1
|
Chan JTH, Picard-Sánchez A, Majstorović J, Rebl A, Koczan D, Dyčka F, Holzer AS, Korytář T. Red blood cells in proliferative kidney disease-rainbow trout ( Oncorhynchus mykiss) infected by Tetracapsuloides bryosalmonae harbor IgM + red blood cells. Front Immunol 2023; 14:1041325. [PMID: 36875079 PMCID: PMC9975563 DOI: 10.3389/fimmu.2023.1041325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
The myxozoan parasite Tetracapsuloides bryosalmonae is the causative agent of proliferative kidney disease (PKD)-a disease of salmonid fishes, notably of the commercially farmed rainbow trout Oncorhynchus mykiss. Both wild and farmed salmonids are threatened by this virulent/deadly disease, a chronic immunopathology characterized by massive lymphocyte proliferation and hyperplasia, which manifests as swollen kidneys in susceptible hosts. Studying the immune response towards the parasite helps us understand the causes and consequences of PKD. While examining the B cell population during a seasonal outbreak of PKD, we unexpectedly detected the B cell marker immunoglobulin M (IgM) on red blood cells (RBCs) of infected farmed rainbow trout. Here, we studied the nature of this IgM and this IgM+ cell population. We verified the presence of surface IgM via parallel approaches: flow cytometry, microscopy, and mass spectrometry. The levels of surface IgM (allowing complete resolution of IgM- RBCs from IgM+ RBCs) and frequency of IgM+ RBCs (with up to 99% of RBCs being positive) have not been described before in healthy fishes nor those suffering from disease. To assess the influence of the disease on these cells, we profiled the transcriptomes of teleost RBCs in health and disease. Compared to RBCs originating from healthy fish, PKD fundamentally altered RBCs in their metabolism, adhesion, and innate immune response to inflammation. In summary, RBCs play a larger role in host immunity than previously appreciated. Specifically, our findings indicate that the nucleated RBCs of rainbow trout interact with host IgM and contribute to the immune response in PKD.
Collapse
Affiliation(s)
- Justin T H Chan
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Amparo Picard-Sánchez
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jovana Majstorović
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Alexander Rebl
- Fish Genetics Unit, Institute of Genome Biology, Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Dirk Koczan
- Core Facility for Microarray Analysis, Institute for Immunology, Rostock University Medical Centre, Rostock, Germany
| | - Filip Dyčka
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Astrid S Holzer
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Division of Fish Health, Veterinary University of Vienna, Vienna, Austria
| | - Tomáš Korytář
- Laboratory of Fish Protistology, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
2
|
Lauringson M, Ozerov MY, Lopez ME, Wennevik V, Niemelä E, Vorontsova TY, Vasemägi A. Distribution and prevalence of the myxozoan parasite Tetracapsuloides bryosalmonae in northernmost Europe: analysis of three salmonid species. DISEASES OF AQUATIC ORGANISMS 2022; 151:37-49. [PMID: 36106715 DOI: 10.3354/dao03688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Global climate change is altering the abundance and spread of many aquatic parasites and pathogens. Proliferative kidney disease (PKD) of salmonids caused by the myxozoan Tetracapsuloides bryosalmonae is one such emerging disorder, and its impact is expected to increase with rising water temperature. Yet, the distribution and prevalence of T. bryosalmonae in Northern Europe remain poorly characterized. Here, we studied 43 locations in 27 rivers in northernmost Norway and Finland to describe T. bryosalmonae infection frequency and patterns in 1389 juvenile salmonids. T. bryosalmonae was discovered in 12 out of 27 rivers (44%) and prevalence ranged from 4.2 to 55.5% in Atlantic salmon and from 5.8 to 75% in brown trout among infected rivers. In sympatric populations, brown trout was more frequently infected with T. bryosalmonae than was salmon. Age-specific parasite prevalence patterns revealed that in contrast to lower latitudes, the infection of juvenile fish predominantly occurs during the second summer or later. Temperature monitoring over 2 yr indicated that the mean water temperature in June was 2.1 to 3.2°C higher in rivers containing T. bryosalmonae compared to parasite-free rivers, confirming the important role of temperature in parasite occurrence. Temporal comparison in T. bryosalmonae prevalence over a 10 yr period in 11 rivers did not reveal any signs of contemporary parasite spread to previously uninfected rivers. However, the wide distribution of T. bryosalmonae in rivers flowing to the Barents Sea indicates that climate change and heat waves may cause new disease outbreaks in northern regions.
Collapse
Affiliation(s)
- M Lauringson
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 46A Kreutzwaldi St., 51006 Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
3
|
Rinaldo A, Rodriguez-Iturbe I. Ecohydrology 2.0. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022; 33:245-270. [PMID: 35673327 PMCID: PMC9165276 DOI: 10.1007/s12210-022-01071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/27/2022] [Indexed: 11/23/2022]
Abstract
This paper aims at a definition of the domain of ecohydrology, a relatively new discipline borne out of an intrusion-as advertised by this Topical Collection of the Rendiconti Lincei-of hydrology and geomorphology into ecology (or vice-versa, depending on the reader's background). The study of hydrologic controls on the biota proves, in our view, significantly broader than envisioned by its original focus that was centered on the critical zone where much of the action of soil, climate and vegetation interactions takes place. In this review of related topics and contributions, we propose a reasoned broadening of perspective, in particular by firmly centering ecohydrology on the fluvial catchment as its fundamental control volume. A substantial unity of materials and methods suggests that our advocacy may be considered legitimate.
Collapse
Affiliation(s)
- Andrea Rinaldo
- Accademia Nazionale dei Lincei, Rome, Italy
- Laboratory of Ecohydrology ENAC/IIE/ECHO, École Polytechinque Fédérale de Lausanne, Lausanne, Switzerland
- Dipartimento ICEA, Università degli studi di Padova, Padua, Italy
| | - Ignacio Rodriguez-Iturbe
- Department of Ocean Engineering, Texas A&M University, College Station, TX USA
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX USA
| |
Collapse
|
4
|
Robinson HE, Alexander JD, Bartholomew JL, Hallett SL, Hetrick NJ, Perry RW, Som NA. Using a mechanistic framework to model the density of an aquatic parasite Ceratonova shasta. PeerJ 2022; 10:e13183. [PMID: 35441056 PMCID: PMC9013479 DOI: 10.7717/peerj.13183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Ceratonova shasta is a myxozoan parasite endemic to the Pacific Northwest of North America that is linked to low survival rates of juvenile salmonids in some watersheds such as the Klamath River basin. The density of C. shasta actinospores in the water column is typically highest in the spring (March-June), and directly influences infection rates for outmigrating juvenile salmonids. Current management approaches require quantities of C. shasta density to assess disease risk and estimate survival of juvenile salmonids. Therefore, we developed a model to simulate the density of waterborne C. shasta actinospores using a mechanistic framework based on abiotic drivers and informed by empirical data. The model quantified factors that describe the key features of parasite abundance during the period of juvenile salmon outmigration, including the week of initial detection (onset), seasonal pattern of spore density, and peak density of C. shasta. Spore onset was simulated by a bio-physical degree-day model using the timing of adult salmon spawning and accumulation of thermal units for parasite development. Normalized spore density was simulated by a quadratic regression model based on a parabolic thermal response with river water temperature. Peak spore density was simulated based on retained explanatory variables in a generalized linear model that included the prevalence of infection in hatchery-origin Chinook juveniles the previous year and the occurrence of flushing flows (≥171 m3/s). The final model performed well, closely matched the initial detections (onset) of spores, and explained inter-annual variations for most water years. Our C. shasta model has direct applications as a management tool to assess the impact of proposed flow regimes on the parasite, and it can be used for projecting the effects of alternative water management scenarios on disease-induced mortality of juvenile salmonids such as with an altered water temperature regime or with dam removal.
Collapse
Affiliation(s)
- H. Eve Robinson
- Arcata Fish and Wildlife Office, U.S. Fish and Wildlife Service, Arcata, CA, United States of America,California State Polytechnic University, Humboldt, Arcata, CA, United States of America
| | - Julie D. Alexander
- Department of Microbiology, Oregon State University, Corvallis, OR, United States of America
| | - Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States of America
| | - Sascha L. Hallett
- Department of Microbiology, Oregon State University, Corvallis, OR, United States of America
| | - Nicholas J. Hetrick
- Arcata Fish and Wildlife Office, U.S. Fish and Wildlife Service, Arcata, CA, United States of America
| | - Russell W. Perry
- U.S. Geological Survey, Western Fisheries Research Center, Cook, WA, United States of America
| | - Nicholas A. Som
- Arcata Fish and Wildlife Office, U.S. Fish and Wildlife Service, Arcata, CA, United States of America,California State Polytechnic University, Humboldt, Arcata, CA, United States of America
| |
Collapse
|
5
|
Bailey C, Strepparava N, Ros A, Wahli T, Schmidt-Posthaus H, Segner H, Tafalla C. It's a hard knock life for some: Heterogeneity in infection life history of salmonids influences parasite disease outcomes. J Anim Ecol 2021; 90:2573-2593. [PMID: 34165799 PMCID: PMC8597015 DOI: 10.1111/1365-2656.13562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/19/2021] [Indexed: 11/27/2022]
Abstract
Heterogeneity in immunity occurs across numerous disease systems with individuals from the same population having diverse disease outcomes. Proliferative kidney disease (PKD) caused by Tetracapsuloides bryosalmonae, is a persistent parasitic disease negatively impacting both wild and farmed salmonids. Little is known of how PKD is spread or maintained within wild susceptible populations. We investigated an aspect of fish disease that has been largely overlooked, that is, the role of the host phenotypic heterogeneity in disease outcome. We examined how host susceptibility to T. bryosalmonae infection, and the disease PKD, varied across different infection life-history stages and how it differs between naïve, re-infected and persistently infected hosts. We investigated the response to parasite exposure in host phenotypes with (a) different ages and (b) heterogeneous infection life histories. Among (a) the age phenotypes were young-of-the-year (YOY) fish and juvenile 1+ fish (fish older than one) and, for (b) juvenile 1+ infection survivors were either re-exposed or not re- exposed to the parasite and response phenotypes were assigned post-hoc dependant on infection status. In fish not re-exposed this included fish that cleared infection (CI) or had a persistent infection (PI). In fish re-exposed these included fish that were re-infected (RI), or re-exposed and uninfected (RCI). We assessed both parasite-centric (infection prevalence, parasite burden, malacospore transmission) and host-centric parameters (growth rates, disease severity, infection tolerance and the immune response). In (a), YOY fish, parasite success and disease severity were greater and differences in the immune response occurred, demonstrating an ontogenetic decline of susceptibility in older fish. In (b), in PI and RI fish, parasite success and disease severity were comparable. However, expression of several adaptive immunity markers was greater in RI fish, indicating concomitant immunity, as re-exposure did not intensify infection. We demonstrate the relevance of heterogeneity in infection life history on disease outcome and describe several distinctive features of immune ontogeny and protective immunity in this model not previously reported. The relevance of such themes on a population level requires greater research in many aquatic disease systems to generate clearer framework for understanding the spread and maintenance of aquatic pathogens.
Collapse
Affiliation(s)
- Christyn Bailey
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| | - Nicole Strepparava
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Albert Ros
- LAZBW, Fischereiforschungsstelle, Langenargen, Germany
| | - Thomas Wahli
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | | | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| |
Collapse
|
6
|
Páez DJ, LaDeau SL, Breyta R, Kurath G, Naish KA, Ferguson PFB. Infectious hematopoietic necrosis virus specialization in a multihost salmonid system. Evol Appl 2020; 13:1841-1853. [PMID: 32908589 PMCID: PMC7463311 DOI: 10.1111/eva.12931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 01/08/2023] Open
Abstract
Many pathogens interact and evolve in communities where more than one host species is present, yet our understanding of host-pathogen specialization is mostly informed by laboratory studies with single species. Managing diseases in the wild, however, requires understanding how host-pathogen specialization affects hosts in diverse communities. Juvenile salmonid mortality in hatcheries caused by infectious hematopoietic necrosis virus (IHNV) has important implications for salmonid conservation programs. Here, we evaluate evidence for IHNV specialization on three salmonid hosts and assess how this influences intra- and interspecific transmission in hatchery-reared salmonids. We expect that while more generalist viral lineages should pose an equal risk of infection across host types, viral specialization will increase intraspecific transmission. We used Bayesian models and data from 24 hatcheries in the Columbia River Basin to reconstruct the exposure history of hatcheries with two IHNV lineages, MD and UC, allowing us to estimate the probability of juvenile infection with these lineages in three salmonid host types. Our results show that lineage MD is specialized on steelhead trout and perhaps rainbow trout (both Oncorhynchus mykiss), whereas lineage UC displayed a generalist phenotype across steelhead trout, rainbow trout, and Chinook salmon. Furthermore, our results suggest the presence of specialist-generalist trade-offs because, while lineage UC had moderate probabilities of infection across host types, lineage MD had a small probability of infection in its nonadapted host type, Chinook salmon. Thus, in addition to quantifying probabilities of infection of socially and economically important salmonid hosts with different IHNV lineages, our results provide insights into the trade-offs that viral lineages incur in multihost communities. Our results suggest that knowledge of the specialist/generalist strategies of circulating viral lineages could be useful in salmonid conservation programs to control disease.
Collapse
Affiliation(s)
- David J. Páez
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabama
| | | | - Rachel Breyta
- U.S. Geological Survey, Western Fisheries Research CenterSeattleWashington
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research CenterSeattleWashington
| | - Kerry A. Naish
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashington
| | | |
Collapse
|
7
|
Ndii MZ, Berkanis FR, Tambaru D, Lobo M, Ariyanto, Djahi BS. Optimal control strategy for the effects of hard water consumption on kidney-related diseases. BMC Res Notes 2020; 13:201. [PMID: 32252815 PMCID: PMC7137219 DOI: 10.1186/s13104-020-05043-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES : We study the optimal control strategy for the effects of hard water consumption on kidney-related diseases. The mathematical model has been formulated and studied to gain insights on the optimal control strategy on the effects of hard-water consumption on kidney-related diseases. The positivity and boundedness of the solutions are determined. A global sensitivity analysis has been performed and the numerical solutions have been carried out. RESULTS : A global sensitivity analysis shows that the control on water is an important parameter. This can reduce the proportion of individuals with kidney-dysfunction and hence reduces the proportion of individuals with kidney-related diseases. Furthermore, the numerical solutions show that with the optimal control, the proportion of individuals with kidney-related diseases can be minimised.
Collapse
Affiliation(s)
- Meksianis Z Ndii
- Department of Mathematics, Faculty of Sciences and Engineering, University of Nusa Cendana, Kupang-NTT, Indonesia.
| | - Fransiska R Berkanis
- Department of Mathematics, Faculty of Sciences and Engineering, University of Nusa Cendana, Kupang-NTT, Indonesia
| | - David Tambaru
- Department of Chemistry, Faculty of Sciences and Engineering, University of Nusa Cendana, Kupang-NTT, Indonesia
| | - Maria Lobo
- Department of Mathematics, Faculty of Sciences and Engineering, University of Nusa Cendana, Kupang-NTT, Indonesia
| | - Ariyanto
- Department of Mathematics, Faculty of Sciences and Engineering, University of Nusa Cendana, Kupang-NTT, Indonesia
| | - Bertha S Djahi
- Department of Computer Science, Faculty of Sciences and Engineering, University of Nusa Cendana, Kupang-NTT, Indonesia
| |
Collapse
|
8
|
Sudhagar A, Kumar G, El-Matbouli M. The Malacosporean Myxozoan Parasite Tetracapsuloides bryosalmonae: A Threat to Wild Salmonids. Pathogens 2019; 9:E16. [PMID: 31877926 PMCID: PMC7168663 DOI: 10.3390/pathogens9010016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/03/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023] Open
Abstract
Tetracapsuloides bryosalmonae is a myxozoan parasite responsible for proliferative kidney disease (PKD) in a wide range of salmonids. PKD, characterized by high mortality and morbidity, is well known for affecting aquaculture operations and wild salmonid populations across Europe and North America. The life cycle of T. bryosalmonae revolves around freshwater bryozoan and salmonid fish hosts. In recent years, T. bryosalmonae has been reported among wild salmonids from the European countries where it has not been reported previously. T. bryosalmonae is believed to be a possible reason for the diminishing wild salmonid populations in the natural water bodies of many European countries. Climate crisis driven rising water temperature can further accelerate the distribution of T. bryosalmonae. Expansion of the geographical distribution of T. bryosalmonae may further advocate the decline of wild salmonid populations, especially brown trout (Salmo trutta) in their habitats. Mathematical models are used to understand the pattern and distribution of T. bryosalmonae among the host in the natural water bodies. The present manuscript not only summarizes the incidences of T. bryosalmonae among the wild salmonid populations, but also discusses the contemporary understanding about the development of T. bryosalmonae in its hosts and the influences of various factors in the spread of the disease in the wild.
Collapse
Affiliation(s)
- Arun Sudhagar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria; (A.S.); (M.E.-M.)
- Central Institute of Fisheries Education, Rohtak Centre, Haryana 124411, India
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria; (A.S.); (M.E.-M.)
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna 1210, Austria; (A.S.); (M.E.-M.)
| |
Collapse
|
9
|
Arndt D, Fux R, Blutke A, Schwaiger J, El-Matbouli M, Sutter G, Langenmayer MC. Proliferative Kidney Disease and Proliferative Darkening Syndrome are Linked with Brown Trout ( Salmo trutta fario) Mortalities in the Pre-Alpine Isar River. Pathogens 2019; 8:pathogens8040177. [PMID: 31590460 PMCID: PMC6963635 DOI: 10.3390/pathogens8040177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
For many years, brown trout (Salmo trutta fario) mortalities within the pre-alpine Isar River in Germany were reported by the Bavarian Fisheries Association (Landesfischereiverband Bayern e.V.) and local recreational anglers during August and September. Moribund fish seemed to be affected by proliferative darkening syndrome (PDS). In addition, proliferative kidney disease (PKD) caused by Tetracapsuloides bryosalmonae was discussed. To investigate this phenomenon, the present field study monitored brown trout mortalities by daily river inspection in 2017 and 2018. Moribund brown trout (n = 31) were collected and examined using histology, immunohistochemistry, qPCR, and quantitative stereology. Our investigations identified 29 (93.5%) brown trout affected by PKD. Four brown trout (12.9%) displayed combined hepatic and splenic lesions fitting the pathology of PDS. The piscine orthoreovirus 3, suspected as causative agent of PDS, was not detectable in any of the samples. Quantitative stereological analysis of the kidneys revealed a significant increase of the renal tissue volumes with interstitial inflammation and hematopoietic hyperplasia in PKD-affected fish as compared to healthy brown trout. The identified T. bryosalmonae strain was classified as part of the North American clade by phylogenetical analysis. This study highlights PKD and PDS as contributing factors to recurrent autumnal brown trout mortalities.
Collapse
Affiliation(s)
- Daniela Arndt
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany.
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany.
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany.
| | - Julia Schwaiger
- Bavarian Environment Agency, Unit Aquatic Toxicology, 82407 Wielenbach, Germany.
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria.
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany.
| | - Martin C Langenmayer
- Institute for Infectious Diseases and Zoonoses, LMU Munich, 80539 Munich, Germany.
| |
Collapse
|
10
|
Gorgoglione B, Taylor NGH, Holland JW, Feist SW, Secombes CJ. Immune response modulation upon sequential heterogeneous co-infection with Tetracapsuloides bryosalmonae and VHSV in brown trout (Salmo trutta). FISH & SHELLFISH IMMUNOLOGY 2019; 88:375-390. [PMID: 30797951 DOI: 10.1016/j.fsi.2019.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Simultaneous and sequential infections often occur in wild and farming environments. Despite growing awareness, co-infection studies are still very limited, mainly to a few well-established human models. European salmonids are susceptible to both Proliferative Kidney Disease (PKD), an endemic emergent disease caused by the myxozoan parasite Tetracapsuloides bryosalmonae, and Viral Haemorrhagic Septicaemia (VHS), an OIE notifiable listed disease caused by the Piscine Novirhabdovirus. No information is available as to how their immune system reacts when interacting with heterogeneous infections. A chronic (PKD) + acute (VHS) sequential co-infection model was established to assess if the responses elicited in co-infected fish are modulated, when compared to fish with single infections. Macro- and microscopic lesions were assessed after the challenge, and infection status confirmed by RT-qPCR analysis, enabling the identification of singly-infected and co-infected fish. A typical histophlogosis associated with histozoic extrasporogonic T. bryosalmonae was detected together with acute inflammation, haemorrhaging and necrosis due to the viral infection. The host immune response was measured in terms of key marker genes expression in kidney tissues. During T. bryosalmonae/VHSV-Ia co-infection, modulation of pro-inflammatory and antimicrobial peptide genes was strongly influenced by the viral infection, with a protracted inflammatory status, perhaps representing a negative side effect in these fish. Earlier activation of the cellular and humoral responses was detected in co-infected fish, with a more pronounced upregulation of Th1 and antiviral marker genes. These results reveal that some brown trout immune responses are enhanced or prolonged during PKD/VHS co-infection, relative to single infection.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK; CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK.
| | - Nick G H Taylor
- CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK
| | - Stephen W Feist
- CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK.
| |
Collapse
|
11
|
Yang YF, Lu TH, Lin HC, Chen CY, Liao CM. Assessing the population transmission dynamics of tilapia lake virus in farmed tilapia. JOURNAL OF FISH DISEASES 2018; 41:1439-1448. [PMID: 30003543 DOI: 10.1111/jfd.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
A novel virus, tilapia lake virus (TiLV), has been identified as a key pathogen responsible for disease outbreak and mass mortality of farmed tilapia. We used a deterministic susceptible-infectious-mortality (SIM) model to derive key disease information appraised with published TiLV-induced cumulative mortality data. The relationship between tilapia mortality and TiLV exposure dosages was described by the Hill model. Furthermore, a disease control model was proposed to determine the status of controlled TiLV infection using a parsimonious control reproduction number (RC )-control line criterion. Results showed that the key disease determinants of transmission rate and basic reproduction number (R0 ) could be derived. The median R0 estimate was 2.59 in a cohabitation setting with 2.6 × 105 TCID50 fish-1 TiLV. The present RC -control model can be employed to determine whether TiLV containment is feasible in an outbreak farm by quantifying the current level of transmission. The SIM model can then be applied to predict what additional control is required to manage RC < 1. We offer valuable tools for aquaculture engineers and public health scientists the mechanistic-based assessment that allows a more rigorous evaluation of different control strategies to reduce waterborne diseases in aquaculture farming systems.
Collapse
Affiliation(s)
- Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Tien-Hsuan Lu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Hsing-Chieh Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Chi-Yun Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
12
|
Occurrence of two novel actinospore types (Cnidaria: Myxozoa) in fish farms in Mato Grosso do Sul state, Brazil. Parasitol Res 2018; 117:1757-1764. [PMID: 29713902 DOI: 10.1007/s00436-018-5856-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
We investigated the involvement of oligochaetes in the life cycles of fresh water myxozoan parasites in Brazil. In a fish farm in the State of Mato Grosso do Sul, we examined 192 oligochaetes and found that two (1%) released Aurantiactinomyxon type actinospores. We identified infected oligochaetes by morphology: both were Pristina synclites, from family Naididae. This is the first report of the involvement of this species in the life cycle of myxozoans. Small-subunit ribosomal DNA sequences of Aurantiactinomyxon type 1 (1882 nt) and Aurantiactinomyxon type 2 (1900 nt) did not match any previously sequenced myxozoan in the NCBI database, with the highest BLAST search similarities of 83% with Myxobolus batalhensis MF361090 and 93% with Henneguya maculosus KF296344, respectively, and the two aurantiactinomyxons were only 75% similar to each other (over ~ 1900 bases). Phylogenetic analyses showed that Aurantiactinomyxon type 1 had closest affinities with myxozoans from fish hosts in Order Characiformes, and Aurantiactinomyxon type 2 had affinities with myxozoans from fish of Order Siluriformes.
Collapse
|
13
|
Rinaldo A, Gatto M, Rodriguez-Iturbe I. River networks as ecological corridors: A coherent ecohydrological perspective. ADVANCES IN WATER RESOURCES 2018; 112:27-58. [PMID: 29651194 PMCID: PMC5890385 DOI: 10.1016/j.advwatres.2017.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 05/14/2023]
Abstract
This paper draws together several lines of argument to suggest that an ecohydrological framework, i.e. laboratory, field and theoretical approaches focused on hydrologic controls on biota, has contributed substantially to our understanding of the function of river networks as ecological corridors. Such function proves relevant to: the spatial ecology of species; population dynamics and biological invasions; the spread of waterborne disease. As examples, we describe metacommunity predictions of fish diversity patterns in the Mississippi-Missouri basin, geomorphic controls imposed by the fluvial landscape on elevational gradients of species' richness, the zebra mussel invasion of the same Mississippi-Missouri river system, and the spread of proliferative kidney disease in salmonid fish. We conclude that spatial descriptions of ecological processes in the fluvial landscape, constrained by their specific hydrologic and ecological dynamics and by the ecosystem matrix for interactions, i.e. the directional dispersal embedded in fluvial and host/pathogen mobility networks, have already produced a remarkably broad range of significant results. Notable scientific and practical perspectives are thus open, in the authors' view, to future developments in ecohydrologic research.
Collapse
Affiliation(s)
- Andrea Rinaldo
- Laboratory of Ecohydrology ECHO/IIE/ENAC, École Polytechinque Fédérale de Lausanne, Lausanne, CH, Switzerland
- Dipartimento ICEA, Università di Padova, Padova, IT, Italy
| | - Marino Gatto
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano IT, Italy
| | - Ignacio Rodriguez-Iturbe
- Department of Ocean Engineering, Department of Civil Engineering and Department of Biological and Agricultural Engineering, Texas A & M University, College Station (TX), USA
| |
Collapse
|
14
|
Soliman H, Kumar G, El-Matbouli M. Tetracapsuloides bryosalmonae persists in brown trout Salmo trutta for five years post exposure. DISEASES OF AQUATIC ORGANISMS 2018; 127:151-156. [PMID: 29384485 DOI: 10.3354/dao03200] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tetracapsuloides bryosalmonae is a malacosporean parasite and the causative agent of proliferative kidney disease (PKD) that seriously impacts farmed and wild salmonids. The parasite's life cycle includes an invertebrate host, the bryozoan Fredericella sultana, and a vertebrate host, salmonid fish. The persistence of T. bryosalmonae in brown trout Salmo trutta for up to 2 yr following exposure is well documented. Results from the present study confirmed that one brown trout that had recovered from PKD did not completely clear the parasite from its tissues and that T. bryosalmonae could persist in brown trout for up to 5 yr post exposure. Furthermore, recovered infected brown trout can release viable T. bryosalmonae spores that are able to infect specific pathogen-free F. sultana colonies. T. bryosalmonae DNA was detected by PCR in every organ, and parasite stages were observed in the kidney, spleen and liver following immunohistochemistry. This finding indicates that T. bryosalmonae-infected brown trout can act as asymptomatic carriers and release the parasite for several years after the initial infection, acting as a reservoir of infection, and contributing to the dissemination of the parasite to new areas.
Collapse
Affiliation(s)
- Hatem Soliman
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | | | | |
Collapse
|
15
|
Integrated field, laboratory, and theoretical study of PKD spread in a Swiss prealpine river. Proc Natl Acad Sci U S A 2017; 114:11992-11997. [PMID: 29078391 PMCID: PMC5692590 DOI: 10.1073/pnas.1713691114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Predicting how temperature, climate change, and emerging infectious diseases interact to drive local extinction risk for natural populations requires complex integrated approaches involving field data [fish and environmental DNA (eDNA) sampling and hydrological and geomorphological surveys], laboratory studies (eDNA analyses and disease prevalence assessment), and metacommunity modeling. Together, these tools reproduce all of the relevant biological and ecohydrological features of proliferative kidney disease, a major emerging disease impacting native salmonid stocks. We thus provide a predictive framework, applicable to other aquatic pathogens, that may function as a baseline for environmental management decisions aimed at preserving declining and iconic salmonid species. Proliferative kidney disease (PKD) is a major threat to wild and farmed salmonid populations because of its lethal effect at high water temperatures. Its causative agent, the myxozoan Tetracapsuloides bryosalmonae, has a complex lifecycle exploiting freshwater bryozoans as primary hosts and salmonids as secondary hosts. We carried out an integrated study of PKD in a prealpine Swiss river (the Wigger). During a 3-year period, data on fish abundance, disease prevalence, concentration of primary hosts’ DNA in environmental samples [environmental DNA (eDNA)], hydrological variables, and water temperatures gathered at various locations within the catchment were integrated into a newly developed metacommunity model, which includes ecological and epidemiological dynamics of fish and bryozoans, connectivity effects, and hydrothermal drivers. Infection dynamics were captured well by the epidemiological model, especially with regard to the spatial prevalence patterns. PKD prevalence in the sampled sites for both young-of-the-year (YOY) and adult brown trout attained 100% at the end of summer, while seasonal population decay was higher in YOY than in adults. We introduce a method based on decay distance of eDNA signal predicting local species’ density, accounting for variation in environmental drivers (such as morphology and geology). The model provides a whole-network overview of the disease prevalence. In this study, we show how spatial and environmental characteristics of river networks can be used to study epidemiology and disease dynamics of waterborne diseases.
Collapse
|
16
|
Rinaldo A, Bertuzzo E, Blokesch M, Mari L, Gatto M. Modeling Key Drivers of Cholera Transmission Dynamics Provides New Perspectives for Parasitology. Trends Parasitol 2017; 33:587-599. [PMID: 28483382 DOI: 10.1016/j.pt.2017.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/01/2017] [Accepted: 04/10/2017] [Indexed: 11/15/2022]
Abstract
Hydroclimatological and anthropogenic factors are key drivers of waterborne disease transmission. Information on human settlements and host mobility on waterways along which pathogens and hosts disperse, and relevant hydroclimatological processes, can be acquired remotely and included in spatially explicit mathematical models of disease transmission. In the case of epidemic cholera, such models allowed the description of complex disease patterns and provided insight into the course of ongoing epidemics. The inclusion of spatial information in models of disease transmission can aid in emergency management and the assessment of alternative interventions. Here, we review the study of drivers of transmission via spatially explicit approaches and argue that, because many parasitic waterborne diseases share the same drivers as cholera, similar principles may apply.
Collapse
Affiliation(s)
- Andrea Rinaldo
- Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Dipartimento ICEA, Università di Padova, Padova, Italy.
| | - Enrico Bertuzzo
- Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Environmental Sciences, Informatics and Statistics, University Cà Foscari Venice, Venezia Mestre, Italy
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lorenzo Mari
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Marino Gatto
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| |
Collapse
|
17
|
Ben-David J, Atkinson SD, Pollak Y, Yossifon G, Shavit U, Bartholomew JL, Lotan T. Myxozoan polar tubules display structural and functional variation. Parasit Vectors 2016; 9:549. [PMID: 27741948 PMCID: PMC5064783 DOI: 10.1186/s13071-016-1819-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Myxozoa is a speciose group of endoparasitic cnidarians that can cause severe ecological and economic effects. Although highly reduced compared to free-living cnidarians, myxozoans have retained the phylum-defining stinging organelles, known as cnidae or polar capsules, which are essential to initiating host infection. To explore the adaptations of myxozoan polar capsules, we compared the structure, firing process and content release mechanism of polar tubules in myxospores of three Myxobolus species including M. cerebralis, the causative agent of whirling disease. RESULTS We found novel functions and morphologies in myxozoan polar tubules. High-speed video analysis of the firing process of capsules from the three Myxobolus species showed that all polar tubules rapidly extended and then contracted, an elasticity phenomenon that is unknown in free-living cnidarians. Interestingly, the duration of the tubule release differed among the three species by more than two orders of magnitude, ranging from 0.35 to 10 s. By dye-labeling the polar capsules prior to firing, we discovered that two of the species could release their entire capsule content, a delivery process not previously known from myxozoans. Having the role of content delivery and not simply anchoring suggests that cytotoxic or proteolytic compounds may be present in the capsule. Moreover, while free-living cnidarians inject most of the toxic content through the distal tip of the tubule, our video and ultrastructure analyses of the myxozoan tubules revealed patterns of double spirals of nodules and pores along parts of the tubules, and showed that the distal tip of the tubules was sealed. This helical pattern and distribution of openings may minimize the tubule mechanical weakness and improve resistance to the stress impose by firing. The finding that myxozoan tubule characteristics are very different from those of free-living cnidarians is suggestive of their adaptation to parasitic life. CONCLUSIONS These findings show that myxozoan polar tubules have more functions than previously assumed, and provide insight into their evolution from free-living ancestors.
Collapse
Affiliation(s)
- Jonathan Ben-David
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 31905, Israel
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, OR, 97331, USA
| | - Yulia Pollak
- Electron Microscopy Unit, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Technion, Haifa, 32000, Israel
| | - Uri Shavit
- Faculty of Civil and Environmental Engineering, Technion, Haifa, 32000, Israel
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, OR, 97331, USA
| | - Tamar Lotan
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 31905, Israel.
| |
Collapse
|