1
|
Lu Y, Liu J, Tang W, Zhang H. NLRP3 inflammasome inhibition decreases Schistosomiasis japonica-induced granulomatous inflammation and fibrosis in BALB/c mice. Infect Immun 2024; 92:e0005524. [PMID: 39158264 PMCID: PMC11475658 DOI: 10.1128/iai.00055-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/13/2024] [Indexed: 08/20/2024] Open
Abstract
To research the role of the NLRP3 inflammasome in Schistosoma japonicum-induced granuloma formation and liver fibrosis. In in vivo tests, BALB/c mice were used. shNLRP3 plasmid based on adeno-associated virus serotype 8 (AAV8-shNLRP3) was injected to block NLRP3 inflammasome via tail vein. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were detected to assess liver injury. H&E staining was used for routine histopathological assessment; Masson's trichrome staining was used to detect fibrous tissues and collagen fibers. Hepatic expression of NLRP3, procaspase-1, bioactive caspase-1, collagen-1, tissue inhibitor of metalloproteinases-1 (TIMP-1), and α-smooth muscle actin (α-SMA) were detected by western blot. Serum levels of IL-1β were detected by enzyme-linked immunosorbent assay (ELISA). The inflammatory cell infiltration and hepatic expression of IL-1β around the granuloma were detected by immunohistochemistry staining. Treatment of S. japonicum infected mice with AAV8-shNLRP3 significantly reduced the hepatic levels of bioactive caspase-1 and IL-1β, as well as circulating IL-1β concentrations, while reducing the amounts of myeloperoxidase (MPO) and F4/80 positive cells around the granuloma. Moreover, collagen deposition, TIMP-1, and α-SMA, which are markers of hepatic stellate cell (HSC) activation, were reduced around the liver granuloma. These findings highlight a therapeutic potential of AAV8-shNLRP3 in schistosomiasis cirrhosis.
Collapse
Affiliation(s)
- Yaqi Lu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Liu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wangxian Tang
- Institute of Liver Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Chen H, Huang S, Yao S, Wang J, Huang J, Yu Z. Multi-omics analyses of Bacillus amyloliquefaciens treated mice infected with Schistosoma japonicum reveal dynamics change of intestinal microbiome and its associations with host metabolism. PLoS Negl Trop Dis 2024; 18:e0012583. [PMID: 39466852 PMCID: PMC11515987 DOI: 10.1371/journal.pntd.0012583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Schistosomiasis japonica is a serious threat to human health. It causes damage to the intestine and liver. Probiotic therapy has been shown to be effective in alleviating intestinal diseases and improving host health. Previous studies have found that Bacillus amyloliquefaciens could alleviate the pathological symptoms of schistosomiasis japonica, but the regulatory mechanism of alleviating schistosomiasis japonica is still unknown. PRINCIPAL FINDINGS This study analyzed the dynamic changes of intestinal microbiome in mice infected with Schistosoma japonicum after the intervention of B. amyloliquefaciens and its connection to host metabolism by multi-omics sequencing technology. B. amyloliquefaciens was found to significantly regulate the homeostasis of intestinal microbiota by promoting the growth of beneficial bacteria and inhibiting potential pathogenic bacteria and protect the number of core microbes. Meanwhile, the genes related to the metabolism of glycerophospholipids and amino acid from intestinal microbiome changed significantly, and were shown to be significantly positively correlated with the associated metabolites of microbial origin. Moreover, host metabolism (lipid metabolism and steroid hormone biosynthesis) was also found to be significantly regulated. CONCLUSIONS The recovery of intestinal microbial homeostasis and the regulation of host metabolism revealed the potential probiotic properties of B. amyloliquefaciens, which also provided new ideas for the prevention and adjuvant treatment of schistosomiasis japonica.
Collapse
Affiliation(s)
- Hao Chen
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shuaiqin Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Siqi Yao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jingyan Wang
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Peng B, Luo Y, Xie S, Zhuang Q, Li J, Zhang P, Liu K, Zhang Y, Zhou C, Guo C, Zhou Z, Zhou J, Cai Y, Xia M, Cheng K, Ming Y. Proliferation of MDSCs may indicate a lower CD4+ T cell immune response in schistosomiasis japonica. Parasite 2024; 31:52. [PMID: 39212529 PMCID: PMC11363901 DOI: 10.1051/parasite/2024050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Schistosoma japonicum (S. japonicum) is the main species of Schistosoma prevalent in China. Myeloid-derived suppressor cells (MDSCs) are important immunoregulatory cells and generally expand in parasite infection, but there is little research relating to MDSCs in Schistosoma infection. METHODS Fifty-six S. japonicum-infected patients were included in this study. MDSCs and percentages and absolute cell numbers of lymphocyte subsets, including CD3+ T cells, CD4+ T cells, CD8+ T cells, B cells and natural killer (NK) cells were detected using flow cytometry. The degree of liver fibrosis was determined using color Doppler ultrasound. RESULTS Patients infected with S. japonicum had a much higher percentage of MDSCs among peripheral blood mononuclear cells (PBMCs) than the healthy control. Regarding subpopulations of MDSCs, the percentage of granulocytic myeloid-derived suppressor cells (G-MDSCs) was clearly increased. Correlation analysis showed that the absolute cell counts of T-cell subsets correlated negatively with the percentages of MDSCs and G-MDSCs among PBMCs. The percentage of G-MDSCs in PBMCs was also significantly higher in patients with liver fibrosis diagnosed by color doppler ultrasound (grade > 0), and the percentage of G-MDSCs in PBMCs and liver fibrosis grading based on ultrasound showed a positive correlation. CONCLUSION S. japonicum infection contributes to an increase in MDSCs, especially G-MDSCs, whose proliferation may inhibit the number of CD4+ T cells in peripheral blood. Meanwhile, there is a close relationship between proliferation of G-MDSCs and liver fibrosis in S. japonicum-infected patients.
Collapse
Affiliation(s)
- Bo Peng
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Yulin Luo
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Shudong Xie
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Quan Zhuang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Junhui Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Pengpeng Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Kai Liu
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Yu Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Chen Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Chen Guo
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Zhaoqin Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Jie Zhou
- Schistosomiasis Control Institute of Hunan Province, Yueyang, Hunan, China - Xiangyue Hospital affiliated to Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, China
| | - Yu Cai
- Xiangyue Hospital affiliated to Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, China
| | - Meng Xia
- Xiangyue Hospital affiliated to Hunan Institute of Schistosomiasis Control, Yueyang, Hunan, China
| | - Ke Cheng
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China - NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Chen H, Huang S, Zhao Y, Sun R, Wang J, Yao S, Huang J, Yu Z. Metagenomic analysis of the intestinal microbiome reveals the potential mechanism involved in Bacillus amyloliquefaciens in treating schistosomiasis japonica in mice. Microbiol Spectr 2024; 12:e0373523. [PMID: 38441977 PMCID: PMC10986500 DOI: 10.1128/spectrum.03735-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/11/2024] [Indexed: 03/07/2024] Open
Abstract
Schistosomiasis japonica is one of the neglected tropical diseases characterized by chronic hepatic, intestinal granulomatous inflammation and fibrosis, as well as dysbiosis of intestinal microbiome. Previously, the probiotic Bacillus amyloliquefaciens has been shown to alleviate the pathological injuries in mice infected with Schistosoma japonicum by improving the disturbance of the intestinal microbiota. However, the underlying mechanisms involved in this process remain unclear. In this study, metagenomics sequencing and functional analysis were employed to investigate the differential changes in taxonomic composition and functional genes of the intestinal microbiome in S. japonicum-infected mice treated with B. amyloliquefaciens. The results revealed that intervention with B. amyloliquefaciens altered the taxonomic composition of the intestinal microbiota at the species level in infected mice and significantly increased the abundance of beneficial bacteria. Moreover, the abundance of predicted genes in the intestinal microbiome was also significantly changed, and the abundance of xfp/xpk and genes translated to urease was significantly restored. Further analysis showed that Limosilactobacillus reuteri was positively correlated with several KEGG Orthology (KO) genes and metabolic reactions, which might play important roles in alleviating the pathological symptoms caused by S. japonicum infection, indicating that it has the potential to function as another effective therapeutic agent for schistosomiasis. These data suggested that treatment of murine schistosomiasis japonica by B. amyloliquefaciens might be induced by alterations in the taxonomic composition and functional gene of the intestinal microbiome in mice. We hope this study will provide adjuvant strategies and methods for the early prevention and treatment of schistosomiasis japonica. IMPORTANCE Targeted interventions of probiotics on gut microbiome were used to explore the mechanism of alleviating schistosomiasis japonica. Through metagenomic analysis, there were significant changes in the composition of gut microbiota in mice infected with Schistosoma japonicum and significant increase in the abundance of beneficial bacteria after the intervention of Bacillus amyloliquefaciens. At the same time, the abundance of functional genes was found to change significantly. The abundance of genes related to urease metabolism and xfp/xpk related to D-erythrose 4-phosphate production was significantly restored, highlighting the importance of Limosilactobacillus reuteri in the recovery and abundance of predicted genes of the gut microbiome. These results indicated potential regulatory mechanism between the gene function of gut microbiome and host immune response. Our research lays the foundation for elucidating the regulatory mechanism of probiotic intervention in alleviating schistosomiasis japonica, and provides potential adjuvant treatment strategies for early prevention and treatment of schistosomiasis japonica.
Collapse
Affiliation(s)
- Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shuaiqin Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yiming Zhao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ruizheng Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingyan Wang
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Siqi Yao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Li QF, Li YX, Yang YY, Dong PP, Mei CJ, Lu JL, Zhang JF, Hua HY, Xiong CR, Yu CX, Song LJ, Yang K. The egg ribonuclease SjCP1412 accelerates liver fibrosis caused by Schistosoma japonicum infection involving damage-associated molecular patterns (DAMPs). Parasitology 2024; 151:260-270. [PMID: 38105713 PMCID: PMC11007278 DOI: 10.1017/s0031182023001361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Schistosomiasis, a parasite infectious disease caused by Schistosoma japonicum, often leads to egg granuloma and fibrosis due to the inflammatory reaction triggered by egg antigens released in the host liver. This study focuses on the role of the egg antigens CP1412 protein of S. japonicum (SjCP1412) with RNase activity in promoting liver fibrosis. In this study, the recombinant egg ribonuclease SjCP1412, which had RNase activity, was successfully prepared. By analysing the serum of the population, it has been proven that the anti-SjCP1412 IgG in the serum of patients with advanced schistosomiasis was moderately correlated with liver fibrosis, and SjCP1412 may be an important antigen associated with liver fibrosis in schistosomiasis. In vitro, the rSjCP1412 protein induced the human liver cancer cell line Hep G2 and liver sinusoidal endothelial cells apoptosis and necrosis and the release of proinflammatory damage-associated molecular patterns (DAMPs). In mice infected with schistosomes, rSjCP1412 immunization or antibody neutralization of SjCP1412 activity significantly reduced cell apoptosis and necroptosis in liver tissue, thereby reducing inflammation and liver fibrosis. In summary, the SjCP1412 protein plays a crucial role in promoting liver fibrosis during schistosomiasis through mediating the liver cells apoptosis and necroptosis to release DAMPs inducing an inflammatory reaction. Blocking SjCP1412 activity could inhibit its proapoptotic and necrotic effects and alleviate hepatic fibrosis. These findings suggest that SjCP1412 may be served as a promising drug target for managing liver fibrosis in schistosomiasis japonica.
Collapse
Affiliation(s)
- Qi-Feng Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Yi-Xin Li
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Ying-Ying Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Pan-Pan Dong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Cong-Jin Mei
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Ju-Lu Lu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Jian-Feng Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Hai-Yong Hua
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Chun-Rong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Chuan-Xin Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Li-Jun Song
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| | - Kun Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu 214064, China
| |
Collapse
|
6
|
Doolan R, Putananickal N, Tritten L, Bouchery T. How to train your myeloid cells: a way forward for helminth vaccines? Front Immunol 2023; 14:1163364. [PMID: 37325618 PMCID: PMC10266106 DOI: 10.3389/fimmu.2023.1163364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Soil-transmitted helminths affect approximately 1.5 billion people worldwide. However, as no vaccine is currently available for humans, the current strategy for elimination as a public health problem relies on preventive chemotherapy. Despite more than 20 years of intense research effort, the development of human helminth vaccines (HHVs) has not yet come to fruition. Current vaccine development focuses on peptide antigens that trigger strong humoral immunity, with the goal of generating neutralizing antibodies against key parasite molecules. Notably, this approach aims to reduce the pathology of infection, not worm burden, with only partial protection observed in laboratory models. In addition to the typical translational hurdles that vaccines struggle to overcome, HHVs face several challenges (1): helminth infections have been associated with poor vaccine responses in endemic countries, probably due to the strong immunomodulation caused by these parasites, and (2) the target population displays pre-existing type 2 immune responses to helminth products, increasing the likelihood of adverse events such as allergy or anaphylaxis. We argue that such traditional vaccines are unlikely to be successful on their own and that, based on laboratory models, mucosal and cellular-based vaccines could be a way to move forward in the fight against helminth infection. Here, we review the evidence for the role of innate immune cells, specifically the myeloid compartment, in controlling helminth infections. We explore how the parasite may reprogram myeloid cells to avoid killing, notably using excretory/secretory (ES) proteins and extracellular vesicles (EVs). Finally, learning from the field of tuberculosis, we will discuss how anti-helminth innate memory could be harnessed in a mucosal-trained immunity-based vaccine.
Collapse
Affiliation(s)
- Rory Doolan
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Namitha Putananickal
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tiffany Bouchery
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Yue Y, Deng J, Wang H, Lv T, Dou W, Jiao Y, Peng X, Zhang Y. Two Secretory T2 RNases Act as Cytotoxic Factors Contributing to the Virulence of an Insect Fungal Pathogen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7069-7081. [PMID: 37122240 DOI: 10.1021/acs.jafc.3c01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
RNase T2 members are secreted by several pathogens or parasites during infection, playing various roles in pathogen-host interaction. However, functions of those members in biocontrol microbes targeting their hosts are still unknown. Here, we report that an insect fungal pathogen, Beauveria bassiana, produces two secretory RNase T2 members that act as cytotoxic factors, which were examined by insect bioassays using the targeted gene(s) disruption and overexpression strains. Overexpression strains displayed dramatically increased virulence, which was concurrent with few fungal cells and hemocytes in hemocoel, suggesting a cytotoxicity of the overexpressed gene products. In vitro assays using yeast-expressed proteins verified the cytotoxicity of the two members against insect cells, to which the cytotoxic effect was dependent on their RNases enzyme activities and glycosylation modification. Moreover, the excessive humoral immune responses triggered by the two ribonucleases were examined. These results suggested prospects of these two T2 ribonucleases for improvement of biocontrol agents.
Collapse
Affiliation(s)
- Yong Yue
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Juan Deng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Huifang Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Ting Lv
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Wei Dou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Yufei Jiao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Xinxin Peng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Biotechnology Research Center, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
8
|
Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings? Int J Biol Macromol 2023; 241:124649. [PMID: 37119907 DOI: 10.1016/j.ijbiomac.2023.124649] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.
Collapse
Affiliation(s)
- Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India.
| |
Collapse
|
9
|
Licá ICL, Frazão GCCG, Nogueira RA, Lira MGS, dos Santos VAF, Rodrigues JGM, Miranda GS, Carvalho RC, Silva LA, Guerra RNM, Nascimento FRF. Immunological mechanisms involved in macrophage activation and polarization in schistosomiasis. Parasitology 2023; 150:401-415. [PMID: 36601859 PMCID: PMC10089811 DOI: 10.1017/s0031182023000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Human schistosomiasis is caused by helminths of the genus Schistosoma. Macrophages play a crucial role in the immune regulation of this disease. These cells acquire different phenotypes depending on the type of stimulus they receive. M1 macrophages can be ‘classically activated’ and can display a proinflammatory phenotype. M2 or ‘alternatively activated’ macrophages are considered anti-inflammatory cells. Despite the relevance of macrophages in controlling infections, the role of the functional types of these cells in schistosomiasis is unclear. This review highlights different molecules and/or macrophage activation and polarization pathways during Schistosoma mansoni and Schistosoma japonicum infection. This review is based on original and review articles obtained through searches in major databases, including Scopus, Google Scholar, ACS, PubMed, Wiley, Scielo, Web of Science, LILACS and ScienceDirect. Our findings emphasize the importance of S. mansoni and S. japonicum antigens in macrophage polarization, as they exert immunomodulatory effects in different stages of the disease and are therefore important as therapeutic targets for schistosomiasis and in vaccine development. A combination of different antigens can provide greater protection, as it possibly stimulates an adequate immune response for an M1 or M2 profile and leads to host resistance; however, this warrants in vitro and in vivo studies.
Collapse
Affiliation(s)
- Irlla Correia Lima Licá
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Gleycka Cristine Carvalho Gomes Frazão
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Ranielly Araujo Nogueira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Maria Gabriela Sampaio Lira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Vitor Augusto Ferreira dos Santos
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme Silva Miranda
- Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Lucilene Amorim Silva
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Rosane Nassar Meireles Guerra
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Flávia Raquel Fernandes Nascimento
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| |
Collapse
|
10
|
Skelly PJ, Da'dara AA. Schistosome secretomes. Acta Trop 2022; 236:106676. [PMID: 36113567 DOI: 10.1016/j.actatropica.2022.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Schistosomes are intravascular parasitic platyhelminths (blood flukes) that infect over 200 million people globally. Biomolecules secreted by the worms likely contribute to their ability to survive in the bloodstreams of immunocompetent hosts for many years. Here we review what is known about the protein composition of material released by the worms. Prominent among cercarial excretions/secretions (ES) is a ∼ 30 kDa serine protease called cercarial elastase (SmCE in Schistosoma mansoni), likely important in host invasion. Also prominent is a 117 amino acid non-glycosylated polypeptide (Sm16) that can impact several host cell-types to impinge on immunological outcomes. Similarly, components of the egg secretome (notably the 134 amino acid homodimeric glycoprotein "IL-4 inducing principle of schistosome eggs", IPSE, and the 225-amino acid monomeric T2 ribonuclease - omega-1) are capable of driving Th2-biased immune responses. A ∼36kDa chemokine binding glycoprotein SmCKBP, secreted by eggs, can negate the impact of several cytokines and can impede neutrophil migration. Of special interest is a disparate collection of classically cytosolic proteins that are surprisingly often identified in schistosome ES across life stages. These proteins, perhaps released as components of extracellular vesicles (EVs), include glycolytic enzymes, redox proteins, proteases and protease inhibitors, heat shock proteins, proteins involved in translation/turnover, histones, and others. Some such proteins may display "moonlighting" functions and, for example, impede blood clot formation around the worms. More prosaically, since several are particularly abundant soluble proteins, their appearance in the ES fraction may be indicative of worm damage ex vivo leading to protein leakage. Some bioactive schistosome ES proteins are in development as novel therapeutics against autoimmune, inflammatory, and other, non-parasitic, diseases.
Collapse
Affiliation(s)
- Patrick J Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA.
| | - Akram A Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
| |
Collapse
|
11
|
Jiang J, Li J, Zhang Y, Zhou C, Guo C, Zhou Z, Ming Y. The Protective Effect of the Soluble Egg Antigen of Schistosoma japonicum in A Mouse Skin Transplantation Model. Front Immunol 2022; 13:884006. [PMID: 35911717 PMCID: PMC9332893 DOI: 10.3389/fimmu.2022.884006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background Organ transplantation is currently an effective method for treating organ failure. Long-term use of immunosuppressive drugs has huge side effects, which severely restricts the long-term survival of patients. Schistosoma can affect the host’s immune system by synthesizing, secreting, or excreting a variety of immunomodulatory molecules, but its role in transplantation was not well defined. In order to explore whether Schistosoma-related products can suppress rejection and induce long-term survival of the transplant, we used soluble egg antigen (SEA) of Schistosoma japonicum in mouse skin transplantation models. Materials and methods Each mouse was intraperitoneally injected with 100 μg of SEA three times a week for four consecutive weeks before allogenic skin transplant. Skin transplants were performed on day 0 to observe graft survival. Pathological examination of skin grafts was conducted 7 days post transplantation. The skin grafts were subjected to mRNA sequencing. Bioinformatics analysis was conducted and the expression of hub genes was verified by qPCR. Flow cytometry analysis was performed to evaluate the immune status and validate the results from bioinformatic analysis. Results The mean survival time (MST) of mouse skin grafts in the SEA-treated group was 11.67 ± 0.69 days, while that of the control group was 8.00 ± 0.36 days. Pathological analysis showed that Sj SEA treatment led to reduced inflammatory infiltration within skin grafts 7 days after allogenic skin transplantation. Bioinformatics analysis identified 86 DEGs between the Sj SEA treatment group and the control group, including 39 upregulated genes and 47 downregulated genes. Further analysis revealed that Sj SEA mediated regulation on cellular response to interferon-γ, activation of IL-17 signaling and chemokine signaling pathways, as well as cytokine–cytokine receptor interaction. Flow cytometry analysis showed that SEA treatment led to higher percentages of CD4+IL-4+ T cells and CD4+Foxp3+ T cells and decreased CD4+IFN-γ+ T cells in skin transplantation. Conclusion Sj SEA treatment suppressed rejection and prolonged skin graft survival by regulating immune responses. Sj SEA treatment might be a potential new therapeutic strategy to facilitate anti-rejection therapy and even to induce tolerance.
Collapse
Affiliation(s)
- Jie Jiang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Junhui Li
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zhang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chen Zhou
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chen Guo
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqin Zhou
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yingzi Ming
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yingzi Ming,
| |
Collapse
|
12
|
Kassa B, Lee MH, Kumar R, Mickael C, Sanders L, Tuder RM, Mentink-Kane M, Graham BB. Experimental Schistosoma japonicum-induced pulmonary hypertension. PLoS Negl Trop Dis 2022; 16:e0010343. [PMID: 35417453 PMCID: PMC9037943 DOI: 10.1371/journal.pntd.0010343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/25/2022] [Accepted: 03/19/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Schistosomiasis, a major cause of pulmonary arterial hypertension (PAH) worldwide, is most clearly described complicating infection by one species, Schistosoma mansoni. Controlled exposure of mice can be used to induce Type 2 inflammation-dependent S. mansoni pulmonary hypertension (PH). We sought to determine if another common species, S. japonicum, can also cause experimental PH. METHODS Schistosome eggs were obtained from infected mice, and administered by intraperitoneal sensitization followed by intravenous challenge to experimental mice, which underwent right heart catheterization and tissue analysis. RESULTS S. japonicum sensitized and challenged mice developed PH, which was milder than that following S. mansoni sensitization and challenge. The degree of pulmonary vascular remodeling and Type 2 inflammation in the lungs was similarly proportionate. Cross-sensitization revealed that antigens from either species are sufficient to sensitize for intravenous challenge with either egg, and the degree of PH severity depended on primarily the species used for intravenous challenge. Compared to a relatively uniform distribution of S. mansoni eggs, S. japonicum eggs were observed in clusters in the lungs. CONCLUSIONS S. japonicum can induce experimental PH, which is milder than that resulting from comparable S. mansoni exposure. This difference may result from the distribution of eggs in the lungs, and is independent of which species is used for sensitization. This result is consistent with the clearer association between S. mansoni infection and the development of schistosomiasis-associated PAH in humans.
Collapse
Affiliation(s)
- Biruk Kassa
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Michael H. Lee
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Claudia Mickael
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Linda Sanders
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rubin M. Tuder
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | | | - Brian B. Graham
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
13
|
Nagai K, Goto Y. Parasitomimetics: Can We Utilize Parasite-Derived Immunomodulatory Molecules for Interventions to Immunological Disorders? Front Immunol 2022; 13:824695. [PMID: 35386686 PMCID: PMC8977410 DOI: 10.3389/fimmu.2022.824695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Because our immune system has ability to expel microorganisms invading our body, parasites need evolution to maintain their symbiosis with the hosts. One such strategy of the parasites is to manipulate host immunity by producing immunomodulatory molecules and the ability of parasites to regulate host immunity has long been a target of research. Parasites can not only manipulate host immune response specific to them, but also influence the host's entire immune system. Such ability of the parasites may sometimes bring benefit to the hosts as many studies have indicated the "hygiene hypothesis" that a decreased opportunity of parasitic infections is associated with an increased incidence of allergy and autoimmune diseases. In other words, elucidating the mechanisms of parasites to regulate host immunity could be applied not only to resolution of parasitic infections but also to treatment of non-parasitic immunological disorders. In this review, we show how much progress has been made in the research on immunomodulation of host immunity by parasites. Here, we define the word 'parasitomimetics' as emulation of parasites' immunomodulatory systems to solve immunological problems in humans and discuss potential applications of parasite-derived molecules to other diseases.
Collapse
Affiliation(s)
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Abstract
Schistosomes are long lived, intravascular parasitic platyhelminths that infect >200 million people globally. The molecular mechanisms used by these blood flukes to dampen host immune responses are described in this review. Adult worms express a collection of host-interactive tegumental ectoenzymes that can cleave host signaling molecules such as the "alarmin" ATP (cleaved by SmATPDase1), the platelet activator ADP (SmATPDase1, SmNPP5), and can convert AMP into the anti-inflammatory mediator adenosine (SmAP). SmAP can additionally cleave the lipid immunomodulator sphingosine-1-phosphate and the proinflammatory anionic polymer, polyP. In addition, the worms release a barrage of proteins (e.g., SmCB1, SjHSP70, cyclophilin A) that can impinge on immune cell function. Parasite eggs also release their own immunoregulatory proteins (e.g., IPSE/α1, omega1, SmCKBP) as do invasive cercariae (e.g., Sm16, Sj16). Some schistosome glycans (e.g., LNFPIII, LNnT) and lipids (e.g., Lyso-PS, LPC), produced by several life stages, likewise affect immune cell responses. The parasites not only produce eicosanoids (e.g., PGE2, PGD2-that can be anti-inflammatory) but can also induce host cells to release these metabolites. Finally, the worms release extracellular vesicles (EVs) containing microRNAs, and these too have been shown to skew host cell metabolism. Thus, schistosomes employ an array of biomolecules-protein, lipid, glycan, nucleic acid, and more, to bend host biochemistry to their liking. Many of the listed molecules have been individually shown capable of inducing aspects of the polarized Th2 response seen following infection (with the generation of regulatory T cells (Tregs), regulatory B cells (Bregs) and anti-inflammatory, alternatively activated (M2) macrophages). Precisely how host cells integrate the impact of these myriad parasite products following natural infection is not known. Several of the schistosome immunomodulators described here are in development as novel therapeutics against autoimmune, inflammatory, and other, nonparasitic, diseases.
Collapse
Affiliation(s)
- Sreemoyee Acharya
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Zhang Y, Wu Y, Liu H, Gong W, Hu Y, Shen Y, Cao J. Granulocytic myeloid-derived suppressor cells inhibit T follicular helper cells during experimental Schistosoma japonicum infection. Parasit Vectors 2021; 14:497. [PMID: 34565440 PMCID: PMC8474882 DOI: 10.1186/s13071-021-05006-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background CD4+ T helper (Th) cells play critical roles in both host humoral and cellular immunity against parasitic infection and in the immunopathology of schistosomiasis. T follicular helper (Tfh) cells are a specialized subset of Th cells involved in immunity against infectious diseases. However, the role of Tfh cells in schistosome infection is not fully understood. In this study, the dynamics and roles of Tfh cell regulation were examined. We demonstrated that granulocytic myeloid-derived suppressor cells (G-MDSC) can suppress the proliferation of Tfh cells. Methods The levels of Tfh cells and two other Th cells (Th1, Th2) were quantitated at different Schistosoma japonicum infection times (0,3, 5, 8, 13 weeks) using flow cytometry. The proliferation of Tfh cells stimulated by soluble egg antigen (SEA) and soluble worm antigen (SWA) in vivo and in vitro were analyzed. Tfh cells were co-cultured with MDSC to detect the proliferation of Tfh cells labelled by 5(6)-carboxyfluorescein diacetate N-succinimidyl ester. We dynamically monitored the expression of programmed cell death protein 1 (PD-1) on the surface of Tfh cells and programmed cell death ligand 1 (PD-L1) on the surface of MDSC at different infection times (0, 3, 5, 8 weeks). Naïve CD4+ T cells (in Tfh cell differentiation) were co-cultured with G-MDSC or monocytic MDSC in the presence, or in the absence, of PD-L1 blocking antibody. Results The proportion of Tfh cells among CD4+ T cells increased gradually with time of S. japonicum infection, reaching a peak at 8 weeks, after which it decreased gradually. Both SEA and SWA caused an increase in Tfh cells in vitro and in vivo. It was found that MDSC can suppress the proliferation of Tfh cells. The expression of PD-1 on Tfh cells and PD-L1 from MDSC cells increased with prolongation of the infection cycle. G-MDSC might regulate Tfh cells through the PD-1/PD-L1 pathway. Conclusions The reported study not only reveals the dynamics of Tfh cell regulation during S. japonicum infection, but also provides evidence that G-MDSC may regulate Tfh cells by PD-1/PD-L1. This study provides strong evidence for the important role of Tfh cells in the immune response to S. japonicum infection. Graphical abstract ![]()
Collapse
Affiliation(s)
- Yumei Zhang
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,Department of Pathogenic Biology, Binzhou Medical University, Yantai, Shandong, 264003, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Yulong Wu
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Hua Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Wenci Gong
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Yuan Hu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Yujuan Shen
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, Shanghai, 200025, China. .,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China. .,WHO Collaborating Center for Tropical Diseases, Shanghai, 200025, China. .,National Center for International Research On Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, China.
| |
Collapse
|
16
|
Carson JP, Gobert GN. Modulation of the Host Immune Response by Schistosome Egg-Secreted Proteins Is a Critical Avenue of Host-Parasite Communication. Pathogens 2021; 10:863. [PMID: 34358013 PMCID: PMC8308880 DOI: 10.3390/pathogens10070863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022] Open
Abstract
During a schistosome infection, the interactions that occur between the mammalian host and the parasite change rapidly once egg laying begins. Both juvenile and adult schistosomes adapt to indefinitely avoid the host immune system. In contrast, the survival of eggs relies on quickly traversing from the host. Following the commencement of egg laying, the host immune response undergoes a shift from a type 1 helper (Th1) inflammatory response to a type 2 helper (Th2) granulomatous response. This change is driven by immunomodulatory proteins within the egg excretory/secretory products (ESPs), which interact with host cells and alter their behaviour to promote egg translocation. However, in parallel, these ESPs also provoke the development of chronic schistosomiasis pathology. Recent studies using high-throughput proteomics have begun to characterise the components of schistosome egg ESPs, particularly those of Schistosoma mansoni, S. japonicum and S. haematobium. Future application of this knowledge may lead to the identification of proteins with novel immunomodulatory activity or pathological importance. However, efforts in this area are limited by a lack of in situ or in vivo functional characterisation of these proteins. This review will highlight the current knowledge of the content and demonstrated functions of schistosome egg ESPs.
Collapse
Affiliation(s)
| | - Geoffrey N. Gobert
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK;
| |
Collapse
|
17
|
Lothstein KE, Gause WC. Mining Helminths for Novel Therapeutics. Trends Mol Med 2021; 27:345-364. [PMID: 33495068 PMCID: PMC9884063 DOI: 10.1016/j.molmed.2020.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 01/31/2023]
Abstract
Helminths are an emerging source of therapeutics for dysregulated inflammatory diseases. Excretory/secretory (ES) molecules, released during infection, are responsible for many of these immunomodulatory effects and are likely to have evolved as a means for parasite survival in the host. While the mechanisms of action of these molecules have not been fully defined, evidence demonstrates that they target various pathways in the immune response, ranging from initiation to effector cell modulation. These molecules are applied in controlling specific effector mechanisms of type 1 and type 2 immune responses. Recently, studies have further focused on their therapeutic potential in specific disease models. Here we review recent findings on ES molecule modulation of immune functions, specifically highlighting their clinical implications for future use in inflammatory disease therapeutics.
Collapse
Affiliation(s)
- Katherine E Lothstein
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - William C Gause
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
18
|
Llanwarne F, Helmby H. Granuloma formation and tissue pathology in Schistosoma japonicum versus Schistosoma mansoni infections. Parasite Immunol 2021; 43:e12778. [PMID: 32692855 PMCID: PMC11478942 DOI: 10.1111/pim.12778] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Schistosomiasis is the most important helminth disease in the world from a public health perspective. S mansoni and S japonicum account for the majority of global intestinal schistosomiasis cases, and the pathogenesis is widely assumed to be fundamentally similar. However, the majority of research on schistosomiasis has been carried out on S mansoni and comparisons between the two species are rarely made. Here, we will discuss aspects of both older and recent literature where such comparisons have been made, with a particular focus on the pathological agent, the host granulomatous response to the egg. Major differences between the two species are apparent in features such as egg production patterns and cellular infiltration; however, it is also clear that even subtle differences in the cascade of various cytokines and chemokines contribute to the different levels of pathology observed between these two main species of intestinal schistosomiasis. A better understanding of such differences at species level will be vital when it comes to the development of new treatment strategies and vaccines.
Collapse
Affiliation(s)
- Felix Llanwarne
- Department of Infection BiologyFaculty of Infectious and Tropical DiseaseLondon School of Hygiene and Tropical MedicineLondonUK
| | - Helena Helmby
- Department of Infection BiologyFaculty of Infectious and Tropical DiseaseLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
19
|
Shen S, Luo J, Ye J. Artesunate alleviates schistosomiasis-induced liver fibrosis by downregulation of mitochondrial complex Ⅰ subunit NDUFB8 and complex Ⅲ subunit UQCRC2 in hepatic stellate cells. Acta Trop 2021; 214:105781. [PMID: 33264632 DOI: 10.1016/j.actatropica.2020.105781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/08/2020] [Accepted: 11/21/2020] [Indexed: 01/03/2023]
Abstract
Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. Inhibition of the HSCs activity is an ideal strategy in the treatment of fibrosis, but there is no drug yet for this strategy. Artesunate (ART) has been shown to protect liver from fibrosis through inhibition of HSCs activity. However, the mechanism of ART activity remains to be fully uncovered. In this study, we tested ART in a mouse model of hepatic fibrosis established in the schistosomiasis-infected mice. The mechanism of ART action was investigated in the HSC cell line LX-2. ART significantly inhibited hepatic fibrosis. In LX-2 cells, ART efficiently inhibited the cell activity in proliferation and mRNA expression of fibrosis marker genes including Col1a1 and Col3a1. An impact of ART on mitochondria was observed for suppression of enzymes in the citric acid cycle (TCA), such as citrate synthase (CS), isocitrate dehydrogenase (IDH2), and alpha ketoglutarate dehydrogenase (OGDH) in a dose-dependent manner. ART decreased the mitochondrial oxygen consumption rate (OCR) and the protein levels of mitochondrial complex Ⅰ subunit NDUFB8 and complex Ⅲ subunit UQCRC2 in HSCs. All of these alterations were observed with an increase in HSC apoptosis. This study suggests that ART may alleviate liver fibrosis by downregulation of HSC activity through suppression of NDUFB8 and UQCRC2 in mitochondria. This study provides a new insight into the mechanism of the ART activity in the inhibition of schistosomiasis-induced liver fibrosis.
Collapse
Affiliation(s)
- Shuang Shen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Central laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| | - Juntao Luo
- Central laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jianping Ye
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; Central laboratory, Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
20
|
Mukendi JPK, Nakamura R, Uematsu S, Hamano S. Interleukin (IL)-33 is dispensable for Schistosoma mansoni worm maturation and the maintenance of egg-induced pathology in intestines of infected mice. Parasit Vectors 2021; 14:70. [PMID: 33482904 PMCID: PMC7821721 DOI: 10.1186/s13071-020-04561-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Schistosomes are trematode worms that dwell in their definitive host's blood vessels, where females lay eggs that need to be discharged into the environment with host excreta to maintain their life-cycle. Both worms and eggs require type 2 immunity for their maturation and excretion, respectively. However, the immune molecules that orchestrate such immunity remain unclear. Interleukin (IL)-33 is one of the epithelium-derived cytokines that induce type 2 immunity in tissues. The aim of this study was to determine the role of IL-33 in the maturation, reproduction and excretion of Schistosoma mansoni eggs, and in the maintenance of egg-induced pathology in the intestines of mice. METHODS The morphology of S. mansoni worms and the number of eggs in intestinal tissues were studied at different time points post-infection in S. mansoni-infected IL-33-deficient (IL-33-/-) and wild-type (WT) mice. IL-5 and IL-13 production in the spleens and mesenteric lymph nodes were measured. Tissue histology was performed on the terminal ilea of both infected and non-infected mice. RESULTS Worms from IL-33-/- and WT mice did not differ morphologically at 4 and 6 weeks post-infection (wpi). The number of eggs in intestinal tissues of IL-33-/- and WT mice differed only slightly. At 6 wpi, IL-33-/- mice presented impaired type 2 immunity in the intestines, characterized by a decreased production of IL-5 and IL-13 in mesenteric lymph nodes and fewer inflammatory infiltrates with fewer eosinophils in the ilea. There was no difference between IL-33-/- and WT mice in the levels of IL-25 and thymic stromal lymphopoietin (TSLP) in intestinal tissues. CONCLUSIONS Despite its ability to initiate type 2 immunity in tissues, IL-33 alone seems dispensable for S. mansoni maturation and its absence may not affect much the accumulation of eggs in intestinal tissues. The transient impairment of type 2 immunity observed in the intestines, but not spleens, highlights the importance of IL-33 over IL-25 and TSLP in initiating, but not maintaining, locally-induced type 2 immunity in intestinal tissues during schistosome infection. Further studies are needed to decipher the role of each of these molecules in schistosomiasis and clarify the possible interactions that might exist between them.
Collapse
Affiliation(s)
- Jean Pierre Kambala Mukendi
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Risa Nakamura
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinjiro Hamano
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
21
|
Sibomana JP, Campeche A, Carvalho-Filho RJ, Correa RA, Duani H, Pacheco Guimaraes V, Hilton JF, Kassa B, Kumar R, Lee MH, Loureiro CMC, Mazimba S, Mickael C, Oliveira RKF, Ota-Arakaki JS, Rezende CF, Silva LCS, Sinkala E, Ahmed HY, Graham BB. Schistosomiasis Pulmonary Arterial Hypertension. Front Immunol 2020; 11:608883. [PMID: 33362796 PMCID: PMC7758287 DOI: 10.3389/fimmu.2020.608883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease of the lung blood vessels that results in right heart failure. PAH is thought to occur in about 5% to 10% of patients with hepatosplenic schistosomiasis, particularly due to S. mansoni. The lung blood vessel injury may result from a combination of embolization of eggs through portocaval shunts into the lungs causing localized Type 2 inflammatory response and vessel remodeling, triggering of autonomous pathology that becomes independent of the antigen, and high cardiac output as seen in portopulmonary hypertension. The condition is likely underdiagnosed as there is little systematic screening, and risk factors for developing PAH are not known. Screening is done by echocardiography, and formal diagnosis requires invasive right heart catheterization. Patients with Schistosoma-associated PAH show reduced functional capacity and can be treated with pulmonary vasodilators, which improves symptoms and may improve survival. There are animal models of this disease that might help in understanding disease pathogenesis and identify novel targets to screen and treatment. Pathogenic mechanisms include Type 2 immunity and activation and signaling in the TGF-β pathway. There are still major uncertainties regarding Schistosoma-associated PAH development, course and treatment.
Collapse
Affiliation(s)
- Jean Pierre Sibomana
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Tikur Anbessa Specialized Hospital, College of Health Sciences, University of Addis Ababa, Addis Ababa, Ethiopia
- Department of Medicine, Butare University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Aloma Campeche
- Division of Gastroenterology, Department of Medicine, Santa Casa Hospital, Salvador, Bahia, Brazil
| | - Roberto J. Carvalho-Filho
- Division of Gastroenterology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Amorim Correa
- Internal Medicine/Pulmonary Division, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Helena Duani
- Internal Medicine/Infectious Diseases Division, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Virginia Pacheco Guimaraes
- Pulmonary Department, Hospital Júlia Kubistchek, Fundação Hospitalar of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Joan F. Hilton
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Biruk Kassa
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Michael H. Lee
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | | | - Sula Mazimba
- Division of Cardiology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Claudia Mickael
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rudolf K. F. Oliveira
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Jaquelina S. Ota-Arakaki
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Camila Farnese Rezende
- Pulmonary Medicine, Hospital das Clinicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana C. S. Silva
- Internal Medicine Department, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Edford Sinkala
- Hepatology Clinic, Department of Medicine, University of Zambia Teaching Hospital, Lusaka, Zambia
| | - Hanan Yusuf Ahmed
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Tikur Anbessa Specialized Hospital, College of Health Sciences, University of Addis Ababa, Addis Ababa, Ethiopia
| | - Brian B. Graham
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| |
Collapse
|
22
|
Carson JP, Robinson MW, Hsieh MH, Cody J, Le L, You H, McManus DP, Gobert GN. A comparative proteomics analysis of the egg secretions of three major schistosome species. Mol Biochem Parasitol 2020; 240:111322. [PMID: 32961206 PMCID: PMC8059868 DOI: 10.1016/j.molbiopara.2020.111322] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Morbidity associated with hepatic and urogenital schistosomiasis stems primarily from the host immune response directed against schistosome eggs. When eggs become entrapped in host tissues, the development of fibrotic plaques drives downstream pathology. These events occur due to the antigenic nature of egg excretory/secretory products (ESPs). Both Schistosoma mansoni and S. japonicum ESPs have been shown to interact with several cell populations in the host liver including hepatocytes, macrophages, and hepatic stellate cells, with both immunomodulatory and pathological consequences. Several protein components of the ESPs of S. mansoni and S. japonicum eggs have been characterised; however, studies into the collective contents of schistosome egg ESPs are lacking. Utilising shotgun mass spectrometry and an array of in silico analyses, we identified 266, 90 and 50 proteins within the S. mansoni, S. japonicum and S. haematobium egg secretomes respectively. We identified numerous proteins with already established immunomodulatory activities, vaccine candidates and vesicle markers. Relatively few common orthologues within the ESPs were identified by BLAST, indicating that the three egg secretomes differ in content significantly. Having a clearer understanding of these components may lead to the identification of new proteins with uncharacterised immunomodulatory potential or pathological relevance. This will enhance our understanding of host-parasite interactions, particularly those occurring during chronic schistosomiasis, and pave the way towards novel therapeutics and vaccines.
Collapse
Affiliation(s)
- Jack P Carson
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Michael H Hsieh
- Division of Urology, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | | | | | - Hong You
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
23
|
Hu Y, Chen J, Xu Y, Zhou H, Huang P, Ma Y, Gao M, Cheng S, Zhou H, Lv Z. Alterations of Gut Microbiome and Metabolite Profiling in Mice Infected by Schistosoma japonicum. Front Immunol 2020; 11:569727. [PMID: 33162984 PMCID: PMC7580221 DOI: 10.3389/fimmu.2020.569727] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Schistosoma japonicum (S. japonicum) is one of the etiological agents of schistosomiasis, a widespread zoonotic parasitic disease. However, the mechanism of the balanced co-existence between the host immune system and S. japonicum as well as their complex interaction remains unclear. In this study, 16S rRNA gene sequencing, combined with metagenomic sequencing approach as well as ultraperformance liquid chromatography–mass spectrometry metabolic profiling, was applied to demonstrate changes in the gut microbiome community structure during schistosomiasis progression, the functional interactions between the gut bacteria and S. japonicum infection in BALB/c mice, and the dynamic metabolite changes of the host. The results showed that both gut microbiome and the metabolites were significantly altered at different time points after the infection. Decrease in richness and diversity as well as differed composition of the gut microbiota was observed in the infected status when compared with the uninfected status. At the phylum level, the gut microbial communities in all samples were dominated by Firmicutes, Bacteroidetes, Proteobacteria, and Deferribacteres, while at the genus level, Lactobacillus, Lachnospiraceae NK4A136 group, Bacteroides, Staphylococcus, and Alloprevotella were the most abundant. After exposure, Roseburia, and Ruminococcaceae UCG-014 decreased, while Staphylococcus, Alistipes, and Parabacteroides increased, which could raise the risk of infections. Furthermore, LEfSe demonstrated several bacterial taxa that could discriminate between each time point of S. japonicum infection. Besides that, metagenomic analysis illuminated that the AMP-activated protein kinase (AMPK) signaling pathway and the chemokine signaling pathway were significantly perturbed after the infection. Phosphatidylcholine and colfosceril palmitate in serum as well as xanthurenic acid, naphthalenesulfonic acid, and pimelylcarnitine in urine might be metabolic biomarkers due to their promising diagnostic potential at the early stage of the infection. Alterations of glycerophospholipid and purine metabolism were also discovered in the infection. The present study might provide further understanding of the mechanisms during schistosome infection in aspects of gut microbiome and metabolites, and facilitate the discovery of new targets for early diagnosis and prognostic purposes. Further validations of potential biomarkers in human populations are necessary, and the exploration of interactions among S. japonicum, gut microbiome, and metabolites is to be deepened in the future.
Collapse
Affiliation(s)
- Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiansong Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, China
| | - Yiyue Xu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Hongli Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Ping Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Yubin Ma
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Minzhao Gao
- Department of Gastroenterology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shaoyun Cheng
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Haiyun Zhou
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, China
| | - Zhiyue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
The Potential Role of Schistosome-Associated Factors as Therapeutic Modulators of the Immune System. Infect Immun 2020; 88:IAI.00754-19. [PMID: 32341115 DOI: 10.1128/iai.00754-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The parasites and eggs of helminths, including schistosomes, are associated with factors that can modulate the nature and outcomes of host immune responses, particularly enhancing type 2 immunity and impairing the effects of type 1 and type 17 immunity. The main species of schistosomes that cause infection in humans are capable of generating a microenvironment that allows survival of the parasite by evasion of the immune response. Schistosome infections are associated with beneficial effects on chronic immune disorders, including allergies, autoimmune diseases, and alloimmune responses. Recently, there has been increasing research interest in the role of schistosomes in immunoregulation during human infection, and the mechanisms underlying these roles continue to be investigated. Further studies may identify potential opportunities to develop new treatments for immune disease. In this review, we provide an update on the advances in our understanding of schistosome-associated modulation of the cells of the innate and adaptive immune systems as well as the potential role of schistosome-associated factors as therapeutic modulators of immune disorders, including allergies, autoimmune diseases, and transplant immunopathology. We also discuss potential opportunities for targeting schistosome-induced immunoregulation for future translation to the clinical setting.
Collapse
|
25
|
Chen JJ, He YS, Zhong XJ, Cai ZL, Lyu YS, Zhao ZF, Ji K. Ribonuclease T2 from Aspergillus fumigatus promotes T helper type 2 responses through M2 polarization of macrophages. Int J Mol Med 2020; 46:718-728. [PMID: 32468025 PMCID: PMC7307867 DOI: 10.3892/ijmm.2020.4613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic bronchopulmonary aspergillosis (ABPA) is an allergic immunological response to Aspergillus fumigatus (Af) exposure, which induces a strong T helper 2 (Th2) response via mechanisms that have yet to be elucidated. The aim of the present study was to investigate the hypothesis that T2 ribonuclease from Af (Af RNASET2) induces M2‑type macrophage polarization to produce a T helper 2 (Th2) immune response. Recombinant Af RNASET2 (rAf RNASET2) was expressed and purified in a prokaryotic pET system and BALB/c mice were immunized with rAf RNASET2 for in vivo analyses. Expression levels of M2 polarization factors were evaluated in RAW264.7 macrophages treated with rAf RNASET2 in vitro using flow cytometry, reverse transcription‑quantitative PCR, and western blot analysis. The results predicted that the mature Af RNASET2 protein (382 amino acids; GenBank no. MN593022) contained two conserved amino acid sequence (CAS) domains, termed CAS‑1 and CAS‑2, which are also characteristic of the RNASET2 family proteins. The protein expression levels of the Th2‑related cytokines interleukin (IL)‑4, IL‑10, and IL‑13 were upregulated in mice immunized with rAf RNASET2. RAW264.7 macrophages treated with rAf RNASET2 showed increased mRNA expression levels of M2 factors [arginase 1, Il‑10, and Il‑13]; however, there was no difference in cells treated with rAf RNASET2 that had been inactivated with a ribonuclease inhibitor (RNasin). The protein expression levels of IL‑10 in macrophage culture supernatant were also increased following stimulation with rAf RNASET2. In addition, rAf RNASET2 upregulated the expression of phosphorylated mitogen activated protein kinases (MAPKs) in RAW264.7 cells, whereas MAPK inhibitors attenuated rAf RNASET2‑induced IL‑10 expression in RAW264.7 cells. In conclusion, the present study reveals that high rAf RNASET2 activity is required for rAf RNASET2‑induced M2 polarization of macrophages and suggests an important immune regulatory role for Af RNASET2 in ABPA pathogenesis.
Collapse
Affiliation(s)
- Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yong-Shen He
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Xiao-Jun Zhong
- Central Laboratory, Shenzhen Nanshan Hospital, Shenzhen, Guangdong 518083, P.R. China
| | - Ze-Lang Cai
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Yan-Si Lyu
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Zhen-Fu Zhao
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, Health Science Center of Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
26
|
De Marco Verissimo C, Potriquet J, You H, McManus DP, Mulvenna J, Jones MK. Qualitative and quantitative proteomic analyses of Schistosoma japonicum eggs and egg-derived secretory-excretory proteins. Parasit Vectors 2019; 12:173. [PMID: 30992086 PMCID: PMC6469072 DOI: 10.1186/s13071-019-3403-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Schistosome parasites lay up to a thousand eggs per day inside the veins of their mammalian hosts. The immature eggs deposited by females against endothelia of venules will embryonate within days. Approximately 30% of the eggs will migrate to the lumen of the intestine to continue the parasite life-cycle. Many eggs, however, are trapped in the liver and intestine causing the main pathology associated with schistosomiasis mansoni and japonica, the liver granulomatous response. Excretory-secretory egg proteins drive much of egg-induced pathogenesis of schistosomiasis mansoni, and Schistosoma japonicum induce a markedly distinct granulomatous response to that of S. mansoni. METHODS To explore the basis of variations in this responsiveness, we investigated the proteome of eggs of S. japonicum. Using mass spectrometry qualitative and quantitative (SWATH) analyses, we describe the protein composition of S. japonicum eggs secretory proteins (ESP), and the differential expression of proteins by fully mature and immature eggs, isolated from faeces and ex vivo adults. RESULTS Of 957 egg-related proteins identified, 95 were exclusively found in S. japonicum ESP which imply that they are accessible to host immune system effector elements. An in-silico analysis implies that ESP are able of stimulating the innate and adaptive immune system through several different pathways. While quantitative SWATH analysis revealed 124 proteins that are differentially expressed by mature and immature S. japonicum eggs, illuminating some important aspects of eggs biology and infection, we also show that mature eggs are more likely than immature eggs to stimulate host immune responses. CONCLUSIONS Here we present a list of potential targets that can be used to develop better strategies to avoid severe morbidity during S. japonicum infection, as well as improving diagnosis, treatment and control of schistosomiasis japonica.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia. .,Medical Biological Centre, Queen's University Belfast, Belfast, UK.
| | - Jeremy Potriquet
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Hong You
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Malcolm K Jones
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
27
|
Ittiprasert W, Mann VH, Karinshak SE, Coghlan A, Rinaldi G, Sankaranarayanan G, Chaidee A, Tanno T, Kumkhaek C, Prangtaworn P, Mentink-Kane MM, Cochran CJ, Driguez P, Holroyd N, Tracey A, Rodpai R, Everts B, Hokke CH, Hoffmann KF, Berriman M, Brindley PJ. Programmed genome editing of the omega-1 ribonuclease of the blood fluke, Schistosoma mansoni. eLife 2019; 8:e41337. [PMID: 30644357 PMCID: PMC6355194 DOI: 10.7554/elife.41337] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022] Open
Abstract
CRISPR/Cas9-based genome editing has yet to be reported in species of the Platyhelminthes. We tested this approach by targeting omega-1 (ω1) of Schistosoma mansoni as proof of principle. This secreted ribonuclease is crucial for Th2 polarization and granuloma formation. Schistosome eggs were exposed to Cas9 complexed with guide RNA complementary to ω1 by electroporation or by transduction with lentiviral particles. Some eggs were also transfected with a single stranded donor template. Sequences of amplicons from gene-edited parasites exhibited Cas9-catalyzed mutations including homology directed repaired alleles, and other analyses revealed depletion of ω1 transcripts and the ribonuclease. Gene-edited eggs failed to polarize Th2 cytokine responses in macrophage/T-cell co-cultures, while the volume of pulmonary granulomas surrounding ω1-mutated eggs following tail-vein injection into mice was vastly reduced. Knock-out of ω1 and the diminished levels of these cytokines following exposure showcase the novel application of programmed gene editing for functional genomics in schistosomes.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Victoria H Mann
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Shannon E Karinshak
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | | | - Apisit Chaidee
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Department of Parasitology, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Toshihiko Tanno
- Department of SurgeryUniversity of MarylandBaltimoreUnited States
- Institute of Human VirologyUniversity of MarylandBaltimoreUnited States
| | - Chutima Kumkhaek
- Cellular and Molecular Therapeutics LaboratoryNational Heart, Lungs and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Pannathee Prangtaworn
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Department of Parasitology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | | | - Christina J Cochran
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Patrick Driguez
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Rutchanee Rodpai
- Department of Parasitology, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Bart Everts
- Department of ParasitologyLeiden University Medical CenterLeidenNetherlands
| | - Cornelis H Hokke
- Department of ParasitologyLeiden University Medical CenterLeidenNetherlands
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUnited Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| |
Collapse
|
28
|
Maizels RM, Smits HH, McSorley HJ. Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity 2018; 49:801-818. [PMID: 30462997 PMCID: PMC6269126 DOI: 10.1016/j.immuni.2018.10.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 02/09/2023]
Abstract
Helminths are extraordinarily successful parasites due to their ability to modulate the host immune response. They have evolved a spectrum of immunomodulatory molecules that are now beginning to be defined, heralding a molecular revolution in parasite immunology. These discoveries have the potential both to transform our understanding of parasite adaptation to the host and to develop possible therapies for immune-mediated disease. In this review we will summarize the current state of the art in parasite immunomodulation and discuss perspectives on future areas for research and discovery.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | | | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|