biology, offering novel insights and therapeutic strategies, and represents a substantial advancement in the field of spatial transcriptomics.
Collapse
Affiliation(s)
- Mingguang Shi
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Xudong Cheng
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yulong Dai
- Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
10
|
Wang N, Hong W, Wu Y, Chen Z, Bai M, Wang W, Zhu J. Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology. MedComm (Beijing) 2024; 5:e765. [PMID: 39376738 PMCID: PMC11456678 DOI: 10.1002/mco2.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The growing advances in spatial transcriptomics (ST) stand as the new frontier bringing unprecedented influences in the realm of translational oncology. This has triggered systemic experimental design, analytical scope, and depth alongside with thorough bioinformatics approaches being constantly developed in the last few years. However, harnessing the power of spatial biology and streamlining an array of ST tools to achieve designated research goals are fundamental and require real-world experiences. We present a systemic review by updating the technical scope of ST across different principal basis in a timeline manner hinting on the generally adopted ST techniques used within the community. We also review the current progress of bioinformatic tools and propose in a pipelined workflow with a toolbox available for ST data exploration. With particular interests in tumor microenvironment where ST is being broadly utilized, we summarize the up-to-date progress made via ST-based technologies by narrating studies categorized into either mechanistic elucidation or biomarker profiling (translational oncology) across multiple cancer types and their ways of deploying the research through ST. This updated review offers as a guidance with forward-looking viewpoints endorsed by many high-resolution ST tools being utilized to disentangle biological questions that may lead to clinical significance in the future.
Collapse
Affiliation(s)
- Nan Wang
- Cosmos Wisdom Biotech Co. LtdHangzhouChina
| | - Weifeng Hong
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | - Yixing Wu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesInstitute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Minghua Bai
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | | | - Ji Zhu
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| |
Collapse
|
11
|
Sarwar A, Rue M, French L, Cross H, Chen X, Gillis J. Cross-expression analysis reveals patterns of coordinated gene expression in spatial transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613579. [PMID: 39345494 PMCID: PMC11429685 DOI: 10.1101/2024.09.17.613579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Spatial transcriptomics promises to transform our understanding of tissue biology by molecularly profiling individual cells in situ. A fundamental question they allow us to ask is how nearby cells orchestrate their gene expression. To investigate this, we introduce cross-expression, a novel framework for discovering gene pairs that coordinate their expression across neighboring cells. Just as co-expression quantifies synchronized gene expression within the same cells, cross-expression measures coordinated gene expression between spatially adjacent cells, allowing us to understand tissue gene expression programs with single cell resolution. Using this framework, we recover ligand-receptor partners and discover gene combinations marking anatomical regions. More generally, we create cross-expression networks to find gene modules with orchestrated expression patterns. Finally, we provide an efficient R package to facilitate cross-expression analysis, quantify effect sizes, and generate novel visualizations to better understand spatial gene expression programs.
Collapse
Affiliation(s)
- Ameer Sarwar
- Department of Cell and Systems Biology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Mara Rue
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Leon French
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Helen Cross
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jesse Gillis
- Department of Physiology and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Cahill R, Wang Y, Xian RP, Lee AJ, Zeng H, Yu B, Tasic B, Abbasi-Asl R. Unsupervised pattern identification in spatial gene expression atlas reveals mouse brain regions beyond established ontology. Proc Natl Acad Sci U S A 2024; 121:e2319804121. [PMID: 39226356 PMCID: PMC11406299 DOI: 10.1073/pnas.2319804121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
The rapid growth of large-scale spatial gene expression data demands efficient and reliable computational tools to extract major trends of gene expression in their native spatial context. Here, we used stability-driven unsupervised learning (i.e., staNMF) to identify principal patterns (PPs) of 3D gene expression profiles and understand spatial gene distribution and anatomical localization at the whole mouse brain level. Our subsequent spatial correlation analysis systematically compared the PPs to known anatomical regions and ontology from the Allen Mouse Brain Atlas using spatial neighborhoods. We demonstrate that our stable and spatially coherent PPs, whose linear combinations accurately approximate the spatial gene data, are highly correlated with combinations of expert-annotated brain regions. These PPs yield a brain ontology based purely on spatial gene expression. Our PP identification approach outperforms principal component analysis and typical clustering algorithms on the same task. Moreover, we show that the stable PPs reveal marked regional imbalance of brainwide genetic architecture, leading to region-specific marker genes and gene coexpression networks. Our findings highlight the advantages of stability-driven machine learning for plausible biological discovery from dense spatial gene expression data, streamlining tasks that are infeasible by conventional manual approaches.
Collapse
Affiliation(s)
- Robert Cahill
- Department of Neurology, University of California, San Francisco, CA 94143
- UCSF Weill Institute for Neurosciences, San Francisco, CA 94143
| | - Yu Wang
- Department of Statistics, University of California, Berkeley, CA 94720
| | - R Patrick Xian
- Department of Neurology, University of California, San Francisco, CA 94143
- UCSF Weill Institute for Neurosciences, San Francisco, CA 94143
| | - Alex J Lee
- Department of Neurology, University of California, San Francisco, CA 94143
- UCSF Weill Institute for Neurosciences, San Francisco, CA 94143
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109
| | - Bin Yu
- Department of Statistics, University of California, Berkeley, CA 94720
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720
| | | | - Reza Abbasi-Asl
- Department of Neurology, University of California, San Francisco, CA 94143
- UCSF Weill Institute for Neurosciences, San Francisco, CA 94143
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143
| |
Collapse
|
13
|
Jena SG, Verma A, Engelhardt BE. Answering open questions in biology using spatial genomics and structured methods. BMC Bioinformatics 2024; 25:291. [PMID: 39232666 PMCID: PMC11375982 DOI: 10.1186/s12859-024-05912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Genomics methods have uncovered patterns in a range of biological systems, but obscure important aspects of cell behavior: the shapes, relative locations, movement, and interactions of cells in space. Spatial technologies that collect genomic or epigenomic data while preserving spatial information have begun to overcome these limitations. These new data promise a deeper understanding of the factors that affect cellular behavior, and in particular the ability to directly test existing theories about cell state and variation in the context of morphology, location, motility, and signaling that could not be tested before. Rapid advancements in resolution, ease-of-use, and scale of spatial genomics technologies to address these questions also require an updated toolkit of statistical methods with which to interrogate these data. We present a framework to respond to this new avenue of research: four open biological questions that can now be answered using spatial genomics data paired with methods for analysis. We outline spatial data modalities for each open question that may yield specific insights, discuss how conflicting theories may be tested by comparing the data to conceptual models of biological behavior, and highlight statistical and machine learning-based tools that may prove particularly helpful to recover biological understanding.
Collapse
Affiliation(s)
- Siddhartha G Jena
- Department of Stem Cell and Regenerative Biology, Harvard, 7 Divinity Ave, Cambridge, MA, USA
| | - Archit Verma
- Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | | |
Collapse
|
14
|
Liu L, Chen A, Li Y, Mulder J, Heyn H, Xu X. Spatiotemporal omics for biology and medicine. Cell 2024; 187:4488-4519. [PMID: 39178830 DOI: 10.1016/j.cell.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
The completion of the Human Genome Project has provided a foundational blueprint for understanding human life. Nonetheless, understanding the intricate mechanisms through which our genetic blueprint is involved in disease or orchestrates development across temporal and spatial dimensions remains a profound scientific challenge. Recent breakthroughs in cellular omics technologies have paved new pathways for understanding the regulation of genomic elements and the relationship between gene expression, cellular functions, and cell fate determination. The advent of spatial omics technologies, encompassing both imaging and sequencing-based methodologies, has enabled a comprehensive understanding of biological processes from a cellular ecosystem perspective. This review offers an updated overview of how spatial omics has advanced our understanding of the translation of genetic information into cellular heterogeneity and tissue structural organization and their dynamic changes over time. It emphasizes the discovery of various biological phenomena, related to organ functionality, embryogenesis, species evolution, and the pathogenesis of diseases.
Collapse
Affiliation(s)
| | - Ao Chen
- BGI Research, Shenzhen 518083, China
| | | | - Jan Mulder
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Holger Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China.
| |
Collapse
|
15
|
Rajdeo P, Aronow B, Surya Prasath VB. Deep learning-based multimodal spatial transcriptomics analysis for cancer. Adv Cancer Res 2024; 163:1-38. [PMID: 39271260 PMCID: PMC11431148 DOI: 10.1016/bs.acr.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The advent of deep learning (DL) and multimodal spatial transcriptomics (ST) has revolutionized cancer research, offering unprecedented insights into tumor biology. This book chapter explores the integration of DL with ST to advance cancer diagnostics, treatment planning, and precision medicine. DL, a subset of artificial intelligence, employs neural networks to model complex patterns in vast datasets, significantly enhancing diagnostic and treatment applications. In oncology, convolutional neural networks excel in image classification, segmentation, and tumor volume analysis, essential for identifying tumors and optimizing radiotherapy. The chapter also delves into multimodal data analysis, which integrates genomic, proteomic, imaging, and clinical data to offer a holistic understanding of cancer biology. Leveraging diverse data sources, researchers can uncover intricate details of tumor heterogeneity, microenvironment interactions, and treatment responses. Examples include integrating MRI data with genomic profiles for accurate glioma grading and combining proteomic and clinical data to uncover drug resistance mechanisms. DL's integration with multimodal data enables comprehensive and actionable insights for cancer diagnosis and treatment. The synergy between DL models and multimodal data analysis enhances diagnostic accuracy, personalized treatment planning, and prognostic modeling. Notable applications include ST, which maps gene expression patterns within tissue contexts, providing critical insights into tumor heterogeneity and potential therapeutic targets. In summary, the integration of DL and multimodal ST represents a paradigm shift towards more precise and personalized oncology. This chapter elucidates the methodologies and applications of these advanced technologies, highlighting their transformative potential in cancer research and clinical practice.
Collapse
Affiliation(s)
- Pankaj Rajdeo
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - V B Surya Prasath
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States; Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States; Department of Computer Science, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
16
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
17
|
Cui W, Long Q, Xiao M, Wang X, Feng G, Li X, Wang P, Zhou Y. Refining computational inference of gene regulatory networks: integrating knockout data within a multi-task framework. Brief Bioinform 2024; 25:bbae361. [PMID: 39082651 PMCID: PMC11289685 DOI: 10.1093/bib/bbae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 07/16/2024] [Indexed: 08/03/2024] Open
Abstract
Constructing accurate gene regulatory network s (GRNs), which reflect the dynamic governing process between genes, is critical to understanding the diverse cellular process and unveiling the complexities in biological systems. With the development of computer sciences, computational-based approaches have been applied to the GRNs inference task. However, current methodologies face challenges in effectively utilizing existing topological information and prior knowledge of gene regulatory relationships, hindering the comprehensive understanding and accurate reconstruction of GRNs. In response, we propose a novel graph neural network (GNN)-based Multi-Task Learning framework for GRN reconstruction, namely MTLGRN. Specifically, we first encode the gene promoter sequences and the gene biological features and concatenate the corresponding feature representations. Then, we construct a multi-task learning framework including GRN reconstruction, Gene knockout predict, and Gene expression matrix reconstruction. With joint training, MTLGRN can optimize the gene latent representations by integrating gene knockout information, promoter characteristics, and other biological attributes. Extensive experimental results demonstrate superior performance compared with state-of-the-art baselines on the GRN reconstruction task, efficiently leveraging biological knowledge and comprehensively understanding the gene regulatory relationships. MTLGRN also pioneered attempts to simulate gene knockouts on bulk data by incorporating gene knockout information.
Collapse
Affiliation(s)
- Wentao Cui
- Computer Network Information Center, Chinese Academy of Sciences, CAS Informatization Plaza No. 2 Dong Sheng Nan Lu, Haidian District, Beijing, 100083, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Qingqing Long
- Computer Network Information Center, Chinese Academy of Sciences, CAS Informatization Plaza No. 2 Dong Sheng Nan Lu, Haidian District, Beijing, 100083, China
| | - Meng Xiao
- Computer Network Information Center, Chinese Academy of Sciences, CAS Informatization Plaza No. 2 Dong Sheng Nan Lu, Haidian District, Beijing, 100083, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Xuezhi Wang
- Computer Network Information Center, Chinese Academy of Sciences, CAS Informatization Plaza No. 2 Dong Sheng Nan Lu, Haidian District, Beijing, 100083, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Guihai Feng
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Xin Li
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Pengfei Wang
- Computer Network Information Center, Chinese Academy of Sciences, CAS Informatization Plaza No. 2 Dong Sheng Nan Lu, Haidian District, Beijing, 100083, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yuanchun Zhou
- Computer Network Information Center, Chinese Academy of Sciences, CAS Informatization Plaza No. 2 Dong Sheng Nan Lu, Haidian District, Beijing, 100083, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
18
|
Wang Y, Zhou F, Guan J. SFINN: inferring gene regulatory network from single-cell and spatial transcriptomic data with shared factor neighborhood and integrated neural network. Bioinformatics 2024; 40:btae433. [PMID: 38950180 PMCID: PMC11236097 DOI: 10.1093/bioinformatics/btae433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024] Open
Abstract
MOTIVATION The rise of single-cell RNA sequencing (scRNA-seq) technology presents new opportunities for constructing detailed cell type-specific gene regulatory networks (GRNs) to study cell heterogeneity. However, challenges caused by noises, technical errors, and dropout phenomena in scRNA-seq data pose significant obstacles to GRN inference, making the design of accurate GRN inference algorithms still essential. The recent growth of both single-cell and spatial transcriptomic sequencing data enables the development of supervised deep learning methods to infer GRNs on these diverse single-cell datasets. RESULTS In this study, we introduce a novel deep learning framework based on shared factor neighborhood and integrated neural network (SFINN) for inferring potential interactions and causalities between transcription factors and target genes from single-cell and spatial transcriptomic data. SFINN utilizes shared factor neighborhood to construct cellular neighborhood network based on gene expression data and additionally integrates cellular network generated from spatial location information. Subsequently, the cell adjacency matrix and gene pair expression are fed into an integrated neural network framework consisting of a graph convolutional neural network and a fully-connected neural network to determine whether the genes interact. Performance evaluation in the tasks of gene interaction and causality prediction against the existing GRN reconstruction algorithms demonstrates the usability and competitiveness of SFINN across different kinds of data. SFINN can be applied to infer GRNs from conventional single-cell sequencing data and spatial transcriptomic data. AVAILABILITY AND IMPLEMENTATION SFINN can be accessed at GitHub: https://github.com/JGuan-lab/SFINN.
Collapse
Affiliation(s)
- Yongjie Wang
- Department of Automation, Xiamen University, Xiamen, Fujian 361102, China
| | - Fengfan Zhou
- Department of Automation, Xiamen University, Xiamen, Fujian 361102, China
| | - Jinting Guan
- Department of Automation, Xiamen University, Xiamen, Fujian 361102, China
- Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai 200240, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
19
|
Jin Y, Zuo Y, Li G, Liu W, Pan Y, Fan T, Fu X, Yao X, Peng Y. Advances in spatial transcriptomics and its applications in cancer research. Mol Cancer 2024; 23:129. [PMID: 38902727 PMCID: PMC11188176 DOI: 10.1186/s12943-024-02040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Malignant tumors have increasing morbidity and high mortality, and their occurrence and development is a complicate process. The development of sequencing technologies enabled us to gain a better understanding of the underlying genetic and molecular mechanisms in tumors. In recent years, the spatial transcriptomics sequencing technologies have been developed rapidly and allow the quantification and illustration of gene expression in the spatial context of tissues. Compared with the traditional transcriptomics technologies, spatial transcriptomics technologies not only detect gene expression levels in cells, but also inform the spatial location of genes within tissues, cell composition of biological tissues, and interaction between cells. Here we summarize the development of spatial transcriptomics technologies, spatial transcriptomics tools and its application in cancer research. We also discuss the limitations and challenges of current spatial transcriptomics approaches, as well as future development and prospects.
Collapse
Affiliation(s)
- Yang Jin
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanli Zuo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Li
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, 610061, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yitong Pan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Fan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Fu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojun Yao
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, 610061, China.
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
20
|
Armingol E, Baghdassarian HM, Lewis NE. The diversification of methods for studying cell-cell interactions and communication. Nat Rev Genet 2024; 25:381-400. [PMID: 38238518 PMCID: PMC11139546 DOI: 10.1038/s41576-023-00685-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 05/20/2024]
Abstract
No cell lives in a vacuum, and the molecular interactions between cells define most phenotypes. Transcriptomics provides rich information to infer cell-cell interactions and communication, thus accelerating the discovery of the roles of cells within their communities. Such research relies heavily on algorithms that infer which cells are interacting and the ligands and receptors involved. Specific pressures on different research niches are driving the evolution of next-generation computational tools, enabling new conceptual opportunities and technological advances. More sophisticated algorithms now account for the heterogeneity and spatial organization of cells, multiple ligand types and intracellular signalling events, and enable the use of larger and more complex datasets, including single-cell and spatial transcriptomics. Similarly, new high-throughput experimental methods are increasing the number and resolution of interactions that can be analysed simultaneously. Here, we explore recent progress in cell-cell interaction research and highlight the diversification of the next generation of tools, which have yielded a rich ecosystem of tools for different applications and are enabling invaluable discoveries.
Collapse
Affiliation(s)
- Erick Armingol
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA.
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Hratch M Baghdassarian
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Paediatrics, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Zhang Y, Lee RY, Tan CW, Guo X, Yim WWY, Lim JC, Wee FY, Yang WU, Kharbanda M, Lee JYJ, Ngo NT, Leow WQ, Loo LH, Lim TK, Sobota RM, Lau MC, Davis MJ, Yeong J. Spatial omics techniques and data analysis for cancer immunotherapy applications. Curr Opin Biotechnol 2024; 87:103111. [PMID: 38520821 DOI: 10.1016/j.copbio.2024.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/25/2024]
Abstract
In-depth profiling of cancer cells/tissues is expanding our understanding of the genomic, epigenomic, transcriptomic, and proteomic landscape of cancer. However, the complexity of the cancer microenvironment, particularly its immune regulation, has made it difficult to exploit the potential of cancer immunotherapy. High-throughput spatial omics technologies and analysis pipelines have emerged as powerful tools for tackling this challenge. As a result, a potential revolution in cancer diagnosis, prognosis, and treatment is on the horizon. In this review, we discuss the technological advances in spatial profiling of cancer around and beyond the central dogma to harness the full benefits of immunotherapy. We also discuss the promise and challenges of spatial data analysis and interpretation and provide an outlook for the future.
Collapse
Affiliation(s)
- Yue Zhang
- Duke-NUS Medical School, Singapore 169856, Singapore
| | - Ren Yuan Lee
- Yong Loo Lin School of Medicine, National University of Singapore, 169856 Singapore; Singapore Thong Chai Medical Institution, Singapore 169874, Singapore
| | - Chin Wee Tan
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia; Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Xue Guo
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Willa W-Y Yim
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Jeffrey Ct Lim
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Felicia Yt Wee
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - W U Yang
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Malvika Kharbanda
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia; immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jia-Ying J Lee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore
| | - Nye Thane Ngo
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Wei Qiang Leow
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Lit-Hsin Loo
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore
| | - Tony Kh Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore
| | - Mai Chan Lau
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A⁎STAR), Singapore 138648, Singapore
| | - Melissa J Davis
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia; Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia; immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joe Yeong
- Institute of Molecular Cell Biology (IMCB), Agency of Science, Technology and Research (A⁎STAR), Singapore 169856, Singapore; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A⁎STAR), Singapore 138671, Singapore.
| |
Collapse
|
22
|
Schmidt M, Avagyan S, Reiche K, Binder H, Loeffler-Wirth H. A Spatial Transcriptomics Browser for Discovering Gene Expression Landscapes across Microscopic Tissue Sections. Curr Issues Mol Biol 2024; 46:4701-4720. [PMID: 38785552 PMCID: PMC11119626 DOI: 10.3390/cimb46050284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
A crucial feature of life is its spatial organization and compartmentalization on the molecular, cellular, and tissue levels. Spatial transcriptomics (ST) technology has opened a new chapter of the sequencing revolution, emerging rapidly with transformative effects across biology. This technique produces extensive and complex sequencing data, raising the need for computational methods for their comprehensive analysis and interpretation. We developed the ST browser web tool for the interactive discovery of ST images, focusing on different functional aspects such as single gene expression, the expression of functional gene sets, as well as the inspection of the spatial patterns of cell-cell interactions. As a unique feature, our tool applies self-organizing map (SOM) machine learning to the ST data. Our SOM data portrayal method generates individual gene expression landscapes for each spot in the ST image, enabling its downstream analysis with high resolution. The performance of the spatial browser is demonstrated by disentangling the intra-tumoral heterogeneity of melanoma and the microarchitecture of the mouse brain. The integration of machine-learning-based SOM portrayal into an interactive ST analysis environment opens novel perspectives for the comprehensive knowledge mining of the organization and interactions of cellular ecosystems.
Collapse
Affiliation(s)
- Maria Schmidt
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
| | - Susanna Avagyan
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstrasse 1, 04103 Leipzig, Germany
- Institute for Clinical Immunology, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan Str., Yerevan 0062, Armenia
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics (IZBI), Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany; (M.S.); (H.B.)
| |
Collapse
|
23
|
Johnson AL, Lopez-Bertoni H. Cellular diversity through space and time: adding new dimensions to GBM therapeutic development. Front Genet 2024; 15:1356611. [PMID: 38774283 PMCID: PMC11106394 DOI: 10.3389/fgene.2024.1356611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
The current median survival for glioblastoma (GBM) patients is only about 16 months, with many patients succumbing to the disease in just a matter of months, making it the most common and aggressive primary brain cancer in adults. This poor outcome is, in part, due to the lack of new treatment options with only one FDA-approved treatment in the last decade. Advances in sequencing techniques and transcriptomic analyses have revealed a vast degree of heterogeneity in GBM, from inter-patient diversity to intra-tumoral cellular variability. These cutting-edge approaches are providing new molecular insights highlighting a critical role for the tumor microenvironment (TME) as a driver of cellular plasticity and phenotypic heterogeneity. With this expanded molecular toolbox, the influence of TME factors, including endogenous (e.g., oxygen and nutrient availability and interactions with non-malignant cells) and iatrogenically induced (e.g., post-therapeutic intervention) stimuli, on tumor cell states can be explored to a greater depth. There exists a critical need for interrogating the temporal and spatial aspects of patient tumors at a high, cell-level resolution to identify therapeutically targetable states, interactions and mechanisms. In this review, we discuss advancements in our understanding of spatiotemporal diversity in GBM with an emphasis on the influence of hypoxia and immune cell interactions on tumor cell heterogeneity. Additionally, we describe specific high-resolution spatially resolved methodologies and their potential to expand the impact of pre-clinical GBM studies. Finally, we highlight clinical attempts at targeting hypoxia- and immune-related mechanisms of malignancy and the potential therapeutic opportunities afforded by single-cell and spatial exploration of GBM patient specimens.
Collapse
Affiliation(s)
- Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Baltimore, MD, United States
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Baltimore, MD, United States
- Oncology, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
24
|
Zhou L, Wang X, Peng L, Chen M, Wen H. SEnSCA: Identifying possible ligand-receptor interactions and its application in cell-cell communication inference. J Cell Mol Med 2024; 28:e18372. [PMID: 38747737 PMCID: PMC11095317 DOI: 10.1111/jcmm.18372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Multicellular organisms have dense affinity with the coordination of cellular activities, which severely depend on communication across diverse cell types. Cell-cell communication (CCC) is often mediated via ligand-receptor interactions (LRIs). Existing CCC inference methods are limited to known LRIs. To address this problem, we developed a comprehensive CCC analysis tool SEnSCA by integrating single cell RNA sequencing and proteome data. SEnSCA mainly contains potential LRI acquisition and CCC strength evaluation. For acquiring potential LRIs, it first extracts LRI features and reduces the feature dimension, subsequently constructs negative LRI samples through K-means clustering, finally acquires potential LRIs based on Stacking ensemble comprising support vector machine, 1D-convolutional neural networks and multi-head attention mechanism. During CCC strength evaluation, SEnSCA conducts LRI filtering and then infers CCC by combining the three-point estimation approach and single cell RNA sequencing data. SEnSCA computed better precision, recall, accuracy, F1 score, AUC and AUPR under most of conditions when predicting possible LRIs. To better illustrate the inferred CCC network, SEnSCA provided three visualization options: heatmap, bubble diagram and network diagram. Its application on human melanoma tissue demonstrated its reliability in CCC detection. In summary, SEnSCA offers a useful CCC inference tool and is freely available at https://github.com/plhhnu/SEnSCA.
Collapse
Affiliation(s)
- Liqian Zhou
- School of Life Sciences and ChemistryHunan University of TechnologyHunanChina
| | - Xiwen Wang
- School of Life Sciences and ChemistryHunan University of TechnologyHunanChina
| | - Lihong Peng
- School of Life Sciences and ChemistryHunan University of TechnologyHunanChina
| | - Min Chen
- School of Computer ScienceHunan Institute of TechnologyHengyangChina
| | - Hong Wen
- School of Computer ScienceHunan University of TechnologyHunanChina
| |
Collapse
|
25
|
吴 瀚, 高 洁. [Identifying spatial domains from spatial transcriptome by graph attention network]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:246-252. [PMID: 38686404 PMCID: PMC11058491 DOI: 10.7507/1001-5515.202304030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/01/2023] [Indexed: 05/02/2024]
Abstract
Due to the high dimensionality and complexity of the data, the analysis of spatial transcriptome data has been a challenging problem. Meanwhile, cluster analysis is the core issue of the analysis of spatial transcriptome data. In this article, a deep learning approach is proposed based on graph attention networks for clustering analysis of spatial transcriptome data. Our method first enhances the spatial transcriptome data, then uses graph attention networks to extract features from nodes, and finally uses the Leiden algorithm for clustering analysis. Compared with the traditional non-spatial and spatial clustering methods, our method has better performance in data analysis through the clustering evaluation index. The experimental results show that the proposed method can effectively cluster spatial transcriptome data and identify different spatial domains, which provides a new tool for studying spatial transcriptome data.
Collapse
Affiliation(s)
- 瀚文 吴
- 江南大学(江苏无锡 214122)Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - 洁 高
- 江南大学(江苏无锡 214122)Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
26
|
Chen Z, Ain NU, Zhao Q, Zhang X. From tradition to innovation: conventional and deep learning frameworks in genome annotation. Brief Bioinform 2024; 25:bbae138. [PMID: 38581418 PMCID: PMC10998533 DOI: 10.1093/bib/bbae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/08/2024] Open
Abstract
Following the milestone success of the Human Genome Project, the 'Encyclopedia of DNA Elements (ENCODE)' initiative was launched in 2003 to unearth information about the numerous functional elements within the genome. This endeavor coincided with the emergence of numerous novel technologies, accompanied by the provision of vast amounts of whole-genome sequences, high-throughput data such as ChIP-Seq and RNA-Seq. Extracting biologically meaningful information from this massive dataset has become a critical aspect of many recent studies, particularly in annotating and predicting the functions of unknown genes. The core idea behind genome annotation is to identify genes and various functional elements within the genome sequence and infer their biological functions. Traditional wet-lab experimental methods still rely on extensive efforts for functional verification. However, early bioinformatics algorithms and software primarily employed shallow learning techniques; thus, the ability to characterize data and features learning was limited. With the widespread adoption of RNA-Seq technology, scientists from the biological community began to harness the potential of machine learning and deep learning approaches for gene structure prediction and functional annotation. In this context, we reviewed both conventional methods and contemporary deep learning frameworks, and highlighted novel perspectives on the challenges arising during annotation underscoring the dynamic nature of this evolving scientific landscape.
Collapse
Affiliation(s)
- Zhaojia Chen
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Noor ul Ain
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| |
Collapse
|
27
|
Zhu J, Dai H, Chen L. Revealing cell-cell communication pathways with their spatially coupled gene programs. Brief Bioinform 2024; 25:bbae202. [PMID: 38706319 PMCID: PMC11070651 DOI: 10.1093/bib/bbae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Inference of cell-cell communication (CCC) provides valuable information in understanding the mechanisms of many important life processes. With the rise of spatial transcriptomics in recent years, many methods have emerged to predict CCCs using spatial information of cells. However, most existing methods only describe CCCs based on ligand-receptor interactions, but lack the exploration of their upstream/downstream pathways. In this paper, we proposed a new method to infer CCCs, called Intercellular Gene Association Network (IGAN). Specifically, it is for the first time that we can estimate the gene associations/network between two specific single spatially adjacent cells. By using the IGAN method, we can not only infer CCCs in an accurate manner, but also explore the upstream/downstream pathways of ligands/receptors from the network perspective, which are actually exhibited as a new panoramic cell-interaction-pathway graph, and thus provide extensive information for the regulatory mechanisms behind CCCs. In addition, IGAN can measure the CCC activity at single cell/spot resolution, and help to discover the CCC spatial heterogeneity. Interestingly, we found that CCC patterns from IGAN are highly consistent with the spatial microenvironment patterns for each cell type, which further indicated the accuracy of our method. Analyses on several public datasets validated the advantages of IGAN.
Collapse
Affiliation(s)
- Junchao Zhu
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Cell building, No. 320 Yueyang Road, Xuhui District, Shanghai 200031, China
| | - Hao Dai
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Cell building, No. 320 Yueyang Road, Xuhui District, Shanghai 200031, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Cell building, No. 320 Yueyang Road, Xuhui District, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, No. 1, Xiangshan Zhinong, Xihu District, Hangzhou 310024, China
| |
Collapse
|
28
|
Danishuddin, Khan S, Kim JJ. Spatial transcriptomics data and analytical methods: An updated perspective. Drug Discov Today 2024; 29:103889. [PMID: 38244672 DOI: 10.1016/j.drudis.2024.103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Spatial transcriptomics (ST) is a newly emerging field that integrates high-resolution imaging and transcriptomic data to enable the high-throughput analysis of the spatial localization of transcripts in diverse biological systems. The rapid progress in this field necessitates the development of innovative computational methods to effectively tackle the distinct challenges posed by the analysis of ST data. These platforms, integrating AI techniques, offer a promising avenue for understanding disease mechanisms and expediting drug discovery. Despite significant advances in the development of ST data analysis techniques, there is an ongoing need to enhance these models for increased biological relevance. In this review, we briefly discuss the ST-related databases and current deep-learning-based models for spatial transcriptome data analyses and highlight their roles and future perspectives in biomedical applications.
Collapse
Affiliation(s)
- Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Jong Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.
| |
Collapse
|
29
|
Ye F, Wang J, Li J, Mei Y, Guo G. Mapping Cell Atlases at the Single-Cell Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305449. [PMID: 38145338 PMCID: PMC10885669 DOI: 10.1002/advs.202305449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Indexed: 12/26/2023]
Abstract
Recent advancements in single-cell technologies have led to rapid developments in the construction of cell atlases. These atlases have the potential to provide detailed information about every cell type in different organisms, enabling the characterization of cellular diversity at the single-cell level. Global efforts in developing comprehensive cell atlases have profound implications for both basic research and clinical applications. This review provides a broad overview of the cellular diversity and dynamics across various biological systems. In addition, the incorporation of machine learning techniques into cell atlas analyses opens up exciting prospects for the field of integrative biology.
Collapse
Affiliation(s)
- Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
| | - Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
| | - Jiaqi Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
| | - Yuqing Mei
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative MedicineDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineHangzhouZhejiang310058China
- Institute of HematologyZhejiang UniversityHangzhouZhejiang310000China
| |
Collapse
|
30
|
Yan J, Qu W, Li X, Wang R, Tan J. GATLGEMF: A graph attention model with line graph embedding multi-complex features for ncRNA-protein interactions prediction. Comput Biol Chem 2024; 108:108000. [PMID: 38070456 DOI: 10.1016/j.compbiolchem.2023.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/22/2024]
Abstract
Non-coding RNA (ncRNA) plays an important role in many fundamental biological processes, and it may be closely associated with many complex human diseases. NcRNAs exert their functions by interacting with proteins. Therefore, identifying novel ncRNA-protein interactions (NPIs) is important for understanding the mechanism of ncRNAs role. The computational approach has the advantage of low cost and high efficiency. Machine learning and deep learning have achieved great success by making full use of sequence information and structure information. Graph neural network (GNN) is a deep learning algorithm for complex network link prediction, which can extract and discover features in graph topology data. In this study, we propose a new computational model called GATLGEMF. We used a line graph transformation strategy to obtain the most valuable feature information and input this feature information into the attention network to predict NPIs. The results on four benchmark datasets show that our method achieves superior performance. We further compare GATLGEMF with the state-of-the-art existing methods to evaluate the model performance. GATLGEMF shows the best performance with the area under curve (AUC) of 92.41% and 98.93% on RPI2241 and NPInter v2.0 datasets, respectively. In addition, a case study shows that GATLGEMF has the ability to predict new interactions based on known interactions. The source code is available at https://github.com/JianjunTan-Beijing/GATLGEMF.
Collapse
Affiliation(s)
- Jing Yan
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
| | - Wenyan Qu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
| | - Xiaoyi Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
| | - Ruobing Wang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China
| | - Jianjun Tan
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing 100124, China.
| |
Collapse
|
31
|
Ma W, Song X, Yuan GC, Wang P. RECCIPE: A new framework assessing localized cell-cell interaction on gene expression in multicellular ST data. Front Genet 2024; 15:1322886. [PMID: 38327830 PMCID: PMC10847567 DOI: 10.3389/fgene.2024.1322886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Cell-cell interaction (CCI) plays a pivotal role in cellular communication within the tissue microenvironment. The recent development of spatial transcriptomics (ST) technology and associated data analysis methods has empowered researchers to systematically investigate CCI. However, existing methods are tailored to single-cell resolution datasets, whereas the majority of ST platforms lack such resolution. Additionally, the detection of CCI through association screening based on ST data, which has complicated dependence structure, necessitates proper control of false discovery rates due to the multiple hypothesis testing issue in high dimensional spaces. To address these challenges, we introduce RECCIPE, a novel method designed for identifying cell signaling interactions across multiple cell types in spatial transcriptomic data. RECCIPE integrates gene expression data, spatial information and cell type composition in a multivariate regression framework, enabling genome-wide screening for changes in gene expression levels attributed to CCIs. We show that RECCIPE not only achieves high accuracy in simulated datasets but also provides new biological insights from real data obtained from a mouse model of Alzheimer's disease (AD). Overall, our framework provides a useful tool for studying impact of cell-cell interactions on gene expression in multicellular systems.
Collapse
Affiliation(s)
- Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaoyu Song
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Health Care Delivery Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
32
|
Zahedi R, Ghamsari R, Argha A, Macphillamy C, Beheshti A, Alizadehsani R, Lovell NH, Lotfollahi M, Alinejad-Rokny H. Deep learning in spatially resolved transcriptfomics: a comprehensive technical view. Brief Bioinform 2024; 25:bbae082. [PMID: 38483255 PMCID: PMC10939360 DOI: 10.1093/bib/bbae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/22/2024] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Spatially resolved transcriptomics (SRT) is a pioneering method for simultaneously studying morphological contexts and gene expression at single-cell precision. Data emerging from SRT are multifaceted, presenting researchers with intricate gene expression matrices, precise spatial details and comprehensive histology visuals. Such rich and intricate datasets, unfortunately, render many conventional methods like traditional machine learning and statistical models ineffective. The unique challenges posed by the specialized nature of SRT data have led the scientific community to explore more sophisticated analytical avenues. Recent trends indicate an increasing reliance on deep learning algorithms, especially in areas such as spatial clustering, identification of spatially variable genes and data alignment tasks. In this manuscript, we provide a rigorous critique of these advanced deep learning methodologies, probing into their merits, limitations and avenues for further refinement. Our in-depth analysis underscores that while the recent innovations in deep learning tailored for SRT have been promising, there remains a substantial potential for enhancement. A crucial area that demands attention is the development of models that can incorporate intricate biological nuances, such as phylogeny-aware processing or in-depth analysis of minuscule histology image segments. Furthermore, addressing challenges like the elimination of batch effects, perfecting data normalization techniques and countering the overdispersion and zero inflation patterns seen in gene expression is pivotal. To support the broader scientific community in their SRT endeavors, we have meticulously assembled a comprehensive directory of readily accessible SRT databases, hoping to serve as a foundation for future research initiatives.
Collapse
Affiliation(s)
- Roxana Zahedi
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia
| | - Reza Ghamsari
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia
| | - Ahmadreza Argha
- The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, 2052, NSW, Australia
| | - Callum Macphillamy
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, 5371, Australia
| | - Amin Beheshti
- School of Computing, Macquarie University, Sydney, 2109, Australia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, Melbourne, VIC, 3216, Australia
| | - Nigel H Lovell
- The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, 2052, NSW, Australia
| | - Mohammad Lotfollahi
- Computational Health Center, Helmholtz Munich, Germany
- Wellcome Sanger Institute, Cambridge, UK
| | - Hamid Alinejad-Rokny
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, 2052, NSW, Australia
| |
Collapse
|
33
|
Mason K, Sathe A, Hess PR, Rong J, Wu CY, Furth E, Susztak K, Levinsohn J, Ji HP, Zhang N. Niche-DE: niche-differential gene expression analysis in spatial transcriptomics data identifies context-dependent cell-cell interactions. Genome Biol 2024; 25:14. [PMID: 38217002 PMCID: PMC10785550 DOI: 10.1186/s13059-023-03159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024] Open
Abstract
Existing methods for analysis of spatial transcriptomic data focus on delineating the global gene expression variations of cell types across the tissue, rather than local gene expression changes driven by cell-cell interactions. We propose a new statistical procedure called niche-differential expression (niche-DE) analysis that identifies cell-type-specific niche-associated genes, which are differentially expressed within a specific cell type in the context of specific spatial niches. We further develop niche-LR, a method to reveal ligand-receptor signaling mechanisms that underlie niche-differential gene expression patterns. Niche-DE and niche-LR are applicable to low-resolution spot-based spatial transcriptomics data and data that is single-cell or subcellular in resolution.
Collapse
Affiliation(s)
- Kaishu Mason
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, USA
| | - Anuja Sathe
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul R Hess
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, USA
| | - Jiazhen Rong
- Genomics and Computational Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Chi-Yun Wu
- The Gladstone Institute, San Francisco, USA
| | - Emma Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Katalin Susztak
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan Levinsohn
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy Zhang
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
34
|
Alexandrov T, Saez‐Rodriguez J, Saka SK. Enablers and challenges of spatial omics, a melting pot of technologies. Mol Syst Biol 2023; 19:e10571. [PMID: 37842805 PMCID: PMC10632737 DOI: 10.15252/msb.202110571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 10/17/2023] Open
Abstract
Spatial omics has emerged as a rapidly growing and fruitful field with hundreds of publications presenting novel methods for obtaining spatially resolved information for any omics data type on spatial scales ranging from subcellular to organismal. From a technology development perspective, spatial omics is a highly interdisciplinary field that integrates imaging and omics, spatial and molecular analyses, sequencing and mass spectrometry, and image analysis and bioinformatics. The emergence of this field has not only opened a window into spatial biology, but also created multiple novel opportunities, questions, and challenges for method developers. Here, we provide the perspective of technology developers on what makes the spatial omics field unique. After providing a brief overview of the state of the art, we discuss technological enablers and challenges and present our vision about the future applications and impact of this melting pot.
Collapse
Affiliation(s)
- Theodore Alexandrov
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- BioInnovation InstituteCopenhagenDenmark
| | - Julio Saez‐Rodriguez
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of Medicine and Heidelberg University Hospital, Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Sinem K Saka
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
35
|
Huang Y, Yu G, Yang Y. MIGGRI: A multi-instance graph neural network model for inferring gene regulatory networks for Drosophila from spatial expression images. PLoS Comput Biol 2023; 19:e1011623. [PMID: 37939200 PMCID: PMC10659162 DOI: 10.1371/journal.pcbi.1011623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/20/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Recent breakthrough in spatial transcriptomics has brought great opportunities for exploring gene regulatory networks (GRNs) from a brand-new perspective. Especially, the local expression patterns and spatio-temporal regulation mechanisms captured by spatial expression images allow more delicate delineation of the interplay between transcript factors and their target genes. However, the complexity and size of spatial image collections pose significant challenges to GRN inference using image-based methods. Extracting regulatory information from expression images is difficult due to the lack of supervision and the multi-instance nature of the problem, where a gene often corresponds to multiple images captured from different views. While graph models, particularly graph neural networks, have emerged as a promising method for leveraging underlying structure information from known GRNs, incorporating expression images into graphs is not straightforward. To address these challenges, we propose a two-stage approach, MIGGRI, for capturing comprehensive regulatory patterns from image collections for each gene and known interactions. Our approach involves a multi-instance graph neural network (GNN) model for GRN inference, which first extracts gene regulatory features from spatial expression images via contrastive learning, and then feeds them to a multi-instance GNN for semi-supervised learning. We apply our approach to a large set of Drosophila embryonic spatial gene expression images. MIGGRI achieves outstanding performance in the inference of GRNs for early eye development and mesoderm development of Drosophila, and shows robustness in the scenarios of missing image information. Additionally, we perform interpretable analysis on image reconstruction and functional subgraphs that may reveal potential pathways or coordinate regulations. By leveraging the power of graph neural networks and the information contained in spatial expression images, our approach has the potential to advance our understanding of gene regulation in complex biological systems.
Collapse
Affiliation(s)
- Yuyang Huang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| | - Gufeng Yu
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China
| |
Collapse
|
36
|
Zhou R, Yang G, Zhang Y, Wang Y. Spatial transcriptomics in development and disease. MOLECULAR BIOMEDICINE 2023; 4:32. [PMID: 37806992 PMCID: PMC10560656 DOI: 10.1186/s43556-023-00144-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
The proper functioning of diverse biological systems depends on the spatial organization of their cells, a critical factor for biological processes like shaping intricate tissue functions and precisely determining cell fate. Nonetheless, conventional bulk or single-cell RNA sequencing methods were incapable of simultaneously capturing both gene expression profiles and the spatial locations of cells. Hence, a multitude of spatially resolved technologies have emerged, offering a novel dimension for investigating regional gene expression, spatial domains, and interactions between cells. Spatial transcriptomics (ST) is a method that maps gene expression in tissue while preserving spatial information. It can reveal cellular heterogeneity, spatial organization and functional interactions in complex biological systems. ST can also complement and integrate with other omics methods to provide a more comprehensive and holistic view of biological systems at multiple levels of resolution. Since the advent of ST, new methods offering higher throughput and resolution have become available, holding significant potential to expedite fresh insights into comprehending biological complexity. Consequently, a rapid increase in associated research has occurred, using these technologies to unravel the spatial complexity during developmental processes or disease conditions. In this review, we summarize the recent advancement of ST in historical, technical, and application contexts. We compare different types of ST methods based on their principles and workflows, and present the bioinformatics tools for analyzing and integrating ST data with other modalities. We also highlight the applications of ST in various domains of biomedical research, especially development and diseases. Finally, we discuss the current limitations and challenges in the field, and propose the future directions of ST.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gaoxia Yang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Wang X, Almet AA, Nie Q. The promising application of cell-cell interaction analysis in cancer from single-cell and spatial transcriptomics. Semin Cancer Biol 2023; 95:42-51. [PMID: 37454878 PMCID: PMC10627116 DOI: 10.1016/j.semcancer.2023.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/02/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Cell-cell interactions instruct cell fate and function. These interactions are hijacked to promote cancer development. Single-cell transcriptomics and spatial transcriptomics have become powerful new tools for researchers to profile the transcriptional landscape of cancer at unparalleled genetic depth. In this review, we discuss the rapidly growing array of computational tools to infer cell-cell interactions from non-spatial single-cell RNA-sequencing and the limited but growing number of methods for spatial transcriptomics data. Downstream analyses of these computational tools and applications to cancer studies are highlighted. We finish by suggesting several directions for further extensions that anticipate the increasing availability of multi-omics cancer data.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Mathematics, University of California, Irvine, Irvine, CA, United States
| | - Axel A Almet
- Department of Mathematics, University of California, Irvine, Irvine, CA, United States; The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, United States.
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA, United States; The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, United States; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
38
|
Velten B, Stegle O. Principles and challenges of modeling temporal and spatial omics data. Nat Methods 2023; 20:1462-1474. [PMID: 37710019 DOI: 10.1038/s41592-023-01992-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/31/2023] [Indexed: 09/16/2023]
Abstract
Studies with temporal or spatial resolution are crucial to understand the molecular dynamics and spatial dependencies underlying a biological process or system. With advances in high-throughput omic technologies, time- and space-resolved molecular measurements at scale are increasingly accessible, providing new opportunities to study the role of timing or structure in a wide range of biological questions. At the same time, analyses of the data being generated in the context of spatiotemporal studies entail new challenges that need to be considered, including the need to account for temporal and spatial dependencies and compare them across different scales, biological samples or conditions. In this Review, we provide an overview of common principles and challenges in the analysis of temporal and spatial omics data. We discuss statistical concepts to model temporal and spatial dependencies and highlight opportunities for adapting existing analysis methods to data with temporal and spatial dimensions.
Collapse
Affiliation(s)
- Britta Velten
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK.
- Centre for Organismal Studies (COS) and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
39
|
Mao G, Pang Z, Zuo K, Wang Q, Pei X, Chen X, Liu J. Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks. Brief Bioinform 2023; 24:bbad414. [PMID: 37985457 PMCID: PMC10661972 DOI: 10.1093/bib/bbad414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) has emerged as a powerful technique for studying gene expression patterns at the single-cell level. Inferring gene regulatory networks (GRNs) from scRNA-seq data provides insight into cellular phenotypes from the genomic level. However, the high sparsity, noise and dropout events inherent in scRNA-seq data present challenges for GRN inference. In recent years, the dramatic increase in data on experimentally validated transcription factors binding to DNA has made it possible to infer GRNs by supervised methods. In this study, we address the problem of GRN inference by framing it as a graph link prediction task. In this paper, we propose a novel framework called GNNLink, which leverages known GRNs to deduce the potential regulatory interdependencies between genes. First, we preprocess the raw scRNA-seq data. Then, we introduce a graph convolutional network-based interaction graph encoder to effectively refine gene features by capturing interdependencies between nodes in the network. Finally, the inference of GRN is obtained by performing matrix completion operation on node features. The features obtained from model training can be applied to downstream tasks such as measuring similarity and inferring causality between gene pairs. To evaluate the performance of GNNLink, we compare it with six existing GRN reconstruction methods using seven scRNA-seq datasets. These datasets encompass diverse ground truth networks, including functional interaction networks, Loss of Function/Gain of Function data, non-specific ChIP-seq data and cell-type-specific ChIP-seq data. Our experimental results demonstrate that GNNLink achieves comparable or superior performance across these datasets, showcasing its robustness and accuracy. Furthermore, we observe consistent performance across datasets of varying scales. For reproducibility, we provide the data and source code of GNNLink on our GitHub repository: https://github.com/sdesignates/GNNLink.
Collapse
Affiliation(s)
- Guo Mao
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, deya, 410073 Changsha, China
| | - Zhengbin Pang
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, deya, 410073 Changsha, China
| | - Ke Zuo
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, deya, 410073 Changsha, China
| | - Qinglin Wang
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, deya, 410073 Changsha, China
| | - Xiangdong Pei
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, deya, 410073 Changsha, China
| | - Xinhai Chen
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, deya, 410073 Changsha, China
| | - Jie Liu
- Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, deya, 410073 Changsha, China
- Laboratory of Software Engineering for Complex System, National University of Defense Technology, deya, 410073 Changsha, China
| |
Collapse
|
40
|
Erfanian N, Heydari AA, Feriz AM, Iañez P, Derakhshani A, Ghasemigol M, Farahpour M, Razavi SM, Nasseri S, Safarpour H, Sahebkar A. Deep learning applications in single-cell genomics and transcriptomics data analysis. Biomed Pharmacother 2023; 165:115077. [PMID: 37393865 DOI: 10.1016/j.biopha.2023.115077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023] Open
Abstract
Traditional bulk sequencing methods are limited to measuring the average signal in a group of cells, potentially masking heterogeneity, and rare populations. The single-cell resolution, however, enhances our understanding of complex biological systems and diseases, such as cancer, the immune system, and chronic diseases. However, the single-cell technologies generate massive amounts of data that are often high-dimensional, sparse, and complex, thus making analysis with traditional computational approaches difficult and unfeasible. To tackle these challenges, many are turning to deep learning (DL) methods as potential alternatives to the conventional machine learning (ML) algorithms for single-cell studies. DL is a branch of ML capable of extracting high-level features from raw inputs in multiple stages. Compared to traditional ML, DL models have provided significant improvements across many domains and applications. In this work, we examine DL applications in genomics, transcriptomics, spatial transcriptomics, and multi-omics integration, and address whether DL techniques will prove to be advantageous or if the single-cell omics domain poses unique challenges. Through a systematic literature review, we have found that DL has not yet revolutionized the most pressing challenges of the single-cell omics field. However, using DL models for single-cell omics has shown promising results (in many cases outperforming the previous state-of-the-art models) in data preprocessing and downstream analysis. Although developments of DL algorithms for single-cell omics have generally been gradual, recent advances reveal that DL can offer valuable resources in fast-tracking and advancing research in single-cell.
Collapse
Affiliation(s)
- Nafiseh Erfanian
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - A Ali Heydari
- Department of Applied Mathematics, University of California, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA
| | - Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Pablo Iañez
- Cellular Systems Genomics Group, Josep Carreras Research Institute, Barcelona, Spain
| | - Afshin Derakhshani
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | | | - Mohsen Farahpour
- Department of Electronics, Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
| | - Seyyed Mohammad Razavi
- Department of Electronics, Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
| | - Saeed Nasseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Cheng M, Jiang Y, Xu J, Mentis AFA, Wang S, Zheng H, Sahu SK, Liu L, Xu X. Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges. J Genet Genomics 2023; 50:625-640. [PMID: 36990426 DOI: 10.1016/j.jgg.2023.03.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
The ability to explore life kingdoms is largely driven by innovations and breakthroughs in technology, from the invention of the microscope 350 years ago to the recent emergence of single-cell sequencing, by which the scientific community has been able to visualize life at an unprecedented resolution. Most recently, the Spatially Resolved Transcriptomics (SRT) technologies have filled the gap in probing the spatial or even three-dimensional organization of the molecular foundation behind the molecular mysteries of life, including the origin of different cellular populations developed from totipotent cells and human diseases. In this review, we introduce recent progresses and challenges on SRT from the perspectives of technologies and bioinformatic tools, as well as the representative SRT applications. With the currently fast-moving progress of the SRT technologies and promising results from early adopted research projects, we can foresee the bright future of such new tools in understanding life at the most profound analytical level.
Collapse
Affiliation(s)
| | - Yujia Jiang
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
| | | | | | - Shuai Wang
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Sunil Kumar Sahu
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Longqi Liu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xun Xu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China; BGI-Shenzhen, Shenzhen, Guangdong 518103, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, Guangdong 518120, China.
| |
Collapse
|
42
|
Chen H, Li D, Bar-Joseph Z. SCS: cell segmentation for high-resolution spatial transcriptomics. Nat Methods 2023; 20:1237-1243. [PMID: 37429992 DOI: 10.1038/s41592-023-01939-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/02/2023] [Indexed: 07/12/2023]
Abstract
Spatial transcriptomics promises to greatly improve our understanding of tissue organization and cell-cell interactions. While most current platforms for spatial transcriptomics only offer multi-cellular resolution, with 10-15 cells per spot, recent technologies provide a much denser spot placement leading to subcellular resolution. A key challenge for these newer methods is cell segmentation and the assignment of spots to cells. Traditional image-based segmentation methods are limited and do not make full use of the information profiled by spatial transcriptomics. Here we present subcellular spatial transcriptomics cell segmentation (SCS), which combines imaging data with sequencing data to improve cell segmentation accuracy. SCS assigns spots to cells by adaptively learning the position of each spot relative to the center of its cell using a transformer neural network. SCS was tested on two new subcellular spatial transcriptomics technologies and outperformed traditional image-based segmentation methods. SCS achieved better accuracy, identified more cells and provided more realistic cell size estimation. Subcellular analysis of RNAs using SCS spot assignments provides information on RNA localization and further supports the segmentation results.
Collapse
Affiliation(s)
- Hao Chen
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Dongshunyi Li
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
43
|
Heumos L, Schaar AC, Lance C, Litinetskaya A, Drost F, Zappia L, Lücken MD, Strobl DC, Henao J, Curion F, Schiller HB, Theis FJ. Best practices for single-cell analysis across modalities. Nat Rev Genet 2023; 24:550-572. [PMID: 37002403 PMCID: PMC10066026 DOI: 10.1038/s41576-023-00586-w] [Citation(s) in RCA: 265] [Impact Index Per Article: 132.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 04/03/2023]
Abstract
Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.
Collapse
Affiliation(s)
- Lukas Heumos
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Anna C Schaar
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Munich Center for Machine Learning, Technical University of Munich, Garching, Germany
| | - Christopher Lance
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Paediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anastasia Litinetskaya
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Felix Drost
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Luke Zappia
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Malte D Lücken
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Institute of Lung Health and Immunity, Helmholtz Munich, Munich, Germany
| | - Daniel C Strobl
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Juan Henao
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
| | - Fabiola Curion
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Herbert B Schiller
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Munich Center for Machine Learning, Technical University of Munich, Garching, Germany.
| |
Collapse
|
44
|
Gurkar AU, Gerencser AA, Mora AL, Nelson AC, Zhang AR, Lagnado AB, Enninful A, Benz C, Furman D, Beaulieu D, Jurk D, Thompson EL, Wu F, Rodriguez F, Barthel G, Chen H, Phatnani H, Heckenbach I, Chuang JH, Horrell J, Petrescu J, Alder JK, Lee JH, Niedernhofer LJ, Kumar M, Königshoff M, Bueno M, Sokka M, Scheibye-Knudsen M, Neretti N, Eickelberg O, Adams PD, Hu Q, Zhu Q, Porritt RA, Dong R, Peters S, Victorelli S, Pengo T, Khaliullin T, Suryadevara V, Fu X, Bar-Joseph Z, Ji Z, Passos JF. Spatial mapping of cellular senescence: emerging challenges and opportunities. NATURE AGING 2023; 3:776-790. [PMID: 37400722 PMCID: PMC10505496 DOI: 10.1038/s43587-023-00446-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Cellular senescence is a well-established driver of aging and age-related diseases. There are many challenges to mapping senescent cells in tissues such as the absence of specific markers and their relatively low abundance and vast heterogeneity. Single-cell technologies have allowed unprecedented characterization of senescence; however, many methodologies fail to provide spatial insights. The spatial component is essential, as senescent cells communicate with neighboring cells, impacting their function and the composition of extracellular space. The Cellular Senescence Network (SenNet), a National Institutes of Health (NIH) Common Fund initiative, aims to map senescent cells across the lifespan of humans and mice. Here, we provide a comprehensive review of the existing and emerging methodologies for spatial imaging and their application toward mapping senescent cells. Moreover, we discuss the limitations and challenges inherent to each technology. We argue that the development of spatially resolved methods is essential toward the goal of attaining an atlas of senescent cells.
Collapse
Affiliation(s)
- Aditi U Gurkar
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Ana L Mora
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, the Ohio State University, Columbus, OH, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Anru R Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine and Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Anthony B Lagnado
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, Pilar, Argentina
| | - Delphine Beaulieu
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth L Thompson
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Fei Wu
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Fernanda Rodriguez
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Grant Barthel
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Hao Chen
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hemali Phatnani
- Columbia University Irving Medical Center and New York Genome Center, Columbia University, New York, NY, USA
| | | | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jeremy Horrell
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Joana Petrescu
- Columbia University Irving Medical Center and New York Genome Center, Columbia University, New York, NY, USA
| | - Jonathan K Alder
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Laura J Niedernhofer
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Manoj Kumar
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Melanie Königshoff
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marta Bueno
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Miiko Sokka
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | | | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Oliver Eickelberg
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Qianjiang Hu
- Aging Institute, University of Pittsburgh School of Medicine/UPMC and Division of Pulmonary, Allergy and Critical Care Medicine, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Quan Zhu
- University of California, San Diego, CA, USA
| | - Rebecca A Porritt
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Runze Dong
- Department of Biochemistry, Institute for Protein Design and Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Samuel Peters
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Stella Victorelli
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Thomas Pengo
- Department of Laboratory Medicine and Pathology, Department of Biochemistry, Molecular Biology and Biophysics, Department of Neuroscience and Institute on the Biology of Aging and Metabolism, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Timur Khaliullin
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, the Ohio State University, Columbus, OH, USA
| | - Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Xiaonan Fu
- Department of Biochemistry, Institute for Protein Design and Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhicheng Ji
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine and Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
45
|
Bafna M, Li H, Zhang X. CLARIFY: cell-cell interaction and gene regulatory network refinement from spatially resolved transcriptomics. Bioinformatics 2023; 39:i484-i493. [PMID: 37387180 DOI: 10.1093/bioinformatics/btad269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Gene regulatory networks (GRNs) in a cell provide the tight feedback needed to synchronize cell actions. However, genes in a cell also take input from, and provide signals to other neighboring cells. These cell-cell interactions (CCIs) and the GRNs deeply influence each other. Many computational methods have been developed for GRN inference in cells. More recently, methods were proposed to infer CCIs using single cell gene expression data with or without cell spatial location information. However, in reality, the two processes do not exist in isolation and are subject to spatial constraints. Despite this rationale, no methods currently exist to infer GRNs and CCIs using the same model. RESULTS We propose CLARIFY, a tool that takes GRNs as input, uses them and spatially resolved gene expression data to infer CCIs, while simultaneously outputting refined cell-specific GRNs. CLARIFY uses a novel multi-level graph autoencoder, which mimics cellular networks at a higher level and cell-specific GRNs at a deeper level. We applied CLARIFY to two real spatial transcriptomic datasets, one using seqFISH and the other using MERFISH, and also tested on simulated datasets from scMultiSim. We compared the quality of predicted GRNs and CCIs with state-of-the-art baseline methods that inferred either only GRNs or only CCIs. The results show that CLARIFY consistently outperforms the baseline in terms of commonly used evaluation metrics. Our results point to the importance of co-inference of CCIs and GRNs and to the use of layered graph neural networks as an inference tool for biological networks. AVAILABILITY AND IMPLEMENTATION The source code and data is available at https://github.com/MihirBafna/CLARIFY.
Collapse
Affiliation(s)
- Mihir Bafna
- School of Computational Science and Engineering, College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Hechen Li
- School of Computational Science and Engineering, College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| | - Xiuwei Zhang
- School of Computational Science and Engineering, College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|
46
|
Meng-Lin K, Ung CY, Zhang C, Weiskittel TM, Wisniewski P, Zhang Z, Tan SH, Yeo KS, Zhu S, Correia C, Li H. SPIN-AI: A Deep Learning Model That Identifies Spatially Predictive Genes. Biomolecules 2023; 13:895. [PMID: 37371475 PMCID: PMC10296445 DOI: 10.3390/biom13060895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Spatially resolved sequencing technologies help us dissect how cells are organized in space. Several available computational approaches focus on the identification of spatially variable genes (SVGs), genes whose expression patterns vary in space. The detection of SVGs is analogous to the identification of differentially expressed genes and permits us to understand how genes and associated molecular processes are spatially distributed within cellular niches. However, the expression activities of SVGs fail to encode all information inherent in the spatial distribution of cells. Here, we devised a deep learning model, Spatially Informed Artificial Intelligence (SPIN-AI), to identify spatially predictive genes (SPGs), whose expression can predict how cells are organized in space. We used SPIN-AI on spatial transcriptomic data from squamous cell carcinoma (SCC) as a proof of concept. Our results demonstrate that SPGs not only recapitulate the biology of SCC but also identify genes distinct from SVGs. Moreover, we found a substantial number of ribosomal genes that were SPGs but not SVGs. Since SPGs possess the capability to predict spatial cellular organization, we reason that SPGs capture more biologically relevant information for a given cellular niche than SVGs. Thus, SPIN-AI has broad applications for detecting SPGs and uncovering which biological processes play important roles in governing cellular organization.
Collapse
Affiliation(s)
- Kevin Meng-Lin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Choong-Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Taylor M. Weiskittel
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Philip Wisniewski
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Zhuofei Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Shyang-Hong Tan
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Kok-Siong Yeo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.-S.Y.); (S.Z.)
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.-S.Y.); (S.Z.)
| | - Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (K.M.-L.); (C.-Y.U.); (C.Z.); (T.M.W.); (P.W.); (Z.Z.); (S.-H.T.)
| |
Collapse
|
47
|
Du J, Yang YC, An ZJ, Zhang MH, Fu XH, Huang ZF, Yuan Y, Hou J. Advances in spatial transcriptomics and related data analysis strategies. J Transl Med 2023; 21:330. [PMID: 37202762 PMCID: PMC10193345 DOI: 10.1186/s12967-023-04150-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023] Open
Abstract
Spatial transcriptomics technologies developed in recent years can provide various information including tissue heterogeneity, which is fundamental in biological and medical research, and have been making significant breakthroughs. Single-cell RNA sequencing (scRNA-seq) cannot provide spatial information, while spatial transcriptomics technologies allow gene expression information to be obtained from intact tissue sections in the original physiological context at a spatial resolution. Various biological insights can be generated into tissue architecture and further the elucidation of the interaction between cells and the microenvironment. Thus, we can gain a general understanding of histogenesis processes and disease pathogenesis, etc. Furthermore, in silico methods involving the widely distributed R and Python packages for data analysis play essential roles in deriving indispensable bioinformation and eliminating technological limitations. In this review, we summarize available technologies of spatial transcriptomics, probe into several applications, discuss the computational strategies and raise future perspectives, highlighting the developmental potential.
Collapse
Affiliation(s)
- Jun Du
- Department of Hematology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai, 200127 China
| | - Yu-Chen Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Zhi-Jie An
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Ming-Hui Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Xue-Hang Fu
- Department of Hematology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai, 200127 China
| | - Zou-Fang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 Jiangxi China
| | - Ye Yuan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240 China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240 China
| | - Jian Hou
- Department of Hematology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, 160 Pujiang Road, Shanghai, 200127 China
| |
Collapse
|
48
|
Lee RY, Ng CW, Rajapakse MP, Ang N, Yeong JPS, Lau MC. The promise and challenge of spatial omics in dissecting tumour microenvironment and the role of AI. Front Oncol 2023; 13:1172314. [PMID: 37197415 PMCID: PMC10183599 DOI: 10.3389/fonc.2023.1172314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
Growing evidence supports the critical role of tumour microenvironment (TME) in tumour progression, metastases, and treatment response. However, the in-situ interplay among various TME components, particularly between immune and tumour cells, are largely unknown, hindering our understanding of how tumour progresses and responds to treatment. While mainstream single-cell omics techniques allow deep, single-cell phenotyping, they lack crucial spatial information for in-situ cell-cell interaction analysis. On the other hand, tissue-based approaches such as hematoxylin and eosin and chromogenic immunohistochemistry staining can preserve the spatial information of TME components but are limited by their low-content staining. High-content spatial profiling technologies, termed spatial omics, have greatly advanced in the past decades to overcome these limitations. These technologies continue to emerge to include more molecular features (RNAs and/or proteins) and to enhance spatial resolution, opening new opportunities for discovering novel biological knowledge, biomarkers, and therapeutic targets. These advancements also spur the need for novel computational methods to mine useful TME insights from the increasing data complexity confounded by high molecular features and spatial resolution. In this review, we present state-of-the-art spatial omics technologies, their applications, major strengths, and limitations as well as the role of artificial intelligence (AI) in TME studies.
Collapse
Affiliation(s)
- Ren Yuan Lee
- Singapore Thong Chai Medical Institution, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chan Way Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joe Poh Sheng Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Mai Chan Lau
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
49
|
Xu J, Zhang A, Liu F, Zhang X. STGRNS: an interpretable transformer-based method for inferring gene regulatory networks from single-cell transcriptomic data. Bioinformatics 2023; 39:btad165. [PMID: 37004161 PMCID: PMC10085635 DOI: 10.1093/bioinformatics/btad165] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/28/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
MOTIVATION Single-cell RNA-sequencing (scRNA-seq) technologies provide an opportunity to infer cell-specific gene regulatory networks (GRNs), which is an important challenge in systems biology. Although numerous methods have been developed for inferring GRNs from scRNA-seq data, it is still a challenge to deal with cellular heterogeneity. RESULTS To address this challenge, we developed an interpretable transformer-based method namely STGRNS for inferring GRNs from scRNA-seq data. In this algorithm, gene expression motif technique was proposed to convert gene pairs into contiguous sub-vectors, which can be used as input for the transformer encoder. By avoiding missing phase-specific regulations in a network, gene expression motif can improve the accuracy of GRN inference for different types of scRNA-seq data. To assess the performance of STGRNS, we implemented the comparative experiments with some popular methods on extensive benchmark datasets including 21 static and 27 time-series scRNA-seq dataset. All the results show that STGRNS is superior to other comparative methods. In addition, STGRNS was also proved to be more interpretable than "black box" deep learning methods, which are well-known for the difficulty to explain the predictions clearly. AVAILABILITY AND IMPLEMENTATION The source code and data are available at https://github.com/zhanglab-wbgcas/STGRNS.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aidi Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Fang Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
50
|
Lee AJ, Cahill R, Abbasi-Asl R. Machine Learning for Uncovering Biological Insights in Spatial Transcriptomics Data. ARXIV 2023:arXiv:2303.16725v1. [PMID: 37033464 PMCID: PMC10081350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Development and homeostasis in multicellular systems both require exquisite control over spatial molecular pattern formation and maintenance. Advances in spatially-resolved and high-throughput molecular imaging methods such as multiplexed immunofluorescence and spatial transcriptomics (ST) provide exciting new opportunities to augment our fundamental understanding of these processes in health and disease. The large and complex datasets resulting from these techniques, particularly ST, have led to rapid development of innovative machine learning (ML) tools primarily based on deep learning techniques. These ML tools are now increasingly featured in integrated experimental and computational workflows to disentangle signals from noise in complex biological systems. However, it can be difficult to understand and balance the different implicit assumptions and methodologies of a rapidly expanding toolbox of analytical tools in ST. To address this, we summarize major ST analysis goals that ML can help address and current analysis trends. We also describe four major data science concepts and related heuristics that can help guide practitioners in their choices of the right tools for the right biological questions.
Collapse
|