1
|
Stepanyan A, Brojakowska A, Zakharyan R, Hakobyan S, Davitavyan S, Sirunyan T, Khachatryan G, Khlgatian MK, Bisserier M, Zhang S, Sahoo S, Hadri L, Rai A, Garikipati VNS, Arakelyan A, Goukassian DA. Evaluating sex-specific responses to western diet across the lifespan: impact on cardiac function and transcriptomic signatures in C57BL/6J mice at 530 and 640/750 days of age. Cardiovasc Diabetol 2024; 23:454. [PMID: 39732652 DOI: 10.1186/s12933-024-02565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses. METHODS Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days. RESULTS In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life. In male mice, ECHO revealed the development of an HFrEF-like phenotype later in life without detectable structural alterations. The transcriptomic profile revealed a sex-associated dichotomy in LV structure and function. Specifically, at 530-day, WD-fed male mice exhibited differentially expressed genes (DEGs), which were overrepresented in pathways associated with endocrine function, signal transduction, and cardiomyopathies. At 750 days, WD-fed male mice exhibited dysregulation of several genes involved in various lipid, glucagon, and glutathione metabolic pathways. At 530 days, WD-fed female mice exhibited the most distinctive set of DEGs with an abundance of genes related to circadian rhythms. At 640 days, altered DEGs in WD-fed female mice were associated with cardiac energy metabolism and remodeling. CONCLUSIONS Our study demonstrated distinct sex-specific and age-associated differences in cardiac structure, function, and transcriptome signature between WD-fed male and female mice.
Collapse
Affiliation(s)
- Ani Stepanyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia.
| | - Agnieszka Brojakowska
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Roksana Zakharyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Siras Hakobyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Suren Davitavyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Tamara Sirunyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Gisane Khachatryan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - Mary K Khlgatian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Malik Bisserier
- Department of Cell Biology and Anatomy and Physiology, New York Medical College, Valhalla, NY, USA
| | - Shihong Zhang
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA
| | - Lahouaria Hadri
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amit Rai
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Arsen Arakelyan
- Institute of Molecular Biology, National Academy of Science of Republic of Armenia, 7 Ezras Hasratyan Street, 0014, Yerevan, Armenia
| | - David A Goukassian
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, s7-119, New York, NY, USA.
| |
Collapse
|
2
|
Bartkowiak K, Bartkowiak M, Jankowska-Steifer E, Ratajska A, Czarnowska E, Kujawa M, Aniołek O, Niderla-Bielińska J. Expression of mRNA for molecules that regulate angiogenesis, endothelial cell survival, and vascular permeability is altered in endothelial cells isolated from db/db mouse hearts. Histochem Cell Biol 2024; 162:523-539. [PMID: 39317805 PMCID: PMC11455669 DOI: 10.1007/s00418-024-02327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Metabolic syndrome (MetS) is a condition that includes symptoms, such as obesity, hyperglycemia, and hypertension, which elevate cardiovascular risk. An impaired angiogenic response of endothelial cells (ECs) in heart and peripheral organs has been proposed in MetS, but the mechanisms of this phenomenon have not been thoroughly explored. Results obtained from evaluating the whole myocardium are inconsistent, since different types of cells react differently to MetS environment and a variety of molecular pathways are involved in the angiogenic response. Therefore, the aim of this paper was to study one selected pathway-the VEGF/VEGFR pathway, which regulates the angiogenic response and microvascular permeability in ECs isolated from db/db mouse hearts. The expression of mRNAs for VEGF/VEGFR axis proteins was assessed with RT-PCR in ECs isolated from control and db/db mouse myocardium. The density of CD31-, VEGFR2-, and VE-cadherin-positive cells was examined with confocal microscopy, and the ultrastructure of ECs was analyzed with transmission electron microscopy. The aortic ring assay was used to assess the capacity of ECs to respond to angiogenic stimuli. Our results showed a decreased number of microvessels, diminished expression of VE-cadherin and VEGFR2 and widened gaps between the ECs of microcapillaries. The aortic ring assay showed a diminished number of sprouts in db/db mice. These results may indicate that ECs in MetS enhance the production of mRNA for VEGF/VRGFR axis proteins, yet sprout formation and vascular barrier maintenance are limited. These novel data may provide a foundation for further studies on ECs dysfunction in MetS.
Collapse
Affiliation(s)
- Krzysztof Bartkowiak
- Histology and Embryology Department, Medical University of Warsaw, Chalubinskiego 5 Str, 02-004, Warsaw, Poland
| | - Mateusz Bartkowiak
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jankowska-Steifer
- Histology and Embryology Department, Medical University of Warsaw, Chalubinskiego 5 Str, 02-004, Warsaw, Poland
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | | | - Marek Kujawa
- Department of Histology and Embryology, Faculty of Medicine, Lazarski University, Warsaw, Poland
| | - Olga Aniołek
- Department of Histology and Embryology, Faculty of Medicine, Lazarski University, Warsaw, Poland
| | - Justyna Niderla-Bielińska
- Histology and Embryology Department, Medical University of Warsaw, Chalubinskiego 5 Str, 02-004, Warsaw, Poland.
| |
Collapse
|
3
|
Castillo RL, Farías J, Sandoval C, González-Candia A, Figueroa E, Quezada M, Cruz G, Llanos P, Jorquera G, Kostin S, Carrasco R. Role of NLRP3 Inflammasome in Heart Failure Patients Undergoing Cardiac Surgery as a Potential Determinant of Postoperative Atrial Fibrillation and Remodeling: Is SGLT2 Cotransporter Inhibition an Alternative for Cardioprotection? Antioxidants (Basel) 2024; 13:1388. [PMID: 39594530 PMCID: PMC11591087 DOI: 10.3390/antiox13111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
In heart failure (HF) patients undergoing cardiac surgery, an increased activity of mechanisms related to cardiac remodeling may determine a higher risk of postoperative atrial fibrillation (POAF). Given that atrial fibrillation (AF) has a negative impact on the course and management of HF, including the need for anticoagulation therapy, identifying the factors associated with AF occurrence after cardiac surgery is crucial for the prognosis of these patients. POAF is thought to occur when various clinical and biochemical triggers act on susceptible cardiac tissue (first hit), with oxidative stress and inflammation during cardiopulmonary bypass (CPB) surgery being potential contributing factors (second hit). However, the molecular mechanisms involved in these processes remain poorly characterized. Recent research has shown that patients who later develop POAF often have pre-existing abnormalities in calcium handling and activation of NLRP3-inflammasome signaling in their atrial cardiomyocytes. These molecular changes may make cardiomyocytes more susceptible to spontaneous Ca2+-releases and subsequent arrhythmias, particularly when exposed to inflammatory mediators. Additionally, some clinical studies have linked POAF with elevated preoperative inflammatory markers, but there is a need for further research in order to better understand the impact of CPB surgery on local and systemic inflammation. This knowledge would make it possible to determine whether patients susceptible to POAF have pre-existing inflammatory conditions or cellular electrophysiological factors that make them more prone to developing AF and cardiac remodeling. In this context, the NLRP3 inflammasome, expressed in cardiomyocytes and cardiac fibroblasts, has been identified as playing a key role in the development of HF and AF, making patients with pre-existing HF with reduced ejection fraction (HFrEF) the focus of several clinical studies with interventions that act at this level. On the other hand, HFpEF has been linked to metabolic and non-ischemic risk factors, but more research is needed to better characterize the myocardial remodeling events associated with HFpEF. Therefore, since ventricular remodeling may differ between HFrEF and HFpEF, it is necessary to perform studies in both groups of patients due to their pathophysiological variations. Clinical evidence has shown that pharmacological therapies that are effective for HFrEF may not provide the same anti-remodeling benefits in HFpEF patients, particularly compared to traditional adrenergic and renin-angiotensin-aldosterone system inhibitors. On the other hand, there is growing interest in medications with pleiotropic or antioxidant/anti-inflammatory effects, such as sodium-glucose cotransporter 2 inhibitors (SGLT-2is). These drugs may offer anti-remodeling effects in both HFrEF and HFpEF by inhibiting pro-inflammatory, pro-oxidant, and NLRP3 signaling pathways and their mediators. The anti-inflammatory, antioxidant, and anti-remodeling effects of SGLT-2 i have progressively expanded from HFrEF and HFpEF to other forms of cardiac remodeling. However, these advances in research have not yet encompassed POAF despite its associations with inflammation, oxidative stress, and remodeling. Currently, the direct or indirect effects of NLRP3-dependent pathway inhibition on the occurrence of POAF have not been clinically assessed. However, given that NLRP3 pathway inhibition may also indirectly affect other pathways, such as inhibition of NF-kappaB or inhibition of matrix synthesis, which are strongly linked to POAF and cardiac remodeling, it is reasonable to hypothesize that this type of intervention could play a role in preventing these events.
Collapse
Affiliation(s)
- Rodrigo L. Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile
- Unidad de Paciente Crítico, Hospital del Salvador, Santiago 7500922, Chile
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile;
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandro González-Candia
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile; (A.G.-C.); (E.F.)
| | - Esteban Figueroa
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile; (A.G.-C.); (E.F.)
| | - Mauricio Quezada
- Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile;
| | - Gonzalo Cruz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
| | - Paola Llanos
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago 8380544, Chile
| | - Gonzalo Jorquera
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8331051, Chile;
| | - Sawa Kostin
- Faculty of Health Sciences, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany;
| | - Rodrigo Carrasco
- Departamento de Cardiología, Clínica Alemana de Santiago, Santiago 7500922, Chile;
| |
Collapse
|
4
|
Zhang X, Shi S, Du Y, Chai R, Guo Z, Duan C, Wang H, Hu Y, Chang X, Du B. Shaping cardiac destiny: the role of post-translational modifications on endoplasmic reticulum - mitochondria crosstalk in cardiac remodeling. Front Pharmacol 2024; 15:1423356. [PMID: 39464632 PMCID: PMC11502351 DOI: 10.3389/fphar.2024.1423356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiac remodeling is a shared pathological change in most cardiovascular diseases. Encompassing both adaptive physiological responses and decompensated pathological changes. Anatomically, atrial remodeling is primarily caused by atrial fibrillation, whereas ventricular remodeling is typically induced by myocardial infarction, hypertension, or cardiomyopathy. Mitochondria, the powerhouse of cardiomyocytes, collaborate with other organelles such as the endoplasmic reticulum to control a variety of pathophysiological processes such as calcium signaling, lipid transfer, mitochondrial dynamics, biogenesis, and mitophagy. This mechanism is proven to be essential for cardiac remodeling. Post-translational modifications can regulate intracellular signaling pathways, gene expression, and cellular stress responses in cardiac cells by modulating protein function, stability, and interactions, consequently shaping the myocardial response to injury and stress. These modifications, in particular phosphorylation, acetylation, and ubiquitination, are essential for the regulation of the complex molecular pathways that underlie cardiac remodeling. This review provides a comprehensive overview of the crosstalk between the endoplasmic reticulum and mitochondria during cardiac remodeling, focusing on the regulatory effects of various post-translational modifications on these interactions.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Department of Internal Medicine, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihang Du
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruoning Chai
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezhen Guo
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Chenglin Duan
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai Du
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Gargiulo S, Barone V, Bonente D, Tamborrino T, Inzalaco G, Gherardini L, Bertelli E, Chiariello M. Integrated Ultrasound Characterization of the Diet-Induced Obesity (DIO) Model in Young Adult c57bl/6j Mice: Assessment of Cardiovascular, Renal and Hepatic Changes. J Imaging 2024; 10:217. [PMID: 39330437 PMCID: PMC11433005 DOI: 10.3390/jimaging10090217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Consuming an unbalanced diet and being overweight represent a global health problem in young people and adults of both sexes, and may lead to metabolic syndrome. The diet-induced obesity (DIO) model in the C57BL/6J mouse substrain that mimics the gradual weight gain in humans consuming a "Western-type" (WD) diet is of great interest. This study aims to characterize this animal model, using high-frequency ultrasound imaging (HFUS) as a complementary tool to longitudinally monitor changes in the liver, heart and kidney. Long-term WD feeding increased mice body weight (BW), liver/BW ratio and body condition score (BCS), transaminases, glucose and insulin, and caused dyslipidemia and insulin resistance. Echocardiography revealed subtle cardiac remodeling in WD-fed mice, highlighting a significant age-diet interaction for some left ventricular morphofunctional parameters. Qualitative and parametric HFUS analyses of the liver in WD-fed mice showed a progressive increase in echogenicity and echotexture heterogeneity, and equal or higher brightness of the renal cortex. Furthermore, renal circulation was impaired in WD-fed female mice. The ultrasound and histopathological findings were concordant. Overall, HFUS can improve the translational value of preclinical DIO models through an integrated approach with conventional methods, enabling a comprehensive identification of early stages of diseases in vivo and non-invasively, according to the 3Rs.
Collapse
Affiliation(s)
- Sara Gargiulo
- Institute of Clinical Physiology, National Research Council, Via Fiorentina 1, 53100 Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Denise Bonente
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | | | - Giovanni Inzalaco
- Institute of Clinical Physiology, National Research Council, Via Fiorentina 1, 53100 Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| | - Lisa Gherardini
- Institute of Clinical Physiology, National Research Council, Via Fiorentina 1, 53100 Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Mario Chiariello
- Institute of Clinical Physiology, National Research Council, Via Fiorentina 1, 53100 Siena, Italy
- Core Research Laboratory (CRL), Istituto per lo Studio la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| |
Collapse
|
6
|
Xu L, Li W, Chen Y, Liu S, Liu G, Luo W, Cao G, Wang S. Metformin Regulates Cardiac Ferroptosis to Reduce Metabolic Syndrome-Induced Cardiac Dysfunction. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05038-7. [PMID: 39106027 DOI: 10.1007/s12010-024-05038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
High-fat diet-induced metabolic syndrome (MetS) is closely associated with cardiac dysfunction. Recent research studies have indicated a potential association between MetS and ferroptosis. Furthermore, metformin can alleviate MetS-induced cardiac ferroptosis. Metformin is a classic biguanide anti-diabetic drug that has protective effects on cardiovascular diseases, which extend beyond its indirect glycemic control. This study aimed to assess whether MetS mediates cardiac ferroptosis, thereby causing oxidative stress and mitochondrial dysfunction. The results revealed that metformin can mitigate cardiac reactive oxygen species and mitochondrial damage, thereby preserving cardiac function. Mechanistic analysis revealed that metformin upregulates the expression of cardiac Nrf2. Moreover, Nrf2 downregulation compromises the cardio-protective effects of metformin. In summary, this study indicated that MetS promotes cardiac ferroptosis, and metformin plays a preventive and therapeutic role, partially through modulation of Nrf2 expression.
Collapse
Affiliation(s)
- Liancheng Xu
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
- Fujian Medical University, Fuzhou, 350108, China
| | - Wenwen Li
- Department of Nephrology, Suqian First Hospital, Suqian, 223800, China
| | - Yu Chen
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Shan Liu
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Guodong Liu
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Weihuan Luo
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Guanyi Cao
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China
| | - Shiping Wang
- Department of General Surgery, Suqian First Hospital, No.120 Suzhi Street, Suqian, 223800, Jiangsu Province, China.
| |
Collapse
|
7
|
Hohendanner F, Boegner M, Huettemeister J, Zhang K, Dreysse S, Knosalla C, Falk V, Schoenrath F, Just IA, Stawowy P. Microvascular dysfunction in heart transplantation is associated with altered cardiomyocyte mitochondrial structure and unimpaired excitation-contraction coupling. PLoS One 2024; 19:e0303540. [PMID: 38820336 PMCID: PMC11142617 DOI: 10.1371/journal.pone.0303540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
INTRODUCTION Microvascular dysfunction (MVD) is a hallmark feature of chronic graft dysfunction in patients that underwent orthotopic heart transplantation (OHT) and is the main contributor to impaired long-term graft survival. The aim of this study was to determine the effect of MVD on functional and structural properties of cardiomyocytes isolated from ventricular biopsies of OHT patients. METHODS We included 14 patients post-OHT, who had been transplanted for 8.1 years [5.0; 15.7 years]. Mean age was 49.6 ± 14.3 years; 64% were male. Coronary microvasculature was assessed using guidewire-based coronary flow reserve(CFR)/index of microvascular resistance (IMR) measurements. Ventricular myocardial biopsies were obtained and cardiomyocytes were isolated using enzymatic digestion. Cells were electrically stimulated and subcellular Ca2+ signalling as well as mitochondrial density were measured using confocal imaging. RESULTS MVD measured by IMR was present in 6 of 14 patients with a mean IMR of 53±10 vs. 12±2 in MVD vs. controls (CTRL), respectively. CFR did not differ between MVD and CTRL. Ca2+ transients during excitation-contraction coupling in isolated ventricular cardiomyocytes from a subset of patients showed unaltered amplitudes. In addition, Ca2+ release and Ca2+ removal were not significantly different between MVD and CTRL. However, mitochondrial density was significantly increased in MVD vs. CTRL (34±1 vs. 29±2%), indicating subcellular changes associated with MVD. CONCLUSION In-vivo ventricular microvascular dysfunction post OHT is associated with preserved excitation-contraction coupling in-vitro, potentially owing to compensatory changes on the mitochondrial level or due to the potentially reversible cause of the disease.
Collapse
Affiliation(s)
- Felix Hohendanner
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Markus Boegner
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Judith Huettemeister
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Kun Zhang
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Stephan Dreysse
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Knosalla
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Volkmar Falk
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Institute of Translational Medicine, Translational Cardiovascular Technologies, Zurich, Switzerland
| | - Felix Schoenrath
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Isabell Anna Just
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Philipp Stawowy
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
8
|
Ding Y, Liu N, Zhang D, Guo L, Shang Q, Liu Y, Ren G, Ma X. Mitochondria-associated endoplasmic reticulum membranes as a therapeutic target for cardiovascular diseases. Front Pharmacol 2024; 15:1398381. [PMID: 38694924 PMCID: PMC11061472 DOI: 10.3389/fphar.2024.1398381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide. In 2022, the CVDs contributed to 19.8 million deaths globally, accounting for one-third of all global deaths. With an aging population and changing lifestyles, CVDs pose a major threat to human health. Mitochondria-associated endoplasmic reticulum membranes (MAMs) are communication platforms between cellular organelles and regulate cellular physiological functions, including apoptosis, autophagy, and programmed necrosis. Further research has shown that MAMs play a critical role in the pathogenesis of CVDs, including myocardial ischemia and reperfusion injury, heart failure, pulmonary hypertension, and coronary atherosclerosis. This suggests that MAMs could be an important therapeutic target for managing CVDs. The goal of this study is to summarize the protein complex of MAMs, discuss its role in the pathological mechanisms of CVDs in terms of its functions such as Ca2+ transport, apoptotic signaling, and lipid metabolism, and suggest the possibility of MAMs as a potential therapeutic approach.
Collapse
Affiliation(s)
- Yanqiu Ding
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Nanyang Liu
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawu Zhang
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijun Guo
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghua Shang
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yicheng Liu
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gaocan Ren
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Lu B, Chen X, Ma Y, Gui M, Yao L, Li J, Wang M, Zhou X, Fu D. So close, yet so far away: the relationship between MAM and cardiac disease. Front Cardiovasc Med 2024; 11:1353533. [PMID: 38374992 PMCID: PMC10875081 DOI: 10.3389/fcvm.2024.1353533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondria-associated membrane (MAM) serve as crucial contact sites between mitochondria and the endoplasmic reticulum (ER). Recent research has highlighted the significance of MAM, which serve as a platform for various protein molecules, in processes such as calcium signaling, ATP production, mitochondrial structure and function, and autophagy. Cardiac diseases caused by any reason can lead to changes in myocardial structure and function, significantly impacting human health. Notably, MAM exhibits various regulatory effects to maintain cellular balance in several cardiac diseases conditions, such as obesity, diabetes mellitus, and cardiotoxicity. MAM proteins independently or interact with their counterparts, forming essential tethers between the ER and mitochondria in cardiomyocytes. This review provides an overview of key MAM regulators, detailing their structure and functions. Additionally, it explores the connection between MAM and various cardiac injuries, suggesting that precise genetic, pharmacological, and physical regulation of MAM may be a promising strategy for preventing and treating heart failure.
Collapse
Affiliation(s)
- Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Xiaozhe Chen
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yulong Ma
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingtai Gui
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Yao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingzhu Wang
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xunjie Zhou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deyu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Owesny P, Grune T. The link between obesity and aging - insights into cardiac energy metabolism. Mech Ageing Dev 2023; 216:111870. [PMID: 37689316 DOI: 10.1016/j.mad.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Obesity and aging are well-established risk factors for a range of diseases, including cardiovascular diseases and type 2 diabetes. Given the escalating prevalence of obesity, the aging population, and the subsequent increase in cardiovascular diseases, it is crucial to investigate the underlying mechanisms involved. Both aging and obesity have profound effects on the energy metabolism through various mechanisms, including metabolic inflexibility, altered substrate utilization for energy production, deregulated nutrient sensing, and mitochondrial dysfunction. In this review, we aim to present and discuss the hypothesis that obesity, due to its similarity in changes observed in the aging heart, may accelerate the process of cardiac aging and exacerbate the clinical outcomes of elderly individuals with obesity.
Collapse
Affiliation(s)
- Patricia Owesny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
11
|
Hu S, Luo J, Guo P, Du T, Liu X, He M, Li J, Ma T, Liu B, Huang M, Fang Q, Wang Y. Lentinan alleviates diabetic cardiomyopathy by suppressing CAV1/SDHA-regulated mitochondrial dysfunction. Biomed Pharmacother 2023; 167:115645. [PMID: 37804808 DOI: 10.1016/j.biopha.2023.115645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), characterized by mitochondrial dysfunction and impaired energetics as contributing factors, significantly contributes to high mortality in patients with diabetes. Targeting key proteins involved in mitochondrial dysfunction might offer new therapeutic possibilities for DCM. Lentinan (LNT), a β-(1,3)-glucan polysaccharide obtained from lentinus edodes, has demonstrated biological activity in modulating metabolic syndrome. In this study, the authors investigate LNT's pharmacological effects on and mechanisms against DCM. The results demonstrate that administering LNT to db/db mice reduces cardiomyocyte apoptosis and mitochondrial dysfunction, thereby preventing DCM. Notably, these effects are fully negated by Caveolin-1 (CAV1) overexpression both in vivo and in vitro. Further studies and bioinformatics analysis uncovered that CAV1 bound with Succinate dehydrogenase subunit A (SDHA), triggering the following ubiquitination and degradation of SDHA, which leads to mitochondrial dysfunction and mitochondria-derived apoptosis under PA condition. Silencing CAV1 leads to reduced apoptosis and improved mitochondrial function, which is blocked by SDHA knockdown. In conclusion, CAV1 directly interacts with SDHA to promote ubiquitination and proteasomal degradation, resulting in mitochondrial dysfunction and mitochondria-derived apoptosis, which was depressed by LNT administration. Therefore, LNT may be a potential pharmacological agent in preventing DCM, and targeting the CAV1/SDHA pathway may be a promising therapeutic approach for DCM.
Collapse
Affiliation(s)
- Shuiqing Hu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Guo
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Tingyi Du
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaohui Liu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Miaomiao He
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jie Li
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Tingqiong Ma
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Bo Liu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Man Huang
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qin Fang
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Yan Wang
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|