1
|
Labara Tirado J, Herdean A, Ralph PJ. The need for smart microalgal bioprospecting. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:7. [PMID: 39815030 PMCID: PMC11735771 DOI: 10.1007/s13659-024-00487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025]
Abstract
Microalgae's adaptability and resilience to Earth's diverse environments have evolved these photosynthetic microorganisms into a biotechnological source of industrially relevant physiological functions and biometabolites. Despite this, microalgae-based industries only exploit a handful of species. This lack of biodiversity hinders the expansion of the microalgal industry. Microalgal bioprospecting, searching for novel biological algal resources with new properties, remains a low throughput and time-consuming endeavour due to inefficient workflows that rely on non-selective sampling, monoalgal culture status and outdated, non-standardized characterization techniques. This review will highlight the importance of microalgal bioprospecting and critically explore commonly employed methodologies. We will also explore current advances driving the next generation of smart algal bioprospecting focusing on novel workflows and transdisciplinary methodologies with the potential to enable high-throughput microalgal biodiscoveries. Images adapted from (Addicted04 in Wikipedia File: Australia on the globe (Australia centered).svg. 2014.; Jin et al. in ACS Appl Bio Mater 4:5080-5089, 2021; Kim et al. in Microchim Acta 189:88, 2022; Tony et al. in Lab on a Chip 15, 19:3810-3810; Thermo Fisher Scientific INC. in CTS Rotea Brochure).
Collapse
Affiliation(s)
- Joan Labara Tirado
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Andrei Herdean
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Peter J Ralph
- Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
2
|
He J, Hu P, Wang M, Qi G, Huang H, Zeng D, Guan J, Lv P, Liu L. Utilization of chitosan nanocomposites loaded with quantum dots enables efficient and traceable DNA delivery. Colloids Surf B Biointerfaces 2024; 245:114221. [PMID: 39260273 DOI: 10.1016/j.colsurfb.2024.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Chitosan is widely employed in gene carriers due to its excellent gene loading capacity, ease of modification, and exceptional biodegradability. However, low gene delivery efficiency, high cytotoxicity, and lack of tracer biomimetic properties limit its clinical use. To address these issues, a novel biomimetic tracking gene delivery carrier, RBCm-C50kQT, was constructed by using the design scheme of cell membrane coated carbon quantum dots/chitosan. This carrier improves stability and tracking performance while embedding the cell membrane enhances biosafety. RBCm-C50kQT effectively carries and protects DNA, improving uptake and transfection efficiency with reduced cytotoxicity. It maintains strong fluorescence tracking and shows high uptake efficiencies of 83.62 % and 77.45 % in 293 T and HeLa cells, respectively, with maximum transfection efficiencies of 68.80 % and 45.47 %. This advancement supports gene therapy improvements and paves the way for future clinical applications.
Collapse
Affiliation(s)
- Jiayu He
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peng Hu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guowei Qi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haoxiang Huang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jintao Guan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peiwen Lv
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liang Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
3
|
Li CC, Cao JX, Wang L, Wang JY. A novel polyethylene glycol fluorescent probe for simultaneously tracking lysosomes and lipid droplets with large Stokes shift and its application in distinguishing living from dead cells. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Avilan L, Lebrun R, Puppo C, Citerne S, Cuiné S, Li‐Beisson Y, Menand B, Field B, Gontero B. ppGpp influences protein protection, growth and photosynthesis in Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2021; 230:1517-1532. [PMID: 33595847 PMCID: PMC8252717 DOI: 10.1111/nph.17286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/08/2021] [Indexed: 05/08/2023]
Abstract
Chloroplasts retain elements of a bacterial stress response pathway that is mediated by the signalling nucleotides guanosine penta- and tetraphosphate ((p)ppGpp). In the model flowering plant Arabidopsis, ppGpp acts as a potent regulator of plastid gene expression and influences photosynthesis, plant growth and development. However, little is known about ppGpp metabolism or its evolution in other photosynthetic eukaryotes. Here, we studied the function of ppGpp in the diatom Phaeodactylum tricornutum using transgenic lines containing an inducible system for ppGpp accumulation. We used these lines to investigate the effects of ppGpp on growth, photosynthesis, lipid metabolism and protein expression. We demonstrate that ppGpp accumulation reduces photosynthetic capacity and promotes a quiescent-like state with reduced proliferation and ageing. Strikingly, using nontargeted proteomics, we discovered that ppGpp accumulation also leads to the coordinated upregulation of a protein protection response in multiple cellular compartments. Our findings highlight the importance of ppGpp as a fundamental regulator of chloroplast function across different domains of life, and lead to new questions about the molecular mechanisms and roles of (p)ppGpp signalling in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Luisana Avilan
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
- Centre for Enzyme InnovationSchool of Biological SciencesInstitute of Biological and Biomedical SciencesUniversity of PortsmouthPortsmouthPO1 2DYUK
| | - Regine Lebrun
- Plate‐forme ProtéomiqueMarseille Protéomique (MaP)IMM FR 3479, 31 Chemin Joseph AiguierMarseille13009France
| | - Carine Puppo
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
| | - Sylvie Citerne
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | - Stephane Cuiné
- CEA, CNRS, UMR7265 BIAMCEA CadaracheAix‐Marseille UnivSaint‐Paul‐lez Durance13108France
| | - Yonghua Li‐Beisson
- CEA, CNRS, UMR7265 BIAMCEA CadaracheAix‐Marseille UnivSaint‐Paul‐lez Durance13108France
| | - Benoît Menand
- CEA, CNRS, UMR7265 BIAMAix‐Marseille UnivMarseille13009France
| | - Ben Field
- CEA, CNRS, UMR7265 BIAMAix‐Marseille UnivMarseille13009France
| | - Brigitte Gontero
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
| |
Collapse
|
5
|
Optimization of high-throughput lipid screening of the microalga Nannochloropsis oceanica using BODIPY 505/515. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Coulon D, Brocard L, Tuphile K, Bréhélin C. Arabidopsis LDIP protein locates at a confined area within the lipid droplet surface and favors lipid droplet formation. Biochimie 2020; 169:29-40. [PMID: 31568826 DOI: 10.1016/j.biochi.2019.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Lipid droplets (LDs) are cell organelles specialized in neutral lipid storage. Extendedly studied in seeds, LDs also accumulate in leaves during senescence or in response to abiotic stresses. However the mechanisms underlying their biogenesis remain relatively unknown. Here, we deciphered the distinct roles of two proteins during LD biogenesis: LD-associated protein 1 (AtLDAP1) and LDAP-interacting protein (AtLDIP). We demonstrated that AtLDIP overexpression favors the neo-formation of small LDs under growing conditions where LD accumulation is usually not observed. In addition, atldip knock-out mutant displayed fewer but larger LDs, confirming a role of AtLDIP in LD biogenesis. Interestingly, a synergistic effect of the overexpression of both AtLDIP and AtLDAP1 was observed, resulting in an increase of LD cluster occurrence and LD abundance within the clusters and the cells. AtLDIP overexpression has no significant impact on triacylglycerol and steryl ester accumulation but AtLDIP inactivation is associated with an increase of neutral lipid content, that is probably a consequence of the enlarged but less abundant LDs present in this line. Our localization study demonstrated that AtLDIP is localized at specific dotted sites within the LD in contrast to AtLDAP1 that covers the whole LD. In addition, AtLDIP sometimes localized away from the LD marker, but always associated with the ER network, suggesting a location at LD nascent sites within the ER. Taken together, our results suggested that AtLDIP promotes the formation of new LDs from ER localized TAG lenses.
Collapse
Affiliation(s)
- Denis Coulon
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, Villenave d'Ornon, F-33140, France; CNRS, Laboratoire de Biogenèse Membranaire, UMR5200, Villenave d'Ornon, F-33140, France; Bordeaux INP, Talence, France
| | - Lysiane Brocard
- Plant Imaging Platform, Bordeaux Imaging Center, UMS 3420, CNRS, Université de Bordeaux, Bordeaux, F-33000, France
| | - Karine Tuphile
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, Villenave d'Ornon, F-33140, France; CNRS, Laboratoire de Biogenèse Membranaire, UMR5200, Villenave d'Ornon, F-33140, France
| | - Claire Bréhélin
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR5200, Villenave d'Ornon, F-33140, France; CNRS, Laboratoire de Biogenèse Membranaire, UMR5200, Villenave d'Ornon, F-33140, France.
| |
Collapse
|
7
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
8
|
Maréchal E, Lupette J. Relationship between acyl-lipid and sterol metabolisms in diatoms. Biochimie 2019; 169:3-11. [PMID: 31291593 DOI: 10.1016/j.biochi.2019.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022]
Abstract
Diatoms are a phylum of unicellular photosynthetic eukaryotes living in oceans and fresh waters, characterized by the complexity of their plastid, resulting from a secondary endosymbiosis event. In the model diatom Phaeodactylum tricornutum, fatty acids (FAs) are synthesized from acetyl-CoA in the stroma of the plastid, producing palmitic acid. FAs are elongated and desaturated to form very-long chain polyunsaturated fatty acids (VLC-PUFAs) in domains of the endomembrane system that need to be identified. Synthesis of VLC-PUFAs is coupled with their import to the core of the plastid via the so-called "omega" pathway. The biosynthesis of sterols in diatoms is likely to be localized in the endoplasmic reticulum as well as using precursors deriving from the mevalonate pathway, using acetyl-CoA as initial substrate. These metabolic modules can be characterized functionally by genetic analyzes or chemical treatments with appropriate inhibitors. Some 'metabolic modules' are characterized by a very low level of metabolic intermediates. Since some chemical treatments or genetic perturbation of lipid metabolism induce the accumulation of these intermediates, channeling processes are possibly involved, suggesting that protein-protein interactions might occur between enzymes within large size complexes or metabolons. At the junction of these modules, metabolic intermediates might therefore play dramatic roles in directing carbon fluxes from one direction to another. Here, acetyl-CoA seems determinant in the balance between TAGs and sterols. Future lines of research and potential utilization for biotechnological applications are discussed.
Collapse
Affiliation(s)
- Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRA, Université Grenoble Alpes, Institut de Recherche Interdisciplinaire de Grenoble, CEA Grenoble, 17 avenue des Martyrs, 38000, Grenoble, France
| | - Josselin Lupette
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Prioretti L, Carriere F, Field B, Avilan L, Montané MH, Menand B, Gontero B. Targeting TOR signaling for enhanced lipid productivity in algae. Biochimie 2019; 169:12-17. [PMID: 31265860 DOI: 10.1016/j.biochi.2019.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/26/2019] [Indexed: 01/21/2023]
Abstract
Microalgae can produce large quantities of triacylglycerols (TAGs) and other neutral lipids that are suitable for making biofuels and as feedstocks for green chemistry. However, TAGs accumulate under stress conditions that also stop growth, leading to a trade-off between biomass production and TAG yield. Recently, in the model marine diatom Phaeodactylum tricornutum it was shown that inhibition of the target of rapamycin (TOR) kinase boosts lipid productivity by promoting TAG production without stopping growth. We believe that basic knowledge in this emerging field is required to develop innovative strategies to improve neutral lipid accumulation in oleaginous microalgae. In this minireview, we discuss current research on the TOR signaling pathway with a focus on its control on lipid homeostasis. We first provide an overview of the well characterized roles of TOR in mammalian lipogenesis, adipogenesis and lipolysis. We then present evidence of a role for TOR in controlling TAG accumulation in microalgae, and draw parallels between the situation in animals, plants and microalgae to propose a model of TOR signaling for TAG accumulation in microalgae.
Collapse
Affiliation(s)
- Laura Prioretti
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France
| | - Frédéric Carriere
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France
| | - Ben Field
- Aix Marseille Univ, CEA, CNRS, UMR 7265 BIAM, 163 Avenue de Luminy, 13288, Marseille, France
| | - Luisana Avilan
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France
| | - Marie-Hélène Montané
- Aix Marseille Univ, CEA, CNRS, UMR 7265 BIAM, 163 Avenue de Luminy, 13288, Marseille, France
| | - Benoît Menand
- Aix Marseille Univ, CEA, CNRS, UMR 7265 BIAM, 163 Avenue de Luminy, 13288, Marseille, France.
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, 13402, Marseille, Cedex 09, France.
| |
Collapse
|
10
|
Hu R, Chen B, Wang Z, Qin A, Zhao Z, Lou X, Tang BZ. Intriguing “chameleon” fluorescent bioprobes for the visualization of lipid droplet-lysosome interplay. Biomaterials 2019; 203:43-51. [DOI: 10.1016/j.biomaterials.2019.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
|