1
|
Yu X, Xing A, Wu X, Wei M, Wang D, Li F, Lyu Y, Liu J. Preparation and characterization of ferulic oligosaccharides from different sources by cell-free GH10 and GH11 xylanases. Int J Biol Macromol 2024; 282:137287. [PMID: 39510479 DOI: 10.1016/j.ijbiomac.2024.137287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The feruloyl oligosaccharides (FOs) produced by the decomposition of plant hemicellulose have broad potential applications in the food and biomedical areas. FOs were prepared through the specific enzymatic degradation of insoluble dietary fiber from different sources by cell-free GH10 and GH11 xylanases. The cell-free GH10 and GH11 xylanases were obtained by the heterologous expression in Escherichia coli. The enzymatic hydrolysis conditions were optimized as follows: temperature 50 °C, pH 5.5, hydrolysis time 12 h, GH10 xylanase addition 101.74 U, and GH11 xylanase addition 121.60 U. The compositions and structural characterization of wheat bran FOs (WB-FOs), corncob FOs (CC-FOs), and buckwheat straw FOs (BS-FOs) were identified by fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), high-performance liquid chromatography (HPLC), and electrospray ionization tandem mass spectrometry (ESI-MS). Degrees of polymerization (DP) of WB-FOs, CC-FOs, and BS-FOs were 3-11, 3-7, and 3-6, respectively. Ultraviolet (UV) radiation was investigated in vitro. The results demonstrated that BS-FOs possessed excellent UV resistance and photostability, followed by effectiveness in WB-FOs and CC-FOs. These results have improved our understanding of the relationship between FOs with different structural types and their UV radiation.
Collapse
Affiliation(s)
- Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Aohui Xing
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xuanming Wu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ming Wei
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinbin Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
2
|
Ding N, Sun L, Zhou X, Zhang L, Deng Y, Yin L. Enhancing glucaric acid production from myo-inositol in Escherichia coli by eliminating cell-to-cell variation. Appl Environ Microbiol 2024; 90:e0014924. [PMID: 38808978 PMCID: PMC11218621 DOI: 10.1128/aem.00149-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Glucaric acid (GA) is a value-added chemical and can be used to manufacture food additives, anticancer drugs, and polymers. The non-genetic cell-to-cell variations in GA biosynthesis are naturally inherent, indicating the presence of both high- and low-performance cells in culture. Low-performance cells can lead to nutrient waste and inefficient production. Furthermore, myo-inositol oxygenase (MIOX) is a key rate-limiting enzyme with the problem of low stability and activity in GA production. Therefore, eliminating cell-to-cell variations and increasing MIOX stability can select high-performance cells and improve GA production. In this study, an in vivo GA bioselector was constructed based on GA biosensor and tetracycline efflux pump protein TetA to continuously select GA-efficient production strains. Additionally, the upper limit of the GA biosensor was improved to 40 g/L based on ribosome-binding site optimization, achieving efficient enrichment of GA high-performance cells. A small ubiquitin-like modifier (SUMO) enhanced MIOX stability and activity. Overall, we used the GA bioselector and SUMO-MIOX fusion in fed-batch GA production and achieved a 5.52-g/L titer in Escherichia coli, which was 17-fold higher than that of the original strain.IMPORTANCEGlucaric acid is a non-toxic valuable product that was mainly synthesized by chemical methods. Due to the problems of non-selectivity, inefficiency, and environmental pollution, GA biosynthesis has attracted significant attention. The non-genetic cell-to-cell variations and MIOX stability were both critical factors for GA production. In addition, the high detection limit of the GA biosensor was a key condition for performing high-throughput screening of GA-efficient production strains. To increase GA titer, this work eliminated the cell-to-cell variations by GA bioselector constructed based on GA biosensor and TetA, and improved the stability and activity of MIOX in the GA biosynthetic pathway through fusing the SUMO to MIOX. Finally, these approaches improved the GA production by 17-fold to 5.52 g/L at 65 h. This study represents a significant step toward the industrial application of GA biosynthetic pathways in E. coli.
Collapse
Affiliation(s)
- Nana Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Lei Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xuan Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China
| | - Linpei Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China
| | - Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
3
|
Ito T, Masaki H, Fujita K, Murakami H, Shizuma M, Kiso T, Kiryu T. Identification of Pathways for Production of D-Glucaric Acid by Pseudogluconobacter saccharoketogenes. Appl Biochem Biotechnol 2024; 196:1876-1895. [PMID: 37440113 DOI: 10.1007/s12010-023-04628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
Pseudogluconobacter saccharoketogenes produces glucaric acid from D-glucose via two pathways, i.e., through D-glucuronic acid or D-gluconic acid. These pathways are catalyzed by alcohol dehydrogenase, aldehyde dehydrogenase, and gluconate dehydrogenase. Although D-glucaraldehyde and L-guluronic acid are also theorized to be produced in pathways throsugh D-glucuronic acid and D-gluconic acid, respectively, no direct data to identify these intermediates have been reported. In this study, the intermediates were purified and identified as D-glucaraldehyde and L-guluronic acid. The substrate specificities of the three enzymes on these intermediates and their oxidation products were studied, and the roles of alcohol, aldehyde, and gluconate dehydrogenases in D-glucaric acid-producing pathways were elucidated using the intermediates. Additionally, the substrate specificities of alcohol and aldehyde dehydrogenases on some alcohols, aldehydes, and aldoses were determined. Alcohol dehydrogenase showed wide substrate specificities, whereas the substrates oxidized by aldehyde dehydrogenase were limited. A 30-L scale reaction using the resting cells of Rh47-3 revealed that D-glucaric acid was produced from D-glucose and D-gluconic acid in 60.3 mol% (7.0 g/L) and 78.6 mol% (22.5 g/L) yields, respectively.
Collapse
Affiliation(s)
- Tetsuya Ito
- ENSUIKO Sugar Refining Co., Ltd., Tokyo, 103-0012, Japan
| | | | - Koki Fujita
- ENSUIKO Sugar Refining Co., Ltd., Tokyo, 103-0012, Japan
| | - Hiromi Murakami
- Osaka Research Institute of Industrial Science and Technology, Osaka, 536-8553, Japan
| | - Motohiro Shizuma
- Osaka Research Institute of Industrial Science and Technology, Osaka, 536-8553, Japan
| | - Taro Kiso
- Osaka Research Institute of Industrial Science and Technology, Osaka, 536-8553, Japan
| | - Takaaki Kiryu
- Osaka Research Institute of Industrial Science and Technology, Osaka, 536-8553, Japan.
| |
Collapse
|
4
|
Toivari M, Vehkomäki ML, Ruohonen L, Penttilä M, Wiebe MG. Production of D-glucaric acid with phosphoglucose isomerase-deficient Saccharomyces cerevisiae. Biotechnol Lett 2024; 46:69-83. [PMID: 38064042 PMCID: PMC10787697 DOI: 10.1007/s10529-023-03443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 01/14/2024]
Abstract
D-Glucaric acid is a potential biobased platform chemical. Previously mainly Escherichia coli, but also the yeast Saccharomyces cerevisiae, and Pichia pastoris, have been engineered for conversion of D-glucose to D-glucaric acid via myo-inositol. One reason for low yields from the yeast strains is the strong flux towards glycolysis. Thus, to decrease the flux of D-glucose to biomass, and to increase D-glucaric acid yield, the four step D-glucaric acid pathway was introduced into a phosphoglucose isomerase deficient (Pgi1p-deficient) Saccharomyces cerevisiae strain. High D-glucose concentrations are toxic to the Pgi1p-deficient strains, so various feeding strategies and use of polymeric substrates were studied. Uniformly labelled 13C-glucose confirmed conversion of D-glucose to D-glucaric acid. In batch bioreactor cultures with pulsed D-fructose and ethanol provision 1.3 g D-glucaric acid L-1 was produced. The D-glucaric acid titer (0.71 g D-glucaric acid L-1) was lower in nitrogen limited conditions, but the yield, 0.23 g D-glucaric acid [g D-glucose consumed]-1, was among the highest that has so far been reported from yeast. Accumulation of myo-inositol indicated that myo-inositol oxygenase activity was limiting, and that there would be potential to even higher yield. The Pgi1p-deficiency in S. cerevisiae provides an approach that in combination with other reported modifications and bioprocess strategies would promote the development of high yield D-glucaric acid yeast strains.
Collapse
Affiliation(s)
- Mervi Toivari
- VTT Technical Research Centre of Finland Ltd, Tekniikantie 21, P.O. Box 1000, 02044, Espoo, Finland.
| | - Maija-Leena Vehkomäki
- VTT Technical Research Centre of Finland Ltd, Tekniikantie 21, P.O. Box 1000, 02044, Espoo, Finland
| | - Laura Ruohonen
- VTT Technical Research Centre of Finland Ltd, Tekniikantie 21, P.O. Box 1000, 02044, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd, Tekniikantie 21, P.O. Box 1000, 02044, Espoo, Finland
| | - Marilyn G Wiebe
- VTT Technical Research Centre of Finland Ltd, Tekniikantie 21, P.O. Box 1000, 02044, Espoo, Finland
| |
Collapse
|
5
|
Hooe SL, Ellis GA, Medintz IL. Alternative design strategies to help build the enzymatic retrosynthesis toolbox. RSC Chem Biol 2022; 3:1301-1313. [PMID: 36349225 PMCID: PMC9627731 DOI: 10.1039/d2cb00096b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/11/2022] [Indexed: 05/30/2024] Open
Abstract
Most of the complex molecules found in nature still cannot be synthesized by current organic chemistry methods. Given the number of enzymes that exist in nature and the incredible potential of directed evolution, the field of synthetic biology contains perhaps all the necessary building blocks to bring about the realization of applied enzymatic retrosynthesis. Current thinking anticipates that enzymatic retrosynthesis will be implemented using conventional cell-based synthetic biology approaches where requisite native, heterologous, designer, and evolved enzymes making up a given multi-enzyme pathway are hosted by chassis organisms to carry out designer synthesis. In this perspective, we suggest that such an effort should not be limited by solely exploiting living cells and enzyme evolution and describe some useful yet less intensive complementary approaches that may prove especially productive in this grand scheme. By decoupling reactions from the environment of a living cell, a significantly larger portion of potential synthetic chemical space becomes available for exploration; most of this area is currently unavailable to cell-based approaches due to toxicity issues. In contrast, in a cell-free reaction a variety of classical enzymatic approaches can be exploited to improve performance and explore and understand a given enzyme's substrate specificity and catalytic profile towards non-natural substrates. We expect these studies will reveal unique enzymatic capabilities that are not accessible in living cells.
Collapse
Affiliation(s)
- Shelby L Hooe
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory Washington DC 20375 USA
- National Research Council Washington DC 20001 USA
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory Washington DC 20375 USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory Washington DC 20375 USA
| |
Collapse
|
6
|
Li N, Zong MH. (Chemo)biocatalytic Upgrading of Biobased Furanic Platforms to Chemicals, Fuels, and Materials: A Comprehensive Review. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
7
|
Ni D, Chen Z, Tian Y, Xu W, Zhang W, Kim BG, Mu W. Comprehensive utilization of sucrose resources via chemical and biotechnological processes: A review. Biotechnol Adv 2022; 60:107990. [PMID: 35640819 DOI: 10.1016/j.biotechadv.2022.107990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Sucrose, one of the most widespread disaccharides in nature, has been available in daily human life for many centuries. As an abundant and cheap sweetener, sucrose plays an essential role in our diet and the food industry. However, it has been determined that many diseases, such as obesity, diabetes, hyperlipidemia, etc., directly relate to the overconsumption of sucrose. It arouses many explorations for the conversion of sucrose to high-value chemicals. Production of valuable substances from sucrose by chemical methods has been studied since a half-century ago. Compared to chemical processes, biotechnological conversion approaches of sucrose are more environmentally friendly. Many enzymes can use sucrose as the substrate to generate functional sugars, especially those from GH68, GH70, GH13, and GH32 families. In this review, enzymatic catalysis and whole-cell fermentation of sucrose for the production of valuable chemicals were reviewed. The multienzyme cascade catalysis and metabolic engineering strategies were addressed.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Ma J, Yang X, Yao S, Guo Y, Sun R. Photocatalytic Biorefinery to Lactic Acid: A Carbon Nitride Framework with O Atoms Replacing the Graphitic N Linkers Shows Fast Migration/Separation of Charge. ChemCatChem 2022. [DOI: 10.1002/cctc.202200097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jiliang Ma
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University Dalian 116034 P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control College of Light Industrial and Food Engineering Guangxi University Nanning 530004 P. R. China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials Fuzhou Fujian 350108 P. R. China
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology Shandong Academy of Sciences Jinan 250353 P. R. China
| | - Xiaopan Yang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University Dalian 116034 P. R. China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control College of Light Industrial and Food Engineering Guangxi University Nanning 530004 P. R. China
| | - Yanzhu Guo
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University Dalian 116034 P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control College of Light Industrial and Food Engineering Guangxi University Nanning 530004 P. R. China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University Dalian 116034 P. R. China
| |
Collapse
|
9
|
Ito T, Masaki H, Fujita K, Murakami H, Shizuma M, Kiso T, Kiryu T. Identification of Enzymes from Pseudogluconobacter saccharoketogenes Producing d-Glucaric Acid from d-Glucose. Biosci Biotechnol Biochem 2021; 86:56-67. [PMID: 34669931 DOI: 10.1093/bbb/zbab182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/08/2021] [Indexed: 11/14/2022]
Abstract
In 2004, the US Department of Energy listed d-glucaric acid as one of the top 12 bio-based chemicals and a potential biopolymer building block. In this study, we show that Pseudogluconobacter saccharoketogenes strains can produce d-glucaric acid from d-glucose, although in low yield because of the generation of the byproduct 2-keto-d-gluconic acid in large quantities. To improve d-glucaric acid yield, we generated Rh47-3, a P. saccharoketogenes IFO14464 mutant, which produced d-glucaric acid from d-gluconic acid and d-glucose with 81 and 53 mol% yields, respectively. Furthermore, the key enzymes involved in d-glucaric acid production, alcohol dehydrogenase (Ps-ADH), aldehyde dehydrogenase (Ps-ALDH), and gluconate 2-dehydrogenase (Ps-GADH), were purified and their roles in d-glucaric acid synthesis were evaluated. Ps-ADH and Ps-ALDH catalyzed d-glucaric acid production, which was mediated by d-gluconic acid and d-glucuronic acid pathways. In contrast, Ps-GADH inhibited d-glucaric acid production by promoting the formation of 2-keto-d-gluconic acid from d-glucose.
Collapse
Affiliation(s)
- Tetsuya Ito
- ENSUIKO Sugar Refining Co., Ltd., Tokyo, Japan
| | | | - Koki Fujita
- ENSUIKO Sugar Refining Co., Ltd., Tokyo, Japan
| | - Hiromi Murakami
- Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| | - Motohiro Shizuma
- Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| | - Taro Kiso
- Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| | - Takaaki Kiryu
- Osaka Research Institute of Industrial Science and Technology, Osaka, Japan
| |
Collapse
|