1
|
Leles LFDO, Niz Alvarez MV, Cortés JJC, Alonso DP, Ribolla PEM, Luz SLB. Evaluation of Aedes aegypti control intervention with pyriproxyfen by lcWGS in Manacapuru, Amazonas, Brazil. PLoS Negl Trop Dis 2024; 18:e0012547. [PMID: 39361714 PMCID: PMC11478823 DOI: 10.1371/journal.pntd.0012547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/15/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Ae. aegypti mosquitoes are considered a global threat to public health due to its ability to transmit arboviruses such as yellow fever, dengue, Zika and Chikungunya to humans. The lack of effective arboviral vaccines and etiological treatments make vector control strategies fundamental in interrupting the transmission cycle of these pathogens. This study evaluated Ae. aegypti mosquito populations pre- and post-intervention period with disseminating stations of the larvicide pyriproxyfen to understand its potential influence on the genetic structure and population diversity of these vectors. METHODOLOGY/PRINCIPAL FINDINGS This study was conducted in Manacapuru city, Amazonas, Brazil, where 1,000 pyriproxyfen dissemination stations were deployed and monitored from FEB/2014 to FEB/2015 (pre-intervention) and AUG/2015 to JAN/2016 (post-intervention). Low-coverage whole genome sequencing of 36 individuals was performed, revealing significant stratification between pre- and post-intervention groups (pairwise FST estimate of 0.1126; p-value < 0.033). Tajima's D estimates were -3.25 and -3.07 (both p-value < 0.01) for pre- and post-intervention groups, respectively. Molecular diversity estimates (Theta(S) and Theta(Pi)) also showed divergences between pre- and post-intervention groups. PCA and K-means analysis showed clustering for SNP frequency matrix and SNP genotype matrix, respectively, being both mainly represented by the first principal component. PCA and K-means clustering also showed significant results that corroborate the impact of pyriproxyfen intervention on genetic structure populations of Ae. aegypti mosquitoes. CONCLUSIONS/SIGNIFICANCE The results revealed a bottleneck effect and reduced mosquito populations during intervention, followed by reintroduction from adjacent and unaffected populations by this vector. We highlighted that low-coverage whole genome sequencing can contribute to genetic and structure population data, and also generate important information to aid in genomic and epidemiological surveillance.
Collapse
Affiliation(s)
- Lorena Ferreira de Oliveira Leles
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane—Fiocruz Amazônia, Manaus, Brasil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz (IOC), Rio de Janeiro, Brasil
| | | | - Jose Joaquin Carvajal Cortés
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane—Fiocruz Amazônia, Manaus, Brasil
| | - Diego Peres Alonso
- Universidade do Estado de São Paulo (UNESP)—Instituto de Biotecnologia e Biociências, Botucatu, Brasil
| | | | - Sérgio Luiz Bessa Luz
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane—Fiocruz Amazônia, Manaus, Brasil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz (IOC), Rio de Janeiro, Brasil
| |
Collapse
|
2
|
Leles LFDO, Alvarez MVN, Cortes JJC, Alonso DP, Ribolla PEM, Luz SLB. Impact of Long-Term Pyriproxyfen Exposure on the Genetic Structure and Diversity of Aedes aegypti and Aedes albopictus in Manaus, Amazonas, Brazil. Genes (Basel) 2024; 15:1046. [PMID: 39202406 PMCID: PMC11353645 DOI: 10.3390/genes15081046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Aedes aegypti and Aedes albopictus are responsible for transmitting major human arboviruses such as Dengue, Zika, and Chikungunya, posing a global threat to public health. The lack of etiological treatments and efficient vaccines makes vector control strategies essential for reducing vector population density and interrupting the pathogen transmission cycle. This study evaluated the impact of long-term pyriproxyfen exposure on the genetic structure and diversity of Ae. aegypti and Ae. albopictus mosquito populations. The study was conducted in Manaus, Amazonas, Brazil, where pyriproxyfen dissemination stations have been monitored since 2014 up to the present day. Double digest restriction-site associated DNA sequencing was performed, revealing that despite significant local population reductions by dissemination stations with pyriproxyfen in various locations in Brazil, focal intervention has no significant impact on the population stratification of these vectors in urban scenarios. The genetic structuring level of Ae. aegypti suggests it is more stratified and directly affected by pyriproxyfen intervention, while for Ae. albopictus exhibits a more homogeneous and less structured population. The results suggest that although slight differences are observed among mosquito subpopulations, intervention focused on neighborhoods in a capital city is not efficient in terms of genetic structuring, indicating that larger-scale pyriproxyfen interventions should be considered for more effective urban mosquito control.
Collapse
Affiliation(s)
- Lorena Ferreira de Oliveira Leles
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane—Fiocruz Amazônia, Manaus 69027-070, Brazil; (L.F.d.O.L.); (J.J.C.C.); (S.L.B.L.)
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz (IOC), Rio de Janeiro 21040-900, Brazil
| | - Marcus Vinícius Niz Alvarez
- Laboratório de Pesquisa em Análises Genéticas, Instituto de Biotecnologia e Biociências, Universidade do Estado de São Paulo (UNESP), Botucatu 18607-440, Brazil; (M.V.N.A.); (D.P.A.)
| | - Jose Joaquin Carvajal Cortes
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane—Fiocruz Amazônia, Manaus 69027-070, Brazil; (L.F.d.O.L.); (J.J.C.C.); (S.L.B.L.)
| | - Diego Peres Alonso
- Laboratório de Pesquisa em Análises Genéticas, Instituto de Biotecnologia e Biociências, Universidade do Estado de São Paulo (UNESP), Botucatu 18607-440, Brazil; (M.V.N.A.); (D.P.A.)
| | - Paulo Eduardo Martins Ribolla
- Laboratório de Pesquisa em Análises Genéticas, Instituto de Biotecnologia e Biociências, Universidade do Estado de São Paulo (UNESP), Botucatu 18607-440, Brazil; (M.V.N.A.); (D.P.A.)
| | - Sérgio Luiz Bessa Luz
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane—Fiocruz Amazônia, Manaus 69027-070, Brazil; (L.F.d.O.L.); (J.J.C.C.); (S.L.B.L.)
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz (IOC), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
3
|
Viana MC, Alves-Pereira A, Oliveira MAP, Valença-Barbosa C, Folly-Ramos E, Souza AP, Takiya DM, Almeida CE. Population genetics and genomics of Triatoma brasiliensis (Hemiptera, Reduviidae) in an area of high pressure of domiciliary infestation in Northeastern Brazil. Acta Trop 2024; 252:107144. [PMID: 38336343 DOI: 10.1016/j.actatropica.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Understanding the population dynamics of vectors is crucial for effective control of vector-borne diseases. In the Northeastern Brazilian semi-arid region, Triatoma brasiliensis persists as the most significant Chagas disease vector, frequently displaying recurrent domiciliary infestations. This situation raises relevant public health concerns in the municipality of Currais Novos in the state of Rio Grande do Norte. This area has experienced a high prevalence of peridomiciliary re-infestations by T. brasiliensis, coupled with elevated rates of Trypanosoma cruzi infection. Therefore, we assessed the distribution of genetic variation via mitochondrial Cytochrome b gene (MT-CYB) sequencing (n = 109) and single nucleotide polymorphisms (SNPs, n = 86) to assess the gene flow among distinct populations distributed in varied geographic spots and environments, mainly sylvatic and peridomiciliary. Insects were collected from rural communities at Currais Novos, enclosed within a 16 km radius. Sampling included 13 populations: one intradomiciliary, eight peridomiciliary, and four sylvatic. Furthermore, an external population located 220 km from Currais Novos was also included in the study. The method employed to obtain SNP information relied on ddRAD-seq genotyping-by-sequencing (GBS), enabling a genome-wide analysis to infer genetic variation. Through AMOVA analysis of MT-CYB gene variation, we identified four distinct population groups with statistical significance (FCT= 0.42; p<0.05). We identified a total of 3,013 SNPs through GBS, with 11 loci showing putative signs of being under selection. The variation based on 3,002 neutral loci evidenced low genetic structuration based on low FST values (p>0.05), indicating local panmixia. However, resampling algorithms pointed out that three samples from the external population were assigned (>98 %) in a cluster contrasting from the ones putatively under local panmixia - validating the newly applied genome-wide marker for studies on the population genetics at finer-scale resolution for T. brasiliensis. The presence of population structuring in some of the sampled points, as suggested by the mitochondrial marker, leads us to assume that infestations were probably initiated by small populations of females - demographic event poses a risk for rapid re-infestations. The local panmictic pattern revealed by the GBS marker poses a challenge for vector control measures, as re-infestation foci may be distributed over a wide geographical and ecological range. In such instances, vectors exhibit reduced susceptibility to conventional insecticide spraying operations since sylvatic populations are beyond the reach of these interventions. The pattern of infestation exhibited by T. brasiliensis necessitates integrating innovative strategies into the existing control framework, holding the potential to create a more resilient and adaptive vector control program. In our dataset, the results demonstrated that the genetic signals from both markers were complementary. Therefore, it is essential to consider the nature and inheritance pattern of each marker when inferring the pattern of re-infestations.
Collapse
Affiliation(s)
- Maria Carolina Viana
- Instituto de Biologia (IB), Universidade de Campinas - UNICAMP, Campinas, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, IB, UNICAMP; Coordenação de Prevenção e Vigilância do Câncer (CONPREV), Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Marcelo A P Oliveira
- Programa de Pós-Graduação em Genética- IB, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Carolina Valença-Barbosa
- Instituto de Biologia (IB), Universidade de Campinas - UNICAMP, Campinas, Brazil; Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Fiocruz, Brazil
| | | | | | | | - Carlos E Almeida
- Instituto de Biologia (IB), Universidade de Campinas - UNICAMP, Campinas, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, IB, UNICAMP; Laboratorio de Entomologia, Instituto de Biologia, UFRJ.
| |
Collapse
|
4
|
Investigating an Unknown Biodiversity: Evidence of Distinct Lineages of the Endemic Chola Guitarfish Pseudobatos percellens Walbaum, 1792 in the Western Atlantic Ocean. DIVERSITY 2023. [DOI: 10.3390/d15030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Anthropogenic actions have affected marine species for a long time, through overexploitation of natural stocks and habitat degradation, influencing the life strategies of several taxa, especially rays and sharks, which have suffered significant population declines in recent years. Therefore, conservation actions and stock management have become paramount. In this regard, chola guitarfish, Pseudobatos percellens, distributed throughout the Brazilian coast, is often commercially fished by local artisanal fleets or as by-catch in shrimp trawl fisheries. Therefore, this study aimed to understand the genetic diversity of P. percellens throughout the Brazilian coast, using single nucleotide polymorphisms (SNPs). Genetic analyses employing 3329 SNPs revealed a hidden biodiversity within P. percellens, with at least one lineage occurring in the Northern and Northeastern regions and another distributed in the Southeastern/Southern Brazilian coast, with high genetic differentiation between them. However, the Discriminant Analysis of Principal Components (DAPC) indicated the presence of in fact three lineages distributed in these regions that must still be better investigated. Therefore, to ensure adequate conservation of chola guitarfish biodiversity, populations must be managed separately along the Brazilian coast. Furthermore, the need for a taxonomic review for this group is noted.
Collapse
|
5
|
Wei Y, He S, Wang J, Fan P, He Y, Hu K, Chen Y, Zhou G, Zhong D, Zheng X. Genome-wide SNPs reveal novel patterns of spatial genetic structure in Aedes albopictus (Diptera Culicidae) population in China. Front Public Health 2022; 10:1028026. [PMID: 36438226 PMCID: PMC9685676 DOI: 10.3389/fpubh.2022.1028026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Since the second half of the 20th century, Aedes albopictus, a vector for more than 20 arboviruses, has spread worldwide. Aedes albopictus is the main vector of infectious diseases transmitted by Aedes mosquitoes in China, and it has caused concerns regarding public health. A comprehensive understanding of the spatial genetic structure of this vector species at a genomic level is essential for effective vector control and the prevention of vector-borne diseases. Methods During 2016-2018, adult female Ae. albopictus mosquitoes were collected from eight different geographical locations across China. Restriction site-associated DNA sequencing (RAD-seq) was used for high-throughput identification of single nucleotide polymorphisms (SNPs) and genotyping of the Ae. albopictus population. The spatial genetic structure was analyzed and compared to those exhibited by mitochondrial cytochrome c oxidase subunit 1 (cox1) and microsatellites in the Ae. albopictus population. Results A total of 9,103 genome-wide SNP loci in 101 specimens and 32 haplotypes of cox1 in 231 specimens were identified in the samples from eight locations in China. Principal component analysis revealed that samples from Lingshui and Zhanjiang were more genetically different than those from the other locations. The SNPs provided a better resolution and stronger signals for novel spatial population genetic structures than those from the cox1 data and a set of previously genotyped microsatellites. The fixation indexes from the SNP dataset showed shallow but significant genetic differentiation in the population. The Mantel test indicated a positive correlation between genetic distance and geographical distance. However, the asymmetric gene flow was detected among the populations, and it was higher from south to north and west to east than in the opposite directions. Conclusions The genome-wide SNPs revealed seven gene pools and fine spatial genetic structure of the Ae. albopictus population in China. The RAD-seq approach has great potential to increase our understanding of the spatial dynamics of population spread and establishment, which will help us to design new strategies for controlling vectors and mosquito-borne diseases.
Collapse
Affiliation(s)
- Yong Wei
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China,Clinical Laboratory, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Song He
- Clinical Laboratory, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Jiatian Wang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peiyang Fan
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yulan He
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ke Hu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yulan Chen
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | - Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China,*Correspondence: Xueli Zheng
| |
Collapse
|
6
|
Torres K, Ferreira MU, Castro MC, Escalante AA, Conn JE, Villasis E, da Silva Araujo M, Almeida G, Rodrigues PT, Corder RM, Fernandes ARJ, Calil PR, Ladeia WA, Garcia-Castillo SS, Gomez J, do Valle Antonelli LR, Gazzinelli RT, Golenbock DT, Llanos-Cuentas A, Gamboa D, Vinetz JM. Malaria Resilience in South America: Epidemiology, Vector Biology, and Immunology Insights from the Amazonian International Center of Excellence in Malaria Research Network in Peru and Brazil. Am J Trop Med Hyg 2022; 107:168-181. [PMID: 36228921 PMCID: PMC9662219 DOI: 10.4269/ajtmh.22-0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
The 1990s saw the rapid reemergence of malaria in Amazonia, where it remains an important public health priority in South America. The Amazonian International Center of Excellence in Malaria Research (ICEMR) was designed to take a multidisciplinary approach toward identifying novel malaria control and elimination strategies. Based on geographically and epidemiologically distinct sites in the Northeastern Peruvian and Western Brazilian Amazon regions, synergistic projects integrate malaria epidemiology, vector biology, and immunology. The Amazonian ICEMR's overarching goal is to understand how human behavior and other sociodemographic features of human reservoirs of transmission-predominantly asymptomatically parasitemic people-interact with the major Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, and with human immune responses to maintain malaria resilience and continued endemicity in a hypoendemic setting. Here, we will review Amazonian ICEMR's achievements on the synergies among malaria epidemiology, Plasmodium-vector interactions, and immune response, and how those provide a roadmap for further research, and, most importantly, point toward how to achieve malaria control and elimination in the Americas.
Collapse
Affiliation(s)
- Katherine Torres
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcia C. Castro
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Ananias A. Escalante
- Department of Biology and Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, New York
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Elizabeth Villasis
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Gregorio Almeida
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Rodrigo M. Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Anderson R. J. Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Priscila R. Calil
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Winni A. Ladeia
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Stefano S. Garcia-Castillo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joaquin Gomez
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Ricardo T. Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Douglas T. Golenbock
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Alejandro Llanos-Cuentas
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
- Address correspondence to Joseph M. Vinetz, Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, 25 York St., Winchester 403D, PO Box 802022, New Haven, CT 06520. E-mail:
| |
Collapse
|
7
|
Zhang L, Dietrich CH, Xu Y, Yang Z, Chen M, Pham TH, Le CCV, Qiao L, Matsumura M, Qin D. Unraveling the hierarchical genetic structure of tea green leafhopper, Matsumurasca onukii, in East Asia based on SSRs and SNPs. Ecol Evol 2022; 12:e9377. [PMID: 36203634 PMCID: PMC9526121 DOI: 10.1002/ece3.9377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Matsumurasca onukii (Matsuda, R. (1952). Oyo-Kontyu Tokyo, 8(1): 19-21), one of the dominant pests in major tea production areas in Asia, currently is known to occur in Japan, Vietnam, and China, and severely threatens tea production, quality, and international trade. To elucidate the population genetic structure of this species, 1633 single nucleotide polymorphisms (SNPs) and 18 microsatellite markers (SSRs) were used to genotype samples from 27 sites representing 18 geographical populations distributed throughout the known range of the species in East Asia. Analyses of both SNPs and SSRs showed that M. onukii populations in Yunnan exhibit high-genetic differentiation and structure compared with the other populations. The Kagoshima (JJ) and Shizuoka (JS) populations from Japan were separated from populations from China by SNPs, but clustered with populations from Jinhua (JH), Yingde (YD), Guilin (GL), Fuzhou (FZ), Hainan (HQ), Leshan (CT), Chongqing (CY), and Zunyi (ZY) tea plantations in China and the Vietnamese Vinh Phuc (VN) population based on the SSR data. In contrast, CT, CY, ZY, and Shaanxi (SX) populations clustered together based on SNPs, but were separated by SSRs. Both marker datasets identified significant geographic differentiation among the 18 populations. Various environmental and anthropogenic factors, including geographical barriers to migration, human transport of hosts (Camellia sinesis [L.] O. Kuntze) and adaptation of M. onukii to various local climatic zones possibly account for the rapid spread of this pest in Asia. The results demonstrate that SNPs from high-throughput genotyping data can be used to reveal subtle genetic substructure at broad scales in r-strategist insects.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological MuseumNorthwest A&F UniversityYanglingShaanxiChina
- Institute of Jiangxi Oil‐Tea Camellia, Jiujiang UniversityJiujiangJiangxiChina
| | - Christopher H. Dietrich
- Illinois Natural History SurveyPrairie Research Institute, University of IllinoisChampaignIllinoisUSA
| | - Ye Xu
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological MuseumNorthwest A&F UniversityYanglingShaanxiChina
- College of Agriculture, Jiangxi Agricultural UniversityNanchangJiangxiChina
| | - Zhaofu Yang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological MuseumNorthwest A&F UniversityYanglingShaanxiChina
| | - Maohua Chen
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological MuseumNorthwest A&F UniversityYanglingShaanxiChina
| | - Thai H. Pham
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, VASTHueVietnam
- Graduate School of Science and Technology, Vietnam Academy of Science and TechnologyHanoiVietnam
| | - Cuong C. V. Le
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, VASTHueVietnam
| | - Li Qiao
- College of Agronomy, Xinyang Agricultural and Forestry UniversityXinyangHenanChina
| | - Masaya Matsumura
- Institute for Plant Protection, National Agriculture and Food Research OrganizationTsukubaIbarakiJapan
| | - Daozheng Qin
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological MuseumNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
8
|
Alonso DP, Alvarez MVN, Amorim JA, de Sá ILR, de Carvalho DP, Ribeiro KAN, Ribolla PEM, Sallum MAM. Mansonia spp. population genetics based on mitochondrion whole-genome sequencing alongside the Madeira River near Porto Velho, Rondonia, Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105341. [PMID: 35878819 DOI: 10.1016/j.meegid.2022.105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In high abundance, females of the genus Mansonia (Blanchard) can be a nuisance to humans and animals because they are voraciously hematophagous and feed on the blood of a myriad of vertebrates. The spatial-temporal distribution pattern of Mansonia species is associated with the presence of their host plants, usually Eichhornia crassipes, E. azurea, Ceratopteris pteridoides, Limnobium laevigatum, Pistia stratiotes, and Salvinia sp. Despite their importance, there is a lack of investigation on the dispersion and population genetics of Mansonia species. Such studies are pivotal to evaluating the genetic structuring, which ultimately reflects populational expansion-retraction patterns and dispersal dynamics of the mosquito, particularly in areas with a history of recent introduction and establishment. The knowledge obtained could lead to better understanding of how anthropogenic changes to the environment can modulate the population structure of Mansonia species, which in turn impacts mosquito population density, disturbance to humans and domestic animals, and putative vector-borne disease transmission patterns. In this study, we present an Illumina NGS sequencing protocol to obtain whole-mitogenome sequences of Mansonia spp. to assess the microgeographic genetic diversity and dispersion of field-collected adults. The specimens were collected in rural environments in the vicinities of the Santo Antônio Energia (SAE) hydroelectric reservoir on the Madeira River.
Collapse
Affiliation(s)
- Diego Peres Alonso
- Sao Paulo State University, UNESP - Biotechnology Institute and Bioscience Institute, Botucatu 18618-689, Brazil; Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Marcus Vinicius Niz Alvarez
- Sao Paulo State University, UNESP - Biotechnology Institute and Bioscience Institute, Botucatu 18618-689, Brazil
| | - Jandui Almeida Amorim
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ivy Luizi Rodrigues de Sá
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Alvarez MVN, Alonso DP, Kadri SM, Rufalco-Moutinho P, Bernardes IAF, de Mello ACF, Souto AC, Carrasco-Escobar G, Moreno M, Gamboa D, Vinetz JM, Conn JE, Ribolla PEM. Nyssorhynchus darlingi genome-wide studies related to microgeographic dispersion and blood-seeking behavior. Parasit Vectors 2022; 15:106. [PMID: 35346342 PMCID: PMC8961893 DOI: 10.1186/s13071-022-05219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Brazil, malaria is concentrated in the Amazon Basin, where more than 99% of the annual cases are reported. The main goal of this study was to investigate the population structure and genetic association of the biting behavior of Nyssorhynchus (also known as Anopheles) darlingi, the major malaria vector in the Amazon region of Brazil, using low-coverage genomic sequencing data. METHODS Samples were collected in the municipality of Mâncio Lima, Acre state, Brazil between 2016 and 2017. Different approaches using genotype imputation and no gene imputation for data treatment and low-coverage sequencing genotyping were performed. After the samples were genotyped, population stratification analysis was performed. RESULTS Weak but statistically significant stratification signatures were identified between subpopulations separated by distances of approximately 2-3 km. Genome-wide association studies (GWAS) were performed to compare indoor/outdoor biting behavior and blood-seeking at dusk/dawn. A statistically significant association was observed between biting behavior and single nucleotide polymorphism (SNP) markers adjacent to the gene associated with cytochrome P450 (CYP) 4H14, which is associated with insecticide resistance. A statistically significant association between blood-seeking periodicity and SNP markers adjacent to genes associated with the circadian cycle was also observed. CONCLUSION The data presented here suggest that low-coverage whole-genome sequencing with adequate processing is a powerful tool to genetically characterize vector populations at a microgeographic scale in malaria transmission areas, as well as for use in GWAS. Female mosquitoes entering houses to take a blood meal may be related to a specific CYP4H14 allele, and female timing of blood-seeking is related to circadian rhythm genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares Y Moleculares, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT USA
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, NY USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY USA
| | | |
Collapse
|
10
|
Susceptibility of Field-Collected Nyssorhynchus darlingi to Plasmodium spp. in Western Amazonian Brazil. Genes (Basel) 2021; 12:genes12111693. [PMID: 34828299 PMCID: PMC8623036 DOI: 10.3390/genes12111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Mosquito susceptibility to Plasmodium spp. infection is of paramount importance for malaria occurrence and sustainable transmission. Therefore, understanding the genetic features underlying the mechanisms of susceptibility traits is pivotal to assessing malaria transmission dynamics in endemic areas. The aim of this study was to investigate the susceptibility of Nyssorhynchus darlingi-the dominant malaria vector in Brazil-to Plasmodium spp. using a reduced representation genome-sequencing protocol. The investigation was performed using a genome-wide association study (GWAS) to identify mosquito genes that are predicted to modulate the susceptibility of natural populations of the mosquito to Plasmodium infection. After applying the sequence alignment protocol, we generated the variant panel and filtered variants; leading to the detection of 202,837 SNPs in all specimens analyzed. The resulting panel was used to perform GWAS by comparing the pool of SNP variants present in Ny. darlingi infected with Plasmodium spp. with the pool obtained in field-collected mosquitoes with no evidence of infection by the parasite (all mosquitoes were tested separately using RT-PCR). The GWAS results for infection status showed two statistically significant variants adjacent to important genes that can be associated with susceptibility to Plasmodium infection: Cytochrome P450 (cyp450) and chitinase. This study provides relevant knowledge on malaria transmission dynamics by using a genomic approach to identify mosquito genes associated with susceptibility to Plasmodium infection in Ny. darlingi in western Amazonian Brazil.
Collapse
|
11
|
Laporta GZ, Ilacqua RC, Bergo ES, Chaves LSM, Rodovalho SR, Moresco GG, Figueira EAG, Massad E, de Oliveira TMP, Bickersmith SA, Conn JE, Sallum MAM. Malaria transmission in landscapes with varying deforestation levels and timelines in the Amazon: a longitudinal spatiotemporal study. Sci Rep 2021; 11:6477. [PMID: 33742028 PMCID: PMC7979798 DOI: 10.1038/s41598-021-85890-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
The relationship between deforestation and malaria is a spatiotemporal process of variation in Plasmodium incidence in human-dominated Amazonian rural environments. The present study aimed to assess the underlying mechanisms of malarial exposure risk at a fine scale in 5-km2 sites across the Brazilian Amazon, using field-collected data with a longitudinal spatiotemporally structured approach. Anopheline mosquitoes were sampled from 80 sites to investigate the Plasmodium infection rate in mosquito communities and to estimate the malaria exposure risk in rural landscapes. The remaining amount of forest cover (accumulated deforestation) and the deforestation timeline were estimated in each site to represent the main parameters of both the frontier malaria hypothesis and an alternate scenario, the deforestation-malaria hypothesis, proposed herein. The maximum frequency of pathogenic sites occurred at the intermediate forest cover level (50% of accumulated deforestation) at two temporal deforestation peaks, e.g., 10 and 35 years after the beginning of the organization of a settlement. The incidence density of infected anophelines in sites where the original forest cover decreased by more than 50% in the first 25 years of settlement development was at least twice as high as the incidence density calculated for the other sites studied (adjusted incidence density ratio = 2.25; 95% CI, 1.38-3.68; p = 0.001). The results of this study support the frontier malaria as a unifying hypothesis for explaining malaria emergence and for designing specific control interventions in the Brazilian Amazon.
Collapse
Affiliation(s)
- Gabriel Z Laporta
- Setor de Pós-Graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC (FMABC), Fundação ABC, Santo André, SP, Brazil.
| | - Roberto C Ilacqua
- Setor de Pós-Graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC (FMABC), Fundação ABC, Santo André, SP, Brazil
| | - Eduardo S Bergo
- Superintendência de Controle de Endemias (SUCEN), Secretaria de Estado da Saúde de São Paulo, Araraquara, SP, Brazil
| | - Leonardo S M Chaves
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo (FSP-USP), São Paulo, SP, Brazil
| | - Sheila R Rodovalho
- Unidade Técnica de Doenças Transmissíveis e Análise de Situação em Saúde, Pan American Health Organization (PAHO/WHO), Brasília, DF, Brazil
| | - Gilberto G Moresco
- Coordenação-Geral de Vigilância de Zoonoses e Doenças de Transmissão Vetorial, Secretaria de Vigilância em Saúde, Ministério da Saúde (MS), Brasília, DF, Brazil
| | | | - Eduardo Massad
- Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, RJ, Brazil
| | - Tatiane M P de Oliveira
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo (FSP-USP), São Paulo, SP, Brazil
| | - Sara A Bickersmith
- New York State Department of Health, The Wadsworth Center, Slingerlands, NY, USA
| | - Jan E Conn
- New York State Department of Health, The Wadsworth Center, Slingerlands, NY, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, USA
| | - Maria Anice M Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo (FSP-USP), São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Montoya JP, Pantoja-Sánchez H, Gomez S, Avila FW, Alfonso-Parra C. Flight tone characterisation of the South American malaria vector Anopheles darlingi (Diptera: Culicidae). Mem Inst Oswaldo Cruz 2021; 116:e200497. [PMID: 33729397 PMCID: PMC7968435 DOI: 10.1590/0074-02760200497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Flight tones play important roles in mosquito reproduction. Several mosquito species utilise flight tones for mate localisation and attraction. Typically, the female wingbeat frequency (WBF) is lower than males, and stereotypic acoustic behaviors are instrumental for successful copulation. Mosquito WBFs are usually an important species characteristic, with female flight tones used as male attractants in surveillance traps for species identification. Anopheles darlingi is an important Latin American malaria vector, but we know little about its mating behaviors. OBJECTIVES We characterised An. darlingi WBFs and examined male acoustic responses to immobilised females. METHODS Tethered and free flying male and female An. darlingi were recorded individually to determine their WBF distributions. Male-female acoustic interactions were analysed using tethered females and free flying males. FINDINGS Contrary to most mosquito species, An. darlingi females are smaller than males. However, the male's WBF is ~1.5 times higher than the females, a common ratio in species with larger females. When in proximity to a female, males displayed rapid frequency modulations that decreased upon genitalia engagement. Tethered females also modulated their frequency upon male approach, being distinct if the interaction ended in copulation or only contact. MAIN CONCLUSIONS This is the first report of An. darlingi flight acoustics, showing that its precopulatory acoustics are similar to other mosquitoes despite the uncommon male:female size ratio, suggesting that WBF ratios are common communication strategies rather than a physical constraint imposed by size.
Collapse
Affiliation(s)
- Jose Pablo Montoya
- Universidad CES, Instituto Colombiano de Medicina Tropical, Sabaneta, Antioquia, Colombia
| | - Hoover Pantoja-Sánchez
- Universidad de Antioquia, Departamento de Ingeniería Electrónica, Medellín, Antioquia, Colombia
- Universidad de Antioquia, Programa de Estudio y Control de Enfermedades Tropicales, Medellín, Antioquia, Colombia
| | - Sebastian Gomez
- Universidad CES, Instituto Colombiano de Medicina Tropical, Sabaneta, Antioquia, Colombia
- Universidad de Antioquia, Departamento de Ingeniería Electrónica, Medellín, Antioquia, Colombia
| | - Frank William Avila
- Universidad de Antioquia, Max Planck Tandem Group in Mosquito Reproductive Biology, Medellín, Antioquia, Colombia
| | - Catalina Alfonso-Parra
- Universidad CES, Instituto Colombiano de Medicina Tropical, Sabaneta, Antioquia, Colombia
- Universidad de Antioquia, Max Planck Tandem Group in Mosquito Reproductive Biology, Medellín, Antioquia, Colombia
| |
Collapse
|
13
|
Chan-Chable RJ, Martínez-Arce A, Ortega-Morales AI, Mis-Ávila PC. New Records and Updated Checklist of Mosquito Species in Quintana Roo, Mexico, Using DNA-Barcoding. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2020; 36:264-268. [PMID: 33647116 DOI: 10.2987/20-6941.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Collections of mosquitoes were conducted as part of the entomological vector surveillance in Quintana Roo State, Mexico, during September 2015. Species collected included Anopheles gabaldoni, An. darlingi, Psorophora columbiae, Culex inflictus, Cx. trifidus, Cx. lactator, and Wyeomyia guatemala s.l. All the specimens were identified by morphological and molecular characters (DNA-barcoding). This is the 1st time these species are reported in the Mexican state of Quintana Roo. This research updates and increases the list of species of mosquitoes in Quintana Roo from 79 to 86.
Collapse
|
14
|
Multini LC, de Souza ALDS, Marrelli MT, Wilke ABB. The influence of anthropogenic habitat fragmentation on the genetic structure and diversity of the malaria vector Anopheles cruzii (Diptera: Culicidae). Sci Rep 2020; 10:18018. [PMID: 33093465 PMCID: PMC7581522 DOI: 10.1038/s41598-020-74152-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
Fragmentation of natural environments as a result of human interference has been associated with a decrease in species richness and increase in abundance of a few species that have adapted to these environments. The Brazilian Atlantic Forest, which has been undergoing an intense process of fragmentation and deforestation caused by human-made changes to the environment, is an important hotspot for malaria transmission. The main vector of simian and human malaria in this biome is the mosquito Anopheles cruzii. Anthropogenic processes reduce the availability of natural resources at the tree canopies, An. cruzii primary habitat. As a consequence, An. cruzii moves to the border of the Atlantic Forest nearing urban areas seeking resources, increasing their contact with humans in the process. We hypothesized that different levels of anthropogenic changes to the environment can be an important factor in driving the genetic structure and diversity in An. cruzii populations. Five different hypotheses using a cross-sectional and a longitudinal design were tested to assess genetic structure in sympatric An. cruzii populations and microevolutionary processes driving these populations. Single nucleotide polymorphisms were used to assess microgeographic genetic structure in An. cruzii populations in a low-endemicity area in the city of São Paulo, Brazil. Our results show an overall weak genetic structure among the populations, indicating a high gene flow system. However, our results also pointed to the presence of significant genetic structure between sympatric An. cruzii populations collected at ground and tree-canopy habitats in the urban environment and higher genetic variation in the ground-level population. This indicates that anthropogenic modifications leading to habitat fragmentation and a higher genetic diversity and structure in ground-level populations could be driving the behavior of An. cruzii, ultimately increasing its contact with humans. Understanding how anthropogenic changes in natural areas affect An. cruzii is essential for the development of more effective mosquito control strategies and, on a broader scale, for malaria-elimination efforts in the Brazilian Atlantic Forest.
Collapse
Affiliation(s)
- Laura Cristina Multini
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, SP, Brazil
| | | | - Mauro Toledo Marrelli
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, SP, Brazil
- São Paulo Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - André Barretto Bruno Wilke
- Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, SP, Brazil.
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, 1120 Northwest 14th Street, Miami, FL, 33136, USA.
| |
Collapse
|
15
|
Fola AA, Kattenberg E, Razook Z, Lautu-Gumal D, Lee S, Mehra S, Bahlo M, Kazura J, Robinson LJ, Laman M, Mueller I, Barry AE. SNP barcodes provide higher resolution than microsatellite markers to measure Plasmodium vivax population genetics. Malar J 2020; 19:375. [PMID: 33081815 PMCID: PMC7576724 DOI: 10.1186/s12936-020-03440-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Genomic surveillance of malaria parasite populations has the potential to inform control strategies and to monitor the impact of interventions. Barcodes comprising large numbers of single nucleotide polymorphism (SNP) markers are accurate and efficient genotyping tools, however may need to be tailored to specific malaria transmission settings, since 'universal' barcodes can lack resolution at the local scale. A SNP barcode was developed that captures the diversity and structure of Plasmodium vivax populations of Papua New Guinea (PNG) for research and surveillance. METHODS Using 20 high-quality P. vivax genome sequences from PNG, a total of 178 evenly spaced neutral SNPs were selected for development of an amplicon sequencing assay combining a series of multiplex PCRs and sequencing on the Illumina MiSeq platform. For initial testing, 20 SNPs were amplified in a small number of mono- and polyclonal P. vivax infections. The full barcode was then validated by genotyping and population genetic analyses of 94 P. vivax isolates collected between 2012 and 2014 from four distinct catchment areas on the highly endemic north coast of PNG. Diversity and population structure determined from the SNP barcode data was then benchmarked against that of ten microsatellite markers used in previous population genetics studies. RESULTS From a total of 28,934,460 reads generated from the MiSeq Illumina run, 87% mapped to the PvSalI reference genome with deep coverage (median = 563, range 56-7586) per locus across genotyped samples. Of 178 SNPs assayed, 146 produced high-quality genotypes (minimum coverage = 56X) in more than 85% of P. vivax isolates. No amplification bias was introduced due to either polyclonal infection or whole genome amplification (WGA) of samples before genotyping. Compared to the microsatellite panels, the SNP barcode revealed greater variability in genetic diversity between populations and geographical population structure. The SNP barcode also enabled assignment of genotypes according to their geographic origins with a significant association between genetic distance and geographic distance at the sub-provincial level. CONCLUSIONS High-throughput SNP barcoding can be used to map variation of malaria transmission dynamics at sub-national resolution. The low cost per sample and genotyping strategy makes the transfer of this technology to field settings highly feasible.
Collapse
Affiliation(s)
- Abebe A Fola
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Eline Kattenberg
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Malariology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Zahra Razook
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Dulcie Lautu-Gumal
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Stuart Lee
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Somya Mehra
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - James Kazura
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Leanne J Robinson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia
| | - Moses Laman
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Alyssa E Barry
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
- Disease Elimination Program, Burnet Institute, Melbourne, VIC, Australia.
- IMPACT Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Geelong, VIC, 3216, Australia.
| |
Collapse
|
16
|
Kamimura EH, Viana MC, Lilioso M, Fontes FHM, Pires-Silva D, Valença-Barbosa C, Carbajal-de-la-Fuente AL, Folly-Ramos E, Solferin VN, Thyssen PJ, Costa J, Almeida CE. Drivers of molecular and morphometric variation in Triatoma brasiliensis (Hemiptera: Triatominae): the resolution of geometric morphometrics for populational structuring on a microgeographical scale. Parasit Vectors 2020; 13:455. [PMID: 32894173 PMCID: PMC7487581 DOI: 10.1186/s13071-020-04340-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/01/2020] [Indexed: 11/24/2022] Open
Abstract
Background The protozoan Trypanosoma cruzi circulates in semiarid areas of northeastern Brazil in distinct ecotopes (sylvatic, peridomestic and domestic) where Triatoma brasiliensis Neiva, 1911 is the most important Chagas disease vector. In this study, we analyzed microevolutionary and demographic aspects of T. brasiliensis populations at the ecotypic, micro and macro-geographic scales by combining morphometrics and molecular results. Additionally, we aimed to address the resolution of both markers for delimiting populations in distinct scales. Methods We sampled populations of T. brasiliensis from distinct ecotypic and geographic sites in the states Rio Grande do Norte (RN) and Paraíba (PB). The geometric morphometry was carried out with 13 landmarks on the right wings (n = 698) and the genetic structure was assessed by sequencing a region of cytochrome b mitochondrial gene (n = 221). Mahalanobis distance (MD) and coefficient of molecular differentiation (ΦST) were calculated among all pairs of populations. The results of comparisons generated MD and ΦST dendrograms, and graphics of canonical variate analysis (CVA). Results Little structure was observed for both markers for macro-geographic scales. Mantel tests comparing geographic, morphometric and genetic matrices showed low correlation (all R2 < 0.35). The factorial graphics built with the CVA evidenced population delimitation for the morphometric data at micro-geographic scales. Conclusions We believe that T. brasiliensis carries in its genotype a source of information to allow the phenotypical plasticity across its whole distribution for shaping populations, which may have caused a lack of population delimitation for CVAs in morphometric analysis for macro-geographic scale analysis. On the other hand, the pattern of morphometric results in micro-geographic scales showed well-defined groups, highlighting the potential of this tool to inferences on the source for infestation.![]()
Collapse
Affiliation(s)
- Edgard H Kamimura
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Maria Carolina Viana
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Maurício Lilioso
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda H M Fontes
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Dayane Pires-Silva
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | - Ana L Carbajal-de-la-Fuente
- Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias (CeNDIE), Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos Malbrán" (ANLIS), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Vera N Solferin
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Patricia J Thyssen
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Jane Costa
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/Fiocruz-RJ), Rio de Janeiro, Brazil
| | - Carlos E Almeida
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
17
|
Oliveira TMP, Sanabani SS, Sallum MAM. Bacterial diversity associated with the abdomens of naturally Plasmodium-infected and non-infected Nyssorhynchus darlingi. BMC Microbiol 2020; 20:180. [PMID: 32586275 PMCID: PMC7315559 DOI: 10.1186/s12866-020-01861-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bacterial community present in the abdomen in Anophelinae mosquitoes can influence mosquito susceptibility to Plasmodium infection. Little is known about the bacteria associated with Nyssorhynchus darlingi, a primary malaria vector in the Amazon basin. We investigated the abdominal bacterial community compositions of naturally Plasmodium-infected (P-positive, n = 9) and non-infected (P-negative, n = 7) Ny. darlingi from the Brazilian Amazon region through massive parallel sequencing of the bacterial V4 variable region of the 16S rRNA gene. RESULTS Bacterial richness of Ny. darlingi encompassed 379 operational taxonomic units (OTUs), the majority of them belonging to the Proteobacteria, Firmicutes and Bacteroides phyla. Escherichia/Shigella and Pseudomonas were more abundant in the P-positive and P-negative groups, respectively, than in the opposite groups. Enterobacter was found only in the P-negative group. The results of statistical analyses conducted to compare bacterial abundance and diversity between Plasmodium-infected and Plasmodium-non-infected mosquitoes were not significant. CONCLUSIONS This study increased knowledge about bacterial composition in Ny. darlingi and revealed that Plasmodium-positive and Plasmodium-negative groups share a common core of bacteria. The genera Prevotella 9, Sphingomonas, Bacteroides, and Bacillus were reported for the first time in Ny. darlingi.
Collapse
Affiliation(s)
| | - Sabri Saeed Sanabani
- LIM-3, Hospital das Clínicas da FMUSP (HCFMUSP), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
The potential of genome-wide RAD sequences for resolving rapid radiations: a case study in Cactaceae. Mol Phylogenet Evol 2020; 151:106896. [PMID: 32562821 DOI: 10.1016/j.ympev.2020.106896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/22/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022]
Abstract
The reconstruction of relationships within recently radiated groups is challenging even when massive amounts of sequencing data are available. The use of restriction site-associated DNA sequencing (RAD-Seq) to this end is promising. Here, we assessed the performance of RAD-Seq to infer the species-level phylogeny of the rapidly radiating genus Cereus (Cactaceae). To examine how the amount of genomic data affects resolution in this group, we used datasets and implemented different analyses. We sampled 52 individuals of Cereus, representing 18 of the 25 species currently recognized, plus members of the closely allied genera Cipocereus and Praecereus, and other 11 Cactaceae genera as outgroups. Three scenarios of permissiveness to missing data were carried out in iPyRAD, assembling datasets with 30% (333 loci), 45% (1440 loci), and 70% (6141 loci) of missing data. For each dataset, Maximum Likelihood (ML) trees were generated using two supermatrices, i.e., only SNPs and SNPs plus invariant sites. Accuracy and resolution were improved when the dataset with the highest number of loci was used (6141 loci), despite the high percentage of missing data included (70%). Coalescent trees estimated using SVDQuartets and ASTRAL are similar to those obtained by the ML reconstructions. Overall, we reconstruct a well-supported phylogeny of Cereus, which is resolved as monophyletic and composed of four main clades with high support in their internal relationships. Our findings also provide insights into the impact of missing data for phylogeny reconstruction using RAD loci.
Collapse
|
19
|
Chu VM, Sallum MAM, Moore TE, Emerson KJ, Schlichting CD, Conn JE. Evidence for family-level variation of phenotypic traits in response to temperature of Brazilian Nyssorhynchus darlingi. Parasit Vectors 2020; 13:55. [PMID: 32041663 PMCID: PMC7011564 DOI: 10.1186/s13071-020-3924-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/01/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Nyssorhynchus darlingi (also known as Anopheles darlingi) is the primary malaria vector in the Amazon River Basin. In Brazil, analysis of single nucleotide polymorphisms (SNPs) previously detected three major population clusters, and a common garden experiment in a laboratory setting revealed significant population variation in life history traits. Increasing temperatures and local level variation can affect life history traits, i.e. adult longevity, that alter vectorial capacity with implications for malaria transmission in Ny. darlingi. METHODS We investigated the population structure of Ny. darlingi from 7 localities across Brazil utilizing SNPs and compared them to a comprehensive Ny. darlingi catalog. To test the effects of local level variation on life history traits, we reared F1 progeny from the 7 localities at three constant temperatures (20, 24 and 28 °C), measuring key life history traits (larval development, food-starved adult lifespan, adult size and daily survival). RESULTS Using nextRAD genotyping-by-sequencing, 93 of the field-collected Ny. darlingi were genotyped at 33,759 loci. Results revealed three populations (K = 3), congruent with major biomes (Amazonia, Cerrado and Mata Atlântica), with greater FST values between biomes than within. In the life history experiments, increasing temperature reduced larval development time, adult lifespan, and wing length in all localities. The variation of family responses for all traits within four localities of the Amazonia biome was significant (ANOVA, P < 0.05). Individual families within localities revealed a range of responses as temperature increased, for larval development, adult lifespan, wing length and survival time. CONCLUSIONS SNP analysis of several Brazilian localities provided results in support of a previous study wherein populations of Ny. darlingi were clustered by three major Brazilian biomes. Our laboratory results of temperature effects demonstrated that population variation in life history traits of Ny. darlingi exists at the local level, supporting previous research demonstrating the high plasticity of this species. Understanding this plasticity and inherent variation between families of Ny. darlingi at the local level should be considered when deploying intervention strategies and may improve the likelihood of successful malaria elimination in South America.
Collapse
Affiliation(s)
- Virginia M. Chu
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, 150 New Scotland Avenue, Albany, NY USA
- Wadsworth Center, New York State Department of Health, New York State Route 5, Albany, NY USA
| | | | - Timothy E. Moore
- Department of Ecology and Evolutionary Biology, University of Connecticut, Hartford, CT USA
| | - Kevin J. Emerson
- Biology Department, St. Mary’s College of Maryland, St. Mary’s City, Maryland USA
| | - Carl D. Schlichting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Hartford, CT USA
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, New York State Route 5, Albany, NY USA
| |
Collapse
|
20
|
Wei Y, Wang J, Song Z, He Y, Zheng Z, Fan P, Yang D, Zhou G, Zhong D, Zheng X. Patterns of spatial genetic structures in Aedes albopictus (Diptera: Culicidae) populations in China. Parasit Vectors 2019; 12:552. [PMID: 31752961 PMCID: PMC6873696 DOI: 10.1186/s13071-019-3801-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/10/2019] [Indexed: 11/18/2022] Open
Abstract
Background The Asian tiger mosquito, Aedes albopictus, is one of the 100 worst invasive species in the world and the vector for several arboviruses including dengue, Zika and chikungunya viruses. Understanding the population spatial genetic structure, migration, and gene flow of vector species is critical to effectively preventing and controlling vector-borne diseases. Little is known about the population structure and genetic differentiation of native Ae. albopictus in China. The aim of this study was to examine the patterns of the spatial genetic structures of native Ae. albopictus populations, and their relationship to dengue incidence, on a large geographical scale. Methods During 2016–2018, adult female Ae. albopictus mosquitoes were collected by human landing catch (HLC) or human-bait sweep-net collections in 34 localities across China. Thirteen microsatellite markers were used to examine the patterns of genetic diversity, population structure, and gene flow among native Ae. albopictus populations. The correlation between population genetic indices and dengue incidence was also examined. Results A total of 153 distinct alleles were identified at the 13 microsatellite loci in the tested populations. All loci were polymorphic, with the number of distinct alleles ranging from eight to sixteen. Genetic parameters such as PIC, heterozygosity, allelic richness and fixation index (FST) revealed highly polymorphic markers, high genetic diversity, and low population genetic differentiation. In addition, Bayesian analysis of population structure showed two distinct genetic groups in southern-western and eastern-central-northern China. The Mantel test indicated a positive correlation between genetic distance and geographical distance (R2 = 0.245, P = 0.01). STRUCTURE analysis, PCoA and GLS interpolation analysis indicated that Ae. albopictus populations in China were regionally clustered. Gene flow and relatedness estimates were generally high between populations. We observed no correlation between population genetic indices of microsatellite loci in Ae. albopictus populations and dengue incidence. Conclusion Strong gene flow probably assisted by human activities inhibited population differentiation and promoted genetic diversity among populations of Ae. albopictus. This may represent a potential risk of rapid spread of mosquito-borne diseases. The spatial genetic structure, coupled with the association between genetic indices and dengue incidence, may have important implications for understanding the epidemiology, prevention, and control of vector-borne diseases.
Collapse
Affiliation(s)
- Yong Wei
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiatian Wang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhangyao Song
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yulan He
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zihao Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peiyang Fan
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dizi Yang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California, Irvine, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California, Irvine, USA
| | - Xueli Zheng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Minimal genetic differentiation of the malaria vector Nyssorhynchus darlingi associated with forest cover level in Amazonian Brazil. PLoS One 2019; 14:e0225005. [PMID: 31725789 PMCID: PMC6855485 DOI: 10.1371/journal.pone.0225005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
The relationship between deforestation and malaria in Amazonian Brazil is complex, and a deeper understanding of this relationship is required to inform effective control measures in this region. Here, we are particularly interested in characterizing the impact of land use and land cover change on the genetics of the major regional vector of malaria, Nyssorhynchus darlingi (Root). We used nextera-tagmented, Reductively Amplified DNA (nextRAD) genotyping-by-sequencing to genotype 164 Ny. darlingi collected from 16 collection sites with divergent forest cover levels in seven municipalities in four municipality groups that span the state of Amazonas in northwestern Amazonian Brazil: São Gabriel da Cachoeira, Presidente Figueiredo, four municipalities in the area around Cruzeiro do Sul, and Lábrea. Using a dataset of 5,561 Single Nucleotide Polymorphisms (SNPs), we investigated the genetic structure of these Ny. darlingi populations with a combination of model- and non-model-based analyses. We identified weak to moderate genetic differentiation among the four municipality groups. There was no evidence for microgeographic genetic structure of Ny. darlingi among forest cover levels within the municipality groups, indicating that there may be gene flow across areas of these municipalities with different degrees of deforestation. Additionally, we conducted an environmental association analysis using two outlier detection methods to determine whether individual SNPs were associated with forest cover level without affecting overall population genetic structure. We identified 14 outlier SNPs, and investigated functions associated with their proximal genes, which could be further characterized in future studies.
Collapse
|
22
|
Khan G, Franco FF, Silva GAR, Bombonato JR, Machado M, Alonso DP, Ribolla PEM, Albach DC, Moraes EM. Maintaining genetic integrity with high promiscuity: Frequent hybridization with low introgression in multiple hybrid zones of Melocactus (Cactaceae). Mol Phylogenet Evol 2019; 142:106642. [PMID: 31605812 DOI: 10.1016/j.ympev.2019.106642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 10/25/2022]
Abstract
Hybridization and introgression between species in contact/hybrid zones provide important insight into the genetic and ecological mechanisms of speciation. Cactaceae represents the most important radiation of true succulent angiosperms in the New World. This diversification continues to date, with species experiencing few intrinsic barriers to gene flow and the frequent occurrence of natural hybridization. Here, we used RAD-Seq single-nucleotide polymorphism (SNP) data to investigate the genetic architecture of hybridization in four hybrid zones hosting Melocactus concinnus and four congeneric species (M. ernestii, M. glaucescens, M. paucispinus, and M. zehntneri). Our results revealed that M. concinnus is highly promiscuous in sympatric areas and hybridizes with various species distributed in Morro do Chapéu (Diamantina Plateau, Bahia), eastern Brazil. However, the contemporary genomic introgression among the investigated species is very low (c. 2-5%), confirming that even in the face of hybridization, Melocactus species maintain their genetic integrity. The genomic cline approach showed a large fraction of loci deviating from a model of neutral introgression, where most of the loci are consistent with selection favoring parental genotypes. Our results suggest the occurrence of weak premating but strong postmating reproductive isolation in the analyzed cactus species. Furthermore, as most of the Melocactus species are restricted in distribution, hybridization might negatively affect their integrity if hybrids replace the parental species.
Collapse
Affiliation(s)
- Gulzar Khan
- Universidade Federal de São Carlos, Centro de Ciências Humanas e Biológicas, Departamento de Biologia, Brazil
| | - Fernando F Franco
- Universidade Federal de São Carlos, Centro de Ciências Humanas e Biológicas, Departamento de Biologia, Brazil
| | - Gislaine A R Silva
- Universidade Federal de São Carlos, Centro de Ciências Humanas e Biológicas, Departamento de Biologia, Brazil
| | - Juliana R Bombonato
- Universidade Federal de São Carlos, Centro de Ciências Humanas e Biológicas, Departamento de Biologia, Brazil; Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Programa de Pós-graduação em Biologia Comparada, Brazil
| | - Marlon Machado
- Universidade Estadual de Feira de Santana, Bahia, Brazil
| | - Diego P Alonso
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), São Paulo State University (UNESP), Sao Paulo, Brazil
| | - Paulo E M Ribolla
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), São Paulo State University (UNESP), Sao Paulo, Brazil
| | - Dirk C Albach
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Evandro M Moraes
- Universidade Federal de São Carlos, Centro de Ciências Humanas e Biológicas, Departamento de Biologia, Brazil.
| |
Collapse
|
23
|
Campos M, Alonso DP, Conn JE, Vinetz JM, Emerson KJ, Ribolla PEM. Genetic diversity of Nyssorhynchus (Anopheles) darlingi related to biting behavior in western Amazon. Parasit Vectors 2019; 12:242. [PMID: 31101131 PMCID: PMC6525393 DOI: 10.1186/s13071-019-3498-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/09/2019] [Indexed: 01/14/2023] Open
Abstract
Background In the Amazon Basin, Nyssorhynchus (Anopheles) darlingi is the most aggressive and effective malaria vector. In endemic areas, behavioral aspects of anopheline vectors such as host preference, biting time and resting location post blood meal have a key impact on malaria transmission dynamics and vector control interventions. Nyssorhynchus darlingi presents a range of feeding and resting behaviors throughout its broad distribution. Methods To investigate the genetic diversity related to biting behavior, we collected host-seeking Ny. darlingi in two settlement types in Acre, Brazil: Granada (~ 20-year-old, more established, better access by road, few malaria cases) and Remansinho (~ 8-year-old, active logging, poor road access, high numbers malaria cases). Mosquitoes were classified by the location of collection (indoors or outdoors) and time (dusk or dawn). Results Genome-wide SNPs, used to assess the degree of genetic divergence and population structure, identified non-random distributions of individuals in the PCA for both location and time analyses. Although genetic diversity related to behavior was confirmed by non-model-based analyses and FST values, model-based STRUCTURE detected considerable admixture of these populations. Conclusions To our knowledge, this is the first study to detect genetic markers associated with biting behavior in Ny. darlingi. Additional ecological and genomic studies may help to understand the genetic basis of mosquito behavior and address appropriate surveillance and vector control. Electronic supplementary material The online version of this article (10.1186/s13071-019-3498-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melina Campos
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Diego Peres Alonso
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Jan E Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA.,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, USA.,Laboratorio de Investigación y Desarrollo, Departamento de Ciencias Celulares y Moleculares, Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kevin J Emerson
- Biology Department, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Paulo Eduardo Martins Ribolla
- Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), Sao Paulo State University (UNESP), Sao Paulo, Brazil.
| |
Collapse
|
24
|
Chu VM, Sallum MAM, Moore TE, Lainhart W, Schlichting CD, Conn JE. Regional variation in life history traits and plastic responses to temperature of the major malaria vector Nyssorhynchus darlingi in Brazil. Sci Rep 2019; 9:5356. [PMID: 30926833 PMCID: PMC6441093 DOI: 10.1038/s41598-019-41651-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/13/2019] [Indexed: 11/08/2022] Open
Abstract
The primary Brazilian malaria vector, Nyssorhynchus darlingi (formerly Anopheles darlingi), ranges from 0°S-23°S across three biomes (Amazonia, Cerrado, Mata Atlântica). Rising temperatures will increase mosquito developmental rates, and models predict future malaria transmission by Ny. darlingi in Brazil will shift southward. We reared F1 Ny. darlingi (progeny of field-collected females from 4 state populations across Brazil) at three temperatures (20, 24, 28 °C) and measured key life-history traits. Our results reveal geographic variation due to both genetic differences among localities and plastic responses to temperature differences. Temperature significantly altered all traits: faster larval development, shorter adult life and overall lifespan, and smaller body sizes were seen at 28 °C versus 20 °C. Low-latitude Amazonia mosquitoes had the fastest larval development at all temperatures, but at 28 °C, average development rate of high-latitude Mata Atlântica mosquitoes was accelerated and equivalent to low-latitude Amazonia. Body size of adult mosquitoes from the Mata Atlântica remained larger at all temperatures. We detected genetic variation in the plastic responses among mosquitoes from different localities, with implications for malaria transmission under climate change. Faster development combined with larger body size, without a tradeoff in adult longevity, suggests vectorial capacities of some Mata Atlântica populations may significantly increase under warming climates.
Collapse
Affiliation(s)
- V M Chu
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA.
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - M A M Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | - T E Moore
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - W Lainhart
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - C D Schlichting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - J E Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, NY, USA.
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
25
|
Prado CC, Alvarado-Cabrera LA, Camargo-Ayala PA, Garzón-Ospina D, Camargo M, Soto-De León SC, Cubides JR, Celis-Giraldo CT, Patarroyo ME, Patarroyo MA. Behavior and abundance of Anopheles darlingi in communities living in the Colombian Amazon riverside. PLoS One 2019; 14:e0213335. [PMID: 30845198 PMCID: PMC6405047 DOI: 10.1371/journal.pone.0213335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/20/2019] [Indexed: 01/08/2023] Open
Abstract
In the past few years, relative frequencies of malaria parasite species in communities living in the Colombian Amazon riverside have changed, being Plasmodium vivax (61.4%) and Plasmodium malariae (43.8%) the most frequent. Given this epidemiological scenario, it is important to determine the species of anophelines involved in these parasites' transmission. This study was carried out in June 2016 in two indigenous communities living close to the tributaries of the Amazon River using protected human bait. The results of this study showed a total abundance of 1,085 mosquitos, of which 99.2% corresponded to Anopheles darlingi. Additionally, only two anopheline species were found, showing low diversity in the study areas. Molecular confirmation of some individuals was then followed by evolutionary analysis by using the COI gene. Nested PCR was used for identifying the three Plasmodium species circulating in the study areas. Of the two species collected in this study, 21.0% of the An. darlingi mosquitoes were infected with P. malariae, 21.9% with P. vivax and 10.3% with Plasmodium falciparum. It exhibited exophilic and exophagic behavior in both study areas, having marked differences regarding its abundance in each community (Tipisca first sampling 49.4%, Tipisca second sampling 39.6% and Doce de Octubre 10.9%). Interestingly, An. mattogrossensis infected by P. vivax was found for the first time in Colombia (in 50% of the four females collected). Analysis of An. darlingi COI gene diversity indicated a single population maintaining a high gene flow between the study areas. The An. darlingi behavior pattern found in both communities represents a risk factor for the region's inhabitants living/working near these sites. This highlights the need for vector control efforts such as the use of personal repellents and insecticides for use on cattle, which must be made available in order to reduce this Anopheline's abundance.
Collapse
Affiliation(s)
- César Camilo Prado
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | | | - Paola Andrea Camargo-Ayala
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Diego Garzón-Ospina
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- PhD Programme in Biomedical and Biological Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Milena Camargo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- PhD Programme in Biomedical and Biological Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Sara Cecilia Soto-De León
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Juan Ricardo Cubides
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | | | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
26
|
Suesdek L. Microevolution of medically important mosquitoes - A review. Acta Trop 2019; 191:162-171. [PMID: 30529448 DOI: 10.1016/j.actatropica.2018.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022]
Abstract
This review intends to discuss central issues regarding the microevolution of mosquito (Culicidae) vectors of several pathogens and how this process impacts vector biology, disease transmission, and vector control attempts. On the microevolutionary context, it comparatively discusses the current knowledge on the population genetics of representatives of the genera Aedes, Anopheles and Culex, and comments on insecticide resistance of culicids. It also discusses other biological aspects of culicids that are not usually addressed in microevolutionary studies, such as vectorial competence, endosymbiosis, and wing morphology. One conclusion is that mosquitoes are highly genetically variable, adaptable, fast evolving, and have versatile vectorial competence. Unveiling microevolutionary patterns is fundamental for the design and maintenance of all control programs. Sampling methods for assessing microevolution must be standardized and must follow meaningful guidelines, such as those of "landscape genetics". A good understanding of microevolution requires more than a collection of case studies on population genetics and resistance. Future research could deal not only with the microevolution sensu stricto, but also with evolutionarily meaningful issues, such as inheritable characters, epigenetics, physiological cost-free plasticity, vector immunity, symbiosis, pathogen-mosquito co-evolution and environmental variables. A genotyping panel for seeking adaptive phenotypes as part of the standardization of population genetics methods is proposed. The investigative paradigm should not only be retrospective but also prospective, despite the unpredictability of evolution. If we integrate all suggestions to tackle mosquito evolution, a global revolution to counter vector-borne diseases can be provoked.
Collapse
|
27
|
Carrasco-Escobar G, Manrique E, Ruiz-Cabrejos J, Saavedra M, Alava F, Bickersmith S, Prussing C, Vinetz JM, Conn JE, Moreno M, Gamboa D. High-accuracy detection of malaria vector larval habitats using drone-based multispectral imagery. PLoS Negl Trop Dis 2019; 13:e0007105. [PMID: 30653491 PMCID: PMC6353212 DOI: 10.1371/journal.pntd.0007105] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/30/2019] [Accepted: 12/20/2018] [Indexed: 12/02/2022] Open
Abstract
Interest in larval source management (LSM) as an adjunct intervention to control and eliminate malaria transmission has recently increased mainly because long-lasting insecticidal nets (LLINs) and indoor residual spray (IRS) are ineffective against exophagic and exophilic mosquitoes. In Amazonian Peru, the identification of the most productive, positive water bodies would increase the impact of targeted mosquito control on aquatic life stages. The present study explores the use of unmanned aerial vehicles (drones) for identifying Nyssorhynchus darlingi (formerly Anopheles darlingi) breeding sites with high-resolution imagery (~0.02m/pixel) and their multispectral profile in Amazonian Peru. Our results show that high-resolution multispectral imagery can discriminate a profile of water bodies where Ny. darlingi is most likely to breed (overall accuracy 86.73%- 96.98%) with a moderate differentiation of spectral bands. This work provides proof-of-concept of the use of high-resolution images to detect malaria vector breeding sites in Amazonian Peru and such innovative methodology could be crucial for LSM malaria integrated interventions. The most efficient malaria vector in the Latin American region is Nyssorhynchus darlingi (formerly Anopheles darlingi). In Amazonian Peru, where malaria is endemic, Ny. darlingi feeds both indoors and outdoors (endophagy, exophagy), depending on the local environment, and rests outdoors (exophily). LLINs and IRS, the most common tools employed for vector control, target endophagic and endophilic mosquitoes. Thus, they are only partially effective against Ny. darlingi. Control of the aquatic stages of vector mosquitoes, larval source management (LSM), targets the most productive breeding sites nearest to human habitation. In four riverine communities, we used drones with high-resolution imagery as a key initial step to analyze water bodies within the estimated flight range of Ny. darlingi, ~ 1 km. We found distinctive spectral profiles for water bodies that were positive versus negative for Ny. darlingi. The methodology and analysis reported here provide the basis for testing whether LSM can be combined successfully with LLINs and IRS to contribute to the elimination of transmission in malaria hotspots in the Amazon.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
- * E-mail: (GCE); (MM)
| | - Edgar Manrique
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Ruiz-Cabrejos
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marlon Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Sara Bickersmith
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, New York, United States of America
| | - Joseph M. Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, New York, United States of America
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (GCE); (MM)
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
28
|
Canelas T, Castillo-Salgado C, Ribeiro H. Analyzing the Local Epidemiological Profile of Malaria Transmission in the Brazilian Amazon Between 2010 and 2015. PLOS CURRENTS 2018; 10. [PMID: 29623243 PMCID: PMC5878100 DOI: 10.1371/currents.outbreaks.8f23fe5f0c2052bfaaa648e6931e4e1a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Introduction: Malaria still is a public health problem in the Americas. In 2015, Brazil accounted for 37% of all cases in the Americas, and of these cases, 99.5% were located in the Brazilian Amazon. Despite the mobilization of resources from the Brazilian National Plan for Malaria Control, too many municipalities have high transmission levels. The objective of this study is to evaluate the local epidemiological profile of malaria and its trend between 2010 and 2015 in the Brazilian Amazon. This study also aims to recognize the epidemiological differences in the local temporo-spatial dynamics of malaria. Methods: Malaria data were stratified by the annual parasite incidence (API) over the six-year period and by municipality. We used the method of seasonal decomposition by Loess smoothing to capture trend, seasonal and irregular components. A generalized linear model was applied to quantify trends, and the Kruskal-Wallis Rank Sum was applied to test for seasonality significance. Results: The malaria API declined by 61% from 2010 to 2015, and there was a 40% reduction of municipalities with high transmission (determined as an API higher than 50). In 2015, 9.4% of municipalities had high transmission and included 62.8% of the total cases. The time-series analyses showed different incidence patterns by region after 2012; several states have minimized the effect of the seasonality in their incidence rates, thus achieving low rates of incidence. There were 13 municipalities with sustained high transmission that have become the principal focus of malaria control; these municipalities contained 40% of the cases between 2013 and 2015. Discussion: Brazil has achieved advances, but more sustained efforts are necessary to contain malaria resurgence. The use of malaria stratification has been demonstrated as a relevant tool to plan malaria programs more efficiently, and spatiotemporal analysis corroborates the idea that implementing any intervention in malaria should be stratified by time to interpret tendencies and by space to understand the local dynamics of the disease.
Collapse
Affiliation(s)
- Tiago Canelas
- School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Carlos Castillo-Salgado
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, US
| | - Helena Ribeiro
- School of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Hemming-Schroeder E, Lo E, Salazar C, Puente S, Yan G. Landscape Genetics: A Toolbox for Studying Vector-Borne Diseases. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
30
|
Prussing C, Moreno M, Saavedra MP, Bickersmith SA, Gamboa D, Alava F, Schlichting CD, Emerson KJ, Vinetz JM, Conn JE. Decreasing proportion of Anopheles darlingi biting outdoors between long-lasting insecticidal net distributions in peri-Iquitos, Amazonian Peru. Malar J 2018; 17:86. [PMID: 29463241 PMCID: PMC5819687 DOI: 10.1186/s12936-018-2234-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In Loreto Department, Peru, a successful 2005-2010 malaria control programme (known as PAMAFRO) included massive distribution of long-lasting insecticidal nets (LLINs). Additional local distribution of LLINs occurred in individual villages, but not between 2012 and 2015. A 2011-2012 study of the primary regional malaria vector Anopheles darlingi detected a trend of increased exophagy compared with pre-PAMAFRO behaviour. For the present study, An. darlingi were collected in three villages in Loreto in 2013-2015 to test two hypotheses: (1) that between LLIN distributions, An. darlingi reverted to pre-intervention biting behaviour; and, (2) that there are separate sub-populations of An. darlingi in Loreto with distinct biting behaviour. RESULTS In 2013-2015 An. darlingi were collected by human landing catch during the rainy and dry seasons in the villages of Lupuna and Cahuide. The abundance of An. darlingi varied substantially across years, villages and time periods, and there was a twofold decrease in the ratio of exophagic:endophagic An. darlingi over the study period. Unexpectedly, there was evidence of a rainy season population decline in An. darlingi. Plasmodium-infected An. darlingi were detected indoors and outdoors throughout the night, and the monthly An. darlingi human biting rate was correlated with the number of malaria cases. Using nextRAD genotyping-by-sequencing, 162 exophagic and endophagic An. darlingi collected at different times during the night were genotyped at 1021 loci. Based on model-based and non-model-based analyses, all genotyped An. darlingi belonged to a homogeneous population, with no evidence for genetic differentiation by biting location or time. CONCLUSIONS This study identified a decreasing proportion of exophagic An. darlingi in two villages in the years between LLIN distributions. As there was no evidence for genetic differentiation between endophagic and exophagic An. darlingi, this shift in biting behaviour may be the result of behavioural plasticity in An. darlingi, which shifted towards increased exophagy due to repellence by insecticides used to impregnate LLINs and subsequently reverted to increased endophagy as the nets aged. This study highlights the need to target vector control interventions to the biting behaviour of local vectors, which, like malaria risk, shows high temporal and spatial heterogeneity.
Collapse
Affiliation(s)
- Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, Albany, NY, USA
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marlon P Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Carl D Schlichting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Kevin J Emerson
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, Albany, NY, USA.
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
31
|
Altamiranda-Saavedra M, Conn JE, Correa MM. Genetic structure and phenotypic variation of Anopheles darlingi in northwest Colombia. INFECTION GENETICS AND EVOLUTION 2017; 56:143-151. [PMID: 29138079 DOI: 10.1016/j.meegid.2017.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/26/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022]
Abstract
This study evaluated the influence of environmental heterogeneity on Anopheles darlingi genetic and morphometric traits at a microgeographic level. Specimens of An. darlingi collected from multiple municipalities in the Colombian malaria endemic region Urabá-Bajo Cauca and Alto Sinú (UCS) were analyzed using 13 microsatellite loci. Spatial genetic structure, population variation and wing geometric morphometric analyses were performed. Microsatellite results showed low genetic differentiation and high gene flow among populations; four highly admixed subpopulations were detected with no particular association to the municipalities. Wing geometric morphometrics analysis showed a subtle but significant difference in wing shape for El Bagre vs. Mutatá populations, possibly influenced by geographical distance. Discrimination among populations in the morphospace showed a slight separation of the Tierralta population. There was no significant correlation between the genetic and geographic or genetic and environmental distances. We hypothesize that environmental heterogeneity in the UCS region does not reach a threshold to affect population structure of An. darlingi. Another possibility is that microsatellites are not sensitive enough to detect existing structure. It remains to be determined which local factors govern phenotypic variation among these populations and how, or whether these may affect mosquito biology and transmission capacity.
Collapse
Affiliation(s)
- Mariano Altamiranda-Saavedra
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, USA.
| | - Margarita M Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|