1
|
Hara S, Matsuhisa F, Kitajima S, Yatsuki H, Kubiura-Ichimaru M, Higashimoto K, Soejima H. Identification of responsible sequences which mutations cause maternal H19-ICR hypermethylation with Beckwith-Wiedemann syndrome-like overgrowth. Commun Biol 2024; 7:1605. [PMID: 39623082 PMCID: PMC11612015 DOI: 10.1038/s42003-024-07323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is caused by a gain of methylation (GOM) at the imprinting control region within the Igf2-H19 domain on the maternal allele (H19-ICR GOM). Mutations in the binding sites of several transcription factors are involved in H19-ICR GOM and BWS. However, the responsible sequence(s) for H19-ICR GOM with BWS-like overgrowth has not been identified in mice. Here, we report that a mutation in the SOX-OCT binding site (SOBS) causes partial H19-ICR GOM, which does not extend beyond CTCF binding site 3 (CTS3). Moreover, simultaneously mutating both SOBS and CTS3 causes complete GOM of the entire H19-ICR, leading to the misexpression of the imprinted genes, and frequent BWS-like overgrowth. In addition, CTS3 is critical for CTCF/cohesin-mediated chromatin conformation. These results indicate that SOBS and CTS3 are the sequences in which mutations cause H19-ICR GOM leading to BWS-like overgrowth and are essential for maintaining the unmethylated state of maternal H19-ICR.
Collapse
Affiliation(s)
- Satoshi Hara
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| | - Fumikazu Matsuhisa
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, 849-8501, Japan
| | - Shuji Kitajima
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, 849-8501, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Musashi Kubiura-Ichimaru
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| |
Collapse
|
2
|
Hilgart E, Zhou W, Martinez-Montes E, Idrizi A, Tryggvadottir R, Gondek LP, Majeti R, Ji H, Koldobskiy MA, Feinberg AP. DNA methylation stochasticity is linked to transcriptional variability and identifies convergent epigenetic disruption across genetically-defined subtypes of AML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620422. [PMID: 39554147 PMCID: PMC11565875 DOI: 10.1101/2024.10.26.620422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Disruption of the epigenetic landscape is of particular interest in acute myeloid leukemia (AML) due to its relatively low mutational burden and frequent occurrence of mutations in epigenetic regulators. Here, we applied an information-theoretic analysis of methylation potential energy landscapes, capturing changes in mean methylation level and methylation entropy, to comprehensively analyze DNA methylation stochasticity in subtypes of AML defined by mutually exclusive genetic mutations. We identified AML subtypes with CEBPA double mutation and those with IDH mutations as distinctly high-entropy subtypes, marked by methylation disruption over a convergent set of genes. We found a core program of epigenetic landscape disruption across all AML subtypes, with discordant methylation stochasticity and transcriptional dysregulation converging on functionally important leukemic signatures, suggesting a genotype-independent role of stochastic disruption of the epigenetic landscape in mediating leukemogenesis. We further established a relationship between methylation entropy and gene expression variability, connecting the disruption of the epigenetic landscape to transcription in AML. This approach identified a convergent program of epigenetic dysregulation in leukemia, clarifying the contribution of specific genetic mutations to stochastic disruption of the epigenetic and transcriptional landscapes of AML.
Collapse
|
3
|
de Almeida IM, Tosta BR, Pena LDC, Silva HDS, Reis-Goes FS, Silva NN, Cruz JVA, Silva MDA, de Araújo JF, Rodrigues JL, Oliveira G, Figueiredo RG, Vaz SN, Montaño-Castellón I, Santana D, Torres A, Beltrão FEDL, Carneiro VL, Campos GS, Brites C, Fortuna V, Figueiredo CA, Trindade SC, Ramos HE, Costa RDS. Genetic signatures of AKT1 variants associated with worse COVID-19 outcomes - a multicentric observational study. Front Immunol 2024; 15:1422349. [PMID: 39439795 PMCID: PMC11493623 DOI: 10.3389/fimmu.2024.1422349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The COVID-19, triggered by the SARS-CoV-2 virus, has varied clinical manifestations, ranging from mild cases to severe forms such as fatal pneumonia and acute respiratory distress syndrome (ARDS). Disease severity is influenced by an exacerbated immune response, characterized by high pro-inflammatory cytokine levels. Inhibition of AKT can potentially suppress pathological inflammation, cytokine storm and platelet activation associated with COVID-19. In this study, we aimed to investigate the rs2494746 and rs1130214 variants in the AKT1 gene associated with severe COVID-19 outcomes. Methods Peripheral blood samples and sociodemographic data from 508 individuals with COVID-19, measuring plasma cytokine concentrations using ELISA and genotyped the AKT1 variants. Results The rs2494746-C allele was associated with severity, ICU admission, and death from COVID-19. The C allele at rs1130214 was linked to increased TNF and D-dimer levels. Moreover, both variants exhibited an increased cumulative risk of disease severity, ICU admission, and mortality caused by COVID-19. In the predictive analysis, the rs2494746 obtained an accuracy of 71%, suggesting a high probability of the test determining the severity of the disease. Discussion Our findings contribute to understanding the influence of the AKT1 gene variants on the immunological damage in individuals infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Ingrid Marins de Almeida
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Bruna Ramos Tosta
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Laiane da Cruz Pena
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Hatilla dos Santos Silva
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Fabiane S. Reis-Goes
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Nívia N. Silva
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - João Victor Andrade Cruz
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Mailane dos Anjos Silva
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Jéssica Francisco de Araújo
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Juliana Lopes Rodrigues
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Gabriella Oliveira
- Laboratório de Análises Clínicas, Instituto Couto Maia, Salvador, Brazil
| | | | - Sara Nunes Vaz
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Iris Montaño-Castellón
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Daniele Santana
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Alex Torres
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | | | | | - Gubio Soares Campos
- Laboratório de Virologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Carlos Brites
- Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Vitor Fortuna
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Camila Alexandrina Figueiredo
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Soraya Castro Trindade
- Laboratório de Imunologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
- Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Helton Estrela Ramos
- Programa de Pós-Graduação em Processos Interativos de Órgãos e Sistema, Instituto de Saúde e Ciência, Universidade Federal da Bahia, Salvador, Brazil
| | - Ryan dos Santos Costa
- Laboratório de Imunofarmacologia e Biologia Molecular, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
4
|
Ros-Pardo D, Gómez-Puertas P, Marcos-Alcalde Í. STAG2-RAD21 complex: A unidirectional DNA ratchet mechanism in loop extrusion. Int J Biol Macromol 2024; 276:133822. [PMID: 39002918 DOI: 10.1016/j.ijbiomac.2024.133822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
DNA loop extrusion plays a key role in the regulation of gene expression and the structural arrangement of chromatin. Most existing mechanistic models of loop extrusion depend on some type of ratchet mechanism, which should permit the elongation of loops while preventing their collapse, by enabling DNA to move in only one direction. STAG2 is already known to exert a role as DNA anchor, but the available structural data suggest a possible role in unidirectional DNA motion. In this work, a computational simulation framework was constructed to evaluate whether STAG2 could enforce such unidirectional displacement of a DNA double helix. The results reveal that STAG2 V-shape allows DNA sliding in one direction, but blocks opposite DNA movement via a linear ratchet mechanism. Furthermore, these results suggest that RAD21 binding to STAG2 controls its flexibility by narrowing the opening of its V-shape, which otherwise remains widely open in absence of RAD21. Therefore, in the proposed model, in addition to its already described role as a DNA anchor, the STAG2-RAD21 complex would be part of a ratchet mechanism capable of exerting directional selectivity on DNA sliding during loop extrusion. The identification of the molecular basis of the ratchet mechanism of loop extrusion is a critical step in unraveling new insights into a broad spectrum of chromatin activities and their implications for the mechanisms of chromatin-related diseases.
Collapse
Affiliation(s)
- David Ros-Pardo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, CL Nicolás Cabrera, 1, 28049 Madrid, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, CL Nicolás Cabrera, 1, 28049 Madrid, Spain.
| | - Íñigo Marcos-Alcalde
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, CL Nicolás Cabrera, 1, 28049 Madrid, Spain
| |
Collapse
|
5
|
Tortora MMC, Fudenberg G. The physical chemistry of interphase loop extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609419. [PMID: 39229088 PMCID: PMC11370536 DOI: 10.1101/2024.08.23.609419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Loop extrusion constitutes a universal mechanism of genome organization, whereby structural maintenance of chromosomes (SMC) protein complexes load onto the chromatin fiber and generate DNA loops of increasingly-larger sizes until their eventual release. In mammalian interphase cells, loop extrusion is mediated by the cohesin complex, which is dynamically regulated by the interchange of multiple accessory proteins. Although these regulators bind the core cohesin complex only transiently, their disruption can dramatically alter cohesin dynamics, gene expression, chromosome morphology and contact patterns. Still, a theory of how cohesin regulators and their molecular interplay with the core complex modulate genome folding remains at large. Here we derive a model of cohesin loop extrusion from first principles, based on in vivo measurements of the abundance and dynamics of cohesin regulators. We systematically evaluate potential chemical reaction networks that describe the association of cohesin with its regulators and with the chromatin fiber. Remarkably, experimental observations are consistent with only a single biochemical reaction cycle, which results in a unique minimal model that may be fully parameterized by quantitative protein measurements. We demonstrate how distinct roles for cohesin regulators emerge simply from the structure of the reaction network, and how their dynamic exchange can regulate loop extrusion kinetics over time-scales that far exceed their own chromatin residence times. By embedding our cohesin biochemical reaction network within biophysical chromatin simulations, we evidence how variations in regulatory protein abundance can alter chromatin architecture across multiple length- and time-scales. Predictions from our model are corroborated by biophysical and biochemical assays, optical microscopy observations, and Hi-C conformation capture techniques. More broadly, our theoretical and numerical framework bridges the gap between in vitro observations of extrusion motor dynamics at the molecular scale and their structural consequences at the genome-wide level.
Collapse
Affiliation(s)
- Maxime M C Tortora
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA
| |
Collapse
|
6
|
Labudina AA, Meier M, Gimenez G, Tatarakis D, Ketharnathan S, Mackie B, Schilling TF, Antony J, Horsfield JA. Cohesin composition and dosage independently affect early development in zebrafish. Development 2024; 151:dev202593. [PMID: 38975838 DOI: 10.1242/dev.202593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Cohesin, a chromatin-associated protein complex with four core subunits (Smc1a, Smc3, Rad21 and either Stag1 or 2), has a central role in cell proliferation and gene expression in metazoans. Human developmental disorders termed 'cohesinopathies' are characterized by germline variants of cohesin or its regulators that do not entirely eliminate cohesin function. However, it is not clear whether mutations in individual cohesin subunits have independent developmental consequences. Here, we show that zebrafish rad21 or stag2b mutants independently influence embryonic tailbud development. Both mutants have altered mesoderm induction, but only homozygous or heterozygous rad21 mutation affects cell cycle gene expression. stag2b mutants have narrower notochords and reduced Wnt signaling in neuromesodermal progenitors as revealed by single-cell RNA sequencing. Stimulation of Wnt signaling rescues transcription and morphology in stag2b, but not rad21, mutants. Our results suggest that mutations altering the quantity versus composition of cohesin have independent developmental consequences, with implications for the understanding and management of cohesinopathies.
Collapse
Affiliation(s)
- Anastasia A Labudina
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Michael Meier
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - David Tatarakis
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Sarada Ketharnathan
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Bridget Mackie
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 913, Dunedin 9016, New Zealand
| |
Collapse
|
7
|
Dong J, Ni J, Chen J, Wang X, Ye L, Xu X, Guo W, Chen X. Genomic alteration discordance in the paired primary-recurrent ovarian cancers: based on the comprehensive genomic profiling (CGP) analysis. J Ovarian Res 2024; 17:133. [PMID: 38937827 PMCID: PMC11212203 DOI: 10.1186/s13048-024-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
PURPOSE Ovarian cancer (OC) is characterized by a high recurrence rate, and homologous recombination deficiency (HRD) is an important biomarker in the clinical management of OC. We investigated the differences in clinical genomic profiles between the primary and platinum-sensitive recurrent OC (PSROC), focusing on HRD status. MATERIALS AND METHODS A total of 40 formalin-fixed paraffin-embedded (FFPE) tissues of primary tumors and their first platinum-sensitive recurrence from 20 OC patients were collected, and comprehensive genomic profiling (CGP) analysis of FoundationOne®CDx (F1CDx) was applied to explore the genetic (dis)similarities of the primary and recurrent tumors. RESULTS By comparing between paired samples, we found that genomic loss of heterozygosity (gLOH) score had a high intra-patient correlation (r2 = 0.79) and that short variants (including TP53, BRCA1/2 and NOTCH1 mutations), tumor mutational burden (TMB) and microsatellite stability status remained stable. The frequency of (likely) pathological BRCA1/2 mutations was 30% (12/40) in all samples positively correlated with gLOH scores, but the proportion of gLOH-high status (score > 16%) was 50% (10/20) and 55% (11/20) in the primary and recurrent samples, respectively. An additional 20% (4/20) of patients needed attention, a quarter of which carried the pathological BRCA1 mutation but had a gLOH-low status (gLOH < 16%), and three-quarters had different gLOH status in primary-recurrent pairs. Furthermore, we observed the PSROC samples had higher gLOH scores (16.1 ± 9.24 vs. 19.4 ± 11.1, p = 0.007), more CNVs (36.1% vs. 15.1% of discordant genomic alternations), and significant enrichment of altered genes in TGF-beta signaling and Hippo signaling pathways (p < 0.05 for all) than their paired primaries. Lastly, mutational signature and oncodrive gene analyses showed that the computed mutational signature similarity in the primary and recurrent tumors were best matched the COSMI 3 signature (Aetiology of HRD) and had consistent candidate cancer driver genes of MSH2, NOTCH1 and MSH6. CONCLUSION The high genetic concordance of the short variants remains stable along OC recurrence. However, the results reveal significantly higher gLOH scores in the recurrent setting than in paired primaries, supporting further clinically instantaneity HRD assay strategy.
Collapse
Affiliation(s)
- Jiayin Dong
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 # Baiziting street, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Jing Ni
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 # Baiziting street, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Jiahui Chen
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 # Baiziting street, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xuening Wang
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 # Baiziting street, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Luxin Ye
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 # Baiziting street, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xia Xu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 # Baiziting street, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Wenwen Guo
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, 121 # Jiangjiayuan road, Nanjing, Jiangsu, 210011, People's Republic of China.
| | - Xiaoxiang Chen
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 # Baiziting street, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
8
|
Zagirova D, Kononkova A, Vaulin N, Khrameeva E. From compartments to loops: understanding the unique chromatin organization in neuronal cells. Epigenetics Chromatin 2024; 17:18. [PMID: 38783373 PMCID: PMC11112951 DOI: 10.1186/s13072-024-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
The three-dimensional organization of the genome plays a central role in the regulation of cellular functions, particularly in the human brain. This review explores the intricacies of chromatin organization, highlighting the distinct structural patterns observed between neuronal and non-neuronal brain cells. We integrate findings from recent studies to elucidate the characteristics of various levels of chromatin organization, from differential compartmentalization and topologically associating domains (TADs) to chromatin loop formation. By defining the unique chromatin landscapes of neuronal and non-neuronal brain cells, these distinct structures contribute to the regulation of gene expression specific to each cell type. In particular, we discuss potential functional implications of unique neuronal chromatin organization characteristics, such as weaker compartmentalization, neuron-specific TAD boundaries enriched with active histone marks, and an increased number of chromatin loops. Additionally, we explore the role of Polycomb group (PcG) proteins in shaping cell-type-specific chromatin patterns. This review further emphasizes the impact of variations in chromatin architecture between neuronal and non-neuronal cells on brain development and the onset of neurological disorders. It highlights the need for further research to elucidate the details of chromatin organization in the human brain in order to unravel the complexities of brain function and the genetic mechanisms underlying neurological disorders. This research will help bridge a significant gap in our comprehension of the interplay between chromatin structure and cell functions.
Collapse
Affiliation(s)
- Diana Zagirova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Build.1, Moscow, 121205, Russia
- Research and Training Center on Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute) RAS, Bolshoy Karetny per. 19, Build.1, Moscow, 127051, Russia
| | - Anna Kononkova
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Build.1, Moscow, 121205, Russia
| | - Nikita Vaulin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Build.1, Moscow, 121205, Russia
| | - Ekaterina Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Build.1, Moscow, 121205, Russia.
| |
Collapse
|
9
|
Xu J, Xu X, Huang D, Luo Y, Lin L, Bai X, Zheng Y, Yang Q, Cheng Y, Huang A, Shi J, Bo X, Gu J, Chen H. A comprehensive benchmarking with interpretation and operational guidance for the hierarchy of topologically associating domains. Nat Commun 2024; 15:4376. [PMID: 38782890 PMCID: PMC11116433 DOI: 10.1038/s41467-024-48593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Topologically associating domains (TADs), megabase-scale features of chromatin spatial architecture, are organized in a domain-within-domain TAD hierarchy. Within TADs, the inner and smaller subTADs not only manifest cell-to-cell variability, but also precisely regulate transcription and differentiation. Although over 20 TAD callers are able to detect TAD, their usability in biomedicine is confined by a disagreement of outputs and a limit in understanding TAD hierarchy. We compare 13 computational tools across various conditions and develop a metric to evaluate the similarity of TAD hierarchy. Although outputs of TAD hierarchy at each level vary among callers, data resolutions, sequencing depths, and matrices normalization, they are more consistent when they have a higher similarity of larger TADs. We present comprehensive benchmarking of TAD hierarchy callers and operational guidance to researchers of life science researchers. Moreover, by simulating the mixing of different types of cells, we confirm that TAD hierarchy is generated not simply from stacking Hi-C heatmaps of heterogeneous cells. Finally, we propose an air conditioner model to decipher the role of TAD hierarchy in transcription.
Collapse
Affiliation(s)
- Jingxuan Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiang Xu
- Academy of Military Medical Science, Beijing, 100850, China
| | - Dandan Huang
- Department of Oncology, Peking University Shougang Hospital, Beijing, China
- Center for Precision Diagnosis and Treatment of Colorectal Cancer and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
| | - Yawen Luo
- Academy of Military Medical Science, Beijing, 100850, China
| | - Lin Lin
- Academy of Military Medical Science, Beijing, 100850, China
- School of Computer Science and Information Technology& KLAS, Northeast Normal University, Changchun, China
| | - Xuemei Bai
- Academy of Military Medical Science, Beijing, 100850, China
| | - Yang Zheng
- Academy of Military Medical Science, Beijing, 100850, China
| | - Qian Yang
- Academy of Military Medical Science, Beijing, 100850, China
| | - Yu Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - An Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jingyi Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaochen Bo
- Academy of Military Medical Science, Beijing, 100850, China.
| | - Jin Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Department of Oncology, Peking University Shougang Hospital, Beijing, China.
- Center for Precision Diagnosis and Treatment of Colorectal Cancer and Inflammatory Diseases, Peking University Health Science Center, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Peking University International Cancer Institute, Beijing, China.
| | - Hebing Chen
- Academy of Military Medical Science, Beijing, 100850, China.
| |
Collapse
|
10
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
11
|
Ortiz JR, Lewis SM, Ciccone M, Chatterjee D, Henry S, Siepel A, Dos Santos CO. Single-Cell Transcription Mapping of Murine and Human Mammary Organoids Responses to Female Hormones. J Mammary Gland Biol Neoplasia 2024; 29:3. [PMID: 38289401 PMCID: PMC10827859 DOI: 10.1007/s10911-023-09553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
During female adolescence and pregnancy, rising levels of hormones result in a cyclic source of signals that control the development of mammary tissue. While such alterations are well understood from a whole-gland perspective, the alterations that such hormones bring to organoid cultures derived from mammary glands have yet to be fully mapped. This is of special importance given that organoids are considered suitable systems to understand cross species breast development. Here we utilized single-cell transcriptional profiling to delineate responses of murine and human normal breast organoid systems to female hormones across evolutionary distinct species. Collectively, our study represents a molecular atlas of epithelial dynamics in response to estrogen and pregnancy hormones.
Collapse
Affiliation(s)
| | - Steven M Lewis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michael Ciccone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | | - Samantha Henry
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Adam Siepel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | |
Collapse
|
12
|
Ros-Pardo D, Gómez-Puertas P, Marcos-Alcalde Í. STAG2: Computational Analysis of Missense Variants Involved in Disease. Int J Mol Sci 2024; 25:1280. [PMID: 38279279 PMCID: PMC10816197 DOI: 10.3390/ijms25021280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The human STAG2 protein is an essential component of the cohesin complex involved in cellular processes of gene expression, DNA repair, and genomic integrity. Somatic mutations in the STAG2 sequence have been associated with various types of cancer, while congenital variants have been linked to developmental disorders such as Mullegama-Klein-Martinez syndrome, X-linked holoprosencephaly-13, and Cornelia de Lange syndrome. In the cohesin complex, the direct interaction of STAG2 with DNA and with NIPBL, RAD21, and CTCF proteins has been described. The function of STAG2 within the complex is still unknown, but it is related to its DNA binding capacity and is modulated by its binding to the other three proteins. Every missense variant described for STAG2 is located in regions involved in one of these interactions. In the present work, we model the structure of 12 missense variants described for STAG2, as well as two other variants of NIPBl and two of RAD21 located at STAG2 interaction zone, and then analyze their behavior through molecular dynamic simulations, comparing them with the same simulation of the wild-type protein. This will allow the effects of variants to be rationalized at the atomic level and provide clues as to how STAG2 functions in the cohesin complex.
Collapse
Affiliation(s)
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/Nicolás Cabrera, 1, 28049 Madrid, Spain; (D.R.-P.); (Í.M.-A.)
| | | |
Collapse
|
13
|
Abbas A, Chandratre K, Gao Y, Yuan J, Zhang MQ, Mani RS. ChIPr: accurate prediction of cohesin-mediated 3D genome organization from 2D chromatin features. Genome Biol 2024; 25:15. [PMID: 38217027 PMCID: PMC10785520 DOI: 10.1186/s13059-023-03158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/22/2023] [Indexed: 01/14/2024] Open
Abstract
The three-dimensional genome organization influences diverse nuclear processes. Here we present Chromatin Interaction Predictor (ChIPr), a suite of regression models based on deep neural networks, random forest, and gradient boosting to predict cohesin-mediated chromatin interaction strength between any two loci in the genome. The predictions of ChIPr correlate well with ChIA-PET data in four cell lines. The standard ChIPr model requires three experimental inputs: ChIP-Seq signals for RAD21, H3K27ac, and H3K27me3 but works well with just RAD21 signal. Integrative analysis reveals novel insights into the role of CTCF motif, its orientation, and CTCF binding on cohesin-mediated chromatin interactions.
Collapse
Affiliation(s)
- Ahmed Abbas
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Khyati Chandratre
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yunpeng Gao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiapei Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Ram S Mani
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
14
|
Pessa JC, Joutsen J, Sistonen L. Transcriptional reprogramming at the intersection of the heat shock response and proteostasis. Mol Cell 2024; 84:80-93. [PMID: 38103561 DOI: 10.1016/j.molcel.2023.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Cellular homeostasis is constantly challenged by a myriad of extrinsic and intrinsic stressors. To mitigate the stress-induced damage, cells activate transient survival programs. The heat shock response (HSR) is an evolutionarily well-conserved survival program that is activated in response to proteotoxic stress. The HSR encompasses a dual regulation of transcription, characterized by rapid activation of genes encoding molecular chaperones and concomitant global attenuation of non-chaperone genes. Recent genome-wide approaches have delineated the molecular depth of stress-induced transcriptional reprogramming. The dramatic rewiring of gene and enhancer networks is driven by key transcription factors, including heat shock factors (HSFs), that together with chromatin-modifying enzymes remodel the 3D chromatin architecture, determining the selection of either gene activation or repression. Here, we highlight the current advancements of molecular mechanisms driving transcriptional reprogramming during acute heat stress. We also discuss the emerging implications of HSF-mediated stress signaling in the context of physiological and pathological conditions.
Collapse
Affiliation(s)
- Jenny C Pessa
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jenny Joutsen
- Department of Pathology, Lapland Central Hospital, Lapland Wellbeing Services County, Rovaniemi, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
15
|
Tchurikov NA, Alembekov IR, Klushevskaya ES, Meilakh PB, Kretova AN, Managarova OD, Kravatskaya GI, Kravatsky YV. CBP and RAD21 Proteins Bind at the Termini of Forum Domains in Human Chromosomes. DOKL BIOCHEM BIOPHYS 2023; 513:337-340. [PMID: 38066319 DOI: 10.1134/s1607672923700540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 01/26/2024]
Abstract
Forum domains are 50-100-kb stretches of DNA delimited by the hotspots of double-strand breaks (DSBs). These domains possess coordinately expressed genes. However, molecular mechanisms of such regulation are not clear. It is assumed that the proteins specifically binding at the termini of domains can be involved in coordinated regulation of expression. In this study, we used the results of precise mapping of hotspots of DSBs and ChIP-Seq data for ten nuclear proteins in HEK293T cell line for a search of proteins specifically binding at forum-domain termini. We detected that two proteins, CBP and RAD24, which are known to be involved in epigenetic regulation of gene expression and formation of 3D chromosomal structures, bind at the termini. We assume that these proteins may be involved in coordinated expression of genes in forum domains.
Collapse
Affiliation(s)
- N A Tchurikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - I R Alembekov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - E S Klushevskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - P B Meilakh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A N Kretova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - O D Managarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - G I Kravatskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yu V Kravatsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Rahman S, Dong P, Apontes P, Fernando M, Kosoy R, Townsley KG, Girdhar K, Bendl J, Shao Z, Misir R, Tsankova N, Kleopoulos S, Brennand K, Fullard J, Roussos P. Lineage specific 3D genome structure in the adult human brain and neurodevelopmental changes in the chromatin interactome. Nucleic Acids Res 2023; 51:11142-11161. [PMID: 37811875 PMCID: PMC10639075 DOI: 10.1093/nar/gkad798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/18/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
The human brain is a complex organ comprised of distinct cell types, and the contribution of the 3D genome to lineage specific gene expression remains poorly understood. To decipher cell type specific genome architecture, and characterize fine scale changes in the chromatin interactome across neural development, we compared the 3D genome of the human fetal cortical plate to that of neurons and glia isolated from the adult prefrontal cortex. We found that neurons have weaker genome compartmentalization compared to glia, but stronger TADs, which emerge during fetal development. Furthermore, relative to glia, the neuronal genome shifts more strongly towards repressive compartments. Neurons have differential TAD boundaries that are proximal to active promoters involved in neurodevelopmental processes. CRISPRi on CNTNAP2 in hIPSC-derived neurons reveals that transcriptional inactivation correlates with loss of insulation at the differential boundary. Finally, re-wiring of chromatin loops during neural development is associated with transcriptional and functional changes. Importantly, differential loops in the fetal cortex are associated with autism GWAS loci, suggesting a neuropsychiatric disease mechanism affecting the chromatin interactome. Furthermore, neural development involves gaining enhancer-promoter loops that upregulate genes that control synaptic activity. Altogether, our study provides multi-scale insights on the 3D genome in the human brain.
Collapse
Affiliation(s)
- Samir Rahman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pengfei Dong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pasha Apontes
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Michael B Fernando
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roman Kosoy
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kayla G Townsley
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kiran Girdhar
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhiping Shao
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth Misir
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nadia Tsankova
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular, and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven P Kleopoulos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
17
|
Ortiz JR, Lewis SM, Ciccone MF, Chatterjee D, Henry S, Siepel A, Dos Santos CO. Single-cell transcription mapping of murine and human mammary organoids responses to female hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559971. [PMID: 37808747 PMCID: PMC10557705 DOI: 10.1101/2023.09.28.559971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
During female adolescence and pregnancy, rising levels of hormones result in a cyclic source of signals that control the development of mammary tissue. While such alterations are well understood from a whole-gland perspective, the alterations that such hormones bring to organoid cultures derived from mammary glands have yet to be fully mapped. This is of special importance given that organoids are considered suitable systems to understand cross species breast development. Here we utilized single-cell transcriptional profiling to delineate responses of murine and human normal breast organoid systems to female hormones across evolutionary distinct species. Collectively, our study represents a molecular atlas of epithelial dynamics in response to estrogen and pregnancy hormones.
Collapse
|