1
|
Liang Q, Zhang S, Liu Z, Wang J, Yin H, Guan G, You C. Comparative genome-wide identification and characterization of SET domain-containing and JmjC domain-containing proteins in piroplasms. BMC Genomics 2024; 25:804. [PMID: 39187768 PMCID: PMC11346185 DOI: 10.1186/s12864-024-10731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND SET domain-containing histone lysine methyltransferases (HKMTs) and JmjC domain-containing histone demethylases (JHDMs) are essential for maintaining dynamic changes in histone methylation across parasite development and infection. However, information on the HKMTs and JHDMs in human pathogenic piroplasms, such as Babesia duncani and Babesia microti, and in veterinary important pathogens, including Babesia bigemina, Babesia bovis, Theileria annulata and Theileria parva, is limited. RESULTS A total of 38 putative KMTs and eight JHDMs were identified using a comparative genomics approach. Phylogenetic analysis revealed that the putative KMTs can be divided into eight subgroups, while the JHDMs belong to the JARID subfamily, except for BdJmjC1 (BdWA1_000016) and TpJmjC1 (Tp Muguga_02g00471) which cluster with JmjC domain only subfamily members. The motifs of SET and JmjC domains are highly conserved among piroplasm species. Interspecies collinearity analysis provided insight into the evolutionary duplication events of some SET domain and JmjC domain gene families. Moreover, relative gene expression analysis by RT‒qPCR demonstrated that the putative KMT and JHDM gene families were differentially expressed in different intraerythrocytic developmental stages of B. duncani, suggesting their role in Apicomplexa parasite development. CONCLUSIONS Our study provides a theoretical foundation and guidance for understanding the basic characteristics of several important piroplasm KMT and JHDM families and their biological roles in parasite differentiation.
Collapse
Affiliation(s)
- Qindong Liang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
| | - Shangdi Zhang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China
| | - Zeen Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, P. R. China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, P. R. China.
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu, 730046, P. R. China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, P. R. China.
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, P. R. China.
| |
Collapse
|
2
|
Wang Y, Zhang Q, Zhang W, Chen J, Dai J, Zhou X. A conserved protein of Babesia microti elicits partial protection against Babesia and Plasmodium infection. Parasit Vectors 2023; 16:306. [PMID: 37649042 PMCID: PMC10469411 DOI: 10.1186/s13071-023-05825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/28/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The protozoan parasite Babesia microti that causes the zoonotic disease babesiosis resides in the erythrocytes of its mammalian host during its life-cycle. No effective vaccines are currently available to prevent Babesia microti infections. METHODS We previously identified a highly seroactive antigen, named Bm8, as a B. microti conserved erythrocyte membrane-associated antigen, by high-throughput protein chip screening. Bioinformatic and phylogenetic analysis showed that this membrane-associated protein is conserved among apicomplexan hemoprotozoa, such as members of genera Babesia, Plasmodium and Theileria. We obtained the recombinant protein Bm8 (rBm8) by prokaryotic expression and purification. RESULTS Immunofluorescence assays confirmed that Bm8 and its Plasmodium homolog were principally localized in the cytoplasm of the parasite. rBm8 protein was specifically recognized by the sera of mice infected with B. microti or P. berghei. Also, mice immunized with Bm8 polypeptide had a decreased parasite burden after B. microti or P. berghei infection. CONCLUSIONS Passive immunization with Bm8 antisera could protect mice against B. microti or P. berghei infection to a certain extent. These results lead us to hypothesize that the B. microti conserved erythrocyte membrane-associated protein Bm8 could serve as a novel broad-spectrum parasite vaccine candidate since it elicits a protective immune response against Babesiosis and Plasmodium infection.
Collapse
Affiliation(s)
- Yao Wang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Qianqian Zhang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, No.199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Wanruo Zhang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Renai Road, Suzhou, 215123, People's Republic of China
| | - Junhu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China (NHC), World Health Organization (WHO) Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Jianfeng Dai
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, No.199 Renai Road, Suzhou, 215123, People's Republic of China.
| | - Xia Zhou
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Renai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
3
|
Wang Y, Zhang S, Li X, Nian Y, Liu X, Liu J, Yin H, Guan G, Wang J. A high-resolution melting approach for the simultaneous differentiation of five human babesiosis-causing Babesia species. Parasit Vectors 2023; 16:299. [PMID: 37641091 PMCID: PMC10463647 DOI: 10.1186/s13071-023-05839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/16/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Six species of apicomplexan parasites of the genus Babesia, namely B. microti, B. divergens, B. duncani, B. motasi, B. crassa-like and B. venatorum, are considered to be the primary causal agents of human babesiosis in endemic areas. These six species possess variable degrees of virulence for their primary hosts. Therefore, the accurate identification of these species is critical for the adoption of appropriate therapeutic strategies. METHODS We developed a real-time PCR-high-resolution melting (qPCR-HRM) approach targeting 18S ribosomal RNA gene of five Babesia spp. based on melting temperature (Tm) and genotype confidence percentage values. This approach was then evaluated using 429 blood samples collected from patients with a history of tick bites, 120 DNA samples mixed with plasmids and 80 laboratory-infected animal samples. RESULTS The sensitivity and specificity of the proposed qPCR-HRM method were 95% and 100%, respectively, and the detection limit was 1-100 copies of the plasmid with the cloned target gene. The detection level depended on the species of Babesia analyzed. The primers designed in this study ensured not only the high interspecific specificity of our proposed method but also a high versatility for different isolates from the same species worldwide. Additionally, the Tm obtained from the prepared plasmid standard is theoretically suitable for identifying isolates of all known sequences of the five Babesia species. CONCLUSIONS The developed detection method provides a useful tool for the epidemiological investigation of human babesiosis and pre-transfusion screening.
Collapse
Affiliation(s)
- Yanbo Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
- The Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Shangdi Zhang
- The Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaoyun Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
| | - Yueli Nian
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
- The Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xinyue Liu
- The Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Junlong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009 China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
| | - Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
| |
Collapse
|
4
|
Akash S, Hosen ME, Mahmood S, Supti SJ, Kumer A, Sultana S, Jannat S, Bayıl I, Nafidi HA, Jardan YAB, Mekonnen AB, Bourhia M. Anti-parasitic drug discovery against Babesia microti by natural compounds: an extensive computational drug design approach. Front Cell Infect Microbiol 2023; 13:1222913. [PMID: 37662005 PMCID: PMC10469490 DOI: 10.3389/fcimb.2023.1222913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 09/05/2023] Open
Abstract
Tick-borne Babesiosis is a parasitic infection caused by Babesia microti that can infect both animals and humans and may spread by tick, blood transfusions, and organ transplantation. The current therapeutic options for B. microti are limited, and drug resistance is a concern. This study proposes using computational drug design approaches to find and design an effective drug against B. microti. The study investigated the potentiality of nine natural compounds against the pathogenic human B. microti parasite and identified Vasicinone and Evodiamine as the most promising drugs. The ligand structures were optimized using density functional theory, molecular docking, molecular dynamics simulations, quantum mechanics such as HOMO-LUMO, drug-likeness and theoretical absorption, distribution, metabolism, excretion, and toxicity (ADMET), and pharmacokinetics characteristics performed. The results showed that Vasicinone (-8.6 kcal/mol and -7.8 kcal/mol) and Evodiamine (-8.7 kcal/mol and -8.5 kcal/mol) had the highest binding energy and anti-parasitic activity against B. microti lactate dehydrogenase and B. microti lactate dehydrogenase apo form. The strongest binding energy was reported by Vasicinone and Evodiamine; the compounds were evaluated through molecular dynamics simulation at 100 ns, and their stability when they form complexes with the targeted receptors was determined. Finally, the pkCSM web server is employed to predict the ADMET qualities of specific molecules, which can help prevent negative effects that arise from taking the treatment. The SwissADME web server is used to assess the Lipinski rule of five and drug-likeness properties including topological polar surface area and bioavailability. The Lipinski rule is used to estimate significant drug-likeness. The theoretical pharmacokinetics analysis and drug-likeness of the selected compounds are confirmed to be accepted by the Lipinski rule and have better ADMET features. Thus, to confirm their experimental value, these mentioned molecules should be suggested to carry out in wet lab, pre-clinical, and clinical levels.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International, University, Dhaka, Bangladesh
| | - Md. Eram Hosen
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Sajjat Mahmood
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Sumaiya Jahan Supti
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, European University of Bangladesh, Dhaka, Bangladesh
| | - Shamima Sultana
- Department of Pharmaceutical Sciences, School of Health and Life Sciences. North South University, Dhaka, Bangladesh
| | - Sultana Jannat
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Imren Bayıl
- Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Türkiye
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec, QC, Canada
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| |
Collapse
|
5
|
Huang L, Sun Y, Huo DD, Xu M, Xia LY, Yang N, Hong W, Huang L, Nie WM, Liao RH, Zhang MZ, Zhu DY, Li Y, Ma HC, Zhang X, Li YG, Huang XA, Wang JY, Cao WC, Wang FS, Jiang JF. Successful treatment with doxycycline monotherapy for human infection with Babesia venatorum (Babesiidae, Sporozoa) in China: a case report and proposal for a clinical regimen. Infect Dis Poverty 2023; 12:67. [PMID: 37443058 PMCID: PMC10339522 DOI: 10.1186/s40249-023-01111-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Human babesiosis is a worldwide disease caused by intraerythrocytic protozoa of the genus Babesia. It is transmitted by bites from ixodid ticks, and mechanically transmitted by blood transfusion. It is primarily treated with quinine and/or atovaquone, which are not readily available in China. In this study, we developed a novel treatment regimen involving doxycycline monotherapy in a patient with severe Babesia venatorum infection as an alternative therapeutic medication. The aim of our study is to provide a guidance for clinical practice treatment of human babesiosis. CASE PRESENTATION A 73-year-old man who had undergone splenectomy and blood transfusion 8 years prior, presented with an unexplained fever, headache, and thrombocytopenia, and was admitted to the Fifth Medical Center of the PLA General Hospital. He was diagnosed with B. venatorum infection by morphological review of thin peripheral blood smears, which was confirmed by multi-gene polymerase chain reaction (PCR), and sequencing of the entire 18s rRNA and partial β-tubulin encoding genes, as well as isolation by animal inoculation. The doxycycline monotherapy regimen (peros, 0.1 g bisindie) was administered following pharmacological guidance and an effective outcome was observed. The patient recovered rapidly following the doxycycline monotherapy. The protozoan load in peripheral blood samples decreased by 88% in hematocrit counts after 8 days, and negative PCR results were obtained after 90 days of follow-up at the hospital. The treatment lasted for 3 months without any side effects or sequelae. The nine-month follow-up survey of the patient did not reveal any signs of recrudescence or anti-babesial tolerance. CONCLUSIONS We have reported a clinical case of successful doxycycline monotherapy for human babesiosis caused by B. venatorum, which provides an optional medical intervention for human babesiosis.
Collapse
Affiliation(s)
- Lei Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Dan-Dan Huo
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Ming Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
- Inner Mongolia Medical University, Hohhot, 010059, People's Republic of China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
- School of Public Health, Shandong University, Jinan, 250100, People's Republic of China
| | - Ning Yang
- The Center for Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Wei Hong
- The Center for Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Lin Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Wei-Min Nie
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Ru-He Liao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, People's Republic of China
| | - Ming-Zhu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Yan Li
- The Center for Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - He-Cheng Ma
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Xin Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Yong-Gang Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Xin-An Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, People's Republic of China
| | - Jing-Yuan Wang
- School of Public Health, Shandong University, Jinan, 250100, People's Republic of China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China.
- School of Public Health, Shandong University, Jinan, 250100, People's Republic of China.
| | - Fu-Sheng Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China.
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China.
| |
Collapse
|
6
|
Corduneanu A, Taulescu M, Ursache TD, Ionică AM, Mihalca AD. Piroplasms in farmed American bison, Bison bison from Romania. Front Vet Sci 2023; 10:1158072. [PMID: 37065243 PMCID: PMC10090506 DOI: 10.3389/fvets.2023.1158072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
The American bison (Bison bison) is the largest terrestrial mammal of North America, with around 350,000 individuals in the wild and in private herds but the knowledge regarding the presence of different vector-borne pathigens in these mammals is very poor. Babesia and Theileria spp. are tick-borne apicomplexan parasites which are considered to be among the most commonly found blood parasites of large ruminants, often with a high economic importance. However, the knowledge on piroplasms of bisons is extremely scarce. The aim of our study was to evaluate the presence of apicomplexan parasites in blood and tissues of farmed American bison from Romania. Overall, we tested 222 blood samples and 11 tissues samples (heart, liver, and spleen) from farmed B. bison raised for meat in Romania. All the samples were analyzed by nPCR targeting the 18SrRNA gene for piroplasmids. All positive samples were sequenced and analyzed phylogenetically. The overall prevalence of infection with piroplasmids in American bison was 1.65%, with Babesia divergens and Theileria sp. identified following sequencing. To our knowledge, this is the first report of piroplasms detected in blood and tissues of farmed B. bison from Europe. Further studies are necessary in order to obtain a better overview on the epidemiological status and clinical relevance of piroplasms in farmed American bisons.
Collapse
Affiliation(s)
- Alexandra Corduneanu
- Department of Animal Breeding and Animal Productions, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- *Correspondence: Alexandra Corduneanu
| | - Marian Taulescu
- Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Synevovet, Bucharest, Romania
| | - Teodor Dan Ursache
- Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Angela Monica Ionică
- Molecular Diagnosis Laboratory, Clinical Hospital of Infectious Diseases of Cluj-Napoca, Cluj-Napoca, Romania
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Parasitology Consultancy Group, Coruşu, Romania
| |
Collapse
|
7
|
Lin H, Zhao S, Ye Y, Shao L, Jiang N, Yang K. A Fluorescent Recombinase Aided Amplification Assay for Detection of Babesia microti. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:201-205. [PMID: 35772739 PMCID: PMC9256288 DOI: 10.3347/kjp.2022.60.3.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
Abstract
Babesia microti is one of the most common causative agents of babesiosis. A sensitive and rapid detection is necessary for screening potentially infected individuals. In this study, B. microti cytochrome c oxidase subunit I (cox1) was selected as the target gene, multiple primers were designed, and optimized by a recombinase-aided amplification (RAA) assay. The optimal primers and probe were labeled with fluorescein. The sensitivity of fluorescent RAA (fRAA) was evaluated using gradient diluents of the cox1 recombinant plasmid and genomic DNA extracted from whole blood of B. microti infected mice. The specificity of fRAA was assessed by other transfusion transmitted parasites. The analytical sensitivity of the fRAA assay was 10 copies of recombinant plasmid per reaction and 10 fg/μl B. microti genomic DNA. No cross-reaction with any other blood-transmitted parasites was observed. Our results demonstrated that the fRAA assay would be rapid, sensitive, and specific for the detection of B. microti.
Collapse
Affiliation(s)
| | - Song Zhao
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064,
PR China
| | - Yuying Ye
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064,
PR China
| | - Lei Shao
- Jiangsu Province Blood Center, Nanjing 210042,
PR China
| | - Nizhen Jiang
- Jiangsu Province Blood Center, Nanjing 210042,
PR China
| | - Kun Yang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064,
PR China
- Corresponding authors (, )
| |
Collapse
|
8
|
Lin H, Zhao S, Liu Y, Shao L, Ye Y, Jiang N, Yang K. Rapid Visual Detection of Plasmodium Using Recombinase-Aided Amplification With Lateral Flow Dipstick Assay. Front Cell Infect Microbiol 2022; 12:922146. [PMID: 35811679 PMCID: PMC9263184 DOI: 10.3389/fcimb.2022.922146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Malaria is a global public health problem. China has had no case of indigenous malaria since 2016. However, imported cases of malaria remain an issue among travelers, overseas workers, and foreign traders. Although these cases are always asymptomatic, if they donate blood, there is a great risk of transfusion transmitted-malaria (TTM). Therefore, blood banks need a rapid screening tool to detect Plasmodium species. Methods We designed an assay using recombinase-aided amplification (RAA) and a lateral-flow dipstick (LFD) (RAA-LFD) to detect the 18S ribosomal RNA gene of Plasmodium species. Sensitivity was evaluated using a recombinant plasmid and Plasmodium genomic DNA. Specificity was evaluated using DNA extracted from the blood of patients with malaria or other infectious parasites. For clinical assessment, blood samples from patients with malaria and blood donors were evaluated. Results The RAA-LFD assay was performed in an incubator block at 37°C for 15 min, and the amplicons were visible to the naked eye on the flow dipsticks within 3 min. The sensitivity was 1 copy/μL of recombinant plasmid. For genomic DNA from whole blood of malaria patients infected with P. falciparum, P. vivax, P. ovale, and P. malariae, the sensitivity was 0.1 pg/μL, 10 pg/μL, 10-100 pg/μL, and 100pg/μL, respectively. The sensitivity of this assay was 100pg/μL. No cross-reaction with other transfusion-transmissible parasites was detected. Conclusions The results demonstrated that this RAA-LFD assay was suitable for reliable field detection of Plasmodium species in low-resource settings with limited laboratory capabilities.
Collapse
Affiliation(s)
- Hong Lin
- Jiangsu Province Blood Center, Nanjing, China
- *Correspondence: Hong Lin, ; Kun Yang,
| | - Song Zhao
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yanhong Liu
- Jiangsu Qitian Gene Technology Co., Ltd., Wuxi, China
| | - Lei Shao
- Jiangsu Province Blood Center, Nanjing, China
| | - Yuying Ye
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | | | - Kun Yang
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- *Correspondence: Hong Lin, ; Kun Yang,
| |
Collapse
|
9
|
Godbole R, Gaur A, Nayar P, Kiruthiga KG, D’Costa P, Manchanda R, Khilari A, Shanmugam D, Muglikar KD, Kundu K. Case Report: A Fatal Case of Babesiosis in a Splenectomized Male Patient from Western India. Am J Trop Med Hyg 2022; 106:tpmd201118. [PMID: 35189595 PMCID: PMC9128672 DOI: 10.4269/ajtmh.20-1118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/30/2021] [Indexed: 11/07/2022] Open
Abstract
Human babesiosis is a rare disease, caused by Babesia species and commonly transmitted by tick bite. Although human babesiosis is known to be asymptomatic in immunocompetent hosts, clinical cases of severe babesiosis have been reported from splenectomized or immunocompromised individuals. To our knowledge, only one case of human babesiosis in India has been previously reported. Here, we report a case of severe babesiosis with high parasitemia (∼70%) in a 30-year-old asplenic farmer. The patient presented with fever, yellowish discoloration of skin, oliguria, and anemia; he eventually developed multiorgan failure syndrome and died. Peripheral blood films were prepared and used to confirm the presence of piroplasms by microscopy. Total DNA isolated from blood was used for 18S ribosomal RNA gene fragment amplification by polymerase chain reaction, which was subject to Sanger sequencing. Although 18S sequence indicated that the Babesia species infecting the patient was similar to that of other Babesia species originating from wild mammals, species identification could not be done. Phylogenetic analysis revealed that the patient-derived pathogen is distinct because it forms a separate clade in the cladogram.
Collapse
Affiliation(s)
- Ravi Godbole
- Department of Pathology, King Edward Memorial Hospital, Pune, India
| | - Avantika Gaur
- Department of Pathology, King Edward Memorial Hospital, Pune, India
| | - Priyanka Nayar
- Department of Pathology, King Edward Memorial Hospital, Pune, India
| | | | - Pradeep D’Costa
- Department of Pathology, King Edward Memorial Hospital, Pune, India
| | - Rumma Manchanda
- Department of Pathology, King Edward Memorial Hospital, Pune, India
| | - Ajinkya Khilari
- Biochemical Sciences Division, National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dhanasekaran Shanmugam
- Biochemical Sciences Division, National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Krishnendu Kundu
- Department of Veterinary Parasitology, Faculty of Veterinary and Animal Science, Rajiv Gandhi South Campus, Banaras Hindu University, Barkachha, Mirzapur, India
| |
Collapse
|
10
|
Hussain S, Hussain A, Aziz MU, Song B, Zeb J, George D, Li J, Sparagano O. A Review of Zoonotic Babesiosis as an Emerging Public Health Threat in Asia. Pathogens 2021; 11:pathogens11010023. [PMID: 35055971 PMCID: PMC8779675 DOI: 10.3390/pathogens11010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
Zoonotic babesiosis poses a serious health risk in many parts of the world. Its emergence in Asia is thus a cause for significant concern, demanding that appropriate control measures are implemented to suppress its spread in this region. This study focuses on zoonotic Babesia species reported in Asia, offering an extensive review of those species reported in animals and humans. We reported 11 studies finding zoonotic Babesia species in animals and 16 in humans. In China, the most prevalent species was found to be Babesia microti, reported in both humans (n = 10) and wild and domesticated animals (n = 4). In Korea, only two studies reported human babesiosis, with a further two studies reporting Babesia microti in wild animals. Babesia microti was also reported in wild animal populations in Thailand and Japan, with evidence of human case reports also found in Singapore, Mongolia and India. This is the first review to report zoonotic babesiosis in humans and animals in Asia, highlighting concerns for future public health in this region. Further investigations of zoonotic species of Babesia in animal populations are required to confirm the actual zoonotic threat of babesiosis in Asia, as well as its possible transmission routes.
Collapse
Affiliation(s)
- Sabir Hussain
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
- Correspondence: (S.H.); (O.S.)
| | - Abrar Hussain
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore 54600, Pakistan;
| | - Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
| | - Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
| | - David George
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China; (M.U.A.); (B.S.); (J.Z.); (J.L.)
- Correspondence: (S.H.); (O.S.)
| |
Collapse
|
11
|
Albertyńska M, Okła H, Jasik K, Urbańska-Jasik D, Pol P. Interactions between Babesia microti merozoites and rat kidney cells in a short-term in vitro culture and animal model. Sci Rep 2021; 11:23663. [PMID: 34880327 PMCID: PMC8654915 DOI: 10.1038/s41598-021-03079-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/22/2021] [Indexed: 11/08/2022] Open
Abstract
Babesiosis is one of the most common infections in free-living animals and is rapidly becoming significant among human zoonoses. Cases of acute renal failure in humans caused by Babesia spp. have been described in the literature. The kidneys are characterised by intense blood flow through the blood vessels, which increases the likelihood of contact with the intra-erythrocyte parasite. The aim of this study was to observe the influence of B. microti (ATCC 30221) on renal epithelial cells in vitro cultured (NRK-52E line) and Wistar rats' kidney. Both NRK-52E cells and rats' kidney sections were analysed by light microscopy, transmission electron microscopy (TEM) and fluorescence in situ hybridization (FISH). Necrotic changes in renal epithelial cells have been observed in vitro and in vivo. In many cross-sections through the rats' kidney, adhesion of blood cells to the vascular endothelium, accumulation of erythrocytes and emboli were demonstrated. In NRK-52E culture, elements with a distinctly doubled cell membrane resembling B. microti were found inside the cytoplasm and adjacent to the cell layer. The study indicates a chemotactic tendency for B. microti to adhere to the renal tubules' epithelium, a possibility of piroplasms entering the renal epithelial cells, their proliferation within the cytoplasm and emboli formation.
Collapse
Affiliation(s)
- Marta Albertyńska
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200, Sosnowiec, Poland
- Provincial Sanitary and Epidemiological Station in Katowice, Raciborska 39, 40-074, Katowice, Poland
| | - Hubert Okła
- Provincial Sanitary and Epidemiological Station in Katowice, Raciborska 39, 40-074, Katowice, Poland.
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland.
| | - Krzysztof Jasik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200, Sosnowiec, Poland.
| | - Danuta Urbańska-Jasik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Przemysław Pol
- Department of Small Livestock Breeding, The National Research Institute of Animal in Kraków, Krakowska 1, 32-083, Balice, Poland
| |
Collapse
|
12
|
Meredith S, Oakley M, Kumar S. Technologies for Detection of Babesia microti: Advances and Challenges. Pathogens 2021; 10:pathogens10121563. [PMID: 34959518 PMCID: PMC8703551 DOI: 10.3390/pathogens10121563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
The biology of intraerythrocytic Babesia parasites presents unique challenges for the diagnosis of human babesiosis. Antibody-based assays are highly sensitive but fail to detect early stage Babesia infections prior to seroconversion (window period) and cannot distinguish between an active infection and a previously resolved infection. On the other hand, nucleic acid-based tests (NAT) may lack the sensitivity to detect window cases when parasite burden is below detection limits and asymptomatic low-grade infections. Recent technological advances have improved the sensitivity, specificity and high throughput of NAT and the antibody-based detection of Babesia. Some of these advances include genomics approaches for the identification of novel high-copy-number targets for NAT and immunodominant antigens for superior antigen and antibody-based assays for Babesia. Future advances would also rely on next generation sequencing and CRISPR technology to improve Babesia detection. This review article will discuss the historical perspective and current status of technologies for the detection of Babesia microti, the most common Babesia species causing human babesiosis in the United States, and their implications for early diagnosis of acute babesiosis, blood safety and surveillance studies to monitor areas of expansion and emergence and spread of Babesia species and their genetic variants in the United States and globally.
Collapse
|
13
|
The Global Emergence of Human Babesiosis. Pathogens 2021; 10:pathogens10111447. [PMID: 34832603 PMCID: PMC8623124 DOI: 10.3390/pathogens10111447] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/05/2022] Open
Abstract
Babesiosis is an emerging tick-borne disease caused by intraerythrocytic protozoa that are primarily transmitted by hard-bodied (ixodid) ticks and rarely through blood transfusion, perinatally, and organ transplantation. More than 100 Babesia species infect a wide spectrum of wild and domestic animals worldwide and six have been identified as human pathogens. Babesia microti is the predominant species that infects humans, is found throughout the world, and causes endemic disease in the United States and China. Babesia venatorum and Babesia crassa-like agent also cause endemic disease in China. Babesia divergens is the predominant species in Europe where fulminant cases have been reported sporadically. The number of B. microti infections has been increasing globally in recent decades. In the United States, more than 2000 cases are reported each year, although the actual number is thought to be much higher. In this review of the epidemiology of human babesiosis, we discuss epidemiologic tools used to monitor disease location and frequency; demographics and modes of transmission; the location of human babesiosis; the causative Babesia species in the Americas, Europe, Asia, Africa, and Australia; the primary clinical characteristics associated with each of these infections; and the increasing global health burden of this disease.
Collapse
|
14
|
Puri A, Bajpai S, Meredith S, Aravind L, Krause PJ, Kumar S. Babesia microti: Pathogen Genomics, Genetic Variability, Immunodominant Antigens, and Pathogenesis. Front Microbiol 2021; 12:697669. [PMID: 34539601 PMCID: PMC8446681 DOI: 10.3389/fmicb.2021.697669] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
More than 100 Babesia spp. tick-borne parasites are known to infect mammalian and avian hosts. Babesia belong to Order Piroplasmid ranked in the Phylum Apicomplexa. Recent phylogenetic studies have revealed that of the three genera that constitute Piroplasmida, Babesia and Theileria are polyphyletic while Cytauxzoon is nested within a clade of Theileria. Several Babesia spp. and sub-types have been found to cause human disease. Babesia microti, the most common species that infects humans, is endemic in the Northeastern and upper Midwestern United States and is sporadically reported elsewhere in the world. Most infections are transmitted by Ixodid (hard-bodied) ticks, although they occasionally can be spread through blood transfusion and rarely via perinatal transmission and organ transplantation. Babesiosis most often presents as a mild to moderate disease, however infection severity ranges from asymptomatic to lethal. Diagnosis is usually confirmed by blood smear or polymerase chain reaction (PCR). Treatment consists of atovaquone and azithromycin or clindamycin and quinine and usually is effective but may be problematic in immunocompromised hosts. There is no human Babesia vaccine. B. microti genomics studies have only recently been initiated, however they already have yielded important new insights regarding the pathogen, population structure, and pathogenesis. Continued genomic research holds great promise for improving the diagnosis, management, and prevention of human babesiosis, and in particular, the identification of lineage-specific families of cell-surface proteins with potential roles in cytoadherence, immune evasion and pathogenesis.
Collapse
Affiliation(s)
- Ankit Puri
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Surabhi Bajpai
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, India
| | - Scott Meredith
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Peter J Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health and Yale School of Medicine, New Haven, CT, United States
| | - Sanjai Kumar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
15
|
Bloch EM, Krause PJ, Tonnetti L. Preventing Transfusion-Transmitted Babesiosis. Pathogens 2021; 10:pathogens10091176. [PMID: 34578209 PMCID: PMC8468711 DOI: 10.3390/pathogens10091176] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Babesia are tick-borne intra-erythrocytic parasites and the causative agents of babesiosis. Babesia, which are readily transfusion transmissible, gained recognition as a major risk to the blood supply, particularly in the United States (US), where Babesia microti is endemic. Many of those infected with Babesia remain asymptomatic and parasitemia may persist for months or even years following infection, such that seemingly healthy blood donors are unaware of their infection. By contrast, transfusion recipients are at high risk of severe babesiosis, accounting for the high morbidity and mortality (~19%) observed in transfusion-transmitted babesiosis (TTB). An increase in cases of tick-borne babesiosis and TTB prompted over a decade-long investment in blood donor surveillance, research, and assay development to quantify and contend with TTB. This culminated in the adoption of regional blood donor testing in the US. We describe the evolution of the response to TTB in the US and offer some insight into the risk of TTB in other countries. Not only has this response advanced blood safety, it has accelerated the development of novel serological and molecular assays that may be applied broadly, affording insight into the global epidemiology and immunopathogenesis of human babesiosis.
Collapse
Affiliation(s)
- Evan M. Bloch
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA
- Correspondence: ; Tel.: +1-410-614-4246
| | - Peter J. Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA;
| | - Laura Tonnetti
- Scientific Affairs, American Red Cross, Holland Laboratories, Rockville, MD 21287, USA;
| |
Collapse
|
16
|
Hildebrandt A, Zintl A, Montero E, Hunfeld KP, Gray J. Human Babesiosis in Europe. Pathogens 2021; 10:1165. [PMID: 34578196 PMCID: PMC8468516 DOI: 10.3390/pathogens10091165] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Babesiosis is attracting increasing attention as a worldwide emerging zoonosis. The first case of human babesiosis in Europe was described in the late 1950s and since then more than 60 cases have been reported in Europe. While the disease is relatively rare in Europe, it is significant because the majority of cases present as life-threatening fulminant infections, mainly in immunocompromised patients. Although appearing clinically similar to human babesiosis elsewhere, particularly in the USA, most European forms of the disease are distinct entities, especially concerning epidemiology, human susceptibility to infection and clinical management. This paper describes the history of the disease and reviews all published cases that have occurred in Europe with regard to the identity and genetic characteristics of the etiological agents, pathogenesis, aspects of epidemiology including the eco-epidemiology of the vectors, the clinical courses of infection, diagnostic tools and clinical management and treatment.
Collapse
Affiliation(s)
- Anke Hildebrandt
- St. Vincenz Hospital Datteln, Department of Internal Medicine I, 45711 Datteln, Germany;
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany
| | - Annetta Zintl
- UCD School of Veterinary Sciences, University College Dublin, D04 W6F6 Dublin, Ireland;
| | - Estrella Montero
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Klaus-Peter Hunfeld
- Institute of Laboratory Medicine, Microbiology & Infection Control, Northwest Medical Center, Medical Faculty Goethe University Frankfurt, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany;
- Society for Promoting Quality Assurance in Medical Laboratories (INSTAND, e.v.), Ubierstraße 20, 40223 Düsseldorf, Germany
- ESGBOR Study Group of the European Society for Clinical Microbiology & Infectious Diseases (ESCMID), ESCMID Executive Office, P.O. Box 214, 4010 Basel, Switzerland
| | - Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, D04 N2E5 Dublin, Ireland
| |
Collapse
|
17
|
Dwużnik-Szarek D, Mierzejewska EJ, Alsarraf M, Alsarraf M, Bajer A. Pathogens detected in the tick Haemaphysalis concinna in Western Poland: known and unknown threats. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:769-783. [PMID: 34379235 PMCID: PMC8367898 DOI: 10.1007/s10493-021-00647-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/22/2021] [Indexed: 05/14/2023]
Abstract
In recent years, a new focus of the relict tick Haemaphysalis concinna was discovered in Western Poland, near Wolsztyn, Greater Poland voivodeship. This species may play an important role in the circulation of pathogens of medical and veterinary importance. In the present study we tested 880 juvenile ticks collected from rodents, including 427 H. concinna, 443 Ixodes ricinus and 10 Dermacentor reticulatus for three of the most common pathogens vectored by ticks in Poland: Rickettsia and Babesia spp. and Borrelia burgdorferi s.l. Additionally, molecular techniques were applied for accurate identification of tick host species (the voles Microtus and Alexandromys). Our study found differences in the range and prevalence of vectored pathogens between the three tick species. DNA of all three pathogens was found in I. ricinus. In juvenile H. concinna, DNA of Babesia microti, Borrelia afzelii and Rickettsia sp. was identified. Moreover, DNA of a new unnamed Babesia species related to B. crassa, was found in two H. concinna nymphs. This genotype of Babesia was previously identified in H. concinna in the Far East and then in Central Europe. DNA of Rickettsia raoulti and B. afzelii was detected in D. reticulatus nymphs. Among rodent hosts, Alexandromys oeconomus seems to be host of the highest significance for juvenile tick stages and was the only host species with B. afzelii detected in blood samples. Using phylogenetic methods, we confirmed a clear division between rodents from the genera Microtus and Alexandromys. Moreover, we found that A. oeconomus trapped in Western Poland clustered with a Central European A. oeconomus allopatric phylogroup.
Collapse
Affiliation(s)
- Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Ewa Julia Mierzejewska
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Mohammed Alsarraf
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Mustafa Alsarraf
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| |
Collapse
|
18
|
Emerging Human Babesiosis with "Ground Zero" in North America. Microorganisms 2021; 9:microorganisms9020440. [PMID: 33672522 PMCID: PMC7923768 DOI: 10.3390/microorganisms9020440] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The first case of human babesiosis was reported in the literature in 1957. The clinical disease has sporadically occurred as rare case reports in North America and Europe in the subsequent decades. Since the new millennium, especially in the last decade, many more cases have apparently appeared not only in these regions but also in Asia, South America, and Africa. More than 20,000 cases of human babesiosis have been reported in North America alone. In several cross-sectional surveys, exposure to Babesia spp. has been demonstrated within urban and rural human populations with clinical babesiosis reported in both immunocompromised and immunocompetent humans. This review serves to highlight the widespread distribution of these tick-borne pathogens in humans, their tick vectors in readily accessible environments such as parks and recreational areas, and their phylogenetic relationships.
Collapse
|
19
|
Torianyk II, Tymchenko OM, Ostapets MO, Chygyrynska NA, Pokhyl SI, Kostyria IA, Sorokina IV. Use of polymerase chain reaction in verification and differential diagnosis of babesiosis pathogens. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Today, Babesia is recognized as one of the most common blood parasites in the world, which in terms of the number of cases of invasion is second only to trypanosomes (the causative agent of African trypanosomiasis and Chagas’ disease). These microorganisms can cause parasitism in erythrocytes and hematopoietic organs. They cause an infectious process, the clinical course of which can vary from asymptomatic, subclinical, mild or moderate influenza-like forms – to severe progressive disease (fulminant form) with fatal outcome. Thus, the latter determines the significant burden of babesia for the leading branches of medicine, veterinary medicine and the economy as a whole. The presented work is devoted to the study of the prospects for verification of babesiosis causative agents by the polymerase chain reaction (PCR) method. Blood, erythrocyte suspension, homogenized tick-carriers of babesiosis, culture of Babesia spp. were used as research material (samples). In order to obtain an objective assessment, the PCR-diagnostics method was used in two formats – standard and multiplex (multi-primer). Multiple PCR testing of multiplex format using primers in model samples containing cells of different species of Babesia (B. microti, B. divergens, B. bovis, B. canis), allowed us to establish the level of reproducibility of the results of such studies, which ranged 94.6–96.4%, to determine the level of PCR sensitivity of the multiplex format for detection/identification of human pathogenic babesia (B. microti, B. divergens and B. venatorum). It is established that the advantages of the PCR-diagnostic method of babesiosis pathogens in the samples of the studied biomaterial were: speed of research (2–4 hours); high sensitivity, specificity, reproducibility of Babesia detection results, prospects of species identification, differentiation with apicomplex spores (Plasmodium falciparum, Toxoplasma). In view of the above, the PCR method is recommended for use in cases of persistent suspicion of babesiosis infection (in cases of negative results of microscopic/cytological studies, to identify asymptomatic, subclinical and chronic forms of babesiosis, verification of active invasion in seropositive individuals and for Babesia species and their differentiation).
Collapse
|
20
|
Xanthohumol and Gossypol Are Promising Inhibitors against Babesia microti by In Vitro Culture via High-Throughput Screening of 133 Natural Products. Vaccines (Basel) 2020; 8:vaccines8040613. [PMID: 33081295 PMCID: PMC7711813 DOI: 10.3390/vaccines8040613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023] Open
Abstract
Human babesiosis caused by Babesia microti is an emerging threat for severe illness and even death, with an increasing impact worldwide. Currently, the regimen of atovaquone and azithromycin is considered as the standard therapy for treating human babesiosis, which, however, may result in drug resistance and relapse, suggesting the necessity of developing new drugs to control B. microti. In this regard, natural products are promising candidates for drug design against B. microti due to their active therapeutic efficacy, lower toxicity, and fewer adverse reactions to host. Here, the potential inhibitors against B. microti were preliminarily screened from 133 natural products, and 47 of them were selected for further screening. Gossypol (Gp) and xanthohumol (Xn) were finally shown to effectively inhibit the growth of B. microti with IC50 values of 8.47 μm and 21.40 μm, respectively. The cytotoxicity results showed that Gp and Xn were non-toxic to erythrocytes at a concentration below 100 μm. Furthermore, both of them were confirmed to be non-toxic to different types of cells in previous studies. Our findings suggest the potential of Gp and Xn as effective drugs against B. microti infection.
Collapse
|
21
|
Jaijyan DK, Govindasamy K, Singh J, Bhattacharya S, Singh AP. Establishment of a stable transfection method in Babesia microti and identification of a novel bidirectional promoter of Babesia microti. Sci Rep 2020; 10:15614. [PMID: 32973208 PMCID: PMC7515924 DOI: 10.1038/s41598-020-72489-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
Babesia microti, an emerging human pathogen, is primarily transmitted through a bite of an infected tick and blood transfusions in human. Stable transfection technique has been reported in many protozoan parasites over the past few years. However, in vivo transient and stable transfection method has not been established for Babesia microti. Here, for the first time, we present a method of transient as well as stable transfection of the Babesia microti (B. microti) in the in vivo conditions. We have identified a novel promoter of B. microti. We also demonstrated that Plasmodium berghei DHFR promoter is recognized and functional in B. microti. We show that BM-CTQ41297 promoter control the expression of two genes, which are present on either side and thus represents a bi-functional promoter in B. microti. The predicted promoter activity values using Promoter 2.0 program is higher for BM- CTQ41297 promoter than strong promoters such as β-actin, ef-1β, and many other promoters. Furthermore, we discovered a non-essential locus for the genetic manipulation of the parasite, allowing us to stably integrate foreign genes; GFP, mCherry, into the B. microti. The transfection using an electroporation method and genetic manipulation of B. microti is now achievable and it is possible to obtain transfected viable parasites under in vivo growing conditions. The growth curve analysis of transfected and WT B. microti are similar indicating no defects in the transgenic parasites. This study will enable other researchers in understanding the B. microti biology, host modulation and diverse parasite developmental stages using reverse genetics and holds great potential to identify novel drug targets and vaccine development.
Collapse
Affiliation(s)
- Dabbu Kumar Jaijyan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 10067, India
| | | | - Jyoti Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 10067, India
| | - Shreya Bhattacharya
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 10067, India
| | - Agam Prasad Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 10067, India.
| |
Collapse
|
22
|
Chen M, Liu Q, Xue J, Chen S, Huang D, Yu Y, Cai Y, Lu Y, Song P, Zhang R, Ai L, Chen J. Spreading of Human Babesiosis in China: Current Epidemiological Status and Future Challenges. China CDC Wkly 2020; 2:634-637. [PMID: 34594726 PMCID: PMC8392958 DOI: 10.46234/ccdcw2020.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/07/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Muxin Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China.,Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qin Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Jingbo Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Shaohong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Dana Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yingfang Yu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Yuchun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Yan Lu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Renli Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lin Ai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Jiaxu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; Key Laboratory of Parasite and Vector Biology, Ministry of Health; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; WHO Collaborating Center for Tropical Diseases, Shanghai, China
| |
Collapse
|
23
|
Wang H, Wang Y, Huang J, Xu B, Chen J, Dai J, Zhou X. Babesia microti Protein BmSP44 Is a Novel Protective Antigen in a Mouse Model of Babesiosis. Front Immunol 2020; 11:1437. [PMID: 32733477 PMCID: PMC7358449 DOI: 10.3389/fimmu.2020.01437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/03/2020] [Indexed: 11/13/2022] Open
Abstract
Babesiosis caused by Babesia species imposes an increasing threat to public-health and so far, there is no effective vaccine to prevent Babesia infections. Babesia surface antigen may participate in the invasion of erythrocytes. In our previous study, a surface antigen of B. microti merozoites, named as BmSP44 was identified as a dominant reactive antigen by protein microarray screening. To evaluate its potential applications in diagnosis and prevention of Babesiosis, the open reading frame encoding BmSP44 was cloned and the recombinant protein was expressed. In consistent with the protein microarray result, recombinant BmSP44 (rBmSP44) can be recognized by sera from B. microti infected mice. Immunofluorescence assays (IFA) confirmed that BmSP44 is a secreted protein and localized principally in the cytoplasm of the parasites. The parasitemia and Babesia gene copies were lower in mice administered rBmSP44 antisera compared with normal controls. Active immunization with rBmSP44 also afforded protection against B. microti infection. The concentrations of hemoglobin in rBmSP44 immunization group were higher than those in the control group. Importantly, vaccination of mice with rBmSP44 resulted in a Th1/Th2 mixed immune response with significantly elevated IL-10 and IFN-γ levels during the early stage of infection. Taken together, our results indicated that rBmSP44 can induce a protective immune response against Babesia infection. Thus, BmSP44 can be used as both a diagnosis marker and a vaccine candidate.
Collapse
Affiliation(s)
- Hui Wang
- School of Biology and Medical Science, Soochow University Medical College, Suzhou, China
| | - Yao Wang
- School of Biology and Medical Science, Soochow University Medical College, Suzhou, China
| | - Jilei Huang
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, China
| | - Bin Xu
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, China
| | - Junhu Chen
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, China
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xia Zhou
- School of Biology and Medical Science, Soochow University Medical College, Suzhou, China
| |
Collapse
|
24
|
Li LH, Wang JZ, Zhu D, Li XS, Lu Y, Yin SQ, Li SG, Zhang Y, Zhou XN. Detection of novel piroplasmid species and Babesia microti and Theileria orientalis genotypes in hard ticks from Tengchong County, Southwest China. Parasitol Res 2020; 119:1259-1269. [PMID: 32060726 DOI: 10.1007/s00436-020-06622-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 02/05/2020] [Indexed: 01/24/2023]
Abstract
To reveal the genetic diversity of Babesia microti and Theileria orientalis in Southwest China, we conducted a molecular survey of piroplasms in hard ticks in a China-Myanmar border county. Host infesting and questing ticks were collected from Tengchong County in 2013 and 2014. Piroplasm infection in ticks was detected by PCR, and then, phylogenetic analysis was conducted to study the genetic diversity of the pathogens identified in ticks. All in all, six piroplasm species comprising of B. microti; B. orientalis; a novel Babesia species designated Babesia sp. Tengchong, China; T. orientalis; T. luwenshuni; and an as yet undescribed piroplasmid species referred to as Piroplasmid sp. Tengchong, China, have been identified after screening goat- and cattle-attached ticks. In addition, B. bigemina has been identified by screening questing ticks. Phylogenetic analysis based on the 18S rRNA and partial β-tubulin gene revealed two novel potentially zoonotic genotypes designated B. microti Tengchong-Type A and B. The T. orientalis genotypes identified in the present study represent the seven known genotypes 1-5, 7, and N3 as revealed by phylogenetic analysis of 18S rRNA and MPSP genes. Importantly, an additional genotype designated N4 has also been identified in this study, which brings the number of recognized T. orientalis genotypes to a total of twelve. Thus, besides the two novel species, Babesia sp. Tengchong, China, closely related to Babesia species isolated from yak and Piroplasmid sp. Tengchong, China, our study demonstrates that additional novel B. microti and T. orientalis genotypes exist in Southwest China.
Collapse
Affiliation(s)
- Lan-Hua Li
- Health Shandong Collaborative Innovation Center for Major Social Risk Prediction and Management, School of Public Health and Management, Weifang Medical University, Weifang, 261053, People's Republic of China.,Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Shanghai, 200025, People's Republic of China
| | - Jia-Zhi Wang
- Tengchong Center for Disease Control and Prevention, Tengchong, 679100, People's Republic of China
| | - Dan Zhu
- Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Shanghai, 200025, People's Republic of China
| | - Xi-Shang Li
- Tengchong Center for Disease Control and Prevention, Tengchong, 679100, People's Republic of China
| | - Yan Lu
- Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Shanghai, 200025, People's Republic of China
| | - Shou-Qin Yin
- Tengchong Center for Disease Control and Prevention, Tengchong, 679100, People's Republic of China
| | - Sheng-Guo Li
- Tengchong Center for Disease Control and Prevention, Tengchong, 679100, People's Republic of China
| | - Yi Zhang
- Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Shanghai, 200025, People's Republic of China.
| | - Xiao-Nong Zhou
- Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Shanghai, 200025, People's Republic of China
| |
Collapse
|
25
|
Abstract
Increases in tick-borne disease prevalence and transmission are important public health issues. Efforts to control these emerging diseases are frustrated by the struggle to control tick populations and to detect and treat infections caused by the pathogens that they transmit. This review covers tick-borne infectious diseases of nonrickettsial bacterial, parasitic, and viral origins. While tick surveillance and tracking inform our understanding of the importance of the spread and ecology of ticks and help identify areas of risk for disease transmission, the vectors are not the focus of this document. Here, we emphasize the most significant pathogens that infect humans as well as the epidemiology, clinical features, diagnosis, and treatment of diseases that they cause. Although detection via molecular or immunological methods has improved, tick-borne diseases continue to remain underdiagnosed, making the scope of the problem difficult to assess. Our current understanding of the incidence of tick-borne diseases is discussed in this review. An awareness of the diseases that can be transmitted by ticks in specific locations is key to detection and selection of appropriate treatment. As tick-transmitted pathogens are discovered and emerge in new geographic regions, our ability to detect, describe, and understand the growing public health threat must also grow to meet the challenge.
Collapse
|
26
|
Tokmalaev AK, Chentsov VB, Malov VA, Maleyev VV, Kozhevnikova GM, Polovinkina NA, Golub VP, Konnov VV, Kharlamova TV. [Human babesiosis: clinical cases in the european part of the Russian Federation]. TERAPEVT ARKH 2019; 91:60-65. [PMID: 32598612 DOI: 10.26442/00403660.2019.11.000405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 01/29/2023]
Abstract
The article describes four clinical observations of patients with babesiosis detected in the European part of the Russian Federation, two of whom were under the direct supervision of the authors. The analysis of epidemiological data, clinical picture, results of laboratory studies in the dynamics of the disease. Differential diagnosis and treatment are discussed.
Collapse
Affiliation(s)
| | - V B Chentsov
- Infectious Clinical Hospital №2 Moscow City Health Department
| | - V A Malov
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - V P Golub
- Peoples Friendship University of Russia (RUDN)
| | - V V Konnov
- Peoples Friendship University of Russia (RUDN)
| | | |
Collapse
|
27
|
The Babesia observational antibody (BAOBAB) study: A cross-sectional evaluation of Babesia in two communities in Kilosa district, Tanzania. PLoS Negl Trop Dis 2019; 13:e0007632. [PMID: 31412024 PMCID: PMC6693791 DOI: 10.1371/journal.pntd.0007632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/13/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Babesia, a tick-borne genus of intraerythrocytic parasites, is understudied in humans outside of established high-endemic areas. There is a paucity of data on Babesia in Africa, despite evidence that it is regionally present. A pilot study suggested that Babesia was present in a rural district of Tanzania. METHODOLOGY/PRINCIPAL FINDINGS A cross-sectional study was conducted July-August 2017: residents in a case hamlet that had clustering of subjects with high signal-to-cut off (S/CO) ratios for antibodies against B. microti in the pilot study, and a control hamlet that had lacked significant signal, were evaluated for B. microti. Subjects aged ≥15yrs (n = 299) underwent clinical evaluation and household inspections; 10ml whole blood was drawn for Babesia transcription mediated amplification (TMA), B. microti indirect fluorescent antibody testing (IFA) and rapid diagnostic testing (RDT) for Plasmodium spp. Subjects aged <15yrs (n = 266) underwent a RDT for Plasmodium and assessment by ELISA for B. microti antibodies. A total of 570 subjects participated (mean age 22 [<1 to 90yrs]) of whom 50.7% were female and 145 (25.5%) subjects were Plasmodium RDT positive (+). In those <15yrs, the median ELISA S/CO was 1.11 (IQR 0.80-1.48); the median S/CO in the case (n = 120) and control (n = 146) hamlets was 1.19 (IQR 0.81-1.48) and 1.06 (IQR 0.80-1.50) respectively (p = 0.4). Children ≥5yrs old were more likely to have a higher S/CO ratio than those <5yrs old (p<0.001). One hundred (38%) subjects <15yrs were Plasmodium RDT+. The median S/CO ratio (children <15yrs) did not differ by RDT status (p = 0.15). In subjects ≥15yrs, no molecular test was positive for Babesia, but four subjects (1.4%) were IFA reactive (two each at titers of 128 and 256). CONCLUSIONS/SIGNIFICANCE The findings offer further support for Babesia in rural Tanzania. However, low prevalence of seroreactivity questions its clinical significance.
Collapse
|
28
|
Zhu GL, Tang YY, Limpanont Y, Wu ZD, Li J, Lv ZY. Zoonotic parasites carried by invasive alien species in China. Infect Dis Poverty 2019; 8:2. [PMID: 30621776 PMCID: PMC6325848 DOI: 10.1186/s40249-018-0512-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The invasive alien species may lead to great environmental and economic crisis due to its strong capability of occupying the biological niche of native species and altering the ecosystem of the invaded area. However, its potential to serve as the vectors of some specific zoonotic pathogens, especially parasites, has been neglected. Thus, the damage that it may cause has been hugely underestimated in this aspect, which is actually an important public health problem. This paper aims to discuss the current status of zoonotic parasites carried by invasive alien species in China. MAIN BODY This review summarizes the reported zoonotic parasites carried by invasive alien species in China based on the Database of Invasive Alien Species in China. We summarize their prevalence, threat to human health, related reported cases, and the roles of invasive alien species in the life cycle of these parasites, and the invasion history of some invasive alien species. Furthermore, we sum up the current state of prevention and control of invasive alien species in China, and discuss about the urgency and several feasible strategies for the prevention and control of these zoonoses under the background of booming international communications and inevitable globalization. CONCLUSIONS Information of the zoonotic parasites carried by invasive alien species neither in China or worldwide, especially related case reports, is limited due to a long-time neglection and lack of monitoring. The underestimation of their damage requires more attention to the monitoring and control and compulsory measures should be taken to control the invasive alien species carrying zoonotic parasites.
Collapse
Affiliation(s)
- Guang-Li Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Yi-Yang Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Yanin Limpanont
- Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Zhong-Dao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Jian Li
- Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000 Guangdong China
| | - Zhi-Yue Lv
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000 Guangdong China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| |
Collapse
|
29
|
de Mendonça PG. Cross-Genera PCR Amplification of DNA from Apicomplexan Parasites. J Arthropod Borne Dis 2018; 12:321-324. [PMID: 30584555 PMCID: PMC6297730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 06/20/2018] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The discovery of an unexpected genetic sequence raised doubts about the specificity of a primer pair targeting Babesia spp. and Theileria spp. This study aimed to check the specificity of this primer pair. METHODS Conventional end-point PCR and real-time PCR protocols using primers targeting the 18S rRNA gene V4 hypervariable region of Babesia spp. and Theileria spp. were tested for potential cross-genera amplification using DNA from a palette of parasitic protists and pathogenic bacteria as a template. These investigations took place at the Ludwig Maximilian University of Munich (Germany) in 2010 as part of the EDEN project. RESULTS Successful amplification was obtained with DNA from five apicomplexan genera: Babesia, Theileria, Hepatozoon, Toxoplasma, and Hammondia. No amplicons were obtained when DNA from Leishmania infantum or bacteria within the genera Borrelia, Leptospira or Anaplasma was used as a template. CONCLUSION This cross-genera amplification ability is useful for the quick exclusion of many parasite species from PCR negative diagnostic samples. Accurate species identification from PCR positive samples requires genetic sequencing of the amplicon.
Collapse
|
30
|
Xu B, Liu XF, Cai YC, Huang JL, Zhang RX, Chen JH, Cheng XJ, Zhou X, Xu XN, Zhou Y, Zhang T, Chen SB, Li J, Wu QF, Sun CS, Fu YF, Chen JX, Zhou XN, Hu W. Screening for biomarkers reflecting the progression of Babesia microti infection. Parasit Vectors 2018; 11:379. [PMID: 29970143 PMCID: PMC6029176 DOI: 10.1186/s13071-018-2951-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/13/2018] [Indexed: 01/29/2023] Open
Abstract
Background Babesiosis is caused by the invasion of erythrocytes by parasites of the Babesia spp. Babesia microti is one of the primary causative agents of human babesiosis. To better understand the status of the disease, discovering key biomarkers of the different infection stages is crucial. Results This study investigated B. microti infection in the mouse model from 0 to 270 days post-infection (dpi), using blood smears, PCR assays and ELISA. PCR assays showed a higher sensitivity when compared to microscopic examination. Specific IgG antibodies could be detected from 7 days to 270 dpi. Two-dimensional electrophoresis was combined with western blotting and mass spectrometric analysis to screen for specific reactive antigens during both the peak parasitaemia period (7 dpi) and IgG antibody response peak period (30 dpi) by the infected mice plasma. The 87 positive reactive proteins were identified and then expressed with the wheat germ cell-free system. Protein microarrays of all 87 targeted proteins were produced and hybridized with the serial plasma of infected mice model. Based on the antigen reaction profile during the infection procedure, 6 antigens were selected and expressed in Escherichia coli. Due to an early response to IgM, lower immunoreactivity levels of IgG after two months and higher immunoreactivity level IgG during nine months, four recombinant proteins were selected for further characterization, namely rBm2D97(CCF75281.1), rBm2D33(CCF74637.1), rBm2D41(CCF75408.1) and rBm7(CCF73510.1). The diagnostic efficacy of the four recombinant protein candidates was evaluated in a clinical setting using babesiosis patient plasma. The rBm2D33 showed the highest sensitivity with a positive rate of 62.5%. Additional characterization of the two candidate proteins using a mouse vaccination assay, demonstrated that rBm2D41 could reduce peak parasitaemia by 37.4%, indicating its efficacy in preventing severe babesiosis. Conclusions The detection technologies of microscopic examination, PCR assays and antibody tests showed different sensitivities and accuracy during the different stages of B. microti infection. Antibody detection has a unique significance for B. microti infection in the asymptomatic stages. Using immunoreactivity profiles, biomarkers for disease progression were identified and represent useful information for future the diagnosis and vaccine development for this serious disease of public health significance. Electronic supplementary material The online version of this article (10.1186/s13071-018-2951-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People's Republic of China
| | - Xiu-Feng Liu
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yu-Chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People's Republic of China
| | - Ji-Lei Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People's Republic of China
| | - Rui-Xiang Zhang
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People's Republic of China
| | - Xun-Jia Cheng
- Institute of Biomedical Sciences, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xia Zhou
- Department of Parasitology, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Xue-Nian Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People's Republic of China
| | - Yan Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People's Republic of China
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People's Republic of China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People's Republic of China
| | - Jian Li
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Qun-Feng Wu
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Cheng-Song Sun
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yong-Feng Fu
- Institute of Biomedical Sciences, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People's Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People's Republic of China
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai, People's Republic of China. .,Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
31
|
Tissue Localization and Variation of Major Symbionts in Haemaphysalis longicornis, Rhipicephalus haemaphysaloides, and Dermacentor silvarum in China. Appl Environ Microbiol 2018. [PMID: 29523550 DOI: 10.1128/aem.00029-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ticks are important disease vectors, as they transmit a variety of human and animal pathogens worldwide. Symbionts that coevolved with ticks confer crucial benefits to their host in nutrition metabolism, fecundity, and vector competence. Although over 100 tick species have been identified in China, general information on tick symbiosis is limited. Here, we visualized the tissue distribution of Coxiella sp. and Rickettsia sp. in lab-reared Haemaphysalis longicornis and Rhipicephalus haemaphysaloides by fluorescent in situ hybridization. We found that Coxiella sp. colonized exclusively the Malpighian tubules and ovaries of H. longicornis, while Rickettsia sp. additionally colonized the midgut of R. haemaphysaloides We also investigated the population structure of microbiota in Dermacentor silvarum ticks collected from Inner Mongolia, China, and found that Coxiella, Rickettsia, and Pseudomonas are the three dominant genera. No significant difference in microbiota composition was found between male and female D. silvarum ticks. We again analyzed the tissue localization of Coxiella sp. and Rickettsia sp. and found that they displayed tissue tropisms similar to those in R. haemaphysaloides, except that Rickettsia sp. colonized the nuclei of spermatids instead of ovaries in D. silvarum Altogether, our results suggest that Coxiella sp. and Rickettsia sp. are the main symbionts in the three ticks and reside primarily in midgut, Malpighian tubules, and reproductive tissues, but their tissue distribution varies in association with species and sexes.IMPORTANCE Tick-borne diseases constitute a major public health burden, as they are increasing in frequency and severity worldwide. The presence of symbionts helps ticks to metabolize nutrients, promotes fecundity, and influences pathogen infections. Increasing numbers of tick-borne pathogens have been identified in China; however, knowledge of native ticks, especially tick symbiosis, is limited. In this study, we analyze the distribution of Coxiella sp. and Rickettsia sp. in tissues of laboratory-reared Haemaphysalis longicornis and Rhipicephalus haemaphysaloides and field-collected Dermacentor silvarum We found that the localization patterns of Coxiella sp. in three Chinese tick species were similar to those of other tick species. We also found a previously undefined intracellular localization of Rickettsia sp. in tick midgut and spermatids. In addition, we demonstrate that tissue tropisms of symbionts vary between species and sexes. Our findings provide new insights into the tissue localization of symbionts in native Chinese ticks and pave the way for further understanding of their functional capabilities and symbiotic interactions with ticks.
Collapse
|
32
|
Bloch EM, Kasubi M, Levin A, Mrango Z, Weaver J, Munoz B, West SK. Babesia microti and Malaria Infection in Africa: A Pilot Serosurvey in Kilosa District, Tanzania. Am J Trop Med Hyg 2018; 99:51-56. [PMID: 29637884 DOI: 10.4269/ajtmh.18-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Babesia is a tick-borne intraerythrocytic parasite that is clinically and diagnostically similar to malaria parasite, conferring risk of misdiagnosis in areas where both parasites are endemic. Data on Babesia in humans in Africa are lacking, despite evidence that it is present in regional animal populations. Samples that were collected in November 2014 to July 2015 in Kilosa district, Tanzania, were evaluated for evidence of malaria and Babesia infection. Clinical data and laboratory samples (i.e., hemoglobin, rapid diagnostic testing [RDT] for malaria, peripheral blood smear, and dried blood spots) from a routine survey were available for analysis. Dried blood spots were tested using an investigational enzyme linked immunosorbent assay (ELISA) against Babesia microti. A total of 1,030 children aged 1 month to < 5 years were evaluated; 186 (18.1%) were malaria RDT positive, 180 (96.8%) of whom had peripheral smears reviewed; 70/180 (38.9%) were smear positive for parasites. The median (inter quartile range) and range of B. microti ELISA signal to cutoff (S/C) ratio was 0.10 (0.06-0.15) and 0.01-1.65, respectively; the S/C ratios were significantly higher in subjects ≥ 1 year as compared with those < 1 year old (P < 0.001). There was also a statistically significant association between a positive RDT for malaria and the Babesia S/C (median 0.09 versus 0.13 in RDT negative versus RDT positive, respectively; P < 0.001). The highest S/C ratios were disproportionately clustered in a few hamlets. The findings suggest that Babesia may be present in Kilosa district, Tanzania. However, serological cross-reactivity and false positivity, notably between Babesia and Plasmodium spp., cannot be definitively excluded and have implications for testing in other settings.
Collapse
Affiliation(s)
- Evan M Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Mabula Kasubi
- Department of Microbiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Zakayo Mrango
- National Institute for Medical Research, Kilosa, Tanzania
| | - Jerusha Weaver
- Dana Center for Preventive Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Beatriz Munoz
- Dana Center for Preventive Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sheila K West
- Dana Center for Preventive Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
33
|
Stahl P, Poinsignon Y, Pouedras P, Ciubotaru V, Berry L, Emu B, Krause PJ, Ben Mamoun C, Cornillot E. Case report of the patient source of the Babesia microti R1 reference strain and implications for travelers. J Travel Med 2018; 25:4696553. [PMID: 29394381 PMCID: PMC6927858 DOI: 10.1093/jtm/tax073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/14/2017] [Indexed: 11/13/2022]
Abstract
BACKGROUND In 2002, a previously healthy 69-year-old man travelled to France from the United States and presented to our hospital with a febrile illness that subsequently was determined to be babesiosis. The blood isolated from this patient served as a source for propagation of the Babesia microti R1 strain with subsequent sequencing and annotation of the parasite genome. METHODS Upon admission, we obtained a medical history, performed a physical examination, and examined his blood for the presence of a blood borne pathogen by microscopy, PCR and indirect immunofluorescence antibody testing. Once the diagnosis of babesiosis was made, we reviewed the literature to assess the distribution of B. microti-associated babesiosis cases in immunocompetent patients from outside the USA. RESULTS The patient recalled a tick bite during the previous month on Cape Cod, Massachusetts. The diagnosis was confirmed by identification of Babesia-infected red blood cells on blood smears, amplification of B. microti DNA in blood by PCR and the presence of B. microti antibody in the serum. This strain was the first isolate of B. microti to be fully sequenced and its annotated genome serves as a reference for molecular and cell biology studies aimed at understanding B. microti pathophysiology and developing diagnostic tests and therapies. A review of babesiosis cases demonstrates a worldwide distribution of B. microti and identifies potential emerging endemic areas where travelers may be at risk of contracting B. microti infection. CONCLUSION This case provides clinical information about the patient infected with the R1 isolate and a review of travel risk, diagnosis and treatment of babesiosis in endemic and non-endemic areas.
Collapse
Affiliation(s)
- Philipp Stahl
- Institute of Virology, Parasitology Unit, University of Marburg, Marburg, Germany.,Department of Internal Medicine, Section of Gastroenterology and Infectious Diseases, University Hospital Gießen and Marburg, Marburg, Germany
| | - Yves Poinsignon
- Internal Medicine Department, Centre Hospitalier Bretagne Atlantique, Vannes, France
| | - Pascal Pouedras
- Microbiology Department, Centre Hospitalier Bretagne Atlantique, Vannes, France
| | - Vasilica Ciubotaru
- Internal Medicine Department, Centre Hospitalier Bretagne Atlantique, Vannes, France
| | - Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université Montpellier, Montpellier, France
| | - Brinda Emu
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Peter J Krause
- Yale School of Public Health and Yale School of Medicine, 60 College St., New Haven, CT 06520, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle (IBC), Montpellier, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM - INSERM U1194), Institut régional du Cancer Montpellier (ICM) & Université de Montpellier, France
| |
Collapse
|
34
|
Rozej-Bielicka W, Masny A, Golab E. High-resolution melting PCR assay, applicable for diagnostics and screening studies, allowing detection and differentiation of several Babesia spp. infecting humans and animals. Parasitol Res 2017; 116:2671-2681. [PMID: 28795223 PMCID: PMC5599466 DOI: 10.1007/s00436-017-5576-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022]
Abstract
The goal of the study was to design a single tube PCR test for detection and differentiation of Babesia species in DNA samples obtained from diverse biological materials. A multiplex, single tube PCR test was designed for amplification of approximately 400 bp region of the Babesia 18S rRNA gene. Universal primers were designed to match DNA of multiple Babesia spp. and to have low levels of similarity to DNA sequences of other intracellular protozoa and Babesia hosts. The PCR products amplified from Babesia DNA isolated from human, dog, rodent, deer, and tick samples were subjected to high-resolution melting analysis for Babesia species identification. The designed test allowed detection and differentiation of four Babesia species, three zoonotic (B. microti, B. divergens, B. venatorum) and one that is generally not considered zoonotic—Babesia canis. Both detection and identification of all four species were possible based on the HRM curves of the PCR products in samples obtained from the following: humans, dogs, rodents, and ticks. No cross-reactivity with DNA of Babesia hosts or Plasmodium falciparum and Toxoplasma gondii was observed. The lack of cross-reactivity with P. falciparum DNA might allow using the assay in endemic malaria areas. The designed assay is the first PCR-based test for detection and differentiation of several Babesia spp. of medical and veterinary importance, in a single tube reaction. The results of the study show that the designed assay for Babesia detection and identification could be a practical and inexpensive tool for diagnostics and screening studies of diverse biological materials.
Collapse
Affiliation(s)
- Wioletta Rozej-Bielicka
- Department of Parasitology, National Institute of Public Health – National Institute of Hygiene, Warszawa, Poland
| | - Aleksander Masny
- Department of Parasitology, National Institute of Public Health – National Institute of Hygiene, Warszawa, Poland
| | - Elzbieta Golab
- Department of Parasitology, National Institute of Public Health – National Institute of Hygiene, Warszawa, Poland
| |
Collapse
|
35
|
Babesia microti: from Mice to Ticks to an Increasing Number of Highly Susceptible Humans. J Clin Microbiol 2017; 55:2903-2912. [PMID: 28747374 DOI: 10.1128/jcm.00504-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Babesia microti, a zoonotic intraerythrocytic parasite, is the primary etiological agent of human babesiosis in the United States. Human infections range from subclinical illness to severe disease resulting in death, with symptoms being related to host immune status. Despite advances in our understanding and management of B. microti, the incidence of infection in the United States has increased. Therefore, research focused on eradicating disease and optimizing clinical management is essential. Here we review this remarkable organism, with emphasis on the clinical, diagnostic, and therapeutic aspects of human disease.
Collapse
|
36
|
DNA Microarray Detection of 18 Important Human Blood Protozoan Species. PLoS Negl Trop Dis 2016; 10:e0005160. [PMID: 27911895 PMCID: PMC5135439 DOI: 10.1371/journal.pntd.0005160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023] Open
Abstract
Background Accurate detection of blood protozoa from clinical samples is important for diagnosis, treatment and control of related diseases. In this preliminary study, a novel DNA microarray system was assessed for the detection of Plasmodium, Leishmania, Trypanosoma, Toxoplasma gondii and Babesia in humans, animals, and vectors, in comparison with microscopy and PCR data. Developing a rapid, simple, and convenient detection method for protozoan detection is an urgent need. Methodology/Principal Findings The microarray assay simultaneously identified 18 species of common blood protozoa based on the differences in respective target genes. A total of 20 specific primer pairs and 107 microarray probes were selected according to conserved regions which were designed to identify 18 species in 5 blood protozoan genera. The positive detection rate of the microarray assay was 91.78% (402/438). Sensitivity and specificity for blood protozoan detection ranged from 82.4% (95%CI: 65.9% ~ 98.8%) to 100.0% and 95.1% (95%CI: 93.2% ~ 97.0%) to 100.0%, respectively. Positive predictive value (PPV) and negative predictive value (NPV) ranged from 20.0% (95%CI: 2.5% ~ 37.5%) to 100.0% and 96.8% (95%CI: 95.0% ~ 98.6%) to 100.0%, respectively. Youden index varied from 0.82 to 0.98. The detection limit of the DNA microarrays ranged from 200 to 500 copies/reaction, similar to PCR findings. The concordance rate between microarray data and DNA sequencing results was 100%. Conclusions/Significance Overall, the newly developed microarray platform provides a convenient, highly accurate, and reliable clinical assay for the determination of blood protozoan species. More than 1 billion people are infected with blood protozoan diseases worldwide. The most common blood protozoa in humans, animals, and vectors include Plasmodium, Leishmania, Trypanosoma, Toxoplasma gondii and Babesia. Due to similar morphology among different blood protozoan species, misdiagnosis always occurs. Most molecular techniques are only carried out in laboratories, with a small number of samples detected simultaneously. Meanwhile, common detection methods may not be convenient for field investigation of large amounts of samples. In order to better manage blood protozoan infection, proper tools are required for the monitoring of these pathogens. Here, a comprehensive and sensitive DNA microarray was developed and tested, which allowed the parallel detection of 18 blood protozoan species.
Collapse
|
37
|
Wei F, Song M, Liu H, Wang B, Wang S, Wang Z, Ma H, Li Z, Zeng Z, Qian J, Liu Q. Molecular Detection and Characterization of Zoonotic and Veterinary Pathogens in Ticks from Northeastern China. Front Microbiol 2016; 7:1913. [PMID: 27965644 PMCID: PMC5126052 DOI: 10.3389/fmicb.2016.01913] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/15/2016] [Indexed: 01/09/2023] Open
Abstract
Tick-borne diseases are considered as emerging infectious diseases in humans and animals in China. In this study, Ixodes persulcatus (n = 1699), Haemaphysalis concinna (n = 412), Haemaphysalis longicornis (n = 390), Dermacentor nuttalli (n = 253), and Dermacentor silvarum (n = 204) ticks were collected by flagging from northeastern China, and detected for infection with Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. by using nested polymerase chain reaction assays and sequencing analysis. Anaplasma phagocytophilum was detected in all tick species, i.e., I. persulcatus (9.4%), H. longicornis (1.9%), H. concinna (6.5%), D. nuttalli (1.7%), and D. silvarum (2.3%); Anaplasma bovis was detected in H. longicornis (0.3%) and H. concinna (0.2%); Ehrlichia muris was detected in I. persulcatus (2.5%) and H. concinna (0.2%); Candidatus Neoehrlichia mikurensis was only detected in I. persulcatus (0.4%). The Ehrlichia variant (GenBank access number KU921424), closely related to Ehrlichia ewingii, was found in H. longicornis (0.8%) and H. concinna (0.2%). I. persulcatus was infected with Babesia venatorum (1.2%), Babesia microti (0.6%), and Babesia divergens (0.6%). Additionally, four Babesia sequence variants (GenBank access numbers 862303–862306) were detected in I. persulcatus, H. longicornis, and H. concinna, which belonged to the clusters formed by the parasites of dogs, sheep, and cattle (B. gibsoni, B. motasi, and B. crassa). Two Hepatozoon spp. (GenBank access numbers KX016028 and KX016029) associated with hepatozoonosis in Japanese martens were found in the collected ticks (0.1–3.1%). These findings showed the genetic variability of Anaplasma, Ehrlichia, Babesia, and Hepatozoon spp. circulating in ticks in northeastern China, highlighting the necessity for further research of these tick-associated pathogens and their role in human and animal diseases.
Collapse
Affiliation(s)
- Feng Wei
- College of Life Science, Jilin Agricultural UniversityChangchun, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute - Academy of Military Medical SciencesChangchun, China
| | - Mingxin Song
- College of Veterinary Medicine, Northeast Agricultural University Harbin, China
| | - Huanhuan Liu
- College of Life Science, Jilin Agricultural University Changchun, China
| | - Bo Wang
- Department of Pathology, The Second Clinical Medical School of Inner Mongolia University for the Nationalities, Inner Mongolia General Forestry Hospital Yakeshi, China
| | - Shuchao Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute - Academy of Military Medical Sciences Changchun, China
| | - Zedong Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute - Academy of Military Medical Sciences Changchun, China
| | - Hongyu Ma
- College of Life Science, Jilin Agricultural University Changchun, China
| | - Zhongyu Li
- College of Life Science, Jilin Agricultural University Changchun, China
| | - Zheng Zeng
- Center for Prevention and Control of Animal Diseases of Chongqing Chongqing, China
| | - Jun Qian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute - Academy of Military Medical Sciences Changchun, China
| | - Quan Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Institute - Academy of Military Medical Sciences Changchun, China
| |
Collapse
|
38
|
Ixodes persulcatus Ticks as Vectors for the Babesia microti U.S. Lineage in Japan. Appl Environ Microbiol 2016; 82:6624-6632. [PMID: 27590815 DOI: 10.1128/aem.02373-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 12/19/2022] Open
Abstract
The U.S. lineage, one of the major clades in the Babesia microti group, is known as a causal agent of human babesiosis mostly in the northeastern and upper midwestern United States. This lineage, however, also is distributed throughout the temperate zone of Eurasia with several reported human cases, although convincing evidence of the identity of the specific vector(s) in this area is lacking. Here, the goal was to demonstrate the presence of infectious parasites directly in salivary glands of Ixodes persulcatus, from which U.S. lineage genetic sequences have been detected in Asia, and to molecularly characterize the isolates. Five PCR-positive specimens were individually inoculated into hamsters, resulting in infections in four; consequently, four strains were newly established. Molecular characterization, including 18S rRNA, β-tubulin, and CCT7 gene sequences, as well as Western blot analysis and indirect fluorescent antibody assay, revealed that all four strains were identical to each other and to the U.S. lineage strains isolated from rodents captured in Japan. The 18S rRNA gene sequence from the isolates was identical to those from I. persulcatus in Russia and China, but the genetic and antigenic profiles of the Japanese parasites differ from those in the United States and Europe. Together with previous epidemiological and transmission studies, we conclude that I. persulcatus is likely the principal vector for the B. microti U.S. lineage in Japan and presumably in northeastern Eurasia. IMPORTANCE The major cause of human babesiosis, the tick-borne blood parasite Babesia microti, U.S. lineage, is widely distributed in the temperate Northern Hemisphere. However, the specific tick vector(s) remains unidentified in Eurasia, where there are people with antibodies to the B. microti U.S. lineage and cases of human babesiosis. In this study, the first isolation of B. microti U.S. lineage from Ixodes persulcatus ticks, a principal vector for many tick-borne diseases, is described in Japan. Limited antigenic cross-reaction was found between the Japan and United States isolates. Thus, current serological tests based on U.S. isolates may underestimate B. microti occurrence outside the United States. This study and previous studies indicate that I. persulcatus is part of the B. microti U.S. lineage life cycle in Japan and, presumably, northeastern Eurasia. This report will be important for public health, especially since infection may occur through transfusion, and also to researchers in the field of parasitology.
Collapse
|
39
|
Li LH, Zhu D, Zhang CC, Zhang Y, Zhou XN. Experimental transmission of Babesia microti by Rhipicephalus haemaphysaloides. Parasit Vectors 2016; 9:231. [PMID: 27112141 PMCID: PMC4845380 DOI: 10.1186/s13071-016-1517-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
Background Human babesiosis is considered an emerging threat in China. Dozens of human infections with Babesia microti have been reported recently, especially in southern China. However, the transmission vectors of this parasite in these areas are not well understood. Rhipicephalus haemaphysaloides, which is one of the dominant tick species in southern China, is a major vector of bovine babesiosis in China. However, whether this tick has the potential to transmit B. microti has not been tested. The present study experimentally investigated the transmission competence of B. microti through R. haemaphysaloides ticks. Methods Larvae and nymphs of R. haemaphysaloides ticks were fed on laboratory mice infected by B. microti. The infection was detected by PCR at 4 weeks post-molting. BALB/c and NOD/SCID mice were infested by nymphs molting from larvae that ingested the blood of infective mice, and blood samples were then analyzed by PCR. Results Experimental transstadial transmission of R. haemaphysaloides for B. microti was proved in both the larvae to nymph and the nymph to adult transstadial routes. The positive rate of B. microti was 43.8 % in nymphs developed from larvae consumed infected mice and 96.7 % in adults developed from nymphs exposed to positive mice. Among the mice infested by infective nymphs, B. microti was detected in 16.7 % (2/12) of the BALB/c mice and in all of the NOD/SCID (6/6). However, the parasite was not observed to persist beyond more than one molt, and transovarial transmission did not occur. Conclusions This is the first study to demonstrate that B. microti can be transmitted artificially by R. haemaphysaloides. This tick species might be a potential vector of human babesiosis in southern China, which represents a public health concern.
Collapse
Affiliation(s)
- Lan-Hua Li
- Key Laboratory of Parasite & Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, 200025, People's Republic of China.,School of Publish Health and Management, Weifang Medical University, Weifang, 261053, PR China
| | - Dan Zhu
- Key Laboratory of Parasite & Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, 200025, People's Republic of China
| | - Chen-Chen Zhang
- Key Laboratory of Parasite & Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, 200025, People's Republic of China
| | - Yi Zhang
- Key Laboratory of Parasite & Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, 200025, People's Republic of China.
| | - Xiao-Nong Zhou
- Key Laboratory of Parasite & Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
40
|
Identification and Characterization of the Rhoptry Neck Protein 2 in Babesia divergens and B. microti. Infect Immun 2016; 84:1574-1584. [PMID: 26953328 DOI: 10.1128/iai.00107-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/01/2016] [Indexed: 01/07/2023] Open
Abstract
Apicomplexan parasites include those of the genera Plasmodium, Cryptosporidium, and Toxoplasma and those of the relatively understudied zoonotic genus Babesia In humans, babesiosis, particularly transfusion-transmitted babesiosis, has been emerging as a major threat to public health. Like malaria, the disease pathology is a consequence of the parasitemia which develops through cyclical replication of Babesia parasites in host erythrocytes. However, there are no exoerythrocytic stages in Babesia, so targeting of the blood stage and associated proteins to directly prevent parasite invasion is the most desirable option for effective disease control. Especially promising among such molecules are the rhoptry neck proteins (RONs), whose homologs have been identified in many apicomplexan parasites. RONs are involved in the formation of the moving junction, along with AMA1, but no RON has been identified and characterized in any Babesia spp. Here we identify the RON2 proteins of Babesia divergens (BdRON2) and B. microti (BmRON2) and show that they are localized apically and that anti-BdRON2 antibodies are significant inhibitors of parasite invasion in vitro Neither protein is immunodominant, as both proteins react only marginally with sera from infected animals. Further characterization of the direct role of both BdRON2 and BmRON2 in parasite invasion is required, but knowledge of the level of conformity of RON2 proteins within the apicomplexan phylum, particularly that of the AMA1-RON2 complex at the moving junction, along with the availability of an animal model for B. microti studies, provides a key to target this complex with a goal of preventing the erythrocytic invasion of these parasites and to further our understanding of the role of these conserved ligands in invasion.
Collapse
|
41
|
Ord RL, Lobo CA. Human Babesiosis: Pathogens, Prevalence, Diagnosis and Treatment. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015; 2:173-181. [PMID: 26594611 DOI: 10.1007/s40588-015-0025-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human babesiosis is a zoonotic disease caused by protozoan parasites of the Babesia genus, primarily in the Northeastern and Midwest United States due to B. microti, and Western Europe due to B. divergens. Parasites are transmitted by the bite of the ixodid tick when the vector takes a blood meal from the vertebrate host, and the economic importance of bovine babesiosis is well understood. The pathology of human disease is a direct result of the parasite's ability to invade host's red blood cells. The current understanding of human babesiosis epidemiology is that many infections remain asymptomatic, especially in younger or immune competent individuals, and the burden of severe pathology resides within older or immunocompromised individuals. However, transfusion-transmitted babesiosis is an emerging threat to public health as asymptomatic carriers donate blood and there are as yet no licensed or regulated tests to screen blood products for this pathogen. Reports of tick-borne cases within new geographical regions such as the Pacific Northwest of the US, through Eastern Europe, and into China are also on the rise. Further, new Babesia spp. have been identified globally as agents of severe human babesiosis, suggesting that the epidemiology of this disease is rapidly changing, and it is clear that human babesiosis is a serious public health concern that requires close monitoring and effective intervention measure.
Collapse
Affiliation(s)
- Rosalynn Louise Ord
- Department of Blood-Borne Parasites, Lindsley Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Cheryl A Lobo
- Department of Blood-Borne Parasites, Lindsley Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| |
Collapse
|
42
|
Zhou X, Xia S, Yin SQ, Zhou XN. Emergence of babesiosis in China-Myanmar border areas. Parasit Vectors 2015; 8:390. [PMID: 26204984 PMCID: PMC4513375 DOI: 10.1186/s13071-015-0978-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/01/2015] [Indexed: 11/10/2022] Open
Abstract
E. Vannier and P. J. Krause presented an excellent article on "Babesiosis in China, an emerging threat" in the Lancet Infectious Diseases in December 2014, which updated research on human babesiosis in China. However, a neglected and emerging issue has not been mentioned in EV & PJK's article, that is the co-infections with B. microti and P. falciparum parasites that exist in syndemic areas, spatially in the China-Myanmar border areas of Yunnan province, China. Therefore, two important issues are addressed in here, including (i) the new emerging infections with Babesia spp. which are normally ignored in malaria endemic areas due to similarities in pathogenic morphology and clinical symptoms, (ii) additional consideration on babesiosis rather than drug-resistant malaria when anti-malaria treatment for the febrile cases in clinics fails.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Parasitology, Medical College of Soochow University, No.199 Renai Road, Suzhou, 215123, China.
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite & Vector Biology, Ministry of Health, Shanghai, 200025, China.
| | - Shang Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite & Vector Biology, Ministry of Health, Shanghai, 200025, China.
| | - Shou-Qin Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite & Vector Biology, Ministry of Health, Shanghai, 200025, China.
- Tengchong Center for Disease Control and prevention, Tengchong, Yunnan province, 679100, China.
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases; Key Laboratory of Parasite & Vector Biology, Ministry of Health, Shanghai, 200025, China.
| |
Collapse
|
43
|
Stensvold CR, Al Marai D, Andersen LO, Krogfelt KA, Jensen JS, Larsen KS, Nielsen HV. Babesia spp. and other pathogens in ticks recovered from domestic dogs in Denmark. Parasit Vectors 2015; 8:262. [PMID: 25951937 PMCID: PMC4425907 DOI: 10.1186/s13071-015-0843-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/06/2015] [Indexed: 01/20/2023] Open
Abstract
Background Newly recognized endemic foci for human babesiosis include Europe, where Ixodes ricinus, a vector for several species of Babesia, is the most commonly identified tick. Vector-based surveillance provides an early warning system for the emergence of human babesiosis, which is likely to be under-reported at emerging sites. In the present study, we set out to screen I. ricinus collected from Danish domestic dogs for Babesia, in order to identify whether humans in Denmark are exposed to the parasite. Findings A total of 661 ticks (Ixodes spp.) were collected from 345 Danish domestic dogs during April-September 2011 and pooled, one sample per dog. DNA was extracted from each sample and examined by PCR and sequencing for Rickettsia spp., Borrelia burgdorferi sensu lato, Bartonella spp., Francisella tularensis, Candidatus Neoehrlichia mikurensis, and Babesia spp. In total, 34% of the samples were positive for tick-borne microorganisms potentially pathogenic to humans: Rickettsia spp. were detected in 16% of the pools, with 79% being R. helvetica. Borrelia burgdorferi sensu lato was found in 15%, with the main species identified as Borrelia afzelii (39%). Likewise, 8% of the samples were positive for Babesia spp. (Babesia microti, 82%; Babesia venatorum (‘EU1’), 18%). Lastly, 1% of the samples tested positive for Candidatus Neoehrlichia mikurensis, and 0.6% for Bartonella spp. No ticks were found to be infected with Francisella tularensis. Conclusions Our data are in support of endemic occurrence of potentially zoonotic Babesia in Denmark and confirms I. ricinus as a vector of multiple pathogens of public health concern. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0843-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christen Rune Stensvold
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen, Denmark. .,Laboratory of Parasitology, Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen, Denmark.
| | - Dua Al Marai
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen, Denmark.
| | - Lee O'Brien Andersen
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen, Denmark.
| | - Karen Angeliki Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen, Denmark.
| | - Jørgen Skov Jensen
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen, Denmark.
| | | | - Henrik Vedel Nielsen
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen, Denmark.
| |
Collapse
|