1
|
Guzmán VM, Leonardi RJ, Racca S, Comelli RN. Assessing Process Conditions on Xylose Fermentation in Spathaspora passalidarum: Effects of pH, Substrate-to-Inoculum Ratio, Temperature, and Initial Ethanol Concentration. Curr Microbiol 2024; 81:448. [PMID: 39508833 DOI: 10.1007/s00284-024-03976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Bioethanol represents a clean and renewable alternative to fossil fuels, offering a significant reduction in environmental impact. Second-generation ethanol (2G) is produced using lignocellulosic biomass, which presents additional challenges due to the presence of hemicellulose. The pentose sugars within hemicellulose cannot be efficiently metabolized by conventional yeast strains like Saccharomyces cerevisiae. Consequently, the yeast Spathaspora passalidarum has emerged as a promising candidate for mixed fermentation processes, given its ability to utilize xylose. This study presents an in-depth metabolic, stoichiometric, and kinetic analysis of the fermentation performance of Sp. passalidarum NRRL Y-27907 in mixed glucose and xylose cultures. Emphasis was placed on examining variables from a novel perspective compared to existing literature. Specifically, the impacts of initial inoculum-substrate ratios, substrate composition, pH, temperature, and ethanol sensitivity were analyzed using a mathematical bioprocess approach. Sp. passalidarum NRRL Y-27907 exhibited sequential sugar consumption, with xylose being utilized only after glucose was exhausted. Ethanol yields in mixed cultures were comparable to those in individual-sugar cultures. The best fermentative performance was observed at 30 °C, with 25 g/L of xylose and an inoculum of 0.50 g/L. The strain exhibited significant robustness at pH 4.0 and was notably affected by initial ethanol concentrations up to 20 g/L. These findings provide crucial insights into the metabolic and fermentative behavior of Sp. passalidarum NRRL Y-27907, offering valuable information for the design of consolidated bioprocesses from lignocellulosic materials.
Collapse
Affiliation(s)
- Victoria M Guzmán
- Grupo de Procesos Biológicos en Ingeniería Ambiental (GPBIA), Facultad de Ingeniería y Ciencias Hídricas (FICH), Universidad Nacional del Litoral (UNL), Ciudad Universitaria CC 242 Paraje El Pozo, 3000, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rodrigo J Leonardi
- Grupo de Procesos Biológicos en Ingeniería Ambiental (GPBIA), Facultad de Ingeniería y Ciencias Hídricas (FICH), Universidad Nacional del Litoral (UNL), Ciudad Universitaria CC 242 Paraje El Pozo, 3000, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sofía Racca
- Grupo de Procesos Biológicos en Ingeniería Ambiental (GPBIA), Facultad de Ingeniería y Ciencias Hídricas (FICH), Universidad Nacional del Litoral (UNL), Ciudad Universitaria CC 242 Paraje El Pozo, 3000, Santa Fe, Argentina
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Buenos Aires, Argentina
| | - Raúl N Comelli
- Grupo de Procesos Biológicos en Ingeniería Ambiental (GPBIA), Facultad de Ingeniería y Ciencias Hídricas (FICH), Universidad Nacional del Litoral (UNL), Ciudad Universitaria CC 242 Paraje El Pozo, 3000, Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Chen X, Li X, Chen D, Zhao W, Zhang X, Yuan W, Si H, Deng X, Du R, Xu C. Effects of Dietary Alfalfa Meal Supplementation on the Growth Performance, Nutrient Apparent Digestibility, Serum Parameters, and Intestinal Microbiota of Raccoon Dogs ( Nyctereutes procyonoides). Animals (Basel) 2024; 14:623. [PMID: 38396591 PMCID: PMC10886288 DOI: 10.3390/ani14040623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The raccoon dog (Nyctereutes procyonoides) is a typical omnivore possessing wide dietary adaptability and tolerance to rough feeding, which may be attributed to its intestinal microbiota. The study aimed to investigate the effect of dietary alfalfa meal levels on the growth performance, nutrient apparent digestibility, serum parameters, and intestinal microbiota of raccoon dogs. Sixty raccoon dogs were randomly divided into four dietary treatments containing 0% (AM0), 5% (AM5), 10% (AM10), and 15% (AM15) alfalfa meal for a 60-day experiment. The results showed that compared to raccoon dogs fed the AM0 diet, those fed the AM5 and AM10 diets had no significant difference in growth performance, while those fed the AM15 diet experienced a significant decrease. Raccoon dogs fed the AM5 diet had no significant effect on the nutrient apparent digestibility. Dietary supplementation with alfalfa meal significantly decreased serum urea levels and increased the antioxidant capacity of raccoon dogs. The intestinal microbiome analysis showed that the richness and diversity of colonic microbiota significantly increased in the AM15 group. With the increase in dietary alfalfa meal levels, the relative abundance of fiber-degrading bacteria in the colon of raccoon dogs, such as Treponema, Phascolarctobacterium, and Christensenellaceae R-7 group, increased. However, the relative abundance of pathogenic bacteria, including Anaerobiospirillum, decreased. In conclusion, the inclusion of 5% alfalfa meal in the raccoon dogs' diet had no effect on growth performance, but it exhibited the potential to improve serum antioxidant capacity and intestinal microbiota. This indicates that raccoon dogs have a certain tolerance to the addition of alfalfa meal in their diet.
Collapse
Affiliation(s)
- Xiaoli Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (X.C.); (X.L.); (D.C.); (W.Z.); (W.Y.)
| | - Xiao Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (X.C.); (X.L.); (D.C.); (W.Z.); (W.Y.)
| | - Danyang Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (X.C.); (X.L.); (D.C.); (W.Z.); (W.Y.)
| | - Weigang Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (X.C.); (X.L.); (D.C.); (W.Z.); (W.Y.)
| | - Xiuli Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.Z.); (X.D.)
| | - Weitao Yuan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (X.C.); (X.L.); (D.C.); (W.Z.); (W.Y.)
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (H.S.); (R.D.)
| | - Xuming Deng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.Z.); (X.D.)
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (H.S.); (R.D.)
| | - Chao Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (X.C.); (X.L.); (D.C.); (W.Z.); (W.Y.)
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (H.S.); (R.D.)
| |
Collapse
|
3
|
Hector RE, Mertens JA, Nichols NN. Metabolic engineering of a stable haploid strain derived from lignocellulosic inhibitor tolerant Saccharomyces cerevisiae natural isolate YB-2625. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:190. [PMID: 38057826 DOI: 10.1186/s13068-023-02442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Significant genetic diversity exists across Saccharomyces strains. Natural isolates and domesticated brewery and industrial strains are typically more robust than laboratory strains when challenged with inhibitory lignocellulosic hydrolysates. These strains also contain genes that are not present in lab strains and likely contribute to their superior inhibitor tolerance. However, many of these strains have poor sporulation efficiencies and low spore viability making subsequent gene analysis, further metabolic engineering, and genomic analyses of the strains challenging. This work aimed to develop an inhibitor tolerant haploid with stable mating type from S. cerevisiae YB-2625, which was originally isolated from bagasse. RESULTS Haploid spores isolated from four tetrads from strain YB-2625 were tested for tolerance to furfural and HMF. Due to natural mutations present in the HO-endonuclease, all haploid strains maintained a stable mating type. One of the haploids, YRH1946, did not flocculate and showed enhanced tolerance to furfural and HMF. The tolerant haploid strain was further engineered for xylose fermentation by integration of the genes for xylose metabolism at two separate genomic locations (ho∆ and pho13∆). In fermentations supplemented with inhibitors from acid hydrolyzed corn stover, the engineered haploid strain derived from YB-2625 was able to ferment all of the glucose and 19% of the xylose, whereas the engineered lab strains performed poorly in fermentations. CONCLUSIONS Understanding the molecular mechanisms of inhibitor tolerance will aid in developing strains with improved growth and fermentation performance using biomass-derived sugars. The inhibitor tolerant, xylose fermenting, haploid strain described in this work has potential to serve as a platform strain for identifying pathways required for inhibitor tolerance, and for metabolic engineering to produce fuels and chemicals from undiluted lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Ronald E Hector
- Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL, 61604, USA.
| | - Jeffrey A Mertens
- Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL, 61604, USA
| | - Nancy N Nichols
- Agricultural Research Service, USDA, National Center for Agricultural Utilization Research, (Bioenergy Research), 1815 N University, Peoria, IL, 61604, USA
| |
Collapse
|
4
|
Yang Z, Leero DD, Yin C, Yang L, Zhu L, Zhu Z, Jiang L. Clostridium as microbial cell factory to enable the sustainable utilization of three generations of feedstocks. BIORESOURCE TECHNOLOGY 2022; 361:127656. [PMID: 35872277 DOI: 10.1016/j.biortech.2022.127656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of chemicals and biofuels from non-fossil carbon sources is considered key to reducing greenhouse gas (GHG) emissions. Clostridium sp. can convert various substrates, including the 1st-generation (biomass crops), the 2nd-generation (lignocellulosic biomass), and the 3rd-generation (C1 gases) feedstocks, into high-value products, which makes Clostridia attractive for biorefinery applications. However, the complexity of lignocellulosic catabolism and C1 gas utilization make it difficult to construct efficient production routes. Accordingly, this review highlights the advances in the development of three generations of feedstocks with Clostridia as cell factories. At the same time, more attention was given to using agro-industrial wastes (lignocelluloses and C1 gases) as the feedstocks, for which metabolic and process engineering efforts were comprehensively analyzed. In addition, the challenges of using agro-industrial wastes are also discussed. Lastly, several new synthetic biology tools and regulatory strategies are emphasized as promising technologies to be developed to address the aforementioned challenges in Clostridia and realize the efficient utilization of agro-industrial wastes.
Collapse
Affiliation(s)
- Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Donald Delano Leero
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Chengtai Yin
- College of Overseas Education, Nanjing Tech University, Nanjing 211816, China
| | - Lei Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Patel A, Divecha J, Shah A. A sustainable process for co-production of xylooligosaccharides and ethanol from alkali treated sugarcane bagasse: A strategy towards waste management. Prep Biochem Biotechnol 2022:1-11. [PMID: 36129679 DOI: 10.1080/10826068.2022.2119575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Present study aims at sustainable utilization of sugarcane bagasse (SCB) for production of valuable prebiotic xylooligosaccharides (XOS) along with second generation ethanol. Fractionation of SCB into hemicellulose rich liquid fraction and cellulose rich solid residue was achieved using alkaline treatment. Carbohydrate rich precipitate obtained from liquid fraction was utilized for XOS production using inhouse produced endoxylanase. XOS production from SCB xylan was optimized by employing response surface methodology. Under optimized conditions, maximum XOS yield was 227.72 mg/g of carbohydrate rich precipitates. The solid residue obtained after alkaline pretreatment was used for ethanol fermentation by prehydrolysis and simultaneous saccharification and fermentation (P-SSF) process using cellulolytic enzyme cocktail and Saccharomyces cerevisiae SM1. Maximum ethanol concentration, productivity and yield were 79.76 ± 0.16 g/L, 0.83 g/L/h and 69.38%, respectively by employing P-SSF process. Based on the experimental data it can be predicted that bioconversion of 100 g raw SCB can yield 6.26 g of XOS (DP 2-DP 5), 15.95 g ethanol and 1.44 g of xylitol. Present investigation reports an integrated process for effective bioconversion of SCB into value added products by maximum utilization of cellulosic and hemicellulosic fractions simultaneously using indigenously produced fungal enzymes.
Collapse
Affiliation(s)
- Amisha Patel
- P. G. Department of Biosciences, Sardar Patel University, Anand, Gujarat, India
| | - Jyoti Divecha
- Department of Statistics, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Amita Shah
- P. G. Department of Biosciences, Sardar Patel University, Anand, Gujarat, India
| |
Collapse
|
6
|
Cheng C, Wang WB, Sun ML, Tang RQ, Bai L, Alper HS, Zhao XQ. Deletion of NGG1 in a recombinant Saccharomyces cerevisiae improved xylose utilization and affected transcription of genes related to amino acid metabolism. Front Microbiol 2022; 13:960114. [PMID: 36160216 PMCID: PMC9493327 DOI: 10.3389/fmicb.2022.960114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Production of biofuels and biochemicals from xylose using yeast cell factory is of great interest for lignocellulosic biorefinery. Our previous studies revealed that a natural yeast isolate Saccharomyces cerevisiae YB-2625 has superior xylose-fermenting ability. Through integrative omics analysis, NGG1, which encodes a transcription regulator as well as a subunit of chromatin modifying histone acetyltransferase complexes was revealed to regulate xylose metabolism. Deletion of NGG1 in S. cerevisiae YRH396h, which is the haploid version of the recombinant yeast using S. cerevisiae YB-2625 as the host strain, improved xylose consumption by 28.6%. Comparative transcriptome analysis revealed that NGG1 deletion down-regulated genes related to mitochondrial function, TCA cycle, ATP biosynthesis, respiration, as well as NADH generation. In addition, the NGG1 deletion mutant also showed transcriptional changes in amino acid biosynthesis genes. Further analysis of intracellular amino acid content confirmed the effect of NGG1 on amino acid accumulation during xylose utilization. Our results indicated that NGG1 is one of the core nodes for coordinated regulation of carbon and nitrogen metabolism in the recombinant S. cerevisiae. This work reveals novel function of Ngg1p in yeast metabolism and provides basis for developing robust yeast strains to produce ethanol and biochemicals using lignocellulosic biomass.
Collapse
Affiliation(s)
- Cheng Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Life Sciences, Hefei Normal University, Hefei, China
| | - Wei-Bin Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Meng-Lin Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui-Qi Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Long Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xin-Qing Zhao,
| |
Collapse
|
7
|
Jin X, Yang H, Chen M, Coldea TE, Zhao H. Improved osmotic stress tolerance in brewer's yeast induced by wheat gluten peptides. Appl Microbiol Biotechnol 2022; 106:4995-5006. [PMID: 35819513 DOI: 10.1007/s00253-022-12073-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022]
Abstract
The influences of three wheat gluten peptides (WGP-LL, WGP-LML, and WGP-LLL) on the osmotic stress tolerance and membrane lipid component in brewer's yeast were investigated. The results demonstrated that the growth and survival of yeast under osmotic stress were enhanced by WGP supplementation. The addition of WGP upregulated the expressions of OLE1 (encoded the delta-9 fatty acid desaturase) and ERG1 (encoded squalene epoxidase) genes under osmotic stress. At the same time, WGP addition enhanced palmitoleic acid (C16:1) content, unsaturated fatty acids/saturated fatty acids ratio, and the amount of ergosterol in yeast cells under osmotic stress. Furthermore, yeast cells in WGP-LL and WGP-LLL groups were more resistant to osmotic stress. WGP-LL and WGP-LLL addition caused 25.08% and 27.02% increase in membrane fluidity, 22.36% and 29.54% reduction in membrane permeability, 18.38% and 14.26% rise in membrane integrity in yeast cells, respectively. In addition, scanning electron microscopy analysis revealed that the addition of WGP was capable of maintaining yeast cell morphology and reducing cell membrane damage under osmotic stress. Thus, alteration of membrane lipid component by WGP was an effective approach for increasing the growth and survival of yeast cells under osmotic stress. KEY POINTS: •WGP addition enhanced cell growth and survival of yeast under osmotic stress. •WGP addition increased unsaturated fatty acids and ergosterol contents in yeast. •WGP supplementation improved membrane homeostasis in yeast at osmotic stress.
Collapse
Affiliation(s)
- Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372, Cluj-Napoca-Napoca, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China. .,Research Institute for Food Nutrition and Human Health, Guangzhou, 510640, China.
| |
Collapse
|
8
|
Jin X, Yang H, Coldea TE, Andersen ML, Zhao H. Wheat Gluten Peptides Enhance Ethanol Stress Tolerance by Regulating the Membrane Lipid Composition in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5057-5065. [PMID: 35426662 DOI: 10.1021/acs.jafc.2c00236] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wheat gluten peptides (WGPs), identified as Leu-Leu (LL), Leu-Leu-Leu (LLL), and Leu-Met-Leu (LML), were tested for their impacts on cell growth, membrane lipid composition, and membrane homeostasis of yeast under ethanol stress. The results showed that WGP supplementation could strengthen cell growth and viability and enhance the ethanol stress tolerance of yeast. WGP supplementation increased the expressions of OLE1 and ERG1 and enhanced the levels of oleic acid (C18:1) and ergosterol in yeast cell membranes. Moreover, LLL and LML exhibited a better protective effect for yeast under ethanol stress compared to LL. LLL and LML supplementation led to 20.3 ± 1.5% and 18.9 ± 1.7% enhancement in cell membrane fluidity, 21.8 ± 1.6% and 30.5 ± 1.1% increase in membrane integrity, and 26.3 ± 4.8% and 27.6 ± 4.6% decrease in membrane permeability in yeast under ethanol stress, respectively. The results from scanning electron microscopy (SEM) elucidated that WGP supplementation is favorable for the maintenance of yeast cell morphology under ethanol stress. All of these results revealed that WGP is an efficient enhancer for improving the ethanol stress tolerance of yeast by regulating the membrane lipid composition.
Collapse
Affiliation(s)
- Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Mogens Larsen Andersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C DK-1958, Denmark
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| |
Collapse
|
9
|
Du C, Li Y, Xiang R, Yuan W. Formate Dehydrogenase Improves the Resistance to Formic Acid and Acetic Acid Simultaneously in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms23063406. [PMID: 35328826 PMCID: PMC8954399 DOI: 10.3390/ijms23063406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/06/2023] Open
Abstract
Bioethanol from lignocellulosic biomass is a promising and sustainable strategy to meet the energy demand and to be carbon neutral. Nevertheless, the damage of lignocellulose-derived inhibitors to microorganisms is still the main bottleneck. Developing robust strains is critical for lignocellulosic ethanol production. An evolved strain with a stronger tolerance to formate and acetate was obtained after adaptive laboratory evolution (ALE) in the formate. Transcriptional analysis was conducted to reveal the possible resistance mechanisms to weak acids, and fdh coding for formate dehydrogenase was selected as the target to verify whether it was related to resistance enhancement in Saccharomyces cerevisiae F3. Engineered S. cerevisiae FA with fdh overexpression exhibited boosted tolerance to both formate and acetate, but the resistance mechanism to formate and acetate was different. When formate exists, it breaks down by formate dehydrogenase into carbon dioxide (CO2) to relieve its inhibition. When there was acetate without formate, FDH1 converted CO2 from glucose fermentation to formate and ATP and enhanced cell viability. Together, fdh overexpression alone can improve the tolerance to both formate and acetate with a higher cell viability and ATP, which provides a novel strategy for robustness strain construction to produce lignocellulosic ethanol.
Collapse
Affiliation(s)
- Cong Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
| | - Yimin Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
| | - Ruijuan Xiang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
| | - Wenjie Yuan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; (C.D.); (Y.L.); (R.X.)
- Ningbo Research Institute, Dalian University of Technology, Ningbo 315000, China
- Correspondence:
| |
Collapse
|
10
|
Moreno AD, González-Fernández C, Tomás-Pejó E. Insights into cell robustness against lignocellulosic inhibitors and insoluble solids in bioethanol production processes. Sci Rep 2022; 12:557. [PMID: 35017613 PMCID: PMC8752620 DOI: 10.1038/s41598-021-04554-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022] Open
Abstract
Increasing yeast robustness against lignocellulosic-derived inhibitors and insoluble solids in bioethanol production is essential for the transition to a bio-based economy. This work evaluates the effect exerted by insoluble solids on yeast tolerance to inhibitory compounds, which is crucial in high gravity processes. Adaptive laboratory evolution (ALE) was applied on a xylose-fermenting Saccharomyces cerevisiae strain to simultaneously increase the tolerance to lignocellulosic inhibitors and insoluble solids. The evolved strain gave rise to a fivefold increase in bioethanol yield in fermentation experiments with high concentration of inhibitors and 10% (w/v) of water insoluble solids. This strain also produced 5% (P > 0.01) more ethanol than the parental in simultaneous saccharification and fermentation of steam-exploded wheat straw, mainly due to an increased xylose consumption. In response to the stress conditions (solids and inhibitors) imposed in ALE, cells induced the expression of genes related to cell wall integrity (SRL1, CWP2, WSC2 and WSC4) and general stress response (e.g., CDC5, DUN1, CTT1, GRE1), simultaneously repressing genes related to protein synthesis and iron transport and homeostasis (e.g., FTR1, ARN1, FRE1), ultimately leading to the improved phenotype. These results contribute towards understanding molecular mechanisms that cells might use to convert lignocellulosic substrates effectively.
Collapse
Affiliation(s)
- Antonio D Moreno
- Advanced Biofuels and Bioproducts Unit, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain.
| |
Collapse
|
11
|
Exploring the optimized strategy for 5-hydroxymethyl-2-furancarboxylic acid production from agriculture wastes using Pseudomonas aeruginosa PC-1. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Yang BX, Xie CY, Xia ZY, Wu YJ, Gou M, Tang YQ. Improving xylitol yield by deletion of endogenous xylitol-assimilating genes: a study of industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. FEMS Yeast Res 2020; 20:5986616. [PMID: 33201998 DOI: 10.1093/femsyr/foaa061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/14/2020] [Indexed: 01/12/2023] Open
Abstract
Engineered Saccharomyces cerevisiae can reduce xylose to xylitol. However, in S.cerevisiae, there are several endogenous enzymes including xylitol dehydrogenase encoded by XYL2, sorbitol dehydrogenases encoded by SOR1/SOR2 and xylulokinase encoded by XKS1 may lead to the assimilation of xylitol. In this study, to increase xylitol accumulation, these genes were separately deleted through CRISPR/Cas9 system. Their effects on xylitol yield of an industrial S. cerevisiae CK17 overexpressing Candida tropicalis XYL1 (encoding xylose reductase) were investigated. Deletion of SOR1/SOR2 or XKS1 increased the xylitol yield in both batch and fed-batch fermentation with different concentrations of glucose and xylose. The analysis of the transcription level of key genes in the mutants during fed-batch fermentation suggests that SOR1/SOR2 are more crucially responsible for xylitol oxidation than XYL2 under the genetic background of S.cerevisiae CK17. The deletion of XKS1 gene could also weaken SOR1/SOR2 expression, thereby increasing the xylitol accumulation. The XKS1-deleted strain CK17ΔXKS1 produced 46.17 g/L of xylitol and reached a xylitol yield of 0.92 g/g during simultaneous saccharification and fermentation (SSF) of pretreated corn stover slurry. Therefore, the deletion of XKS1 gene provides a promising strategy to meet the industrial demands for xylitol production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Bai-Xue Yang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Ya-Jing Wu
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| |
Collapse
|
13
|
Xie CY, Yang BX, Song QR, Xia ZY, Gou M, Tang YQ. Different transcriptional responses of haploid and diploid S. cerevisiae strains to changes in cofactor preference of XR. Microb Cell Fact 2020; 19:211. [PMID: 33187525 PMCID: PMC7666519 DOI: 10.1186/s12934-020-01474-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/07/2020] [Indexed: 01/27/2023] Open
Abstract
Background Xylitol accumulation is a major barrier for efficient ethanol production through heterologous xylose reductase-xylitol dehydrogenase (XR-XDH) pathway in recombinant Saccharomyces cerevisiae. Mutated NADH-preferring XR is usually employed to alleviate xylitol accumulation. However, it remains unclear how mutated XR affects the metabolic network for xylose metabolism. In this study, haploid and diploid strains were employed to investigate the transcriptional responses to changes in cofactor preference of XR through RNA-seq analysis during xylose fermentation. Results For the haploid strains, genes involved in xylose-assimilation (XYL1, XYL2, XKS1), glycolysis, and alcohol fermentation had higher transcript levels in response to mutated XR, which was consistent with the improved xylose consumption rate and ethanol yield. For the diploid strains, genes related to protein biosynthesis were upregulated while genes involved in glyoxylate shunt were downregulated in response to mutated XR, which might contribute to the improved yields of biomass and ethanol. When comparing the diploids with the haploids, genes involved in glycolysis and MAPK signaling pathway were significantly downregulated, while oxidative stress related transcription factors (TFs) were significantly upregulated, irrespective of the cofactor preference of XR. Conclusions Our results not only revealed the differences in transcriptional responses of the diploid and haploid strains to mutated XR, but also provided underlying basis for better understanding the differences in xylose metabolism between the diploid and haploid strains.
Collapse
Affiliation(s)
- Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Bai-Xue Yang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Qing-Ran Song
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
14
|
Qin L, Dong S, Yu J, Ning X, Xu K, Zhang SJ, Xu L, Li BZ, Li J, Yuan YJ, Li C. Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation. Metab Eng 2020; 61:160-170. [DOI: 10.1016/j.ymben.2020.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022]
|
15
|
Yang BX, Xie CY, Xia ZY, Wu YJ, Li B, Tang YQ. The effect of xylose reductase genes on xylitol production by industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Dzanaeva L, Kruk B, Ruchala J, Nielsen J, Sibirny A, Dmytruk K. The role of peroxisomes in xylose alcoholic fermentation in the engineered
Saccharomyces cerevisiae. Cell Biol Int 2020; 44:1606-1615. [DOI: 10.1002/cbin.11353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/02/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Ljubov Dzanaeva
- Department of Molecular Genetics and Biotechnology, Institute of Cell BiologyNAS of UkraineLviv Ukraine
| | - Barbara Kruk
- Department of Biotechnology and MicrobiologyUniversity of RzeszowRzeszow Poland
| | - Justyna Ruchala
- Department of Biotechnology and MicrobiologyUniversity of RzeszowRzeszow Poland
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg Sweden
| | - Andriy Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell BiologyNAS of UkraineLviv Ukraine
- Department of Biotechnology and MicrobiologyUniversity of RzeszowRzeszow Poland
| | - Kostyantyn Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell BiologyNAS of UkraineLviv Ukraine
| |
Collapse
|
17
|
Smekenov I, Bakhtambayeva M, Bissenbayev K, Saparbayev M, Taipakova S, Bissenbaev AK. Heterologous secretory expression of β-glucosidase from Thermoascus aurantiacus in industrial Saccharomyces cerevisiae strains. Braz J Microbiol 2019; 51:107-123. [PMID: 31776864 DOI: 10.1007/s42770-019-00192-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 11/14/2019] [Indexed: 10/25/2022] Open
Abstract
The use of plant biomass for biofuel production will require efficient utilization of the sugars in lignocellulose, primarily cellobiose, because it is the major soluble by-product of cellulose and acts as a strong inhibitor, especially for cellobiohydrolase, which plays a key role in cellulose hydrolysis. Commonly used ethanologenic yeast Saccharomyces cerevisiae is unable to utilize cellobiose; accordingly, genetic engineering efforts have been made to transfer β-glucosidase genes enabling cellobiose utilization. Nonetheless, laboratory yeast strains have been employed for most of this research, and such strains may be difficult to use in industrial processes because of their generally weaker resistance to stressors and worse fermenting abilities. The purpose of this study was to engineer industrial yeast strains to ferment cellobiose after stable integration of tabgl1 gene that encodes a β-glucosidase from Thermoascus aurantiacus (TaBgl1). The recombinant S. cerevisiae strains obtained in this study secrete TaBgl1, which can hydrolyze cellobiose and produce ethanol. This study clearly indicates that the extent of glycosylation of secreted TaBgl1 depends from the yeast strains used and is greatly influenced by carbon sources (cellobiose or glucose). The recombinant yeast strains showed high osmotolerance and resistance to various concentrations of ethanol and furfural and to high temperatures. Therefore, these yeast strains are suitable for ethanol production processes with saccharified lignocellulose.
Collapse
Affiliation(s)
- Izat Smekenov
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050040.,Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050040
| | - Marzhan Bakhtambayeva
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050040.,Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050040
| | - Kudaybergen Bissenbayev
- Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050040.,Nazarbayev Intellectual School, Almaty, Kazakhstan, 050044
| | - Murat Saparbayev
- Gustave Roussy Cancer Campus, CNRS UMR8200, Université Paris-Sud, F-94805, Villejuif Cedex, France
| | - Sabira Taipakova
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050040.,Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050040
| | - Amangeldy K Bissenbaev
- Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050040. .,Scientific Research Institute of Biology and Biotechnology Problems, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050040.
| |
Collapse
|
18
|
Tang R, Ye P, Alper HS, Liu Z, Zhao X, Bai F. Identification and characterization of novel xylose isomerases from a Bos taurus fecal metagenome. Appl Microbiol Biotechnol 2019; 103:9465-9477. [PMID: 31701197 DOI: 10.1007/s00253-019-10161-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/08/2019] [Accepted: 09/28/2019] [Indexed: 12/31/2022]
Abstract
Discovering sugar metabolism genes is of great interest for lignocellulosic biorefinery. Xylose isomerases (XIs) were commonly screened from metagenomes derived from bovine rumen, soil, and other sources. However, so far, XIs and other sugar-utilizing enzymes have not been discovered from fecal metagenomes. In this study, environmental DNA from the fecal samples collected from yellow cattle (Bos taurus) was sequenced and analyzed. In the whole 14.26 Gbp clean data, 92 putative XIs were annotated. After sequence analysis, seven putative XIs were heterologously expressed in Escherichia coli and characterized in vitro. The XIs 58444 and 58960 purified from E. coli exhibited 22% higher enzyme activity when compared with that of the native E. coli XI. The XI 58444, similar to the XI from Lachnospira multipara, exhibited a relatively stable activity profile across different pH conditions. Four XIs were further investigated in budding yeast Saccharomyces cerevisiae after codon optimization. Overexpression of the codon-optimized 58444 enabled S. cerevisiae to utilize 6.4 g/L xylose after 96 h without any other genetic manipulations, which is 56% higher than the control yeast strain overexpressing an optimized XI gene xylA*3 selected by three rounds of mutation. Our results provide evidence that a bovine fecal metagenome is a novel and valuable source of XIs and other industrial enzymes for biotechnology applications.
Collapse
Affiliation(s)
- Ruiqi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peiliang Ye
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhanying Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China.,Center for Conservation and Emission Reductioin in Fermentation Industry, Inner Mongolia, Hohhot, 010051, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
19
|
Patiño MA, Ortiz JP, Velásquez M, Stambuk BU. d-Xylose consumption by nonrecombinant Saccharomyces cerevisiae: A review. Yeast 2019; 36:541-556. [PMID: 31254359 DOI: 10.1002/yea.3429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/21/2019] [Indexed: 01/24/2023] Open
Abstract
Xylose is the second most abundant sugar in nature. Its efficient fermentation has been considered as a critical factor for a feasible conversion of renewable biomass resources into biofuels and other chemicals. The yeast Saccharomyces cerevisiae is of exceptional industrial importance due to its excellent capability to ferment sugars. However, although S. cerevisiae is able to ferment xylulose, it is considered unable to metabolize xylose, and thus, a lot of research has been directed to engineer this yeast with heterologous genes to allow xylose consumption and fermentation. The analysis of the natural genetic diversity of this yeast has also revealed some nonrecombinant S. cerevisiae strains that consume or even grow (modestly) on xylose. The genome of this yeast has all the genes required for xylose transport and metabolism through the xylose reductase, xylitol dehydrogenase, and xylulokinase pathway, but there seems to be problems in their kinetic properties and/or required expression. Self-cloning industrial S. cerevisiae strains overexpressing some of the endogenous genes have shown interesting results, and new strategies and approaches designed to improve these S. cerevisiae strains for ethanol production from xylose will also be presented in this review.
Collapse
Affiliation(s)
- Margareth Andrea Patiño
- Instituto de Biotecnología.,Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan Pablo Ortiz
- Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - Mario Velásquez
- Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Boris U Stambuk
- Departamento de Bioquímica, Universidad Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
20
|
Wei S, Bai P, Liu Y, Yang M, Ma J, Hou J, Liu W, Bao X, Shen Y. A Thi2p Regulatory Network Controls the Post-glucose Effect of Xylose Utilization in Saccharomyces cerevisiae. Front Microbiol 2019; 10:1649. [PMID: 31379793 PMCID: PMC6660263 DOI: 10.3389/fmicb.2019.01649] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
The complete and efficient utilization of both glucose and xylose is necessary for the economically viable production of biofuels and chemicals using lignocellulosic feedstocks. Although recently obtained recombinant Saccharomyces cerevisiae strains metabolize xylose well when xylose is the sole carbon source in the medium (henceforth referred to as "X stage"), their xylose consumption rate is significantly reduced during the xylose-only consumption phase of glucose-xylose co-fermentation ("GX stage"). This post-glucose effect seriously decreases overall fermentation efficiency. We showed in previous work that THI2 deletion can alleviate this post-glucose effect, but the underlying mechanisms were ill-defined. In the present study, we profiled the transcriptome of a thi2Δ strain growing at the GX stage. Thi2p in GX stage cells regulates genes involved in the cell cycle, stress tolerance, and cell viability. Importantly, the regulation of Thi2p differs from a previous regulatory network that functions when glucose is the sole carbon source, which suggests that the function of Thi2p depends on the carbon source. Modeling research seeking to optimize metabolic engineering via TFs should account for this important carbon source difference. Building on our initial study, we confirmed that several identified factors did indeed increase fermentation efficiency. Specifically, overexpressing STT4, RGI2, and TFC3 increases specific xylose utilization rate of the strain by 36.9, 29.7, 42.8%, respectively, in the GX stage of anaerobic fermentation. Our study thus illustrates a promising strategy for the rational engineering of yeast for lignocellulosic ethanol production.
Collapse
Affiliation(s)
- Shan Wei
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Qingdao, China
| | - Penggang Bai
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Qingdao, China
| | - Yanan Liu
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Qingdao, China
| | - Mengdan Yang
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Qingdao, China
| | - Juanzhen Ma
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Qingdao, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Qingdao, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Qingdao, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Qingdao, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Qi Lu University of Technology, Jinan, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, Qingdao, China
| |
Collapse
|
21
|
de Witt RN, Kroukamp H, Volschenk H. Proteome response of two natural strains of Saccharomyces cerevisiae with divergent lignocellulosic inhibitor stress tolerance. FEMS Yeast Res 2019; 19:5145847. [PMID: 30371771 DOI: 10.1093/femsyr/foy116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022] Open
Abstract
Strains of Saccharomyces cerevisiae with improved tolerance to plant hydrolysates are of utmost importance for the cost-competitive production of value-added chemicals and fuels. However, engineering strategies are constrained by a lack of understanding of the yeast response to complex inhibitor mixtures. Natural S. cerevisiae isolates display niche-specific phenotypic and metabolic diversity, encoded in their DNA, which has evolved to overcome external stresses, utilise available resources and ultimately thrive in their challenging environments. Industrial and laboratory strains, however, lack these adaptations due to domestication. Natural strains can serve as a valuable resource to mitigate engineering constraints by studying the molecular mechanisms involved in phenotypic variance and instruct future industrial strain improvement to lignocellulosic hydrolysates. We, therefore, investigated the proteomic changes between two natural S. cerevisiae isolates when exposed to a lignocellulosic inhibitor mixture. Comparative shotgun proteomics revealed that isolates respond by regulating a similar core set of proteins in response to inhibitor stress. Furthermore, superior tolerance was linked to NAD(P)/H and energy homeostasis, concurrent with inhibitor and reactive oxygen species detoxification processes. We present several candidate proteins within the redox homeostasis and energy management cellular processes as possible targets for future modification and study. Data are available via ProteomeXchange with identifier PXD010868.
Collapse
Affiliation(s)
- R N de Witt
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch, 7600, Western Cape, South Africa
| | - H Kroukamp
- Department of Molecular Sciences, Macquarie University, Balaclava Rd, North Ryde NSW 2109, Australia
| | - H Volschenk
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch, 7600, Western Cape, South Africa
| |
Collapse
|
22
|
Li YC, Xie CY, Yang BX, Tang YQ, Wu B, Sun ZY, Gou M, Xia ZY. Comparative Transcriptome Analysis of Recombinant Industrial Saccharomyces cerevisiae Strains with Different Xylose Utilization Pathways. Appl Biochem Biotechnol 2019; 189:1007-1019. [DOI: 10.1007/s12010-019-03060-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/22/2019] [Indexed: 01/03/2023]
|
23
|
Hua Y, Wang J, Zhu Y, Zhang B, Kong X, Li W, Wang D, Hong J. Release of glucose repression on xylose utilization in Kluyveromyces marxianus to enhance glucose-xylose co-utilization and xylitol production from corncob hydrolysate. Microb Cell Fact 2019; 18:24. [PMID: 30709398 PMCID: PMC6359873 DOI: 10.1186/s12934-019-1068-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/20/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Lignocellulosic biomass is one of the most abundant materials for biochemicals production. However, efficient co-utilization of glucose and xylose from the lignocellulosic biomass is a challenge due to the glucose repression in microorganisms. Kluyveromyces marxianus is a thermotolerant and efficient xylose-utilizing yeast. To realize the glucose-xylose co-utilization, analyzing the glucose repression of xylose utilization in K. marxianus is necessary. In addition, a glucose-xylose co-utilization platform strain will facilitate the construction of lignocellulosic biomass-utilizing strains. RESULTS Through gene disruption, hexokinase 1 (KmHXK1) and sucrose non-fermenting 1 (KmSNF1) were proved to be involved in the glucose repression of xylose utilization while disruption of the downstream genes of cyclic AMP-protein kinase A (cAMP-PKA) signaling pathway or sucrose non-fermenting 3 (SNF3) glucose-sensing pathway did not alleviate the repression. Furthermore, disruption of the gene of multicopy inhibitor of GAL gene expression (KmMIG1) alleviated the glucose repression on some nonglucose sugars (galactose, sucrose, and raffinose) but still kept glucose repression of xylose utilization. Real-time PCR analysis of the xylose utilization related genes transcription confirmed these results, and besides, revealed that xylitol dehydrogenase gene (KmXYL2) was the critical gene for xylose utilization and stringently regulated by glucose repression. Many other genes of candidate targets interacting with SNF1 were also evaluated by disruption, but none proved to be the key regulator in the pathway of the glucose repression on xylose utilization. Therefore, there may exist other signaling pathway(s) for glucose repression on xylose consumption. Based on these results, a thermotolerant xylose-glucose co-consumption platform strain of K. marxianus was constructed. Then, exogenous xylose reductase and xylose-specific transporter genes were overexpressed in the platform strain to obtain YHY013. The YHY013 could efficiently co-utilized the glucose and xylose from corncob hydrolysate or xylose mother liquor for xylitol production (> 100 g/L) even with inexpensive organic nitrogen sources. CONCLUSIONS The analysis of the glucose repression in K. marxianus laid the foundation for construction of the glucose-xylose co-utilizing platform strain. The efficient xylitol production strain further verified the potential of the platform strain in exploitation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Yan Hua
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, 230026, Anhui, People's Republic of China
| | - Jichao Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yelin Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Biao Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Xin Kong
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, 230026, Anhui, People's Republic of China
| | - Wenjie Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, 230026, Anhui, People's Republic of China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, People's Republic of China.
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, 230026, Anhui, People's Republic of China.
| |
Collapse
|
24
|
Gao M, Ploessl D, Shao Z. Enhancing the Co-utilization of Biomass-Derived Mixed Sugars by Yeasts. Front Microbiol 2019; 9:3264. [PMID: 30723464 PMCID: PMC6349770 DOI: 10.3389/fmicb.2018.03264] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Plant biomass is a promising carbon source for producing value-added chemicals, including transportation biofuels, polymer precursors, and various additives. Most engineered microbial hosts and a select group of wild-type species can metabolize mixed sugars including oligosaccharides, hexoses, and pentoses that are hydrolyzed from plant biomass. However, most of these microorganisms consume glucose preferentially to non-glucose sugars through mechanisms generally defined as carbon catabolite repression. The current lack of simultaneous mixed-sugar utilization limits achievable titers, yields, and productivities. Therefore, the development of microbial platforms capable of fermenting mixed sugars simultaneously from biomass hydrolysates is essential for economical industry-scale production, particularly for compounds with marginal profits. This review aims to summarize recent discoveries and breakthroughs in the engineering of yeast cell factories for improved mixed-sugar co-utilization based on various metabolic engineering approaches. Emphasis is placed on enhanced non-glucose utilization, discovery of novel sugar transporters free from glucose repression, native xylose-utilizing microbes, consolidated bioprocessing (CBP), improved cellulase secretion, and creation of microbial consortia for improving mixed-sugar utilization. Perspectives on the future development of biorenewables industry are provided in the end.
Collapse
Affiliation(s)
- Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States
| | - Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States.,The Ames Laboratory, Iowa State University, Ames, IA, United States.,The Interdisciplinary Microbiology Program, Biorenewables Research Laboratory, Iowa State University, Ames, IA, United States
| |
Collapse
|
25
|
Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:61-83. [PMID: 30911889 DOI: 10.1007/978-3-030-13035-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lignocellulosic biomass has been widely studied as the renewable feedstock for the production of biofuels and biochemicals. Budding yeast Saccharomyces cerevisiae is commonly used as a cell factory for bioconversion of lignocellulosic biomass. However, economic bioproduction using fermentable sugars released from lignocellulosic feedstocks is still challenging. Due to impaired cell viability and fermentation performance by various inhibitors that are present in the cellulosic hydrolysates, robust yeast strains resistant to various stress environments are highly desired. Here, we summarize recent progress on yeast strain development for the production of biofuels and biochemical using lignocellulosic biomass. Genome-wide studies which have contributed to the elucidation of mechanisms of yeast stress tolerance are reviewed. Key gene targets recently identified based on multiomics analysis such as transcriptomic, proteomic, and metabolomics studies are summarized. Physiological genomic studies based on zinc sulfate supplementation are highlighted, and novel zinc-responsive genes involved in yeast stress tolerance are focused. The dependence of host genetic background of yeast stress tolerance and roles of histones and their modifications are emphasized. The development of robust yeast strains based on multiomics analysis benefits economic bioconversion of lignocellulosic biomass.
Collapse
|