1
|
Adamczak D, Fornalik M, Małkiewicz A, Pestka J, Pławski A, Jagodziński PP, Słowikowski BK. ADAR1 expression in different cancer cell lines and its change under heat shock. J Appl Genet 2024:10.1007/s13353-024-00926-4. [PMID: 39641903 DOI: 10.1007/s13353-024-00926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) plays an essential role in the development of malignancies by modifying the expression of different oncogenes. ADAR1 presents three distinct activities: adenosine-to-inosine RNA editing, modulating IFN pathways, and response to cellular stress factors. Following stressors such as heat shock, ADAR1p110 isoform relocates from the nucleus to the cytoplasm, where it suppresses RNA degradation which leads to the arrest of apoptosis and cell survival. In this study, we assessed the expression of ADAR1 across different cancer cell lines. We revealed that the presence of ADAR1 varies between cells of different origins and that a high transcript level does not reflect protein abundance. Additionally, we subjected cells to a heat shock in order to evaluate how cellular stress factors affect the expression of ADAR1. Our results indicate that ADAR1 transcript and protein levels are relatively stable and do not change under heat shock in examined cell lines. This research lays a groundwork for future directions on ADAR1-related studies suggesting in which types of cancer ADAR1 may be a promising target for novel therapeutic approaches.
Collapse
Affiliation(s)
- Dominika Adamczak
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Michał Fornalik
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Anna Małkiewicz
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Julia Pestka
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 Street, 60-479, Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland.
| |
Collapse
|
2
|
He D, Niu C, Bai R, Chen N, Cui J. ADAR1 Promotes Invasion and Migration and Inhibits Ferroptosis via the FAK/AKT Pathway in Colorectal Cancer. Mol Carcinog 2024; 63:2401-2413. [PMID: 39239920 DOI: 10.1002/mc.23818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
The role of adenosine deaminase acting on RNA1 (ADAR1) in colorectal cancer (CRC) is poorly understood. This study investigated the roles and underlying molecular mechanisms of ADAR1 and its isoforms, explored the correlations between ADAR1 expression and the immune microenvironment and anticancer drug sensitivity, and examined the potential synergy of using ADAR1 expression and clinical parameters to determine the prognosis of CRC patients. CRC samples showed significant upregulation of ADAR1, and high ADAR1 expression was correlated with poor prognosis. Silencing ADAR1 inhibited the proliferation, invasion, and migration of CRC cells and induced ferroptosis by suppressing FAK/AKT activation, and the results of rescue assays were consistent with these mechanisms. Both ADAR1-p110 and ADAR1-p150 were demonstrated to regulate the FAK/AKT pathway, with ADAR1-p110 playing a particularly substantial role. In evaluating the prognosis of CRC patients, combining ADAR1 expression with clinical parameters produced a substantial synergistic effect. The in vivo tumorigenesis of CRC was significantly inhibited by silencing ADAR1. Furthermore, ADAR1 expression was positively correlated with tumor mutational burden (TMB) and microsatellite status (p < 0.05), indicating that ADAR1 plays a complex role in CRC immunotherapy. In conclusion, ADAR1 plays oncogenic roles in CRC both in vitro and in vivo, potentially by inhibiting ferroptosis via downregulation of the FAK/AKT pathway. Thus, ADAR1 serves as a potential prognostic biomarker and a promising target for CRC therapy.
Collapse
Affiliation(s)
- Dongsheng He
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chao Niu
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Rilan Bai
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Naifei Chen
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Jiang B, Chen Z, Zhou J. A novel prognostic risk score model based on RNA editing level in lower-grade glioma. Comput Biol Chem 2024; 113:108229. [PMID: 39383624 DOI: 10.1016/j.compbiolchem.2024.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Lower-grade glioma (LGG) refers to WHO grade 2 and 3 gliomas. Surgery combined with radiotherapy and chemotherapy can significantly improve the prognosis of LGG patients, but tumor progression is still unavoidable. As a form of posttranscriptional regulation, RNA editing (RE) has been reported to be involved in tumorigenesis and progression and has been intensively studied recently. METHODS Survival data and RE data were subjected to univariate and multivariate Cox regression analysis and lasso regression analysis to establish an RE risk score model. A nomogram combining the risk score and clinicopathological features was built to predict the 1-, 3-, and 5-year survival probability of patients. The relationship among ADAR1, SOD2 and SOAT1 was verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) RESULTS: A risk model associated with RE was constructed and patients were divided into different risk groups based on risk scores. The model demonstrated strong prognostic capability, with the area under the ROC curve (AUC) values of 0.882, 0.938, and 0.947 for 1-, 3-, and 5-year survival predictions, respectively. Through receiver operating characteristic curve (ROC) curves and calibration curves, it was verified that the constructed nomogram had better performance than age, grade, and risk score in predicting patient survival probability. Apart from this functional analysis, the results of correlation analyses between risk differentially expressed genes (RDEGs) and RE help us to understand the underlying mechanism of RE in LGG. ADAR may regulate the expression of SOD2 and SOAT1 through gene editing. CONCLUSION In conclusion, this study establishes a novel and accurate 17-RE model and a nomogram for predicting the survival probability of LGG patients. ADAR may affect the prognosis of glioma patients by influencing gene expression.
Collapse
Affiliation(s)
- Bincan Jiang
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China.
| | - Ziyang Chen
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Jiajie Zhou
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| |
Collapse
|
4
|
Yang Q, Li X. Pan-cancer analysis of ADAR1 with its prognostic relevance in low-grade glioma. Immunobiology 2024; 229:152855. [PMID: 39340957 DOI: 10.1016/j.imbio.2024.152855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
ADAR1, known as the primary enzyme for adenosine-to-inosine RNA editing, has recently been implicated in cancer development through both RNA editing-dependent and -independent pathways. These discoveries suggest that ADAR1's functions may extend beyond our current understanding. A pan-cancer analysis offers a unique opportunity to identify both common and distinct mechanisms across various cancers, thereby advancing personalized medicine. Low-grade glioma (LGG), characterized by a diverse group of tumor cells, presents a challenge in risk stratification, leading to significant variations in treatment approaches. Recently discovered molecular alterations in LGG have helped to refine the stratification of of these tumors and offered novel targets for predicting likely outcomes. This study aims to provide a detailed analysis of ADAR mRNA across multiple cancers, emphasizing its prognostic significance in LGG. We observed inconsistent mRNA and consistent protein expression patterns of ADAR1/ADAR in pan-cancer analyses that across tumor types. ADAR mRNA expression did not always correlate with ADAR1 protein expression. Nevertheless, the transcript levels correlated significantly with genetic alterations, tumor mutation burden, microsatellite instability, overall survival, recurrence-free survival, immune marker presence, immune infiltration, and the survival of patients undergoing immunotherapy in select cancers. Furthermore, ADAR and its top 50 associated genes were primarily involved in mRNA-related events, as identified through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Utilizing the Cox proportional hazards model, we developed a 3-gene signature (ADAR, HNRNPK, and SMG7), which effectively stratified patients into high- and low-risk groups, with high-risk patients exhibiting poorer overall survival, higher tumor grades, and a greater number of non-codeletions. Overall, this signature was inversely related to immune infiltration across cancers. Transcription factor SPI1 and miR-206, potential upstream regulators of the signature genes, were closely linked to patient survival in LGG. The promoter regions of these genes were hypermethylated, further associating them with patient outcomes. Additionally, these genes displayed consistent drug susceptibility patterns. In conclusion, our findings reveal multiple aspects of ADAR1's role in cancer and underscore its prognostic value in LGG, offering insights into potential therapeutic targets and strategies.
Collapse
Affiliation(s)
- Qin Yang
- Puai Medical College, Shaoyang University, Shaoyang, Hunan, China.
| | - Xin Li
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Cheng H, Yu J, Wong CC. Adenosine-to-Inosine RNA editing in cancer: molecular mechanisms and downstream targets. Protein Cell 2024:pwae039. [PMID: 39126156 DOI: 10.1093/procel/pwae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 08/12/2024] Open
Abstract
Adenosine-to-Inosine (A-to-I), one of the most prevalent RNA modifications, has recently garnered significant attention. The A-to-I modification actively contributes to biological and pathological processes by affecting the structure and function of various RNA molecules, including double stranded RNA, transfer RNA, microRNA, and viral RNA. Increasing evidence suggests that A-to-I plays a crucial role in the development of human disease, particularly in cancer, and aberrant A-to-I levels are closely associated with tumorigenesis and progression through regulation of the expression of multiple oncogenes and tumor suppressor genes. Currently, the underlying molecular mechanisms of A-to-I modification in cancer are not comprehensively understood. Here, we review the latest advances regarding the A-to-I editing pathways implicated in cancer, describing their biological functions and their connections to the disease.
Collapse
Affiliation(s)
- Hao Cheng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| |
Collapse
|
6
|
Cun Y, Guo W, Ma B, Okuno Y, Wang J. Decoding the specificity of m 6A RNA methylation and its implication in cancer therapy. Mol Ther 2024; 32:2461-2469. [PMID: 38796701 PMCID: PMC11405154 DOI: 10.1016/j.ymthe.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
N6-methyladenosine (m6A) is the most abundant endogenous modification in eukaryotic RNAs. It plays important roles in various biological processes and diseases, including cancers. More and more studies have revealed that the deposition of m6A is specifically regulated in a context-dependent manner. Here, we review the diverse mechanisms that determine the topology of m6A along RNAs and the cell-type-specific m6A methylomes. The exon junction complex (EJC) as well as histone modifications play important roles in determining the topological distribution of m6A along nascent RNAs, while the transcription factors and RNA-binding proteins, which usually bind specific DNAs and RNAs in a cell-type-specific manner, largely account for the cell-type-specific m6A methylomes. Due to the lack of specificity of m6A writers and readers, there are still challenges to target the core m6A machinery for cancer therapies. Therefore, understanding the mechanisms underlying the specificity of m6A modifications in cancers would be important for future cancer therapies through m6A intervention.
Collapse
Affiliation(s)
- Yixian Cun
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangdong 510080, China
| | - Wenbing Guo
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangdong 510080, China
| | - Biao Ma
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasushi Okuno
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jinkai Wang
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangdong 510080, China.
| |
Collapse
|
7
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
8
|
Min YH, Shao WX, Hu QS, Xie NB, Zhang S, Feng YQ, Xing XW, Yuan BF. Simultaneous Detection of Adenosine-to-Inosine Editing and N6-Methyladenosine at Identical RNA Sites through Deamination-Assisted Reverse Transcription Stalling. Anal Chem 2024; 96:8730-8739. [PMID: 38743814 DOI: 10.1021/acs.analchem.4c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Adenosine-to-inosine (A-to-I) editing and N6-methyladenosine (m6A) modifications are pivotal RNA modifications with widespread functional significance in physiological and pathological processes. Although significant effort has been dedicated to developing methodologies for identifying and quantifying these modifications, traditional approaches have often focused on each modification independently, neglecting the potential co-occurrence of A-to-I editing and m6A modifications at the same adenosine residues. This limitation has constrained our understanding of the intricate regulatory mechanisms governing RNA function and the interplay between different types of RNA modifications. To address this gap, we introduced an innovative technique called deamination-assisted reverse transcription stalling (DARTS), specifically designed for the simultaneous quantification of A-to-I editing and m6A at the same RNA sites. DARTS leverages the selective deamination activity of the engineered TadA-TadA8e protein, which converts adenosine residues to inosine, in combination with the unique property of Bst 2.0 DNA polymerase, which stalls when encountering inosine during reverse transcription. This approach enables the accurate quantification of A-to-I editing, m6A, and unmodified adenosine at identical RNA sites. The DARTS method is remarkable for its ability to directly quantify two distinct types of RNA modifications simultaneously, a capability that has remained largely unexplored in the field of RNA biology. By facilitating a comprehensive analysis of the co-occurrence and interaction between A-to-I editing and m6A modifications, DARTS opens new avenues for exploring the complex regulatory networks modulated by different RNA modifications.
Collapse
Affiliation(s)
- Yi-Hao Min
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wen-Xuan Shao
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Qiu-Shuang Hu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Neng-Bin Xie
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Shan Zhang
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xi-Wen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bi-Feng Yuan
- College of Chemistry and Molecular Sciences, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
9
|
Du B, Zhang Z, Jia L, Zhang H, Zhang S, Wang H, Cheng Z. Micropeptide AF127577.4-ORF hidden in a lncRNA diminishes glioblastoma cell proliferation via the modulation of ERK2/METTL3 interaction. Sci Rep 2024; 14:12090. [PMID: 38802444 PMCID: PMC11130299 DOI: 10.1038/s41598-024-62710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Micropeptides hidden in long non-coding RNAs (lncRNAs) have been uncovered to program various cell-biological changes associated with malignant transformation-glioblastoma (GBM) cascade. Here, we identified and characterized a novel hidden micropeptide implicated in GBM. We screened potential candidate lncRNAs by establishing a workflow involving ribosome-bound lncRNAs, publicly available MS/MS data, and prognosis-related lncRNAs. Micropeptide expression was detected by western blot (WB), immunofluorescence (IF), and immunohistochemistry (IHC). Cell proliferation rate was assessed by calcein/PI staining and EdU assay. Proteins interacted with the micropeptide were analyzed by proteomics after co-immunoprecipitation (Co-IP). We discovered that lncRNA AF127577.4 indeed encoded an endogenous micropeptide, named AF127577.4-ORF. AF127577.4-ORF was associated with GBM clinical grade. In vitro, AF127577.4-ORF could suppress GBM cell proliferation. Moreover, AF127577.4-ORF reduced m6A methylation level of GBM cells. Mechanistically, AF127577.4-ORF diminished ERK2 interaction with m6A reader methyltransferase like 3 (METTL3) and downregulated phosphorylated ERK (p-ERK) level. The ERK inhibitor reduced p-ERK level and downregulated METTL3 protein expression. AF127577.4-ORF weakened the stability of METTL3 protein by ERK. Also, AF127577.4-ORF suppressed GBM cell proliferation via METTL3. Our study identifies a novel micropeptide AF127577.4-ORF hidden in a lncRNA, with a potent anti-proliferating function in GBM by diminishing METTL3 protein stability by reducing the ERK2/METTL3 interaction. This micropeptide may be beneficial for development of therapeutic strategies against GBM.
Collapse
Affiliation(s)
- Baoshun Du
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, 453003, Henan, People's Republic of China
| | - Zheying Zhang
- Department of Pathology, Xinxiang Medical University, No. 601 Jinsui Avenue, Xinxiang, 453003, Henan, People's Republic of China.
| | - Linlin Jia
- Department of Critical Care Medicine, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, 450053, Henan, People's Republic of China
| | - Huan Zhang
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, 453003, Henan, People's Republic of China
| | - Shuai Zhang
- Department of Pathology, Xinxiang Medical University, No. 601 Jinsui Avenue, Xinxiang, 453003, Henan, People's Republic of China
| | - Haijun Wang
- Department of Pathology, Xinxiang Medical University, No. 601 Jinsui Avenue, Xinxiang, 453003, Henan, People's Republic of China
| | - Zhenguo Cheng
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, 453003, Henan, People's Republic of China
| |
Collapse
|
10
|
Wang H, Wei X, Liu L, Zhang J, Li H. Suppression of A-to-I RNA-editing enzyme ADAR1 sensitizes hepatocellular carcinoma cells to oxidative stress through regulating Keap1/Nrf2 pathway. Exp Hematol Oncol 2024; 13:30. [PMID: 38468359 DOI: 10.1186/s40164-024-00494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND A-to-I RNA editing is an abundant post-transcriptional modification event in hepatocellular carcinoma (HCC). Evidence suggests that adenosine deaminases acting on RNA 1 (ADAR1) correlates to oxidative stress that is a crucial factor of HCC pathogenesis. The present study investigated the effect of ADAR1 on survival and oxidative stress of HCC, and underlying mechanisms. METHODS ADAR1 expression was measured in fifty HCC and normal tissues via real-time quantitative PCR, and immunohistochemistry. For stable knockdown or overexpression of ADAR1, adeno-associated virus vectors carrying sh-ADAR1 or ADAR1 overexpression were transfected into HepG2 and SMMC-7721 cells. Transfected cells were exposed to oxidative stress agonist tBHP or sorafenib Bay 43-9006. Cell proliferation, apoptosis, and oxidative stress were measured, and tumor xenograft experiment was implemented. RESULTS ADAR1 was up-regulated in HCC and correlated to unfavorable clinical outcomes. ADAR1 deficiency attenuated proliferation of HCC cells and tumor growth and enhanced apoptosis. Moreover, its loss facilitated intracellular ROS accumulation, and elevated Keap1 and lowered Nrf2 expression. Intracellular GSH content and SOD activity were decreased and MDA content was increased in the absence of ADAR1. The opposite results were observed when ADAR1 was overexpressed. The effects of tBHP and Bay 43-9006 on survival, apoptosis, intracellular ROS accumulation, and Keap1/Nrf2 pathway were further exacerbated by simultaneous inhibition of ADAR1. CONCLUSIONS The current study unveils that ADAR1 is required for survival and oxidative stress of HCC cells, and targeting ADAR1 may sensitize HCC cells to oxidative stress via modulating Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Houhong Wang
- Department of General Surgery, The First Hospital Affiliated to Fuyang Normal University, Fuyang, 236006, Anhui, China
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, 236800, Anhui, China
| | - Xiaoyu Wei
- Department of Infectious Diseases, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Lu Liu
- Department of Endocrinology, The Affiliated Nantong Hospital of Shanghai Jiao Tong University, Nantong, 226001, Jiangsu, China.
| | - Junfeng Zhang
- Department of Radiology, General Hospital of Western Theater Command of PLA, Chengdu, 610083, Sichuan, China.
| | - Heng Li
- Department of Comprehensive Surgery, Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Hefei, 230031, Anhui, China.
| |
Collapse
|
11
|
Kobayashi A, Kitagawa Y, Nasser A, Wakimoto H, Yamada K, Tanaka S. Emerging Roles and Mechanisms of RNA Modifications in Neurodegenerative Diseases and Glioma. Cells 2024; 13:457. [PMID: 38474421 DOI: 10.3390/cells13050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Despite a long history of research, neurodegenerative diseases and malignant brain tumor gliomas are both considered incurable, facing challenges in the development of treatments. Recent evidence suggests that RNA modifications, previously considered as static components of intracellular RNAs, are in fact dynamically regulated across various RNA species in cells and play a critical role in major biological processes in the nervous system. Innovations in next-generation sequencing have enabled the accurate detection of modifications on bases and sugars within various RNA molecules. These RNA modifications influence the stability and transportation of RNA, and crucially affect its translation. This review delves into existing knowledge on RNA modifications to offer a comprehensive inventory of these modifications across different RNA species. The detailed regulatory functions and roles of RNA modifications within the nervous system are discussed with a focus on neurodegenerative diseases and gliomas. This article presents a comprehensive overview of the fundamental mechanisms and emerging roles of RNA modifications in these diseases, which can facilitate the creation of innovative diagnostics and therapeutics for these conditions.
Collapse
Affiliation(s)
- Ami Kobayashi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yosuke Kitagawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ali Nasser
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Keisuke Yamada
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0075, Japan
| | - Shota Tanaka
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0075, Japan
- Department of Neurosurgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
12
|
Zhang C, Huang Y, Liang M, Wu J, Wang G. Characterization of m6A RNA methylation mediated immune heterogeneity and functional validation in hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 38409934 DOI: 10.1002/tox.24167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND N6 -methyladenosine (m6 A) mediates RNA modification in various biological processes. It plays a key role in hepatocellular carcinoma (HCC) through regulating methyltransferase. The present study aims to analyze the correlation between the m6 A and the immune status of HCC, and to construct an m6 A-related prognostic signature for HCC. METHODS HCC subtypes with different m6 A modification activities were identified based on the m6 A-related genes. Lasso Cox regression was applied to construct an m6 A-related prognostic model for HCC. Then, the prognostic potential of the constructed signature was evaluated and validated in the external validation dataset. Small interfering RNAs were designed to knockdown FBXO5. CCK-8 assay, Edu staining, wound healing assay, and Transwell cell invasion assay were used to detect cell proliferation, migration, and invasion ability. RESULTS Two m6 A-related HCC subtypes were identified. The m6 A modification active group showed an immune suppressive microenvironment compared to the m6 A modification inactive group. The differentially expressed genes (DEGs) between the HCC subtypes were screened. Enrichment analysis was performed using the DEGs. Subsequently, an m6 A-related prognostic model was established. The prognostic model performed well in both training and validation datasets. Moreover, knockdown of FBXO5, one of the genes in the prognostic model, inhibited the proliferation, migration, and invasion of HepG2 cells. CONCLUSIONS The heterogeneity of m6 A RNA methylation is associated with immune status in HCC. The constructed m6 A-related gene-based signature can predict the prognosis of HCC patients. The genes in the prognostic model also have therapeutic potential for HCC.
Collapse
Affiliation(s)
- Chongyou Zhang
- Department of neurobiology, Harbin Medical University, Harbin, China
| | - Yang Huang
- Department of gastroenterology, Heilongjiang red cross sengong general hospital, Harbin, China
| | - Ming Liang
- Department of infectious, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinrong Wu
- Department of anaesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangyou Wang
- Department of neurobiology, Harbin Medical University, Harbin, China
- Ministry of Education Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Jiao Y, Xu Y, Liu C, Miao R, Liu C, Wang Y, Liu J. The role of ADAR1 through and beyond its editing activity in cancer. Cell Commun Signal 2024; 22:42. [PMID: 38233935 PMCID: PMC10795376 DOI: 10.1186/s12964-023-01465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) editing of RNA, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, is a prevalent RNA modification in mammals. It has been shown that A-to-I editing plays a critical role in multiple diseases, such as cardiovascular disease, neurological disorder, and particularly cancer. ADARs are the family of enzymes, including ADAR1, ADAR2, and ADAR3, that catalyze the occurrence of A-to-I editing. Notably, A-to-I editing is mainly catalyzed by ADAR1. Given the significance of A-to-I editing in disease development, it is important to unravel the complex roles of ADAR1 in cancer for the development of novel therapeutic interventions.In this review, we briefly describe the progress of research on A-to-I editing and ADARs in cancer, mainly focusing on the role of ADAR1 in cancer from both editing-dependent and independent perspectives. In addition, we also summarized the factors affecting the expression and editing activity of ADAR1 in cancer.
Collapse
Affiliation(s)
- Yue Jiao
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yuqin Xu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Chengbin Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Rui Miao
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Chunyan Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yilong Wang
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Jiao Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
14
|
Zhao C, Yu M, Li Y. Pan-cancer analysis reveals the pro-oncogenic role of N6-methyladenosine (m6A)-regulated NTMT1 in head and neck squamous cell carcinoma. J Biochem Mol Toxicol 2024; 38:e23603. [PMID: 38014887 DOI: 10.1002/jbt.23603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/09/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Head and neck squamous cell carcinoma (HNSC) is a common and fatal tumor with a bleak prognosis, posing a significant threat to human health. N6-methyladenosine (m6A) modification regulates tumor progression by modulating gene expression post-transcriptionally. Nevertheless, the specific function of m6A-modified tumor drivers in HNSC remains largely uncharted. In this study, we revealed the pro-oncogenic role of m6A-regulated NTMT1 in HNSC through comprehensive pan-cancer analysis and experimental validation. By scrutinizing the prognostic and expression profiles of NTMT1 across over 30 cancer types, we observed a significant association between NTMT1 and patient overall survival in ACC, HNSC, LAML, LGG, KIRC, and STAD. Moreover, we find a close correlation between NTMT1 and disease-free survival in ACC, HNSC, LUSC, UVM, KIRC, and STAD. NTMT1 exhibited dysregulation in 15 cancers, including CESC, CHOL, COAD, DLBC, GBM, HNSC, LGG, LIHC, PAAD, READ, SKCM, THYM, UCS, LAML, and TGCT. Integrated data underscored the critical involvement of NTMT1 in HNSC. Furthermore, the expression of NTMT1 was closely associated with tumor stage and immune infiltration in HNSC. Functionally, NTMT1 deficiency was demonstrated to significantly impede cell proliferation and cell-cycle progression in HNSC. Mechanistically, METTL3 was elucidated to mediate the epigenetic upregulation of NTMT1 in HNSC in an m6A-dependent manner, and the overexpression of METTL3 was shown to alleviate the inhibitory impact of downregulated NTMT1 on HNSC proliferation. In conclusion, our findings enhance our understanding of NTMT1's role across various cancer types and offer a rationale for clinically targeting NTMT1 as a therapeutic approach for HNSC.
Collapse
Affiliation(s)
- Chunhong Zhao
- Department of Otolaryngology-Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Min Yu
- Department of Otolaryngology-Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yujie Li
- Department of Otolaryngology-Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Zhang Q, Xu R, Xue R, Mei X, Qin Y, Shen K, Xu J, Su L, Mao C, Xie H, Lu T. Ultra-high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry combined with network pharmacology for analysis of potential quality markers of three processed products of Qingpi. J Sep Sci 2024; 47:e2300281. [PMID: 37994479 DOI: 10.1002/jssc.202300281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Qingpi, a well-known traditional Chinese medicine for qi-regulating and commonly processed into three types of pieces, has been widely used in the clinical application of liver disease for thousands of years. In this study, an ultra-high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry approach along with multivariate statistical analysis was developed to assess and characterize the differentiations of three processed products and confirm the potential quality markers of Qingpi. In addition, a systematic analysis combined with network pharmacology and molecular docking was performed to clarify the potential mechanism of Qingpi for the treatment of liver disease. As a result, 18 components were identified and an integrated network of Qingpi-Components-Target-Pathway-Liver Disease was constructed. Eight compounds were finally screened out as the potential quality markers acting on ten main targets and pathways of liver disease. Molecular docking analysis results indicated that the quality markers had a good binding activity with the targets. Overall, this work preliminarily identified the potential quality markers of three processed products of Qingpi, and predicted its targets in the prevention and treatment of liver disease, which can provide supporting information for further study of the pharmacodynamic substances and mechanisms of Qingpi.
Collapse
Affiliation(s)
- Qian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Ruijie Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Rong Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Xi Mei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yuwen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Ke Shen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jinguo Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui Xie
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
16
|
Lv D, Zhong C, Dixit D, Yang K, Wu Q, Godugu B, Prager BC, Zhao G, Wang X, Xie Q, Bao S, He C, Heiland DH, Rosenfeld MG, Rich JN. EGFR promotes ALKBH5 nuclear retention to attenuate N6-methyladenosine and protect against ferroptosis in glioblastoma. Mol Cell 2023; 83:4334-4351.e7. [PMID: 37979586 PMCID: PMC10842222 DOI: 10.1016/j.molcel.2023.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
Growth factor receptors rank among the most important oncogenic pathways, but pharmacologic inhibitors often demonstrate limited benefit as monotherapy. Here, we show that epidermal growth factor receptor (EGFR) signaling repressed N6-methyladenosine (m6A) levels in glioblastoma stem cells (GSCs), whereas genetic or pharmacologic EGFR targeting elevated m6A levels. Activated EGFR induced non-receptor tyrosine kinase SRC to phosphorylate the m6A demethylase, AlkB homolog 5 (ALKBH5), thereby inhibiting chromosomal maintenance 1 (CRM1)-mediated nuclear export of ALKBH5 to permit sustained mRNA m6A demethylation in the nucleus. ALKBH5 critically regulated ferroptosis through m6A modulation and YTH N6-methyladenosine RNA binding protein (YTHDF2)-mediated decay of the glutamate-cysteine ligase modifier subunit (GCLM). Pharmacologic targeting of ALKBH5 augmented the anti-tumor efficacy of EGFR and GCLM inhibitors, supporting an EGFR-ALKBH5-GCLM oncogenic axis. Collectively, EGFR reprograms the epitranscriptomic landscape through nuclear retention of the ALKBH5 demethylase to protect against ferroptosis, offering therapeutic paradigms for the treatment of lethal cancers.
Collapse
Affiliation(s)
- Deguan Lv
- UPMC Hillman Cancer Center and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Cuiqing Zhong
- UPMC Hillman Cancer Center and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Deobrat Dixit
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Qiulian Wu
- UPMC Hillman Cancer Center and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Briana C Prager
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Guofeng Zhao
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiuxing Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qi Xie
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeremy N Rich
- UPMC Hillman Cancer Center and Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
17
|
Shao N, Ye T, Xuan W, Zhang M, Chen Q, Liu J, Zhou P, Song H, Cai B. The effects of N 6-methyladenosine RNA methylation on the nervous system. Mol Cell Biochem 2023; 478:2657-2669. [PMID: 36899139 DOI: 10.1007/s11010-023-04691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Epitranscriptomics, also known as "RNA epigenetics", is a type of chemical modification that regulates RNA. RNA methylation is a significant discovery after DNA and histone methylation. The dynamic reversible process of m6A involves methyltransferases (writers), m6A binding proteins (readers), as well as demethylases (erasers). We summarized the current research status of m6A RNA methylation in the neural stem cells' growth, synaptic and axonal function, brain development, learning and memory, neurodegenerative diseases, and glioblastoma. This review aims to provide a theoretical basis for studying the mechanism of m6A methylation and finding its potential therapeutic targets in nervous system diseases.
Collapse
Affiliation(s)
- Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ting Ye
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weiting Xuan
- Department of Neurosurgery (Rehabilitation), Anhui Hospital of Integrated Chinese and Western Medicine, Hefei, 230031, China
| | - Meng Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Qian Chen
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Juan Liu
- Department of Chinese Internal Medicine, Taihe County People's Hospital, Fuyang, 236699, China
| | - Peng Zhou
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Hang Song
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
18
|
Jin Q, Qu H, Quan C. New insights into the regulation of METTL3 and its role in tumors. Cell Commun Signal 2023; 21:334. [PMID: 37996892 PMCID: PMC10732098 DOI: 10.1186/s12964-023-01360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
As one of the most abundant epigenetic modifications in RNA, N6-methyladenosine (m6A) affects RNA transcription, splicing, stability, and posttranscriptional translation. Methyltransferase-like 3 (METTL3), a key component of the m6A methyltransferase complex, dynamically regulates target genes expression through m6A modification. METTL3 has been found to play a critical role in tumorigenesis, tumor growth, metastasis, metabolic reprogramming, immune cell infiltration, and tumor drug resistance. As a result, the development of targeted drugs against METTL3 is becoming increasingly popular. This review systematically summarizes the factors that regulate METTL3 expression and explores the specific mechanisms by which METTL3 affects multiple tumor biological behaviors. We aim to provide fundamental support for tumor diagnosis and treatment, at the same time, to offer new ideas for the development of tumor-targeting drugs.
Collapse
Affiliation(s)
- Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Huinan Qu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China.
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
19
|
Long S, Yan Y, Xu H, Wang L, Jiang J, Xu Z, Liu R, Zhou Q, Huang X, Chen J, Li Z, Wei W, Li X. Insights into the regulatory role of RNA methylation modifications in glioma. J Transl Med 2023; 21:810. [PMID: 37964279 PMCID: PMC10644640 DOI: 10.1186/s12967-023-04653-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Epitranscriptomic abnormalities, which are highly prevalent in primary central nervous system malignancies, have been identified as crucial contributors to the development and progression of gliomas. RNA epitranscriptomic modifications, particularly the reversible modification methylation, have been observed throughout the RNA cycle. Epitranscriptomic modifications, which regulate RNA transcription and translation, have profound biological implications. These modifications are associated with the development of several cancer types. Notably, three main protein types-writers, erasers, and readers, in conjunction with other related proteins, mediate these epitranscriptomic changes. This review primarily focuses on the role of recently identified RNA methylation modifications in gliomas, such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), and N1-methyladenosine (m1A). We delved into their corresponding writers, erasers, readers, and related binding proteins to propose new approaches and prognostic indicators for patients with glioma.
Collapse
Affiliation(s)
- Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Yan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hongyu Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lesheng Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiazhi Jiang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ziyue Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Runming Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qiangqiang Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaopeng Huang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
20
|
Pfeiffer LS, Stafforst T. Precision RNA base editing with engineered and endogenous effectors. Nat Biotechnol 2023; 41:1526-1542. [PMID: 37735261 DOI: 10.1038/s41587-023-01927-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
RNA base editing refers to the rewriting of genetic information within an intact RNA molecule and serves various functions, such as evasion of the endogenous immune system and regulation of protein function. To achieve this, certain enzymes have been discovered in human cells that catalyze the conversion of one nucleobase into another. This natural process could be exploited to manipulate and recode any base in a target transcript. In contrast to DNA base editing, analogous changes introduced in RNA are not permanent or inheritable but rather allow reversible and doseable effects that appeal to various therapeutic applications. The current practice of RNA base editing involves the deamination of adenosines and cytidines, which are converted to inosines and uridines, respectively. In this Review, we summarize current site-directed RNA base-editing strategies and highlight recent achievements to improve editing efficiency, precision, codon-targeting scope and in vivo delivery into disease-relevant tissues. Besides engineered editing effectors, we focus on strategies to harness endogenous adenosine deaminases acting on RNA (ADAR) enzymes and discuss limitations and future perspectives to apply the tools in basic research and as a therapeutic modality. We expect the field to realize the first RNA base-editing drug soon, likely on a well-defined genetic disease. However, the long-term challenge will be to carve out the sweet spot of the technology where its unique ability is exploited to modulate signaling cues, metabolism or other clinically relevant processes in a safe and doseable manner.
Collapse
Affiliation(s)
- Laura S Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center, Faculty of Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
21
|
Zhong Y, Zhong X, Qiao L, Wu H, Liu C, Zhang T. Zα domain proteins mediate the immune response. Front Immunol 2023; 14:1241694. [PMID: 37771585 PMCID: PMC10523160 DOI: 10.3389/fimmu.2023.1241694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
The Zα domain has a compact α/β architecture containing a three-helix bundle flanked on one side by a twisted antiparallel β sheet. This domain displays a specific affinity for double-stranded nucleic acids that adopt a left-handed helical conformation. Currently, only three Zα-domain proteins have been identified in eukaryotes, specifically ADAR1, ZBP1, and PKZ. ADAR1 is a double-stranded RNA (dsRNA) binding protein that catalyzes the conversion of adenosine residues to inosine, resulting in changes in RNA structure, function, and expression. In addition to its editing function, ADAR1 has been shown to play a role in antiviral defense, gene regulation, and cellular differentiation. Dysregulation of ADAR1 expression and activity has been associated with various disease states, including cancer, autoimmune disorders, and neurological disorders. As a sensing molecule, ZBP1 exhibits the ability to recognize nucleic acids with a left-handed conformation. ZBP1 harbors a RIP homotypic interaction motif (RHIM), composed of a highly charged surface region and a leucine-rich hydrophobic core, enabling the formation of homotypic interactions between proteins with similar structure. Upon activation, ZBP1 initiates a downstream signaling cascade leading to programmed cell death, a process mediated by RIPK3 via the RHIM motif. PKZ was identified in fish, and contains two Zα domains at the N-terminus. PKZ is essential for normal growth and development and may contribute to the regulation of immune system function in fish. Interestingly, some pathogenic microorganisms also encode Zα domain proteins, such as, Vaccinia virus and Cyprinid Herpesvirus. Zα domain proteins derived from pathogenic microorganisms have been demonstrated to be pivotal contributors in impeding the host immune response and promoting virus replication and spread. This review focuses on the mammalian Zα domain proteins: ADAR1 and ZBP1, and thoroughly elucidates their functions in the immune response.
Collapse
Affiliation(s)
- Yuhan Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Liangjun Qiao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hong Wu
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Division of Liver, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Ren J, Xu B, Ren J, Liu Z, Cai L, Zhang X, Wang W, Li S, Jin L, Ding L. The Importance of M1-and M2-Polarized Macrophages in Glioma and as Potential Treatment Targets. Brain Sci 2023; 13:1269. [PMID: 37759870 PMCID: PMC10526262 DOI: 10.3390/brainsci13091269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common and malignant tumor of the central nervous system. Glioblastoma (GBM) is the most aggressive glioma, with a poor prognosis and no effective treatment because of its high invasiveness, metabolic rate, and heterogeneity. The tumor microenvironment (TME) contains many tumor-associated macrophages (TAMs), which play a critical role in tumor proliferation, invasion, metastasis, and angiogenesis and indirectly promote an immunosuppressive microenvironment. TAM is divided into tumor-suppressive M1-like (classic activation of macrophages) and tumor-supportive M2-like (alternatively activated macrophages) polarized cells. TAMs exhibit an M1-like phenotype in the initial stages of tumor progression, and along with the promotion of lysing tumors and the functions of T cells and NK cells, tumor growth is suppressed, and they rapidly transform into M2-like polarized macrophages, which promote tumor progression. In this review, we discuss the mechanism by which M1- and M2-polarized macrophages promote or inhibit the growth of glioblastoma and indicate the future directions for treatment.
Collapse
Affiliation(s)
- Jiangbin Ren
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Bangjie Xu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Jianghao Ren
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China;
| | - Zhichao Liu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lingyu Cai
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Xiaotian Zhang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Weijie Wang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Shaoxun Li
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Luhao Jin
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lianshu Ding
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| |
Collapse
|
23
|
Qi YN, Liu Z, Hong LL, Li P, Ling ZQ. Methyltransferase-like proteins in cancer biology and potential therapeutic targeting. J Hematol Oncol 2023; 16:89. [PMID: 37533128 PMCID: PMC10394802 DOI: 10.1186/s13045-023-01477-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
RNA modification has recently become a significant process of gene regulation, and the methyltransferase-like (METTL) family of proteins plays a critical role in RNA modification, methylating various types of RNAs, including mRNA, tRNA, microRNA, rRNA, and mitochondrial RNAs. METTL proteins consist of a unique seven-beta-strand domain, which binds to the methyl donor SAM to catalyze methyl transfer. The most typical family member METTL3/METTL14 forms a methyltransferase complex involved in N6-methyladenosine (m6A) modification of RNA, regulating tumor proliferation, metastasis and invasion, immunotherapy resistance, and metabolic reprogramming of tumor cells. METTL1, METTL4, METTL5, and METTL16 have also been recently identified to have some regulatory ability in tumorigenesis, and the rest of the METTL family members rely on their methyltransferase activity for methylation of different nucleotides, proteins, and small molecules, which regulate translation and affect processes such as cell differentiation and development. Herein, we summarize the literature on METTLs in the last three years to elucidate their roles in human cancers and provide a theoretical basis for their future use as potential therapeutic targets.
Collapse
Affiliation(s)
- Ya-Nan Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zhu Liu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Lian-Lian Hong
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China
| | - Pei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, P.R. China.
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, No.1 Banshan East Rd., Gongshu District, Hangzhou, 310022, Zhejiang, P.R. China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, Zhejiang, P.R. China.
| |
Collapse
|
24
|
Meng Q, Schatten H, Zhou Q, Chen J. Crosstalk between m6A and coding/non-coding RNA in cancer and detection methods of m6A modification residues. Aging (Albany NY) 2023; 15:6577-6619. [PMID: 37437245 PMCID: PMC10373953 DOI: 10.18632/aging.204836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
N6-methyladenosine (m6A) is one of the most common and well-known internal RNA modifications that occur on mRNAs or ncRNAs. It affects various aspects of RNA metabolism, including splicing, stability, translocation, and translation. An abundance of evidence demonstrates that m6A plays a crucial role in various pathological and biological processes, especially in tumorigenesis and tumor progression. In this article, we introduce the potential functions of m6A regulators, including "writers" that install m6A marks, "erasers" that demethylate m6A, and "readers" that determine the fate of m6A-modified targets. We have conducted a review on the molecular functions of m6A, focusing on both coding and noncoding RNAs. Additionally, we have compiled an overview of the effects noncoding RNAs have on m6A regulators and explored the dual roles of m6A in the development and advancement of cancer. Our review also includes a detailed summary of the most advanced databases for m6A, state-of-the-art experimental and sequencing detection methods, and machine learning-based computational predictors for identifying m6A sites.
Collapse
Affiliation(s)
- Qingren Meng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Jun Chen
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
25
|
Pomaville MM, He C. Advances in targeting RNA modifications for anticancer therapy. Trends Cancer 2023; 9:528-542. [PMID: 37147166 PMCID: PMC10330282 DOI: 10.1016/j.trecan.2023.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Numerous strategies are employed by cancer cells to control gene expression and facilitate tumorigenesis. In the study of epitranscriptomics, a diverse set of modifications to RNA represent a new player of gene regulation in disease and in development. N6-methyladenosine (m6A) is the most common modification on mammalian messenger RNA and tends to be aberrantly placed in cancer. Recognized by a series of reader proteins that dictate the fate of the RNA, m6A-modified RNA could promote tumorigenesis by driving protumor gene expression signatures and altering the immunologic response to tumors. Preclinical evidence suggests m6A writer, reader, and eraser proteins are attractive therapeutic targets. First-in-human studies are currently testing small molecule inhibition against the methyltransferase-like 3 (METTL3)/methyltransferase-like 14 (METTL14) methyltransferase complex. Additional modifications to RNA are adopted by cancers to drive tumor development and are under investigation.
Collapse
Affiliation(s)
- Monica M Pomaville
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| | - Chuan He
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Wadhwani N, Nayak S, Wang Y, Hashizume R, Jie C, Mania-Farnell B, James CD, Xi G, Tomita T. WDR82-Mediated H3K4me3 Is Associated with Tumor Proliferation and Therapeutic Efficacy in Pediatric High-Grade Gliomas. Cancers (Basel) 2023; 15:3429. [PMID: 37444539 PMCID: PMC10340597 DOI: 10.3390/cancers15133429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are common malignant brain tumors without effective treatment and poor patient survival. Abnormal posttranslational modification at the histone H3 tail plays critical roles in tumor cell malignancy. We have previously shown that the trimethylation of lysine 4 at histone H3 (H3K4me3) plays a significant role in pediatric ependymoma malignancy and is associated with tumor therapeutic sensitivity. Here, we show that H3K4me3 and its methyltransferase WDR82 are elevated in pHGGs. A reduction in H3K4me3 by downregulating WDR82 decreases H3K4me3 promoter occupancy and the expression of genes associated with stem cell features, cell proliferation, the cell cycle, and DNA damage repair. A reduction in WDR82-mediated H3K4me3 increases the response of pediatric glioma cells to chemotherapy. These findings suggest that WDR82-mediated H3K4me3 is an important determinant of pediatric glioma malignancy and therapeutic response. This highlights the need for a more thorough understanding of the potential of WDR82 as an epigenetic target to increase therapeutic efficacy and improve the prognosis for children with malignant gliomas.
Collapse
Affiliation(s)
- Nitin Wadhwani
- Department of Pathology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sonali Nayak
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yufen Wang
- Department of Radio-oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rintaro Hashizume
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University Medicine and Health Sciences, Des Moines, IA 50312, USA
| | - Barbara Mania-Farnell
- Department of Biological Sciences, Purdue University Northwest, Hammond, IN 46323, USA
| | - Charles David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Guifa Xi
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
27
|
Deacon S, Walker L, Radhi M, Smith S. The Regulation of m6A Modification in Glioblastoma: Functional Mechanisms and Therapeutic Approaches. Cancers (Basel) 2023; 15:3307. [PMID: 37444417 DOI: 10.3390/cancers15133307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma is the most prevalent primary brain tumour and invariably confers a poor prognosis. The immense intra-tumoral heterogeneity of glioblastoma and its ability to rapidly develop treatment resistance are key barriers to successful therapy. As such, there is an urgent need for the greater understanding of the tumour biology in order to guide the development of novel therapeutics in this field. N6-methyladenosine (m6A) is the most abundant of the RNA modifications in eukaryotes. Studies have demonstrated that the regulation of this RNA modification is altered in glioblastoma and may serve to regulate diverse mechanisms including glioma stem-cell self-renewal, tumorigenesis, invasion and treatment evasion. However, the precise mechanisms by which m6A modifications exert their functional effects are poorly understood. This review summarises the evidence for the disordered regulation of m6A in glioblastoma and discusses the downstream functional effects of m6A modification on RNA fate. The wide-ranging biological consequences of m6A modification raises the hope that novel cancer therapies can be targeted against this mechanism.
Collapse
Affiliation(s)
- Simon Deacon
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Lauryn Walker
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Masar Radhi
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stuart Smith
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| |
Collapse
|
28
|
Lv J, Xing L, Zhong X, Li K, Liu M, Du K. Role of N6-methyladenosine modification in central nervous system diseases and related therapeutic agents. Biomed Pharmacother 2023; 162:114583. [PMID: 36989722 DOI: 10.1016/j.biopha.2023.114583] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
N6-methyladenosine (m6A) is a ubiquitous mRNA modification in eukaryotes. m6A occurs through the action of methyltransferases, demethylases, and methylation-binding proteins. m6A methylation of RNA is associated with various neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), depression, cerebral apoplexy, brain injury, epilepsy, cerebral arteriovenous malformations, and glioma. Furthermore, recent studies report that m6A-related drugs have attracted considerable concerns in the therapeutic areas of neurological disorders. Here, we mainly summarized the role of m6A modification in neurological diseases and the therapeutic potential of m6A-related drugs. The aim of this review is expected to be useful to systematically assess m6A as a new potential biomarker and develop innovative modulators of m6A for the amelioration and treatment of neurological disorders.
Collapse
Affiliation(s)
- Junya Lv
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China
| | - Lijuan Xing
- Precision Laboratory of Panjin Central Hospital, Panjin 124000, China
| | - Xin Zhong
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Mingyan Liu
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang 110179, China.
| | - Ke Du
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang 110122, China; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, the First Affiliated Hospital of China Medical University, Shenyang 110001, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang 110179, China.
| |
Collapse
|
29
|
Tassinari V, La Rosa P, Guida E, Colopi A, Caratelli S, De Paolis F, Gallo A, Cenciarelli C, Sconocchia G, Dolci S, Cesarini V. Contribution of A-to-I RNA editing, M6A RNA Methylation, and Alternative Splicing to physiological brain aging and neurodegenerative diseases. Mech Ageing Dev 2023; 212:111807. [PMID: 37023929 DOI: 10.1016/j.mad.2023.111807] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Aging is a physiological and progressive phenomenon in all organisms' life cycle, characterized by the accumulation of degenerative processes triggered by several alterations within molecular pathways. These changes compromise cell fate, resulting in the loss of functions in tissues throughout the body, including the brain. Physiological brain aging has been linked to structural and functional alterations, as well as to an increased risk of neurodegenerative diseases. Post-transcriptional RNA modifications modulate mRNA coding properties, stability, translatability, expanding the coding capacity of the genome, and are involved in all cellular processes. Among mRNA post-transcriptional modifications, the A-to-I RNA editing, m6A RNA Methylation and Alternative Splicing play a critical role in all the phases of a neuronal cell life cycle and alterations in their mechanisms of action significantly contribute to aging and neurodegeneration. Here we review our current understanding of the contribution of A-to-I RNA editing, m6A RNA Methylation, and Alternative Splicing to physiological brain aging process and neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Tassinari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Ambra Colopi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Sara Caratelli
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Francesca De Paolis
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Angela Gallo
- RNA Editing Lab., Oncohaematology Department, Cellular and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Cenciarelli
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Giuseppe Sconocchia
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy.
| |
Collapse
|
30
|
Liu H, Huang Y, Lu S, Yuan D, Liu J. Bibliometric analysis of METTL3: Current perspectives, highlights, and trending topics. Open Life Sci 2023; 18:20220586. [PMID: 36970605 PMCID: PMC10037166 DOI: 10.1515/biol-2022-0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
N6-methyladenosine (m6A) is a representative of RNA methylation modification, which plays a critical role in the epigenetic modification process of regulating human diseases. As a key protein for m6A, methyltransferase 3 (METTL3) had been identified to be associated with a variety of diseases. The publications related to METTL3 were searched in the Web of Science Core Collection from the earliest mention to July 1st, 2022. Being screened by the retrieval strategy, a total of 1,738 articles related to METTL3 were retrieved. Much of our work focused on collecting the data of annual publication outputs, high-yielding countries/regions/authors, keywords, citations, and journals frequently published for qualitative and quantitative analysis. We found that diseases with high correlations to METTL3 not only included various known cancers but also obesity and atherosclerosis. In addition to m6A-related enzyme molecules, the most frequent key molecules were MYC proto-oncogene (C-MYC), Enhancer of zeste homolog 2 (EZH2), and Phosphatase and tensin homolog deleted on chromosome 10 (PTEN). METTL3 and methyltransferase 14 (METTL14) may function through opposite regulatory pathways in the same disease. “Leukemia,” “Liver Cancer,” and “Glioblastoma” were speculated to be potential hotspots in METTL3 related study. The number of publications had significantly surged year by year, demonstrating the growing importance of the research on epigenetic modification in the pathology of various diseases.
Collapse
Affiliation(s)
- Hanqi Liu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 420013, China
| | - Yanqing Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 420013, China
| | - Shanshan Lu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 420013, China
| | - Didi Yuan
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 420013, China
| | - Junwen Liu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 420013, China
| |
Collapse
|
31
|
Gong L, Huang D, Shi Y, Liang Z, Bu H. Regulated cell death in cancer: from pathogenesis to treatment. Chin Med J (Engl) 2023; 136:653-665. [PMID: 35950752 PMCID: PMC10129203 DOI: 10.1097/cm9.0000000000002239] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT Regulated cell death (RCD), including apoptosis, pyroptosis, necroptosis, and ferroptosis, is regulated by a series of evolutionarily conserved pathways, and is required for development and tissue homeostasis. Based on previous genetic and biochemical explorations of cell death subroutines, the characteristics of each are generally considered distinctive. However, recent in-depth studies noted the presence of crosstalk between the different forms of RCD; hence, the concept of PANoptosis appeared. Cancer, a complex genetic disease, is characterized by stepwise deregulation of cell apoptosis and proliferation, with significant morbidity and mortality globally. At present, studies on the different RCD pathways, as well as the intricate relationships between different cell death subroutines, mainly focus on infectious diseases, and their roles in cancer remain unclear. As cancers are characterized by dysregulated cell death and inflammatory responses, most current treatment strategies aim to selectively induce cell death via different RCD pathways in cancer cells. In this review, we describe five types of RCD pathways in detail with respect to tumorigenesis and cancer progression. The potential value of some of these key effector molecules in tumor diagnosis and therapeutic response has also been raised. We then review and highlight recent progress in cancer treatment based on PANoptosis and ferroptosis induced by small-molecule compounds, immune checkpoint inhibitors, and nanoparticles. Together, these findings may provide meaningful evidence to fill in the gaps between cancer pathogenesis and RCD pathways to develop better cancer therapeutic strategies.
Collapse
Affiliation(s)
- Linjing Gong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dong Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yujun Shi
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zong’an Liang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Bu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
32
|
Yang Q, Xu P, Liu Q, Hu F, Xie X, Jiang L, Bi R, Wang L, Ding F, Xiao H. Depleting DDX1 sensitizes non-small cell lung cancer cells to chemotherapy by attenuating cancer stem cell traits. Life Sci 2023; 323:121592. [PMID: 36934972 DOI: 10.1016/j.lfs.2023.121592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
AIMS DEAD-box helicase 1 (DDX1) has oncogenic properties in several human cancers. However, the clinical significance and biological role of DDX1 in non-small cell lung cancer (NSCLC) remain elusive. Here, we examined the chemotherapeutic relevance of DDX1 in NSCLC. MAIN METHODS We used the UALCAN database, Western blot analysis, and immunohistochemical and RT-qPCR assays to assess DDX1 expression in NSCLC cell lines (H1650 and A549) and patient tissues. The role of DDX1 in the chemosensitivity of NSCLC cells and the underlying mechanisms were determined using colony formation, CCK-8, flow cytometry, wound healing, Transwell, tumor sphere formation, and immunostaining assays, together with a xenograft tumor model in nude mice. KEY FINDINGS Our study revealed that DDX1 was overexpressed in NSCLC cell lines and tissues. We further found that depleting DDX1 increased the sensitivity of NSCLC cells to the chemotherapy drug cisplatin, increased cell apoptosis, and inhibited cell migration and invasion. Co-immunoprecipitation assays revealed that DDX1 bound to ADAR1, and increased ADAR1 protein expression. Furthermore, we found that ADAR1 mediated cancer-promoting effects, independent of deaminase activity, by binding to RAC3 mRNA. Our findings not only show that DDX1 mediates chemosensitivity to cisplatin via the ADAR1/RAC3 axis but also highlight the importance of ADARs as essential RNA-binding proteins for cell homeostasis, as well as cancer progression. SIGNIFICANCE Our results suggest that DDX1 plays an important role in the development and progression of human NSCLC and that DDX1 may serve as a therapeutic target in NSCLC patients.
Collapse
Affiliation(s)
- Qi Yang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China
| | - Pei Xu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China
| | - Qingtao Liu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China
| | - Fengqing Hu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China
| | - Xiao Xie
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China
| | - Rui Bi
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China.
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China.
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to, Shanghai Jiao Tong University, School of medicine, Shanghai 200092, PR China.
| |
Collapse
|
33
|
Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T, Gong J. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Front Immunol 2023; 14:1162607. [PMID: 36999016 PMCID: PMC10043241 DOI: 10.3389/fimmu.2023.1162607] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
As the most abundant and conserved internal modification in eukaryote RNAs, N6-methyladenosine (m6A) is involved in a wide range of physiological and pathological processes. The YT521-B homology (YTH) domain-containing family proteins (YTHDFs), including YTHDF1, YTHDF2, and YTHDF3, are a class of cytoplasmic m6A-binding proteins defined by the vertebrate YTH domain, and exert extensive functions in regulating RNA destiny. Distinct expression patterns of the YTHDF family in specific cell types or developmental stages result in prominent differences in multiple biological processes, such as embryonic development, stem cell fate, fat metabolism, neuromodulation, cardiovascular effect, infection, immunity, and tumorigenesis. The YTHDF family mediates tumor proliferation, metastasis, metabolism, drug resistance, and immunity, and possesses the potential of predictive and therapeutic biomarkers. Here, we mainly summary the structures, roles, and mechanisms of the YTHDF family in physiological and pathological processes, especially in multiple cancers, as well as their current limitations and future considerations. This will provide novel angles for deciphering m6A regulation in a biological system.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simiao Xu
- Division of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China
| | - Jinxiong Yuan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Gong,
| |
Collapse
|
34
|
Li Y, Feng Y, Luo F, Peng G, Li Y. Positive regulators of T cell functions as predictors of prognosis and microenvironment characteristics of low-grade gliomas. Front Immunol 2023; 13:1089792. [PMID: 36726969 PMCID: PMC9885161 DOI: 10.3389/fimmu.2022.1089792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Background Low-grade gliomas (LGG) are one of the most prevalent types of brain cancers. The efficacy of immunotherapy in LGG is limited compared to other cancers. Immunosuppression in the tumor microenvironment (TME) of LGG is one of the main reasons for the low efficacy of immunotherapy. Recent studies have identified 33 positive regulators of T cell functions (TPRs) that play a critical role in promoting the proliferation, activity, and functions of multiple immunocytes. However, their role in the TME of LGG has not been investigated. This study aimed to construct a risk model based on these TPRs and to detect the significance of immunotypes in predicting LGG prognosis and immunotherapy efficacy. Methods A total of 688 LGGs and 202 normal brain tissues were extracted from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Genotype-Tissue Expression (GTEx) databases. The NMF R package was used to identify TRP-related subtypes. The TPR prognostic model was established using the least absolute shrinkage and selection operator (LASSO) algorithm to predict the overall survival of LGG samples. Results The Subtype 2 patients had worse survival outcomes, suppressed immune function, and higher immune cell infiltration. A risk regression model consisting of 14 TPRs was established, and its performance was validated in CGGA325 cohorts. The low-risk group exhibited better overall survival, immune microenvironment, and immunotherapy response, as determined via the TIDE algorithm, indicating that increasing the level of immune infiltration can effectively improve the response to immunotherapy in the low-risk group. The risk score was determined to be an independent hazard factor (p<0.001) although other clinical features (age, sex, grade, IDH status, 1p19q codel status, MGMT status, and accepted radiotherapy) were considered. Lastly, high-risk groups in both cohorts revealed optimal drug responses to rapamycin, paclitaxel, JW-7-52-1, and bortezomib. Conclusions Our study identified two distinct TPR subtypes and built a TPR signature to elucidate the characteristics of T cell proliferation in LGG and its association with immune status and prognosis. These findings shed light on possible immunotherapeutic strategies for LGGs.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,PET-CT Center, Chenzhou First People’s Hospital, Chenzhou, Hunan, China
| | - Yabo Feng
- PET-CT Center, Chenzhou First People’s Hospital, Chenzhou, Hunan, China
| | - Fushu Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yueran Li
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Yueran Li,
| |
Collapse
|
35
|
Hoellerbauer P, Biery MC, Arora S, Rao Y, Girard EJ, Mitchell K, Dighe P, Kufeld M, Kuppers DA, Herman JA, Holland EC, Soroceanu L, Vitanza NA, Olson JM, Pritchard JR, Paddison PJ. Functional genomic analysis of adult and pediatric brain tumor isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522885. [PMID: 36711964 PMCID: PMC9881972 DOI: 10.1101/2023.01.05.522885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Adult and pediatric tumors display stark differences in their mutation spectra and chromosome alterations. Here, we attempted to identify common and unique gene dependencies and their associated biomarkers among adult and pediatric tumor isolates using functional genetic lethal screens and computational modeling. Methods We performed CRISRP-Cas9 lethality screens in two adult glioblastoma (GBM) tumor isolates and five pediatric brain tumor isolates representing atypical teratoid rhabdoid tumors (ATRT), diffuse intrinsic pontine glioma, GBM, and medulloblastoma. We then integrated the screen results with machine learning-based gene-dependency models generated from data from >900 cancer cell lines. Results We found that >50% of candidate dependencies of 280 identified were shared between adult GBM tumors and individual pediatric tumor isolates. 68% of screen hits were found as nodes in our network models, along with shared and tumor-specific predictors of gene dependencies. We investigated network predictors associated with ADAR, EFR3A, FGFR1 (pediatric-specific), and SMARCC2 (ATRT-specific) gene dependency among our tumor isolates. Conclusions The results suggest that, despite harboring disparate genomic signatures, adult and pediatric tumor isolates share a preponderance of genetic dependences. Further, combining data from primary brain tumor lethality screens with large cancer cell line datasets produced valuable insights into biomarkers of gene dependency, even for rare cancers. Importance of the Study Our results demonstrate that large cancer cell lines data sets can be computationally mined to identify known and novel gene dependency relationships in adult and pediatric human brain tumor isolates. Gene dependency networks and lethality screen results represent a key resource for neuro-oncology and cancer research communities. We also highlight some of the challenges and limitations of this approach.
Collapse
Affiliation(s)
- Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA USA
| | - Matt C Biery
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Yiyun Rao
- Huck Institute for the Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Kelly Mitchell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Pratiksha Dighe
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Megan Kufeld
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Daniel A Kuppers
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Jacob A Herman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
| | - Liliana Soroceanu
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Justin R Pritchard
- Huck Institute for the Life Sciences, Pennsylvania State University, State College, PA, USA
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA USA
| |
Collapse
|
36
|
Zhang Z, Chen P, Yun J. Comprehensive analysis of a novel RNA modifications-related model in the prognostic characterization, immune landscape and drug therapy of bladder cancer. Front Genet 2023; 14:1156095. [PMID: 37124622 PMCID: PMC10131083 DOI: 10.3389/fgene.2023.1156095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Background: Bladder cancer (BCa) is the leading reason for death among genitourinary malignancies. RNA modifications in tumors closely link to the immune microenvironment. Our study aimed to propose a promising model associated with the "writer" enzymes of five primary RNA adenosine modifications (including m6A, m6Am, m1A, APA, and A-to-I editing), thus characterizing the clinical outcome, immune landscape and therapeutic efficacy of BCa. Methods: Unsupervised clustering was employed to categorize BCa into different RNA modification patterns based on gene expression profiles of 34 RNA modification "writers". The RNA modification "writers" score (RMS) signature composed of RNA phenotype-associated differentially expressed genes (DEGs) was established using the least absolute shrinkage and selection operator (LASSO), which was evaluated in meta-GEO (including eight independent GEO datasets) training cohort and the TCGA-BLCA validation cohort. The hub genes in the RMS model were determined via weighted gene co-expression network analysis (WGCNA) and were further validated using human specimen. The potential applicability of the RMS model in predicting the therapeutic responsiveness was assessed through the Genomics of Drug Sensitivity in Cancer database and multiple immunotherapy datasets. Results: Two distinct RNA modification patterns were determined among 1,410 BCa samples from a meta-GEO cohort, showing radically varying clinical outcomes and biological characteristics. The RMS model comprising 14 RNA modification phenotype-associated prognostic DEGs positively correlated with the unsatisfactory outcome of BCa patients in meta-GEO training cohort (HR = 3.00, 95% CI = 2.19-4.12) and TCGA-BLCA validation cohort (HR = 1.53, 95% CI = 1.13-2.09). The infiltration of immunosuppressive cells and the activation of EMT, angiogenesis, IL-6/JAK/STAT3 signaling were markedly enriched in RMS-high group. A nomogram exhibited high prognostic prediction accuracy, with a concordance index of 0.785. The therapeutic effect of chemotherapeutic agents and antibody-drug conjugates was significantly different between RMS-low and -high groups. The combination of the RMS model and conventional characteristics (TMB, TNB and PD-L1) achieved an optimal AUC value of 0.828 in differentiating responders from non-responders to immunotherapy. Conclusion: We conferred the first landscape of five forms of RNA modifications in BCa and emphasized the excellent power of an RNA modifications-related model in evaluating BCa prognosis and immune landscape.
Collapse
Affiliation(s)
- Ziying Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Peng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- *Correspondence: Jingping Yun,
| |
Collapse
|
37
|
Orsolic I, Carrier A, Esteller M. Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet 2023; 39:74-88. [PMID: 36379743 DOI: 10.1016/j.tig.2022.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/25/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Cancer was initially considered to be an exclusively genetic disease, but an interplay of dysregulated genetic and epigenetic mechanisms is now known to contribute to the cancer phenotype. More recently, chemical modifications of RNA molecules - the so-called epitranscriptome - have been found to regulate various aspects of RNA function and homeostasis. Specific enzymes, known as RNA-modifying proteins (RMPs), are responsible for depositing, removing, and reading chemical modifications in RNA. Intensive investigations in the epitranscriptomic field in recent years, in conjunction with great technological advances, have revealed the critical role of RNA modifications in regulating numerous cellular pathways. Furthermore, growing evidence has revealed that RNA modification machinery is often altered in human cancers, highlighting the enormous potential of RMPs as pharmacological targets or diagnostic markers.
Collapse
Affiliation(s)
- Ines Orsolic
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Arnaud Carrier
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), 28029 Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
38
|
Verghese M, Wilkinson E, He YY. Recent Advances in RNA m 6A Modification in Solid Tumors and Tumor Immunity. Cancer Treat Res 2023; 190:95-142. [PMID: 38113000 DOI: 10.1007/978-3-031-45654-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An analogous field to epigenetics is referred to as epitranscriptomics, which focuses on the study of post-transcriptional chemical modifications in RNA. RNA molecules, including mRNA, tRNA, rRNA, and other non-coding RNA molecules, can be edited with numerous modifications. The most prevalent modification in eukaryotic mRNA is N6-methyladenosine (m6A), which is a reversible modification found in over 7000 human genes. Recent technological advances have accelerated the characterization of these modifications, and they have been shown to play important roles in many biological processes, including pathogenic processes such as cancer. In this chapter, we discuss the role of m6A mRNA modification in cancer with a focus on solid tumor biology and immunity. m6A RNA methylation and its regulatory proteins can play context-dependent roles in solid tumor development and progression by modulating RNA metabolism to drive oncogenic or tumor-suppressive cellular pathways. m6A RNA methylation also plays dynamic roles within both immune cells and tumor cells to mediate the anti-tumor immune response. Finally, an emerging area of research within epitranscriptomics studies the role of m6A RNA methylation in promoting sensitivity or resistance to cancer therapies, including chemotherapy, targeted therapy, and immunotherapy. Overall, our understanding of m6A RNA methylation in solid tumors has advanced significantly, and continued research is needed both to fill gaps in knowledge and to identify potential areas of focus for therapeutic development.
Collapse
Affiliation(s)
- Michelle Verghese
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Wilkinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
39
|
Transcription factor YY1 mediates self-renewal of glioblastoma stem cells through regulation of the SENP1/METTL3/MYC axis. Cancer Gene Ther 2022; 30:683-693. [PMID: 36575317 DOI: 10.1038/s41417-022-00580-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/10/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Glioma is a primary brain tumor with limited treatment approaches and glioblastoma stem cells (GSCs) are manifested with the self-renewal capability and high tumorigenic capacity. This study was performed to investigate the regulatory effect of the SUMO-specific protease 1 (SENP1)/methyltransferase-like 3 (METTL3)/MYC axis on the self-renewal of GSCs mediated by transcription factor Yin Yang 1 (YY1). Following bioinformatics analysis and clinical and cellular experiments, we found that YY1 was highly expressed in GBM tissues and cells, while silencing its expression reduced the self-renewal ability of GSCs. Functionally, YY1 promoted the transcriptional expression of SENP1 by binding to the promoter region of SENP1, while the deSUMOase SENP1 facilitated the methylase activity of m6A through deSUMOylation of the methylase METTL3, thereby promoting the m6A modification of MYC mRNA via METL3 and promoting the expression of MYC. A nude mouse xenograft model of GBM was also constructed to examine the tumorigenicity of GSCs. The obtained findings demonstrated that YY1 promoted tumorigenicity of GSCs by promoting the expression of MYC in vivo. Conclusively, YY1 can transcriptionally upregulate the SUMOylase SENP1 and enhance the methylase activity of METTL3, resulting in the increased m6A modification level of MYC mRNA, thereby promoting the self-renewal of GSCs.
Collapse
|
40
|
Montella L, Cuomo M, Del Gaudio N, Buonaiuto M, Costabile D, Visconti R, Di Risi T, Vinciguerra R, Trio F, Ferraro S, Bove G, Facchini G, Altucci L, Chiariotti L, Della Monica R. Epigenetic alterations in glioblastomas: Diagnostic, prognostic and therapeutic relevance. Int J Cancer 2022. [PMID: 36479695 DOI: 10.1002/ijc.34381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma, the most common and heterogeneous tumor affecting brain parenchyma, is dismally characterized by a very poor prognosis. Thus, the search of new, more effective treatments is a vital need. Here, we will review the druggable epigenetic features of glioblastomas that are, indeed, currently explored in preclinical studies and in clinical trials for the development of more effective, personalized treatments. In detail, we will review the studies that have led to the identification of epigenetic signatures, IDH mutations, MGMT gene methylation, histone modification alterations, H3K27 mutations and epitranscriptome landscapes of glioblastomas, in each case discussing the corresponding targeted therapies and their potential efficacy. Finally, we will emphasize how recent technological improvements permit to routinely investigate many glioblastoma epigenetic biomarkers in clinical practice, further enforcing the hope that personalized drugs, targeting specific epigenetic features, could be in future a therapeutic option for selected patients.
Collapse
Affiliation(s)
- Liliana Montella
- ASL NA2 NORD, Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, Pozzuoli, Italy
| | - Mariella Cuomo
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michela Buonaiuto
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Davide Costabile
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,SEMM-European School of Molecular Medicine, University of Naples "Federico II", Naples, Italy
| | - Roberta Visconti
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Institute for the Experimental Endocrinology and Oncology, Italian National Council of Research, Naples, Italy
| | - Teodolinda Di Risi
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Public Health, University of Naples "Federico II", Naples, Italy
| | | | | | - Sara Ferraro
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy
| | - Guglielmo Bove
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gaetano Facchini
- ASL NA2 NORD, Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, Pozzuoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,BIOGEM, Ariano Irpino, Italy
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
41
|
Nag S, Goswami B, Das Mandal S, Ray PS. Cooperation and competition by RNA-binding proteins in cancer. Semin Cancer Biol 2022; 86:286-297. [PMID: 35248729 DOI: 10.1016/j.semcancer.2022.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
Post-transcriptional regulation of gene expression plays a major role in determining the cellular proteome in health and disease. Post-transcriptional control mechanisms are disrupted in many cancers, contributing to multiple processes of tumorigenesis. RNA-binding proteins (RBPs), the main post-transcriptional regulators, often show altered expression and activity in cancer cells. Dysregulation of RBPs contributes to many cancer phenotypes, functioning in complex regulatory networks with other cellular players such as non-coding RNAs, signaling mediators and transcription factors to alter the expression of oncogenes and tumor suppressor genes. RBPs often function combinatorially, based on their binding to target sequences/structures on shared mRNA targets, to regulate the expression of cancer-related genes. This gives rise to cooperativity and competition between RBPs in mRNA binding and resultant functional outcomes in post-transcriptional processes such as mRNA splicing, stability, export and translation. Cooperation and competition is also observed in the case of interaction of RBPs and microRNAs with mRNA targets. RNA structural change is a common mechanism mediating the cooperative/competitive interplay between RBPs and between RBPs and microRNAs. RNA modifications, leading to changes in RNA structure, add a new dimension to cooperative/competitive binding of RBPs to mRNAs, further expanding the RBP regulatory landscape. Therefore, cooperative/competitive interplay between RBPs is a major determinant of the RBP interactome and post-transcriptional regulation of gene expression in cancer cells.
Collapse
Affiliation(s)
- Sharanya Nag
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Binita Goswami
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sukhen Das Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
42
|
Wu Z, Lin Y, Wei N. N6-methyladenosine-modified HOTAIRM1 promotes vasculogenic mimicry formation in glioma. Cancer Sci 2022; 114:129-141. [PMID: 36086906 PMCID: PMC9807531 DOI: 10.1111/cas.15578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 01/07/2023] Open
Abstract
Vasculogenic mimicry (VM) has been reported to accelerate angiogenesis in malignant tumors, yet the mechanism underlying VM has not been fully elucidated. N6-methyladenosine (m6A) mainly modulates mRNA fate and affects multiple tumorigenesis. Here, we aimed to investigate m6A-modified HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) in the regulation of glioma-associated VM formation. Gene expression was analyzed by quantitative RT-PCR. Cell viability, metastases, and VM formation capacity were determined by CCK-8, migration and invasion, as well as tube formation assays, respectively. The function and mechanisms of m6A-modified HOTAIRM1 were defined through liquid chromatography-tandem mass spectrometry m6A quantification, methylated RNA immunoprecipitation sequencing, RNA stability assays, and RNA pull-down experiments. A glioma xenograft mouse model was further established for VM evaluation in vivo. The results showed that HOTAIRM1, methyltransferase-like 3 (METTL3), and insulin-like growth factor binding protein 2 (IGFBP2) were upregulated in glioma tissues and cell lines. HOTAIRM1 functions as an oncogene in glioma progression; however, knockdown of HOTAIRM1 significantly reduced cell viability, migration, invasion, and VM formation. Notably, METTL3-dependent m6A modification enhanced HOTAIRM1 mRNA stability, whereas knockdown of METTL3 deficiency significantly suppressed VM in glioma. Moreover, HOTAIRM1 was found to bind IGFBP2, and HOTAIRM1 deficiency blocked glioma progression and VM formation in vivo. Our results indicated that METTL3-dependent m6A-modified HOTAIRM1 promoted VM formation in glioma.
Collapse
Affiliation(s)
- Zhangyi Wu
- Department of NeurosurgeryZhejiang Provincial Tongde HospitalHangzhouChina
| | - Yihai Lin
- Department of NeurosurgeryZhejiang Provincial Tongde HospitalHangzhouChina
| | - Nan Wei
- Department of OncologyZhejiang HospitalHangzhouChina
| |
Collapse
|
43
|
Delli Ponti R, Broglia L, Vandelli A, Armaos A, Torrent Burgas M, Sanchez de Groot N, Tartaglia GG. A high-throughput approach to predict A-to-I effects on RNA structure indicates a change of double-stranded content in non-coding RNAs. IUBMB Life 2022; 75:411-426. [PMID: 36057100 DOI: 10.1002/iub.2673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/21/2022] [Indexed: 11/09/2022]
Abstract
RNA molecules undergo a number of chemical modifications whose effects can alter their structure and molecular interactions. Previous studies have shown that RNA editing can impact the formation of ribonucleoprotein complexes and influence the assembly of membrane-less organelles such as stress-granules. For instance, N6-methyladenosine (m6A) enhances SG formation and N1-methyladenosine (m1A) prevents their transition to solid-like aggregates. Yet, very little is known about adenosine to inosine (A-to-I) modification that is very abundant in human cells and not only impacts mRNAs but also non-coding RNAs. Here, we built the CROSSalive predictor of A-to-I effects on RNA structure based on high-throughput in-cell experiments. Our method shows an accuracy of 90% in predicting the single and double-stranded content of transcripts and identifies a general enrichment of double-stranded regions caused by A-to-I in long intergenic non-coding RNAs (lincRNAs). For the individual cases of NEAT1, NORAD and XIST, we investigated the relationship between A-to-I editing and interactions with RNA-binding proteins using available CLIP data and catRAPID predictions. We found that A-to-I editing is linked to alteration of interaction sites with proteins involved in phase-separation, which suggests that RNP assembly can be influenced by A-to-I. CROSSalive is available at http://service.tartaglialab.com/new_submission/crossalive. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Riccardo Delli Ponti
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore
| | - Laura Broglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy
| | - Andrea Vandelli
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alexandros Armaos
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy
| | - Marc Torrent Burgas
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Natalia Sanchez de Groot
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy.,Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| |
Collapse
|
44
|
Dou X, Wang Z, Lu W, Miao L, Zhao Y. METTL3 promotes non-small cell lung cancer (NSCLC) cell proliferation and colony formation in a m6A-YTHDF1 dependent way. BMC Pulm Med 2022; 22:324. [PMID: 36008805 PMCID: PMC9413890 DOI: 10.1186/s12890-022-02119-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background N6-methyladenosine (m6A) is the most common RNA modification, which plays a pivotal role in tumor development and progression. In this study, we assessed the role of m6A methyltransferase METTL3 in FRAS1-involved cell proliferation and colony formation of non-small cell lung cancer (NSCLC) cell lines. Methods Cell viability was analyzed by Cell Counting Kit (CCK-8) and colony formation. M6A RNA immunoprecipitation (IP), Ribosomal immunoprecipitation, RNA immunoprecipitation (RIP) were performed to verify the relationship between METTL3, FRAS1 and YTHDF1. Rescue experiments to confirm the regulatory mechanism of METTL3-FRAS1 promoted NSCLC cell proliferation through CDON by cooperating YTHDF1. Results We found that FRAS1 was correlated with poor prognosis in NSCLC patients, of which the transcript undergoes m6A modification regulated by METTL3. METTL3 silence reduced cell viability of NSCLC cells HCC827 and NCI-H1975, which could be restored by FRAS1 overexpression. The m6A modification of FRAS1 could be recognized by YTHDF1. FRAS1 silence or YTHDF1 silence could rescue the elevated NSCLC cell proliferation, colony formation, and tumor growth induced by METTL3 overexpression in vitro and in vivo. Conclusions Our study reveals that METTL3-FRAS1 plays a crucial role in NSCLC cell proliferation, colony formation, and tumor growth through the regulation of CDON by cooperating YTHDF1. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02119-3.
Collapse
Affiliation(s)
- Xuejun Dou
- Department of Thoracic Surgery, Space Central Hospital, Beijing, China.
| | - Zhiyuan Wang
- Department of Thoracic Surgery, Space Central Hospital, Beijing, China
| | - Weiqiang Lu
- Department of Thoracic Surgery, Space Central Hospital, Beijing, China
| | - Libin Miao
- Department of Thoracic Surgery, Space Central Hospital, Beijing, China
| | - Yuefeng Zhao
- Department of Thoracic Surgery, Space Central Hospital, Beijing, China
| |
Collapse
|
45
|
Niu X, Yang Y, Ren Y, Zhou S, Mao Q, Wang Y. Crosstalk between m 6A regulators and mRNA during cancer progression. Oncogene 2022; 41:4407-4419. [PMID: 36008465 DOI: 10.1038/s41388-022-02441-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
m6A modification, the most abundant and widespread RNA modification, is present and involved in the occurrence and development of various cancers. To date, most studies have mainly focused on the roles of a single m6A regulator (writer/eraser/reader) in various cancers, but cumulative evidence shows that aberrant m6A regulators and m6A levels exert dual effects (promoting and/or inhibiting roles) in cancer progression. Recently, studies have investigated the direct interactions between different m6A regulators (writer/eraser and reader) and mRNAs in a variety of cancers. In this review, we summarize the functions of m6A regulators and their roles in various types of cancers. We further propose the possible crosstalk mechanisms (Writer-m6A-Reader-mRNA axis and Eraser-m6A-Reader-mRNA axis) between different m6A regulators and mRNAs during cancer progression. We also discuss the clinical potential of m6A regulator‑targeting strategies.
Collapse
Affiliation(s)
- Xiaodong Niu
- Department of Neurosurgery and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Neurosurgery and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanming Ren
- Department of Neurosurgery and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shengtao Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Qing Mao
- Department of Neurosurgery and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuan Wang
- Department of Neurosurgery and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
46
|
RNA Editing Enzyme ADAR1 Regulates METTL3 in an Editing Dependent Manner to Promote Breast Cancer Progression via METTL3/ARHGAP5/YTHDF1 Axis. Int J Mol Sci 2022; 23:ijms23179656. [PMID: 36077054 PMCID: PMC9456332 DOI: 10.3390/ijms23179656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
A-to-I RNA editing and m6A modification are two of the most prevalent types of RNA modifications controlling gene expression in mammals and play very important roles in tumorigenesis and tumor progression. However, the functional roles and correlations of these two RNA modifications remain to be further investigated in cancer. Herein, we show that ADAR1, an A-to-I RNA-editing enzyme, interacts with METTL3 and increases its protein level to promote the proliferation, migration and invasion of breast cancer cells through a mechanism connecting ADAR1, METTL3 and YTHDF1. We show that both ADAR1 and METTL3 are upregulated in breast cancer samples, and ADAR1 positively correlates with METTL3; ADAR1 edits METTL3 mRNA and changes its binding site to miR532-5p, leading to increased METTL3 protein, which further targets ARHGAP5, recognized by YTHDF1. Additionally, we show that loss of ADAR1 significantly inhibits breast cancer growth in vivo. Collectively, our findings identify the ADAR1–METTL3 axis as a novel, important pathway that connects A-to-I editing and m6A RNA modifications during breast cancer progression.
Collapse
|
47
|
You S, Su X, Ying J, Li S, Qu Y, Mu D. Research Progress on the Role of RNA m6A Modification in Glial Cells in the Regulation of Neurological Diseases. Biomolecules 2022; 12:biom12081158. [PMID: 36009052 PMCID: PMC9405963 DOI: 10.3390/biom12081158] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Glial cells are the most abundant and widely distributed cells that maintain cerebral homeostasis in the central nervous system. They mainly include microglia, astrocytes, and the oligodendrocyte lineage cells. Moreover, glial cells may induce pathological changes, such as inflammatory responses, demyelination, and disruption of the blood–brain barrier, to regulate the occurrence and development of neurological diseases through various molecular mechanisms. Furthermore, RNA m6A modifications are involved in various pathological processes associated with glial cells. In this review, the roles of glial cells in physiological and pathological states, as well as advances in understanding the mechanisms by which glial cells regulate neurological diseases under RNA m6A modification, are summarized, hoping to provide new perspectives on the deeper mechanisms and potential therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Siyi You
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojuan Su
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
48
|
ADAR2 Protein Is Associated with Overall Survival in GBM Patients and Its Decrease Triggers the Anchorage-Independent Cell Growth Signature. Biomolecules 2022; 12:biom12081142. [PMID: 36009036 PMCID: PMC9405742 DOI: 10.3390/biom12081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Epitranscriptomic mechanisms, such as A-to-I RNA editing mediated by ADAR deaminases, contribute to cancer heterogeneity and patients’ stratification. ADAR enzymes can change the sequence, structure, and expression of several RNAs, affecting cancer cell behavior. In glioblastoma, an overall decrease in ADAR2 RNA level/activity has been reported. However, no data on ADAR2 protein levels in GBM patient tissues are available; and most data are based on ADARs overexpression experiments. Methods: We performed IHC analysis on GBM tissues and correlated ADAR2 levels and patients’ overall survival. We silenced ADAR2 in GBM cells, studied cell behavior, and performed a gene expression/editing analysis. Results: GBM tissues do not all show a low/no ADAR2 level, as expected by previous studies. Although, different amounts of ADAR2 protein were observed in different patients, with a low level correlating with a poor patient outcome. Indeed, reducing the endogenous ADAR2 protein in GBM cells promotes cell proliferation and migration and changes the cell’s program to an anchorage-independent growth mode. In addition, deep-seq data and bioinformatics analysis indicated multiple RNAs are differently expressed/edited upon siADAR2. Conclusion: ADAR2 protein is an important deaminase in GBM and its amount correlates with patient prognosis.
Collapse
|
49
|
Dome A, Dymova M, Richter V, Stepanov G. Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma. Int J Mol Sci 2022; 23:9272. [PMID: 36012529 PMCID: PMC9408889 DOI: 10.3390/ijms23169272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
This review is devoted to changes in the post-transcriptional maturation of RNA in human glioblastoma cells, which leads to disruption of the normal course of apoptosis in them. The review thoroughly highlights the latest information on both post-transcriptional modifications of certain regulatory RNAs, associated with the process of apoptosis, presents data on the features of apoptosis in glioblastoma cells, and shows the relationship between regulatory RNAs and the apoptosis in tumor cells. In conclusion, potential target candidates are presented that are necessary for the development of new drugs for the treatment of glioblastoma.
Collapse
Affiliation(s)
| | - Maya Dymova
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | | |
Collapse
|
50
|
miRNome and Proteome Profiling of Small Extracellular Vesicles Secreted by Human Glioblastoma Cell Lines and Primary Cancer Stem Cells. Biomedicines 2022; 10:biomedicines10081886. [PMID: 36009432 PMCID: PMC9405730 DOI: 10.3390/biomedicines10081886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Despite available therapeutic interventions, it is very difficult to treat, and a cure is not yet available. The intra-tumoral GBM heterogeneity is a crucial factor contributing to poor clinical outcomes. GBM derives from a small heterogeneous population of cancer stem cells (CSCs). In cancer tissue, CSCs are concentrated within the so-called niches, where they progress from a slowly proliferating phase. CSCs, as most tumor cells, release extracellular vesicles (EVs) into the surrounding microenvironment. To explore the role of EVs in CSCs and GBM tumor cells, we investigated the miRNA and protein content of the small EVs (sEVs) secreted by two GBM-established cell lines and by GBM primary CSCs using omics analysis. Our data indicate that GBM-sEVs are selectively enriched for miRNAs that are known to display tumor suppressor activity, while their protein cargo is enriched for oncoproteins and tumor-associated proteins. Conversely, among the most up-regulated miRNAs in CSC-sEVs, we also found pro-tumor miRNAs and proteins related to stemness, cell proliferation, and apoptosis. Collectively, our findings support the hypothesis that sEVs selectively incorporate different miRNAs and proteins belonging both to fundamental processes (e.g., cell proliferation, cell death, stemness) as well as to more specialized ones (e.g., EMT, membrane docking, cell junction organization, ncRNA processing).
Collapse
|